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We consider multigraphs in which any two vertices are joined by at most q edges, and study 
the Tur~in-type problem for a given family of forbidden multigraphs. In the case q=2, answering 
a question of Brown, Erd6s and Simonovits, we obtain an explicit upper bound on the size of the 
matrix generating an asymptotical solution of the problem. In the case q > 2 we show that some 
analogous statements do not hold, and so disprove a conjecture of Brown, ErdSs and Simonovits. 

1. I n t r o d u c t i o n  

Brown, Erd6s and Simonovits published a sequence of papers on the solution 
of Tur in - type  problems for digraphs and multigraphs (see e.g. [1, 2, 3]). The aim 
of the present paper  is to prove a conjecture of theirs, according to which the size of 
some matrices generating the asymptotically extremal graph sequences is bounded 
by an explicit function depending only on the forbidden graph. As they pointed 
out in [1, p.82], this would imply the possibility of algorithmic solution of digraph 
extremal problems. Later they gave an algorithmic solution to the digraph extremal 
problems, avoiding this question [3]. We shall first give an "effective" upper bound 
on the size of these matrices and then use this result to derive the main results of [3] 
in a shorter and simpler way. Brown, ErdSs and Simonovits also conjectured that  
most of their results hold even for the case of directed graphs when two vertices 
are allowed to be joined by more than 1 arc of a given direction. We shall give a 
construction disproving this in some cases. 

We fix a positive integer q and consider finite multigraphs (without loops) in 
which any two vertices are joined by at most q edges. The word "multigraph" will 
be replaced by "graph". A simple graph is a graph in which any two vertices are 
independent or joined by 1 edge. The number of vertices and the number of edges 
of a graph G will be denoted by v(G) and e(G), respectively (edges are counted 
with their multiplicities). 

We consider the following general problem called Turdn-type problem. Given a 
family ~ of graphs where VL E.~: e(L)> 0 (graphs from .~ we call prohibited). How 
many edges can be in a graph with n vertices such does not contain a subgraph 
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isomorphic to some L �9 ~?  This maximal number of edges will be denoted by 
ex (n;~). 

From the averaging argument of Katona, Nemetz and Simonovits [6] it follows 
that  ex(n;~) / (~)  is a monotone non-increasing function of n and there exists the 
limit 

7(~) = lim ex(n ;~)  

Let At be the class of symmetric matrices whose elements are non-negative 
numbers not greater than q. Let A = (aij) be a (r • r)-matrix from At. For any 
partition n--Xl + . . .  +Xr into nonnegative integers define a graph A(x l , . . . ,  xr) as 
follows: n vertices are partitioned into r classes V1,...,Vr where I V/l=xi; any pair 
of distinct vertices v �9 V/, v ~ �9 Vj are joined by aij edges. The class of all graphs 
A(x l  . . . .  ,xr) (for various n and various partitions) and all their subgraphs will be 
denoted by ~(A). Using the terminology of [2] we may say that  $(A) is the class 
of A-colorable graphs. If no graph A(x l , . . . , x r )  contains subgraphs belonging to 
(i.e. ~(A) A~ = O) we call A admissible for ~.  The subclass of matrices which are 
admissible for a family ~ of forbidden subgraphs will be denoted by a~(.~). 

Unlike [3] we allow diagonal entries to be equal q. However, no matrix having 
such a value in the diagonal is admissible for ~ r 0. 

Following [3] we define the density 

(1) g(A) = max(uAu* ] u = ( u l , . . . , u r ) ,  U l + . . . + u r  = 1, ui >_ 0 (i = 1 , . . . , r ) }  

where the transpose operation is denoted by *. The ( r -  1)-dimensional polytope 
Ul+. . .+ur  = 1, ui >_0 ( i=  1,...  ,r) in ~r  is called the standard simplex. A vector u at 
which the maximum in (1) is attained, is called an optimum vector of A. The matrix 
A is dense if for any proper principal submatrix A t, g(A t) <g(A); equivalently (for 
r >  1), if any optimum vector belongs to the interior of the standard simplex. 

The subclass of At consisting of dense matrices will be denoted by ~). 
The following identity explains the significance of the definitions above: 

(2) 7(~) = sup{g(A) : A E a~(~)} = sup{g(A) : A �9 a~(~g) N ~)}. 

This identity follows from Theorem 2.6 [9] and from Lemma 6 [3]. 
A dense matrix A at which the supremum in (2) is attained is called an optimal 

matrix for ~.  The asymptotic solution of the Turs problem for q = 1 (simple 
graphs) was obtained in [5]. The general case was considered by Brown, ErdSs and 
Simonovits [1, 2, 3]. 

Theorem A [1]. In the case q = 2 for any ~ there exists an optimal matrix. 

Theorem B [2]. For any A E ~ there exists a finite family ~ such that A is the 
unique optimal matrix for ~.  

In section 2 below we shall obtain the explicit upper bound on the size of the 
dense matrix of Theorem A (see our Theorem 3). In particular, for the case of a 
finite family ~ it answers a question by Brown, Erd6s and Simonovits: 
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Theorem 1. Let q--2, k=min{v(L) : L E ~ }  and k'=max{v(L) : LE.~}. Then any 
optimal matrix for.~ has at most (R(k,k +6) - 1)(k p -  1) rows where R(k,k  +6) is 
the Ramsey number. 

Our Theorem 3 implies Theorem A and the main results of [3], namely, the 
following theorems: 

Theorem C [3]. In the case q = 2 for any real 7 there exist only finitely many dense 
matrices A such that g(A)=7. 

Theorem D [3]. In the case q=2  the set of attained densities {7 : 7=g(A)}  is well 
ordered (under the usuM ordering of the reals). 

Theorem E [3] (Compactness pro,~erty). In the case q = 2 for every infinite family 
~f there exists a finite subfamily ,~ c_,f for which 7(.f t) =7(~) .  

Theorem F [3]. Let q = 2 and let a subroutine ("oracle") be given for deciding for 
the family Z and any dense matrix A, whether of not A is admissible for Z. There 
exists a finite algorithm (independent of~f except that it uses the subroutine) which 
determines all dense matrices A which are optimal for Z. 

To prove Theorem 3 we shall use the fact that  dense matrices cannot contain 
certain principal submatrices (see Theorem 2 and Examples 1-4). 

It was conjectured in [3] that  Theorems C, D, E, F remain valid for any q _> 3. In 
section 3 we shall construct counterexamples demonstrating that  neither Theorem 
C, nor some plausible analogues of Theorem 1 can hold for this case. 

In section 4 we shall generalize our results to directed graphs. 

2. Some properties of  dense matrices 

Theorem 2. A matrix A is dense iff 
(a) A is non-singular, and all components of the vector eA -1 are positive; 
and 
(b) A is of negative type, i.e. xAx* <0  holds for any vector x such that x ~ O  and 

xe*--0 with e=(1 ,1 , . . . , 1 ) .  

Proof. The necessity of condition (a) was proved in [2, Lemma 2]. We first establish 
the necessity of condition (b). Suppose, (b) does not hold. Thus these exists a 
vector x such that  xe* = 0, x r 0, xAx* _> 0. Let y be an interior point of the 
standard simplex. Choose a > 0 and ~ > 0 such that  y + a x  and y -  ~x belong to 
the boundary of the standard simplex. We have 

~(y + ax )A(y  + ax)* + a (y  - ~x)A(y - ~x)* -- 

(~3 + a )yAy* + a~3(~3 + a)xAx* _> (8 + a)yAy*.  

If y is an optimal vector then y + a x  or y - ~ x  is optimal too. Hence A is not dense. 
Now we prove that conditions (a) and (b) are sufficient. Let A satisfy (a) and 

(b). Put  7 = eA- le* ,  Y -~ 7-1(eA-1)  �9 So ye* = 1 and all components of y are 
positive. Hence y belongs to the interior of the standard simplex. We must check 
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that y is the unique optimal vector for A. Choose an arbitrary point z r y from the 
standard simplex. Put  x = z - y .  Since xe* = 0  and x r  we get xAx* <0. Thus 

zAz* - yAy* = (y + x)A(y* + x*) - yAy* = x(Ay*) + (yA)x* + xAx* = 

= ~ - l x e *  + " F l e x  * + xAx* = xAx* < 0 

Remarks. (1) If a matrix A is of negative type then all its principal submatrices 
are of negative type, too. 

(2) Let a matrix A be of negative type. When we replace all diagonal entries 
of A by 0, we get a matrix of negative type. 

(3) It is known [8] that  matrix A = Ilaijll of size r with zero diagonal is of 
negative type iff there is a linearly independent system of r points Yl, Y2, . . . ,  Yr 
in the Hilbert space such that 

aij +aji  -- IlYi -Y j l l  2 with i, j = 1 , 2 , . . . , r .  

Note that the density Q(A) is the squared radius of the ( r -  1)-dimensional sphere 
containing these points. Condition (a) of Theorem 2 states that  the convex hull 
of Yl, Y2, . . . ,  Yr contains the center y of the sphere as an interior point. Then 
the maximum in (1) is attained at the point u = (Ul,U2,...,ur) such that  y = 
UlYl ~-u2Y2 + . . . + U r Y r .  
Examples. The adjacency matrices of the following graphs are not of negative type. 

1. If the graph consists of two independent vertices then its adjacency matrix 
is the zero matrix. 

In the graphs described in Examples 2 4, any pair of vertices is joined either 
by 1 or 2 edges. In the corresponding figures, for every pair of vertices, one edge 
connecting these vertices is omitted. So if any two vertices are joined in the figure, 
then they are joined by 2 edges in the graph, else they are joined by only 1 edge in 
the graph. 

2. E4: 
v2 v4 

Vl V3 

Put  xl  = x3 = 1, x2 = x4 - - - -  - -  1. Then xAx* = 0. 
3. Ea,b,c: (where c(ab- 1) >_2ab+a +b): 

a vertices b vertices 

c vertices 
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Let each vertex from the group of a vertices have a weight c(b+ 1), each vertex 
from the group of b vertices have a weight c(a+ 1) and each vertex from the group 
of c vertices have a weight - (a (b+ 1) + b(a + 1)). Then  

xAx* = c(2ab + a + b)(c(ab - 1) - (2ab + a + b)) >_ O. 

We shall use these graphs only for a = 1 when we require c(b - 1) _> 3b + 1. In 
particular,  the last inequality holds with b_>2, c_>4, b+c>_9. 

4. E6: 

v3 v5 

vl t tv 
V4 V6 

Pu t  x I ~ x3 -- x4 ~ 1, x2 = x5 = x6 -- - 1. Then  xAx* = 0. 
Let us call the m- th  and n- th  rows of a matr ix  A equivalent if amm -~ ann = O~ 

amn : anm : 1, aim : ain -= ami -- ani for each i where i ~ m, i r n. This relation is 
transit ive and consequently it is an equivalence relation. Hence the set of all rows 
of A is par t i t ioned into equivalence classes. 

T h e o r e m  3. Let q = 2 and A be a dense matrix not having principal submatrices 
of size k all off-diagonal entries of which are equal to 2. Then the number of 
equivalence classes of rows of A is less than the Ramsey number R( k, max{k+3 ,  9}). 

We shall say tha t  vertices v'  and v '~ of a graph are symmetr ic  if for any other  
vertex v the number  of  edges joining v and v '  equals the number  of edges joining v 
and v ~'. 

The  proof  of Theorem 3 is based on the following s ta tement .  

Lemma 1. Let q = 2 and G be a graph in which any two vertices are joined by 1 
or 2 edges and any two symmetric vertices are joined by 2 edges. I f  G contains no 
E4, E6 and El,b, c (with b >_2, c>4, b+c>_9) as induced subgraphs and contains no 
complete k-vertex subgraphs with double edges then v(G) < R(k, m a x ( k  + 3, 9}). 

Proof .  Let S be a maximal  subset of vertices in which any two vertices are joined 
by 1 edge only. Suppose IS[=s, s>9.  Our aim is to show tha t  s < k + 3 .  

For any vertex v we denote 

Sv = {u E S : u and v are joined by 2 edges}, Sv -- S \ Sv. 

Choose a subset T of vertices such tha t  TMS--O, Vv ,v lET:  S v ~ S v , ,  Y v e s  
3 v ~ E T: Sv = Sv,. Denote Ti = (v E T : ISvl-- i) .  If  v E Ti then G contains El,i ,s-i  
as an induced subgraph.  Hence Ti -- 0 for every i = 2, 3, . . . ,  s -  4. 

Suppose Vl, v2 E T, Svl \ Sv2 ~ ~, Sv2 \ SVl r 0. Choose v3 E Svl \ Sv~, v4 E 
Sv2 \SVl. Since G does not contain E4 as an induced subgraph,  Vl and v2 are joined 
by 2 edges. 
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Suppose ]TI[ _>2. Choose al ,  bl �9 So al  and bl are joined by 2 edges. Let 
Sb 1 = {a2}. Since IS] ->9, there exist Cl, c2, c3, c4, c5, c6, c6, c7 �9 S\ (Sa l  USbl). 
The vertices al ,  a2, bl, Cl, c2, c3, c4, c5, c6, c7 induce the subgraph E2,1, 7. Since 
this subgraph is excluded, ITII_< 1. 

Let 

TIs_2 = {v �9 Ts-2 I Vv' �9 Ts-3 : Sv, r Sv}, 

T'_ l={v �9  �9 : S v , r  

T' = T8-3 U T'_ 2 U T'_I, 

s '  = U { E .  I ~ �9 Ts-3 U Ts-2 U Ts-1}, 

s "  = U { s ~  I ~ �9 T~}. 

It follows that  

s '  = U { ~  I~  �9 T ' } ,  

IS" l  = IT~I < L 

Note that  Sv \ Sv, # 0 and S v, \ Sv # 0 for any v, v' E T'. Hence any two vertices 
from T' are joined by 2 edges, Therefore IT'[ < k - 1. Note that  any two vertices 
from S \ (S' U S") are symmetric. Hence 

IS \ (s '  u s")l <_ 1, 

IS'l > ~ - 1 - I S " l  > ~ - 2. 

If t S'I = s - 2 ,  there exists a vertex u E S \  S' which is connected to any vertex v E T'  
by 2 edges. Hence in this case IT'I <_ k -  2. Thus 

IT'I _< k - (s - IS'l) = IS'l + k - ~. 

Suppose Vl, v2 e T, ISvl \ Sv2 [ > 2, [Sv2 \ SV 1 I -> 2. In this case Vl and v2 are 
joined by 2 edges. Choose v3, v4 E (Svl \Sv2), v5, v6 E (Sv2 \Sv~), and obtain that  
vl, v2, v3, v4, v5, v6 induce the subgraph E6. Since this subgraph is excluded, 
therefore either [Sv~ \ Sv~ [ < 1 or IS v2 \ Sv~ [ < 1 for any Vl, v2 �9 T. In particular, 

Vv, v'�9 I~, \~v,I > 2, 
V v � 9 1 4 9  : I~v \ ~ , 1  > 1, 

V v, v' �9 Ts'_ 2 : ISv \ Sv'l > 1. 

This implies that  

Thus 

IT;-2L. 

_ T I i IS'I < 2 + JTs-3l -4- J s-2[ -4- IT~-x = JT'I -4- 2 < IS'I -4- k - s + 2 

and we obtain s<k+2.  Hence ISl <max{9 ,k+3} .  
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So G contains neither an induced complete subgraph of order max{9, k + 3} 
(whose edges have multiplicity 1) nor a complete subgraph of order k whose edges 
have multiplicity 2. Therefore v(G) < R{k, max{k + 3, 9}). | 

P roof  of Theorem 3. Since A--a i j  is dense, one is of negative type. Suppose, there 
exist m, n such that  a t o m  Jr a n n  ~ O, a n n  >_ a r n m ,  a m n  ~ a n m  ~ 1, a i m  ~ a i n  ---- a m i  
ani for each i where i ~ m, i r n. Omitting the m-th row and the m-th column 
of A we obtain the submatrix A I. It is easy to see that A E $(A') ,  hence g(A) <_ 
g(A'). This inequality contradicts the assumption that  A is dense. Therefore, if 
we replace all diagonal entries of A by 0 and obtain a matrix A1, then any two 
equivalent rows of A1 are equivalent in A, too. Thus A and A1 have identical 
equivalence classes of rows. Choose one row from each equivalence class of rows of 
A1 to obtain a principal submatrix A2. The number of rows of A2 is equal to the 
number of equivalence classes of rows of A. Note that A2 is the adjacency matrix 
of a certain graph G. Since any two rows of A2 are not equivalent, G has no two 
symmetric vertices joined by 1 edge only. Since A2 is of negative type (see Remarks 
1-2), G does not contain induced subgraphs from Examples 1-4 (in particular, G 
does not contain a pair of independent vertices). Now it is enough to apply Lemma 
1. | 

Next we demonstrate that Theorems 1, A, C, D, E, F are indeed corollaries of 
our Theorem 3. 

Consider the linearly ordered set Noc --{1, 2 , . . . ,  oc}. Since Noc is well ordered, 
the partially ordered set N ~ - - N o o  | @... @Noo is well ordered too. It is easy 
to prove (using induction on r) that every antichain in N r is finite. 

Consider any matrix B of size r with zero diagonal. Choose any element n = 
(nl ,n2, . . .  ,nr)  E Noz.r For each i = 1, 2, . .. , r replace the diagonal entry of the i- 
th row by 1 if ni = oc, otherwise replace the i-th row (and the i-th column) by ni 
equivalent rows (and ni equivalent columns). Let the obtained matrix be denoted 
by B[n]. 

Theorem 3 implies 

Corollary 1. Let q=2 and A be a dense matrix not having principal submatrices of 
size k all off-diagonal entries of which are equal to 2. Then A may be represented 
in the form A= B[n] where r( B ) <_ R( k, max { k + 3, 9 } ). | 

Proof  of Theorem 1. The case k = 2 is trivial. Suppose, k _> 3. Let ~ be finite. 
It is easy to see that if B[nl,n2, . . . ,nr] is admissible for ~ and VL E ~: v(L) <_ 
nl  then B[oc, n2 , . . . , n r ]  is also admissible for.~. Hence we may consider only n =  
(n l , . . .  , n r ) E N  r such that  either ni = c~ or ni < k '= max{v(L) : L C~} for each 
i =  1, 2, . . . ,  r. Therefore, any row of B corresponds to no more than k I -  1 rows of 
A=B[n]. So Corollary 1 implies Theorem 1. 1 

P roof  of Theorem C. Put  k = [ 2 / ( 2 -  7)] + 1. If a matrix A has a submatrix of 
size k whose off-diagonal entries are equal to 2, then g(A)>>_ ( 2 k -  2)/k > 7. Hence, 
according to Corollary 1, if A is dense and g(A)=7, then A=B[n] with r=r(B)  < 
R(k,max{k+3,9}) ,  n E N r .  The set of such matrices B is finite. For any fixed 
matrix B, if nl  _< n2, n l  ~ n2, n l ,  n2 e N r and B[nl] is dense, then g(B[nl])  < 
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g(B[n]2]). Since any antichain in N r is finite, the set of nEl~l~ such that  B[n] is 
dense and g(B[n])---% is also finite. I 

Proof of Theorem D. We must verify that for any subclass ~)~ C_ ~) there exists a 
matrix A 0 E~) with g(Ao)=min{g(A) : AE~)'}. If g(A)--2 for each AEbD', then A0 
may be an arbitrary matrix from ~)t. Suppose, there exists A1 E ~)~ with g(A1)= 
q, < 2. Put k -- [2/(2 - ~/)] + 1. If a matrix A has a submatrix of size k whose off- 
diagonal entries are equal to 2, then g(A) >_ (2k -2 ) / k  > % Put  ~)" = {A E ~) : g(A) < 
"~}. Note that ~)11 is not empty. According to Corollary 1, every matrix A E ~)tl may 
be represented in the form A = Bin] with r = r(B) < R(k, max{k + 3, 9}), n E N r .  
Note that  n l  _ n2 implies g(B[nl]) <_ g(B[n2]). Since N r is well ordered, the set 
of the densities F(B)= {-y = g(B[n]) : n  E N r } is also well ordered. The number of 
rows of B is bounded, hence the set of such matrices B is finite. Therefore, Fk = 
U{F(B) It(B) < R(k, max{k + 3, 9})} is well ordered. 

Since {g(A) :AE~) t~} is a non-empty subset of Fk, there exists a matrix A0 E 
~)~ such that  

g(Ao) = min{g(A) : A E ~),1} = min{g(A) : A E ~)'}. 

Proof of Theorem E. In fact, Theorem E is equivalent to Theorem D. Here we 
show that  Theorem D implies Theorem E. Since the set of attained densities is 
well ordered, we may choose e > 0 such that  there does not exist a matrix A whose 
density satisfies ~(~)<g(A)_< ~(.~)+~. Choose n such that  ex (n,.~)/(~) <_ q,(~)+~. 
Put  .~' -- {L E~ : v(L) <_ n}. Clearly, ~/(.~') >_ 3'(~). It remains to show that ~(~t) < 
~(~). Note that  ex(n;~ ' )--ex(n; .~)  and 

"~(~') _< ex ( n ; ~ ' ) / ( 2 ) =  ex ( n ; ~ ) / ( 2 )  < ~/(~) + e. 

Since g(A)<'y(~)+~ implies g(g)_<~(~), hence (see (2)): 7(~ t) <_3'(~). I 

A subset P of a partially ordered set is called a lower ideal, if n E P, n ~ _< n 
implies n I E P. A lower ideal P in N~c is called closed, if for any component-wise 
convergent sequence of elements of P,  the limit element also belongs to P. To prove 
Theorem F we need the following. 

Lemma 2 [10, Lemma 17]. The number of the maximal elements of any dosed 
lower ideal in N r is finite. Moreover, there exists a finite procedure to determine 
all maxima/elements of an arbitrary closed lower ideal P in N ~  which uses "oracle" 
for deciding whether P contains a given element n E N r .  I 

Proof of Theorem F. Let Ak be a matrix of size k whose off-diagonal entries are 
equal to 2 and the diagonal entries are zeros. Testing A2, then A3, A4 and so on, 
we find k such that Ak is not addmissible for .~. According to Corollary 1, every 
matrix A which is admissible for ~,  may be represented in the form A=B[n]  with 

?. 
r = r ( B ) <  R(k ,max{k +3,9}),  n E l~oc. The set of these matrices B is finite. For 
any fixed matrix B, the subset P b = { n E N ~  : B[n] EM(.~)} is a lower ideal and the 
subset QB of all its maximal elements may be determined by a finite procedure. 
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If n l  E PB \ QB, there exists n2 6 QB such that  n l  _< n2. If Bin1] is dense, then 
g(B[nl])  _< g(B[n2]). Put  

.~ = U{B[n]  : n E QB, r(B)  < R(k, max{k + 3,9})}. 

So ~ is finite and can be determined by a finite procedure. According to (2), we 
have 

?(Z)  = sup{g(A) : A e 2) nM(.~)} = sup{g(A) : A E ~}  

and 

V A e  (2)n~d(.~)) \ 2  : g(A) < s u p { g ( A ' ) i A '  e 2 } .  

Thus the problem is reduced to checking all matrices from ~ and selecting those 
matrices whose densities are maximal. | 

Theorem F implies Theorem A. 

2. T h e  case  q_> 3. In f in i t e  ser ies  o f  g r a p h s  w i t h  i den t i ca l  d e n s i t i e s .  

Theorem 4. Let G be a connected simple graph in which the degree of any vertex 
equals q - 1. Join any two vertices of G by q - 1 additional edges. As a result we 
obtain a multigraph G q. Then G q is dense and g(G q) = q - 1 .  

Proof. Put  r = v(G). Let B = (bij) be the adjacency matrix of G and A be the 
adjacency matrix of G q. If x = Xl , . . . ,  xr) ,  Xl + . . .  + Xr = 1 then 

x A x * = ( q - 1 ) ( ( x l +  . . + X r )  2 - x ~ - x ~ - . . . - x 2 r ) - x B x * =  
T T 

= (q - 1 ) -  ( q -  1)(x  + . . .  + + F_, b jx xj = 
i = 1 j = 1  

f r 
1 

= ( q - 1 )  - -~ ~-~. ~ b i j ( x i  - x j )  2 <_ q - 1 .  
i=l j = l  

Since G is connected, equality holds iff Xl . . . . .  Xr = 1/r (note that this point 
belongs to the interior of the standard simplex). Thus G q is dense. | 

Remarks. (4) The graphs G q with arbitrary large number of vertices exist for every 
q_> 3. In particular, if q = 3, then G is a cycle of an arbitrary length. 

(5) Let Lq be a graph with vertices v0, Vl, . . . ,  Vq, where v0 and vi are joined 
by q edges, vi and vj are joined by q - 1  edges (i, j = l , 2 , . . . , q ;  i # j ) .  Similarly to 
the proof of Theorem 4, it is easy to show that  g({Lq}) = q -  1. In the case q > 3 
every graph G q described in Theorem 4 is optimal for ~ =  {Lq}. Hence, there can 
not exist any analogue for our Theorems 1 and 3. 

(6) The matrix A = [q - 1] of size 1 and graphs G q from Theorem 4 give a 
counterexample for the statement of Main Lemma of [3] in the case q_> 3. 
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4. D i g r a p h s  

In this section we consider digraphs (i.e. oriented multigraphs) without loops 
where any vertices u and v are joined by at most q arcs oriented from u to v and 
at most q arcs oriented from v to u. 

The notation v(G), e(G) for the numbers of vertices and arcs and the notation 
ex (n;.~) are preserved. However we define 

ex (n;~e) 
7(~) = l i r a  n(n  - 1)" 

The square matrices A = (aij) considered here are allowed to be non-symmetric. 
Their diagonal entries may have values 0, 1, 2, . . . ,  q and off-diagonal entries may 
have values 0, 2, 4, . . . ,  2q. The definition of a graph A (x l , . . . ,X r )  needs some 
correction. Each class V/ is linearly ordered; if u precedes v in this ordering, then 
u and v are joined by aii arcs oriented from u to v. Every vertex of ~ is joined to 
every vertex of Vj by aij /2 arcs oriented towards Vj (i, j =1 ,  2, . . . ,  r; i # j ) .  

The definitions of an admissible matrix, the density of a matrix, an optimum 
vector, a dense matrix and an optimal matrix are the same. In the considered case 
Theorems A-F are valid, too. (cf. [1, 2, 3]). Our aim is to show that  the main 
results of sections 1-3 are also valid. 

Theorem 2'. A matr ix A is dense iff 
(a) All components of vector eA -1 are positive; 

and 
(b) V x ( x e * = 0 ,  x # 0 ) :  x A x * = x A x * < 0 ,  

where e =  (1,1, . . . ,1) ,  . 4 = ( A + A * ) / 2 .  | 

The proof of Theorem 2' completely coincides the proof of Theorem 2 with the 
replacement of eA -1 by e(.4) -1.  

Theorem 4'. Let G be a connected simple non-oriented graph in which the degree 
of any vertex equals k -  1. Choose an arbitrary orientation for every edge of G 
and join any two vertices of G by k - 1 additionM arcs. As a result we obtain the 
oriented multigraph G k. Then G k is dense and g( G k) = k -  1. | 

The proof of Theorem 4' is completely analogous to the proof of Theorem 4. 
It is clear that  we may choose a certain orientation of arcs such that  every two 
vertices of G k are joined by at most (k + 1)/2 arcs of each orientation. Thus our 
Remarks 4-6 remain valid for oriented multigraphs with q >_ 2. 

The underlying multigraph G of a digraph G is obtained by suppressing the 
orientations. The multiplicity of an edge equals the sum of the multiplicities of 
tile corresponding arcs of both orientations (cf. [3]). So, if A = (A + A*)/2, then 

f~(xl , . . .  ,Xr) is the underlying multigraph of A(Xl, . . .  ,xr).  
If G is a digraph in which any two vertices are joined by at most 1 arc of each 

orientation (the case q = 1 for digraphs), then any two vertices of its underlying 
multigraph are joined by at most two edges (the case q -- 2 for non-oriented 
multigraphs). 
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We shall not use the concept of equivalent rows of a matrix. However we say 
that  a subset I of rows of a matrix A = (aij)  is a quasi-equivalence class if the values 
of aij and aji with i E I,  j ~ I depend on j only (but do not depend on i) and for 
any distinct rows i, j E I: aij + aji = 2, aii -b a j j  = O. In particular, any single row 
forms a quasi-equivalence class of size 1. 

Theorem 3 ~. Let  q = 1 and A be a dense matr ix  which has no principal submatr ix  o f  
size k whose all off-diagonal entries equal 2. Then  the n u m b e r  o f  quasi-equivalence 
classes o f  rows o f  A is not  larger than t2 t -1  with t =  R(k ,  m a x { k  + 3 , 9 } ) -  1. 

Proof. Denote by c the number of equivalence classes of rows in A. Each of these 
classes may be decomposed into most 2 c-1 quasi-equivalence classes of rows in A. 
According to Theorem 3, c < R ( k ,  max{k + 3, 9}) - 1. | 

In contrast to the non-oriented case, principal submatrices, which are induced 
by quasi-equivalence classes of rows in a dense matrix, do not have any fixed form. 
However, in the oriented case Theorem 31 also implies analogues of Theorems 1, A, 
C, D, E, F. To prove it we use a fact that any tournament with 2 s-1  vertices must 
contain an acyclic subtournament with s vertices (cf. [4]). For instance, we get the 
following statement. 

Theorem Y. Let  q = 1, k = m i n { v ( L )  : L EZ} and kt = m a x { v ( L )  : L EZ}. Then any 

opt imal  matr ix  for .~ has at mos t  t2 t -1  (2 k ' - I  _ 1) rows where t = R(k ,  k + 6) - 1. 

Proof. Consider a dense matrix A which is admissible for .~. By Theorem 3 ~, 
the set of all rows of A may be partitioned into at most t2 t -1  quasi-equivalence 
classes. Suppose any class consists of 2 k ' - I  or more rows. Then some k ~ rows in 
this class may be rearranged to form a top-triangle principal submatrix of size k ~ 
whose diagonal entries are equal to 0 and all entries above the diagonal are equal 
to 2. Omit all rows of the quasi-equivalence class involved and the corresponding 
columns except for one row and the corresponding column and replace its diagonal 
entry by 1. As a result we obtain a matrix A t which is also admissible for Z,  
but g(A  ~) > g(A) .  It contradicts the assumption that A is dense. Therefore, to 
determine the supremum in (2) it is sufficient to Consider only dense matrices A 
with at most t2 t -1  quasi-equivalence classes and at most 2 k ' - I  rows in each class. 
The number of such matrices is finite. | 

The obtained bound on the number of rows of the matrix can be improved. It 
follows from [7] that  the factor 2 t -1  can be replaced by (7/8)-2 t-1.  
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