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A b s t r a c t  Single and multiple flaw identification problems are 
considered. Static and steady-state dynamic analysis of structures 
with flaw(s) is performed by the boundary element method. In- 
verse problems are formulated as output (i.e. measurement) error 
minimization problems and they are solved by numerical optimiza- 
tion techniques. As it is shown in this paper by means of numer- 
ical experiments, for elastostatic cases, an appropriate modelling 
of the structural analysis problem, a good choice of the error mea- 
sure, and the use of established numerical optimization software 
are usually sufficient for the solution of the problem. Even mul- 
tiple flaw identification is possible. Elastodynamic loadings lead 
to nonconvex problems which are solved here by means of global, 
genetic optimization algorithms. 

1 I n t r o d u c t i o n  

In this paper, the effectiveness of solving inverse, flaw de- 
tection problems in elastostatics and in harmonic elastody- 
namics is investigated by means of boundary element mod- 
elling for the direct problem, and of numerical optimization 
techniques for the solution of the inverse error minimization 
problem. The methodology is generally applicable to damage 
identification, flaw detection, and quality control of struc- 
tures or structural elements. 

Identification problems belong to the class of the so-called 
inverse problems, in the sense that  a given model of a sys- 
tem is defined, and a set of input-output  data  for this system 
is available, but the values of the parameters, which are in- 
volved in the system, are unknown. The output error iden- 
tification problem, which is considered here, is formulated as 
an optimization problem for the difference between the mea- 
sured (or, for the examples presented in this paper, the com- 
puted) and the desired responses within the space of the vari- 
ables which define the considered structure. The similarity of 
the problem with the ones arising in structural  optimization 
is straightforward, if one identifies the error function with a 
cost function. In general, a certain structure is assumed for 
the defects, i.e. that  they have the form of a crack, a circular 
hole or soft inclusion, a plastification zone, etc. The problem 
consists then in the determination of the parameters of the 
assumed defects. This approach uses in an optimal way the 
existing engineering experience about the failure mode of the 
sought structural component. Moreover, low sensitivity of 
the structural response with respect to the chosen flaw pa- 
rameters and the fact that ,  especially for complicated flaw 

models, several values of these parameters may fit the given 
measurements (thus the possible multiplicity of the solution) 
make the arising optimization problem ill-posed. In fact, the 
error function is, in general, nonconvex and, accordingly, the 
error minimization problem is a global optimization problem 
with several local minima. If appropriate scaling techniques 
(e.g. the use of another error measure) or the choice of other 
test loadings cannot help to overcome this problem, appro- 
priate global optimization algorithms must be employed (e.g. 
stochastic optimization, genetic algorithms, neural networks, 
etc.). Note that  scaling helped also, in this case, to avoid the 
application of regularization techniques. More generally, the 
problem belongs to the class of mathematical programs with 
equilibrium constraints (see e.g. Haslinger and Neitaanm~ki 
1988; Luo et aI. 1996). In fact, an error function is minimized 
here with respect to the flaw parameters and with subsidiary 
conditions coming from the governing relations of the me- 
chanical system. These relations are, for the cases consid- 
ered in this paper, parameterized systems of linear equations 
(the nonlinearity being induced through the flaw parameter- 
ization). 

In this paper, a two-dimensional specimen is considered 
which contains a number of unknown circular defects. Each 
unknown defect has been parameterized by a certain num- 
ber of parameters, e.g. the diameter of the circle and the 
coordinates of its centre. It is assumed that  certain bound- 
ary displacements or tractions can be measured for various 
external loadings. The direct mechanical problem is solved 
numerically, for static and harmonic dynamic loadings, by 
the BEM method. The identification (inverse) problem is 
treated by numerical optimization techniques. 

The significance of the area of flaw, defect and crack iden- 
tification is underlined by the large number of recent publi- 
cations. A brief citation of several publications in this area 
will allow us to mention several directions of current research 
efforts. The list is indicative and by no means complete. 
Boundary element method techniques and classical minimiza- 
tion algorithms have been used for the identification of ellip- 
tic flaws by Mitra and Das (1992) where steady heat con- 
duction problems are examined. Tanaka and Masuda (1996) 
studied the inverse elastostatic analysis problem, where the 
shape of the unknown crack is identified by boundary mea- 
surements (see also Nishimura and Kobayashi 1991). Three- 
dimensional flaw identification has been studied by Mellings 
and Aliabadi (1994). Tosaka et al. (1995) addressed the iden- 
tification of elliptical defects in 2-D or spherical defects in 3-D 
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problems. Here, the classical numerical minimization scheme 
is replaced by a Kalman filtering based iterative algorithm 
which reduces substantially the computational effort. The 
estimation of the position, size and elastic properties of an 
inclusion within a composite material from static analysis re- 
suits has been studied by Schnur and Zabaras (1992), with a 
finite element modelling. Elastodynamic data are considered 
more advantageous for defect identification. The approach 
used in this paper, for the dynamic case, parallels the inves- 
tigations of Tanaka el al. (1991) and Weijiang and Chuntu 
(1996). Genetic algorithms have been used for the solution 
of inverse fault detection in elastodynamics by Kannal and 
Doyle (1997) and Kalman filtering techniques by Tosaka el 
al. (1995). Neural networks have been used in several iden- 
tification problems. Among others, crack identification us- 
ing dynamic analysis data has been studied by Oishi el al. 
(1995), damage identification by using eigenmodal data and 
an inovatige scaling rule which enhances the performance of 
the neural network has been reported by Yoshimura et al. 
(1996) and the applications reported by Yagawa and Okuda 
(1996) are cited. Crack detection in elastostatics with uni- 
lateral contact effects along the crack sides has been studied 
by Stavroulakis and Antes (1997) by using BEM modelling 
and neural networks. Identification of a boundary crack in 
steady state elastodynamics has been studied by analogous 
techniques by Stavroulakis and Antes (1998). Recent appli- 
cations in this quickly evolving area can be found in the paper 
by Ingham and Wrobel (1997). 

The purpose of this work is twofold. First, by us- 
ing numerical experimentation, the appearance of noncon- 
vex (global) optimization problems in flaw identification is 
demonstrated. This effect is magnified in inverse elastody- 
namic problems. Logarithmic scaling of the error function 
or/and the simultaneous use of data from several excita- 
tion signals (several loading cases) usually make the prob- 
lem tractable. Otherwise global optimization tools must be 
used. Genetic algorithm optimization is used in this paper. 
The second purpose of this work is the study of multiple flaw 
identification tasks. This problem is rarely addressed in the 
inverse problems literature. It seems that, at least during the 
present computer simulations, the identification of multiple 
flaws does not cause additional difficulty, except of the in- 
creased computational effort which is due to the larger num- 
ber of parameters. Moreover, the following simple strategy 
works satisfactorily. Assume that the exact number of flaws 
is unknown, but the maximum number of them in a given 
problem can be estimated. Then, instead of solving compli- 
cated zero-one optimization problems one may try a classical 
multiple flaw identification procedure by using the maximum 
number of expected flaws. Flaws with "zero" values in the 
results do not actually exist in the examined structure. 

The paper is organized as follows. The BEM formulations 
for the solution of the direct elastostatic and elastodynamic, 
steady state problem, are briefly outlined in Section 2. The 
inverse problem formulation is described in Section 3, where 
the used error measures is given. The application of local and 
global (genetic) optimization is briefly described in Section 4. 
Results of numerical experiments are reported and discussed 
in the last section of this paper. 

2 B E M  s t r u c t u r a l  analysis  model l ing  

2.1 Elastostatics 

The BEM formulation for the elastostatic problem is out- 
lined here. More details can be found in standard textbooks 
(see, among others, Brebbia and Dominguez 1989; Antes and 
Panagiotopoulos 1992). 

Let us consider the equations of equilibrium, written in 
a Cartesian coordinate system, for each point x of an elastic 
body which occupies the area S? with the boundary F, 

c r i j , j ( x , t ) + p i ( x , t  ) = O, x E (2. (1) 

Here r is the stress tensor and Pi is the volume force 
vector. Moreover i , j  run over the values 1 , . . . , 3  for 
three-dimensional problems (or the values 1 , . . . , 2  for two- 
dimensional problems) and the usual Einstein summation as- 
sumption for repeated indices is adopted. 

By using the reciprocal theorem of Green and adequate 
fundamental solutions and by assuming that only boundary 
loadings Ti(x ) are applied on the structure, one may obtain 
the boundary integral equation of the system at each point 
~C12, 

j* 

F 

Here ( and x are the points on the boundary F or in the 
body $2, u (or T) is the displacement (or the traction) vector, 
u*(z,  ~) [or T*(z ,  ~)] denotes the fundamental solution (or its 
normal derivative u* ,n on the boundary) and the jump factor 
d(() is calculated as usual in the BEM [e.g. d(~) = 0.5 for a 
smooth part of the boundary]. 

Finally, evaluating (2) at certain points ~, the so-called 
collocation points, using appropriate shape functions in the 
discretized boundary, i.e. in the boundary elements, and ap- 
plying adequate quadrature formulae for the numerical inte- 
gration, one obtains the following system of linear equations: 

r h  = G t .  (3) 

The dimension of the element traction vector t depends on 
the kind of the used boundary element shape functions. For 
simplicity, let us consider a two-dimensional structure which 
is discretized by m boundary elements with a total of n 
boundary nodes. The quadratic elements used here have 
three nodes in each element. Thus, in (3), since the displace- 
ments are assumed to be continuous, u is a vector containing 
2n nodal boundary displacements, while, since the traction 
may be discontinuous at the ends of the elements, t is a vector 
containing 3m nodal boundary tractions. The nonsymmetric 
matrices H and G have dimensions 2n x 2n and 2n x 6m, 
respectively, and have the mechanical meaning of generalized 
influence matrices. 

From the boundary conditions of the system, complemen- 
tary terms of the boundary displacements or tractions are 
given. This information is.used for the re-arrangement of 
the system (3). Finally, the calculation of the remaining 
unknown boundary displacements and tractions, i.e. of the 
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2n-dimensional vector x, is obtained from the solution of a 
nonsymmetric system of equations, 

Ax  = b.  (4) 

In this concise formulation the vector x is made up of all un- 
known elements of the displacement vector u and the traction 
vector t, while the right-hand side term vector b contains the 
influence of all given boundary tractions and displacements 
[i.e. the given complementary Set of elements of u, t multi- 
plied by the corresponding rows of the influence matrices in 
(3)]. 

2.2 Harmonic elastodynamics 

The formulation of the reduced elastodynamics equations is 
outlined here [see, among others, Antes (1988) and Antes and 
Panagiotopoulos (1992) for more details]. Let us consider 
the equations of motion, written in a Cartesian coordinate 
system, for each point x of an elastic body 

~rij,j(x,t ) - p(x) i t i (x , t  ) + p i ( x , t )  = O, x E ~ .  (5) 

Here p is the mass density of the body. On the assumptions 
of linear elastic material behaviour and of small amplitude vi- 
brations, i.e. a small displacements and deformations theory, 
(5) takes the form 

p~(x,t)  _ o, x c n .  (6) ~i(x,t)  + p ( x ~  

In (6), c 1 is the dilatational (or pressure) and c 2 is the distor- 
tional (or shear) wave propagation velocity. For plane strain 
two dimensional isotropic elasticity applications, Cl, c 2 are 
related with the elasticity modulus E and the Poisson's ratio 
u as follows: 

E(I - ~,) E 
c 2 : c 2 =  p(l~u-u)(-1---2u)' c22=c2- -  2 p ( l + u )  (7) 

A linear elastic, homogeneous and isotropic material law 
is assumed hereafter. 

Further, let us assume that all elastodynamic quantities 
of the studied problem are time harmonic. Thus, for a given 
frequency co the excitation takes the form pi(x ,  t) = ~i(x)e  iwt 
with i = x/~f. Accordingly, the response of the system is 
harmonic aswell, thus we use the Ansatz ui(x  , t) = ~i(x)e  iwt. 
Under this transformation, the time-dependent equations of 
motion (5)-(7) take the following frequency dependent form: 

~(~)  
co2~(~)  + ~ = 0 ,  ~ e ~ .  (8) 

By using the reciprocal theorem of Green and adequate 
fundamental solutions and by assuming that only boundary 
excitations are applied on the structure, one may obtain the 
following boundary integral equation: 

f [fi(x)~*(x, ~; t~l, ~2) -- d(~)~i(~) = 

/- 

~(z)7(z,~; xl, ~2)] d r .  (9) 

Here x 1 = w__ tr 2 = w are the wave numbers, ~ and x are the 
C l  1 C2 , 

points on the boundary F or in the body $?, ~*(x,(; Xl, ~2) 
[or ~'*(x, ~; Xl, ~2)] denotes the fundamental solution (or its 
normal derivative ~*n on the boundary) and d(~) is the jump 
factor. 

After appropriate point collocation and boundary element 
discretization one obtains the discretized form of (9), 

H(gl, ~2)u ; G(~I, a2)t, (10) 

where u (or t) denotes the boundary nodal displacement (or 
boundary traction) vector and the influence matrices H, G 
depend on the assumed excitation frequency w. 

Further processing of (10), i.e. taking into account the 
boundary conditions of the structure, separating known and 
unknown elements of vectors u and t according to the bound- 
ary conditions of the structure, forming the system of equa- 
tions etc., follows the classical techniques in the BEM (anal- 
ogously to the previous static case). Finally, one otains the 
system of equations 

A(w)x(w) = b(co), (11) 

with solution denoted by x(w, b) for a given frequency w and 
a given "loading" vector b. 

2.3 Flaw parameterization aspects 

From the structure of the BEM equations (3) [or (10)] and 
from the expression of the fundamental solutions [which can 
be found, for instance, in the book by Antes and Pana- 
giotopoulos (1992)], one may observe that the matrices H and 
G [or H(~I,  ~2) and G(~I,  t~2) ] depend on the coordinates of 
the collocation points and the coordinates of all points along 
the boundary which appear, after discretization, within the 
integration terms. A subset of these nodal coordinates model 
the boundaries of the internal, unknown flaws. These values, 
appropriately grouped to reduce the dimensionality of the 
problem, will be used here as the unknowns of the inverse 
(flaw identification) problem. 

It is obvious that the above relation, i.e. between the 
boundary nodal coordinates and the solution of the arising 
system of linear equations for a given loading and boundary 
conditions is nonlinear. 

Moreover, analogously to the finite element method, one 
may differentiate (3) or (10) in order to obtain sensitivity 
relations (see e.g. Bruzynsky et al. 1996, 1997). Neverthe- 
less, one should take into account that higher order singu- 
larities arise in this course and appropriate attention must 
be paid during the numerical evaluation of the arising inte- 
grals. In this paper, gradient and higher order information, 
when needed, are approximated at the numerical optimiza- 
tion level. Thus, only the values of the solution of the struc- 
tural analysis problem for a given value of the fault parameter 
are used. The sensitivity analysis would therefore enhance 
the numerical effectiveness of the algorithms. 

Let us consider a given number of parameters z = 
[Zl,.. .  , Zm] T which fully characterize the expected flaws in 
the structure. For instance, assume that cyclical flaws are 
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expected to be found in the structure, or the existing defects 
can be modelled by such cyclical flaws. Then, the coordinates 
of the centres of the flaws and their diameters constitute a set 
of appropriate parameters for the considered inverse problem. 

In view of the previously introduced parameterization, all 
matrices H, g in (3) [or in (9)] depend on the value of z, 
i.e. we have H(z),  G(z)  [or H ( n l ,  ~2, z), G ( g l ,  ~2, z)]. Ac- 
cordingly, after the solution of the direct problem [eft (4), or 
(10)] one obtains parameter dependent values of the bound- 
ary displacements and tractions. Finally, the response of the 
structural system, i.e. the unknown boundary displacements 
and tractions which are grouped together into vector x, as it 
is usual in boundary element methods, depends on the flaw 
parameters z, on the applied loading b and, for the elasto- 
dynamic case, on the excitation frequency w. Concisely, we 
denote this dependence by x(z, b)  (or x(z, w, b)).  

3 I n v e r s e  p r o b l e m  f o r m u l a t i o n  

An output error minimization problem is formulated and 
solved. The elastodynamic identification problem is de- 
scribed in this section, since the relations of the elastostatic 
problem can be obtained by simply rejecting the frequency 
dependence (all w's are deleted). 

Let a structure with unknown flaws be subjected to a 
number of external loadings b g, ~ = 1 , . . .  ,e l ,  with corre- 
sponding frequencies win, m = 1 , . . . ,  m 1. Let the measured 
responses of the structure be denoted by x 0 (win, b / ) ,  for the 
loading ~o rn , b g. Let, moreover, a model of the same structure 
be constructed which contains a number of test flaws param- 
eterized by z. The corresponding response of the structure, 
which is subjected to the same loading win, b g, is denoted 
by x(z, co m, bg). 

The inverse problem is formulated as a minimization 
problem for a scalar performance error function 

Q ml 
e(z) = ~ ~ [[Ix(z,com,bt)-xo(com, b~)[[] . (12) 

t~=l m=l  

Here []. [I is an appropriate norm. Usually, the L 2 norm is 
adopted (least square identification). Here, summation over 
all available loading cases and all excitation frequencies forms 
a compromising gain function. Other choices can also be 
considered. 

Due to the nonlinear nature of the parameterized mapping 
z ---, x(.,co, b), the composite function e(x)(z) is, in general, 
nonconvex. As it is also shown in the numerical experiments, 
the noneonvexity effect is more severe in elastodynamie prob- 
lems. 

In the numerical experiments, the use of the following 
logarithmic transformation has been proved to be beneficial: 

e'(z) = log[e(z) + ~], (13) 

where e is a small positive constant, which prevents the ap- 
pearance of a - c o  value in e I (e = 0.1 * 10 - 5  is used here). 

Moreover, a restricted number of measurements (i.e. num- 
ber of elements of x) can be used in the previous problems. 
In general, the performance of the identification problem de- 
pends on the choice of the response values which are used 

(number and position of measuring points) and on the con- 
sidered loading case(s) (cf. for static problems, Banan et al. 
1994). 

Obviously, the solution of a minimization problem with 
the error function (12) leads to an estimate of the existing 
flaws. The quality of this estimate depends on the assumed 
parameterization of the flaws and the numerical accuracy of 
the mechanical modelling. The latter point is facilitated here 
by the use of the boundary element method. In an ideal 
situation, the value of the error function e(z) should be equal 
to zero for a correct solution of the identification problem, i.e. 
the minimum of the goal function in the previously described 
optimization problem should be equal to zero. 

4 N u m e r i c a l  s o l u t i o n  of  t h e  inverse  p r o b l e m  

4.1 Local optimization approach 

The optimization problem with respect to the functions (12) 
and (13) has been solved by means of a general purpose nu- 
merical optimization program. 

The code E04UCF of the NAG library is used. Only 
function evaluations are required from this program. It is 
an implementation of the sequential quadratic programming 
method where, internally, the Hessian matrix is approxi- 
mated by means of finite difference approximations. More- 
over, significant iterations in this procedure are called major 
steps while all other iterations which are used to correct the 
local quadratic approximation of the function are termed mi- 
nor steps. 

In principle, a code which uses also higher order infor- 
mation of the error function (e.g. gradients) would lead to a 
higher numerical effectiveness. Nevertheless, in that case, a 
sensitivity analysis of the structural problem with respect to 
the flaw parameters must be performed. 

More sophisticated numerical optimization techniques can 
also be applied [for instance, see the Levenberg-Marquardt 
method used by Schnur and Zabaras (1992), the regular- 
ization techniques by Baumeister (1993), Manniatty and 
Zabaras (1994) and Kaplan and Tiehatchke (1994), etc.]. 

4.2 Global, genetic algorithm approach 

The noneonvex optimization problem which arises during the 
inverse flaw identification problem may have several local 
minima, as is shown by means of numerical examples in the 
next sections. Thus, a global optimization method is required 
for its numerical solution. In this paper, a genetic algorithm 
is used. 

In the framework of the genetic optimization, the set of 
unknown variables of the problem (i.e. its flaw characteristics, 
its phenotype) are encoded as a chain of binary variables (eft 
chromosomes). Furthermore, due to the stochastic nature of 
this approach, a population of test flaws is assumed. For 
each set of values of the flaw variables, the error function 
e(z) is calculated. Each of this set constitutes an individual 
in this population. In accordance with the terminology used 
in genetic optimization , the minimization problem is trans- 
formed into a maximization problem. Thus, instead of an 
error function, a fitness function arises, whose maximum is 
sought. 



166 

The procedure is further partially inspired by Darwin's 
rule of survival through natural selection. In the seleciion 
step individuals with better fitness values are given a higher 
probability to be mated and to pass on their characteris- 
tics to the next generation. A crossover operator permits 
parts of the encoding string of the parents to be exchanged 
within the reproduction step. Finally, arbitrary parts of the 
information are changed at random (mutation) during the 
creation of the new generation. Sometimes, very good in- 
dividuals are allowed to pass through the whole procedure 
unchanged (elitism), i.e. they are copied as they are in the 
next generation. 

Some technical details of the application, in particular, 
the points that affected the numerical performance of the ex- 
amined examples, are briefly addressed here. More informa- 
tion may be found in the specialized literature (for instance, 
see Goldberg 1989). In particular, a short description of a 
genetic algorithm approach to shape optimization appeared 
recently in this journal (Haslinger and Jedelsk) 1996, pp. 
261-263). 

A first implementation point concerns the transformation 
of the error minimization problem to a fitness maximization 
one. The error measure e(z) of the flaw identification prob- 
lem takes the role of the environmental factor in a genetic 
population evolving in nature. As fitness function, the fol- 
lowing objective can be used: 

= ~" ~ for e(z):~O, (14) 
f l (z)  

L M for e(z) = 0, 

where M is a large positive number. Another variant has also 
been tested (see Goldberg 1989, p. 76): 

M - e ( z )  for e(z) < M ,  
f2(z) = 0 for e(z) = M. (15) 

Moreover, the encoding strategy should be chosen with 
care. As it transforms the continuous variable optimization 
problem (where the flaw parameters z are the unknown vari- 
ables) into a discrete one, the number of e.g. binary codes 
used for the chromosome mapping of each variable dictates 
the accuracy of the results. A fine discretization of the vari- 
able space which requires larger binary codes leads to a higher 
accuracy, but it is also connected with a higher computational 
cost. 

It should be mentioned that genetic algorithms are gen- 
eral purpose, probabilistic optimization methods which tackle 
directly a multiextremum nonconvex (global) optimization 
problem. Only the value of the function is required, thus 
the procedure is applicable to nondifferentiable problems as 
well (cf. Hajela 1990). Even discontinuous functions or opti- 
mization problems with discrete variables may be considered 
[cf. recent engineering applications described, among others, 
by Rajeev and Krishnamoorthy (1992, 1997), Grierson and 
Pak (1993), Cai and Thierauf (1993), and Huang and Arora 
(1997)]. One should mention, however, that there are also 
deficiencies in this approach. First, due to their generality, 
generic algorithms require enough computer time. Fortu- 
nately, they permit a high degree of parallelization [see e.g. 
the results in this direction reported by Adeli and Kumar 

(1995)]. Moreover, since in a genetic process all available in- 
formation is stored in the genetic information of the living 
generation, a fairly large amount of information produced ~ 
at the previous iterative steps of the procedure (the several 
function evaluations) is lost. 

A number of complicated problems in structural optimiza- 
tion have recently been solved by using genetic algorithms. 
For instance, optimal design of laminated composites includ- 
ing buckling constraints was studied by Le Riche and Haftka 
(1993). In this paper, an alternative three-alphabet encod- 
ing is used, which is more appropriate for the considered 
application. Optimal shape design problems are treated, 
among others, by ttaslinger and Jedelsk:~ (1996) and by 
Annicchiarieo and Cerrolaza (1997). Discrete optimization 
problems in structural analysis have been considered by Ra- 
jeev and Krishnamoorthy (1992), Cai and Whierauf (1993) 
and I-Iuang and Arora (1997). An application on form find- 
ing problems in slack cable networks and similar structures 
which undergo large displacements has been done by Hart- 
mann (1996), where the genetic algorithm scheme was used 
for the solution of the potential energy minimization prob- 
lem. 

In the area of inverse problems in mechanics, Doyle pre- 
sented in a number of papers an approach for the localization 
of defects and flaws in structures. First, he uses dynamic 
results which are produced by a spectral finite element pro- 
gram in order to estimate the unknown excitation loading. 
Then, by making assumptions on the position and shape of 
the flaw, he uses as an error measure the difference between 
two predicted loadings, which are produced by two different 
assumptions on the unknown defect. Obviously, if this dif- 
ference is zero, the assumption is correct and the defect is 
correctly identified. Details of this application can be found 
in the work of Doyle (1994), Kannal and Doyle (1997) and 
the references given therein. 

5 N u m e r i c a l  examples  

5.1 Siatic loadings 

A plane strain plate with several holes (flaws) is consid- 
ered. For the BEM discretization, the boundaries of the plate 
are discretized by means of quadratic boundary elements. 
The whole procedure is automatically done by the computer. 
Only the outer dimensions of the plate, the position and the 
length of the holes and the discretisation parameters need to 
be given. 

The material constants are the shear modulus G = 
100000.0 and Poisson's ratio 0.3. The external dimensions 
of the plate are 10.00 • 10.00, all in compatible units. 

In all examples presented here, the external boundary is 
discretized by means of 20 boundary elements (i.e. a total of 
40 nodes) and each hole is discretized by means of 5 bound- 
ary elements (i.e. additional 10 nodes for each flaw). ~More- 
over, the right-hand side external boundary (be in Fig. 1) is 
fixed and the loading is applied on the left-hand side external 
boundary (ad in Fig. 1). 

A representative example of a static solution for uniform 
external tractions equal to 1000.0, in both the horizontal Ox 
and in the vertical Oy coordinate direction, is given in Fig. 2. 
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Fig. 1. Configuration of a plate with two flaws 

Three circular holes are considered. Their centres are at the 
positions (1.5, 1.5), (5.0,7.0) and (7.5,5.0). The diameters 
are equal to (0.5), (2.0) and (1.1), respectively. Note that  
relatively large holes are considered here in order to facilitate 
the graphical representation of the deformed configuration. 
Nevertheless, in the identification problems solved later, con- 
siderably smaller flaws are considered. 

I I I I I I I I 

�9 

I --r --I �84 I I I I I 
Fig. 2. Undeformed and deformed configuration under static load- 
ing for a plate with three flaws 

After a parametric investigation, the error function e(z) 
of (12) and the logarithmic error e '(z) of (13) are plotted in 
Figs. 3a and b, respectively. The known flaw is a cyclical hole 
of diameter equal to 0.1, centred at the point (5.0, 5.0). Com- 
parison flaws have been calculated at all vertices of an orthog- 
onal net with centre points at x E (1.0,9.0), y C (1.0, 9.0), 
and steps equal to 1.0. 

Let us now consider the identification problem for the 
position of the centre of two cyclical flaws, with centres at 
(5.0,5.0) and (7.0,5.0) and of diameter equal to 0.1. From 
starting points equal to (2.0, 7.0) and (5.0, 3.0) and from an 
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Fig. 3. (a) Plot of the error function and (b) of its logarithmic 
version for several cyclical flaws of diameter equal to 0.1. Com- 
parison with a flaw at point (5.0, 5.0), for static excitation 

initial test diameter value equal to 0.3, the SQP optimization 
algorithm converges to the correct solution after 38 major and 
51 minor iterations. The history of all iterative values for the 
centre of the first flaw, the centre of the second flaw, and the 
two flaw diameters, for all function evaluations, is mapped 
in Figs. 4a, b and c, respectively. The history of the error 
function values e I versus the major (significant) iterations of 
the algorithm is given in Fig. 4d. 
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Fig. 4. Two-flaw identification using static data. (a) Centre of the first flaw, (b) centre of the second flaw, (c) diameter of the two flaws 
and (d) error function plot 

Table 1. Initial and final values of the x and y coordinates and 
diameter 

Test 1 Flaw 1 Flaw 2 

Init ial  Final  Ini t ial  Final  

x-coordinate 2.0 4.5 7.0 5.93 
y-coordinate 2.0 2.09 7.0 5.39 
diameter 0.3 0.05 0.3 0.09 

(1.58~3.90). Nevertheless, its diameter converges to a small 
number  equal to 0.015, which has been set to be the lower 
limit allowed for this value in the optimization problem. 

Table  2. Initial and final values of the x and y coordinates and 
diameter 

Identification of one flaw, by s tar t ing from the assumption 
that  two flaws exist, is demonstrated in Figs. 5a-d. Here, 
two cyclical flaws of initial centre positions equal to (7.0, 2.0) 
and (2.0, 4.0) and of diameters equal to (0.4) and (0.02) are 
assumed. Finally, the one actually existing flaw at centre 
(5.0, 5.0) with diameter equal to (0.1) is identified. The centre 
values of the second flaw converge to the arbi trary values 

Test 2 Flaw 1 Flaw 2 

Init ial  Final  Initial  Final 

x-coordinate 2.0 4.55 2.0 5.13 
y-coordinate 2.0 2.49 9.0 4.82 
diameter 0.3 0.05 0.5 0.1018 

The lat ter  case, where some of the assummed flaws do not 
exist, is shown in the results of Tables 1 to 3. In all cases, 
a circular defect with centre at (5.0, 5.0) and with diameter 
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equal to (0.1) is assumed. 

Table 3. Initial and final values of the x and y coordinates and 
diameter 

Test 3 Flaw 1 Flaw 2 

Initial Final Initial Final 

x-coordinate 2.0 4.98 2.0 1.618 
y-coordinate 2.0 4.94 9.0 3.91 
diameter 1.0 0.1053 1.0 0.051 

Without presenting more numerical values we would like 
to make the following conclusions. 

�9 Using static loadings, the BEM- numerical optimization 
approach to the static, inverse flaw detection problem 
works satisfactorily. All examples presented require less 

than five minutes computing time on an IBM RISC/6000 
Workstation, with no attempt at code optimization. 

The logarithmic error function (13) leads to better con- 
vergence results than the simple Euclidean error measure 
(12). Regularization was not needed in this approach. 

If zero dimension flaws (e.g. circles of zero diameter) are 
expected to occur in the inverse problem, two strategies 
may be adopted: 

1. either, a lower limit ("numerical zero") is posed 
on the numerical optimization routine and one as- 
summes that variables which have reached this 
limit lead to flaws with negligible influence on the 
structural response; 

2. or, for values lower than a small limit, the corre- 
sponding flaw is assumed to disappear, thus, it is 
not longer included in the BEM model. 

Usually, both tricks work for the majority of the cases 
tested. The results may depend on the initial values, but 
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Fig. 6. Undeformed and deformed configuration (magnified by a factor of 10.0) under harmonic dynamic loading for a plate with three 
flaws. Excitation frequencies equal to 5.0, 10.0, 15.0 and 20.0 

they usually give a reasonable estimate of the existing 
defect. Nevertheless, the second strategy, which has been 
automatically incorporated in the computer program, has 
caused convergence problems in some examples. The rea- 
son is that  the discontinuous change of the mechanical 
model lead to discontinuities in the arising error function 
at that  point. Some kind of gradual reduction schemes 
must be adopted for this case, which will be a subject of 
further investigations. 

5.2 Dynamic  loadings 

Let us assume the same plate considered in Fig. 2, but this 
time subjected to a harmonic dynamic loading. For frequency 
values equal to w = 5.0, 10.0, 15.0 and 20.0, the correspond- 
ing vibration modes, magnified by a factor of 10.0, are shown 
in Fig. 6. 

A parametric investigation is first performed, similarly to 
the static case. A cyclical flaw of diameter 0.50 is placed 
at several positions in the plate. The response is compared 
with the one of a same flaw at the place (4.0,4.0). The error 
function (12) and the logarithmic version (13) are plotted 
in Figs. 7a and b. All four previously given frequencies are 
considered. 

The appearance of nonconvex error functions, which pos- 

sibly have local minima, seems to be inherent in elastody- 
namic flaw identification problems. It depends on the exci- 
tation frequency, the loading and the measurement points. 
The combined use of the measurements of several excitation 
frequencies, as was suggested in (12), and the use of the log- 
arithmic scaling of (13) make the problem more tractable. 
Nevertheless, this scaling does not work satisfactorily in all 
cases. Moreover, technological restrictions posed by the ex- 
istent experimental devices should be taken into account. 

Due to space limitations only a very small subset of the 
parametric investigation results can be presented here. Us- 
ing only one excitation frequency at a time, with loading as 
previously in both Ox and Oy directions at the left-hand side 
of the plate, leads to the results plotted in Figs. 8a-d. The 
effect of using different excitation loadings (e.g. only in the 
horizontal - Ox - or in the vertical - Oy - direction) and of 
using measurements of the boundary displacements in only 
one direction is shown in Figs. 9a-d. These effects are also 
present in the multiple flaw detection problem, where due to 
the higher dimension of the problem an analogous graphical 
representation is difficult. 

In view of all these difficulties, a global optimization al- 
gorithm is the only robust method for the numerical solution 
of the problem. The local optimization algorithm used for 
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Table  4. Choice of parameters for the elastodynamic identifica- 
tion problem with the fitness function (14) and error measure of 
(13) 

Variable Effective Values 

populat ion size 5 
crossover probabil i ty 0.5 
creep muta t ion  probabil i ty 0.04 
j u m p  mutat ion probabil i ty 0.20 

Table  5. Sample results for simultaneous position and size iden- 
tification 

Test 4 Real Calculated 
best element Average 

x-coordinate 4.0 3.9606 5.59 
y-coordinate 4.0 4.0236 4.74 
diameter  0.5 0.4968 0.52 
error e I 13.914 8.16 

Table  6. Influence of the size of population of the results 

Test 5 Populat ion Size = 5 
best element average 

x-coordinate 4.02 4.02 
y-coordinate 3.96 3.89 
error e I 13.88 12.50 

Table  7. Influence of the size of population of the results 

Test 6 Populat ion Size = 10 
best element average 

x-coordinate 4.02 4.11 
y-coordinate 4.02 3.68 
error e I 14.97 11.42 

the static case can also applied. Nevertheless, as should have 
been expected, the results depend strongly on the s tar t ing 
i teration point. Moreover, t e rmina t ion  at a local min imum 
of the nonconvex error function, which is not  the sought so- 
lution of the inverse problem, is not  rare. 

A F O R T R A N  genetic a lgor i thm opt imizat ion  program 
(see Carroll 1996) has been used here. The  more effective 
choice of the parameters  for the considered elastodynamic 
identification problem with the fitness function of (14), com- 
bined with the logari thmic error measure of (13) is shown in 
Table 4. 

Table  8. Influence of the size of population of the results 

Test 7 Populat ion Size = 15 
best element average 

x-coordinate 3.96 3.93 
y-coordinate 3.96 3.87 
e I 13.93 11.06 
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A typical plot of the initial population (i.e. the starting 
guesses of the centre point of the flaw) and the final popula- 
tion (i.e. the solution of the problem) is shown in Fig. 10a. 
The history of the maximum and of the mean value of the 
fitness function among all members of a population for all 
generations (i.e. the iterations of the algorithm) is shown in 
Fig. 10b. It should be mentioned that  the relatively large 
deviation shown in Fig. 10b between the maximum and the 
mean value of the fitness function within the members of one 
generation does not correspond to a large inaccuracy of the 
results, due to the logarithmic nature of the fitness function. 

Simultaneous position and size identification can also be 

done. A sample set of results (after 200 generations) is given 
in Table 5. 

The choice of the parameters of the genetic algorithm in- 
fluences the results. Unfortunatelly no clear picture can be 
drawn from the numerical experiments concerning the best 
choise of the parameters involved in the genetic optimiza- 
tion algorithm, a fact that  is well-known in the specialized 
literature (see, for instance, Mitchell 1996, p. 175). The vari- 
ables used here led to satisfactory results for the considered 
application. For example, the influence of the size of the 
population is shown in the next results (they concern the 
identification of the coordinates of the centre of one cyclical 
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if 1 
flaw of diameter equal to 0.5, and they are obtained after 200 
generations) (Tables 6-8). 

It is observed that reasonable results can be calculated in 
this application with small population sizes. 

One typical run of 200 generations, which are multiplied 
by a population equal to 5 and result in an equivalent of 
1000 solutions of the structural problem, requires about one 
hour time on a SGI Power Challenge 12-processor computer 
system. Nevertheless, parallelization is not used by our pre- 
liminary computer code. 

6 Conclus ions  

A numerical investigation of some inverse flaw detection prob- 
lems is presented. For static excitations a logarithmic scaling 
of the error function has helped classical, local optimization 
algorithms to solve the inverse problem. For harmonic dy- 
namic excitations the inverse problem is usually nonconvex 
and requires global optimization algorithms. A careful mod- 
elling may also effectively tackle multiple flaw identification 
problems. 

One should note that the model for flaw detection, which 
has been used here, is much more economical to implement 
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than damage identification methods which are based on the 
concepts of damage mechanics. This is especially true if it 
is combined with the boundary element modelling, due to 
the fact that the meshing and remeshing requirements of this 
method are not high (in fact, only the boundary of the struc- 
ture and of the flaws is discretized). An extension to iden- 
tification problems concerning soft or hard inclusions is in 
principle possible, following the same procedure and multire- 
gion boundary element modelling. One should nevertheless 
accept the limitations of this approach with respect to a more 
general one based on damage and plasticity modelling of the 
defects. On the other hand flaw identification may approxi- 
mate, to some extent, crack detection problems (of. the penny 
shape crack approach). 

Further work in this direction should consider optimiza- 
tion of the performance of the numerical algorithms, or use 

of more complicated ones for the solution of the inverse prob- 
lem. This is especially true for the nonconvex case, since the 
genetic algorithm approach, although it is a general purpose 
method, is not usually the more economical one. Thus, an ex- 
tensive parametrical investigation, especially in the dynamic 
problem, is unfortunatelly combined with the use of enor- 
mous computer resources. Finally, the examination should 
extended into real life nondestructive evaluation problems 
by considering issues like technological restrictions, measure- 
ment errors etc. In view of the uncertainties and of the high 
cost of the classical optimization tools, the examination of 
soft computing tools (including, for this case, neural network 
and Kalman filter based approaches) may provide an inter- 
esting alternative. 
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