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Summary. We consider the behavior of the asymptotic speed of growth and 
the asymptotic shape in some growth models, when a certain parameter 
becomes small. The basic example treated is the variant of Richardson's 
growth model on ya  in which each site which is not yet occupied becomes 
occupied at rate 1 if it has at least two occupied neighbors, at rate e < 1 if it 
has exactly 1 occupied neighbor and, of course, at rate 0 if it has no occupied 
neighbor. Occupied sites remain occupied forever. Starting from a single 
occupied site, this model has asymptotic speeds of growth in each direction (as 
time goes to infinity) and these speeds determine an asymptotic shape in the 
usual sense. It is proven that as e tends to O, the asymptotic speeds scale as el/d 
and the asymptotic shape, when renormalized by dividing it by e TM, converges 
to a cube. Other similar models which are partially oriented are also studied. 
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1 Introduction 

In this paper we consider variants of some typical growth models, in which 
now the rule depends on some parameter, and we ask how quantities of 
interest as the asymptotic speed of growth and the asymptotic shape behave in 
case this parameter becomes very small. To be more specific we describe now 
the basic example that we have in mind. This is the growth model on the 
lattice 2U, in which a vacant site becomes occupied at rate 1 if it has at least 
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2 occupied neighbors and at rate e < 1 if it has exactly 1 occupied neighbor. 
For  this model and all other ones considered in this paper, we suppose, as 
usual, that occupied sites are never vacated, that initially only the origin of 77 e 
is occupied and that no other site can become occupied before any of its 
neighbors becomes occupied (sites which have no occupied neighbor are 
becoming occupied at rate 0). Throughout  we take e < 1 and we shall actually 
focus on the regime where e is very small. We will refer to this model as the 
basic model. 

As motivation for such a model one can think of a crystal growing in 
a supersaturated solution. New atoms are added to the seed by mechanisms 
which are such that the probability of absorption of a new atom at a given 
position depends on the number of adjacent sites which already contain an 
atom of the crystal. It is not unreasonable to expect that the creation of 
protuberances (the absorption of an atom at a lattice position which has only 
one neighboring position already belonging to the crystal) is a mechanism 
which is far slower than the absorption of further atoms at positions that 
already have at least 2 occupied lattice neighbors. Of course, one can also 
modify our simple model and suppose that the rates of absorption depend in 
a more elaborate fashion on the number of occupied neighbors, but for 
simplicity we will restrict ourselves to the model defined above and some 
partially oriented variants. 

Still, as motivation, it is worth pointing out that the problems treated in 
this paper may be also useful in the analysis of the relaxation patterns of 
stochastic Ising models under external magnetic field, at very low temper- 
atures, as for instance discussed in Sect. 8 of Schonmann (1984). In that paper 
relaxation mechanisms for such systems in such a regime are reviewed, and in 
particular it is stressed that if one is considering infinite or very large finite 
systems, then not only the rate of appearance of droplets of the stable phase in 
the background given by the metastable phase, but also the speed with which 
these droplets grow, is crucial to analyze the global relaxation patterns. The 
results derived in the present paper refer to systems which are far simpler than 
the stochastic Ising models, but the results obtained and the methods de- 
veloped here may be the first step towards sharpening certain results on the 
droplet driven relaxation of stochastic Ising models. For  instance, they sug- 
gest that in Theorem 6 in Schonmann (1984) the constant C2 is sharp (rather 
than Ca). 

Our model is also closely related to Eden's and Richardson's models (see 
Eden (1961) and Richardson (1973)). In Eden's model one studies a sequence 
of connected sets B, of 7Z d. B, consists of n vertices and contains the origin 
(B1 = 0). B,+I is formed from B, by adding a single vertex y, from 

~?B, := {x: x(~B,, but x is adjacent to B,}. 

In one of the common versions of this model one chooses y, uniformly from 
0B,. It is known (see Richardson 1973) that the sequence of sets B1, B2 . . . .  has 
the same distribution as the sequence of sets/~(tl),/~(t2) . . . .  obtained in the 
following Richardson model. At time 0 only the origin is occupied. A vertex 
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x r 0 cannot become occupied before one of its neighbors is occupied. When 
x has at least one occupied neighbor, then x itself becomes occupied at rate 1. 
/3(t) denotes the set of vertices occupied at time t, and t, is the first time when 
exactly n vertices are occupied. Other versions of the Eden model pick y, from 
?B, with a probability which is proportional to the number of neighbors of y, 
in 0B,,, that is 

1 
lP{y, = x[B1, B2, , . . ,  B,} = ~ ,  (number of neighbors of x in cgB,), 

where 

Z,  = ~ (number of neighbors of x in ~?B,). 

For  the corresponding Richardson model, x should become occupied at a rate 
proportional to the number of its neighbors which are already occupied. Our 
basic model corresponds to an Eden model in which y, is taken equal to 
a vertex x ~ ~B. with probability e/Z. if x has only one neighbor in B. and 
with probability 1/Z. if x has at least two neighbors in B., where now 

2 .  = Z.(e) = ~ [e + (1 - e) ~ (x has at least 2 neighbors in B.)].  
xegB~ 

(Here and in the sequel ~ (A), or sometimes ~ a, denotes the indicator function 
of A.) The corresponding version of Richardson's model is described in detail 
at the beginning of the next section. In Remark 2.1 we also mention briefly 
a generalization of the basic model in the context of first-passage percolation. 

We review now some basic facts which are known to hold for the basic 
growth model we are considering. For  proofs and more details see the 
beginning of Sect. 2 below and also Sect. 1 lc of Durrett  (1988) and references 
therein and Schiirger (1979). We will denote by 17, the indicator function of the 
set of sites occupied at time t. The asymptotic speed of growth can be defined 
as a function of the direction, but for the moment we will consider only the 
speed in a coordinate direction. Let ei be the i-th coordinate vector 
(0, 0 . . . .  ,1, . . . ,  0), (with the 1 in the i-th place) and define the random times 

r(x)  := inf{t > 0: th(x) = 1}. (1.1) 

Then almost surely 
l ' I  

- -  - ,  v (~ ,  d ) ,  ( 1 . 2 )  
T(nel) 

as n -* ~ ,  where v(e, d) is a constant which depends on ~ and will be called the 
speed of  growth. 

In order to introduce the notion of asymptotic shape, one first defines the 
fattened occupied region 

Or:= {z E IR: ] [ z -  x[p~ __<�89 some x with ~h(x)= 1}, 

where J[y[]~ = max1 <_i<_d ]Yi[ when y = (Yl . . . .  , Yd). 
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For  U c R d and c~ e R, we write a U : =  {ax: x e U}. The following is then 
true. There exists a compact convex set A(e) ~ IR such that for every c~ > 0, 

IP{(1 - 6)tA(e) c qt c (1 + 3)tA(e) for all large t} = 1. (1.3) 

Two trivial bounds can be found for v(e, d). By comparison with a model in 
which only sites on the x-axis can be occupied, or the case in which e = 1, one 
obtains, respectively, the following lower and upper bounds. 

C1~ < v(~,d) < C2, 

where C1 and C2 are strictly positive finite constants. It is natural to ask what 
the actual scaling of v (e, d) is when e { 0. The answer is neither one of the trivial 
bounds above. 

Theorem 1.1 For the basic model in dimension d, 

CI~ TM < v(e,d) <= C2g, l/d, 

where C1 and C2 are strictly positive finite constants. 

As for the asymptotic shape, we will show that, when properly rescaled, it 
is close to a cube when e is small. The notion of'closeness' here is the same one 
that appeared in (1.3) above. Unfortunately, we are only able to show a result 
which is somewhat weaker than convergence to a cube, but which is strong 
enough to assure the existence of convergence along suitable subsequences of 
e's which go to 0. The trouble is that we were not able to rule out the 
possibility that for different such sequences the sidelength of the limiting cube 
is different. This leads to the following explicit conjecture. 

Conjecture 1 In the basic model 

lira e 1/ev(a,d)e(O, oo) 
e.tO 

exists. 

To state the precise shape result we define 

Q(#):-- [ - : , : ) l  d. (1.4) 

Theorem 1.2 For the basic model in dimension d, there exist strictly positive 
finite constants C1 and C2 and a function : :(0, ~ ) - ~  [C1, C2] such that for 
every 3 > 0 there exists an eo = Co(3) > 0, such that for all 0 < ~ < to, 

(1 - 6) Q(:(~)) ~ g -  1 /dA( , s )  ~ (I + ~)Q(t:(E)). 

The following is an immediate consequence. 

Corollary 1.1 For the basic model in dimension d, for every sequence ei{O 
there exists a subsequence elk and a number 0 < d < co, such that 
(,Sik)- 1/d A(~;ik ) ---+ Q(: ) ,  in the sense that for all 6 > 0 there exists a ko < oo for 
which 

( 1  - -  3)Q(: )  c (~,~)-l/dA(~i~) a (1 + 6)Q(:),  k > ko. 
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Another consequence of Theorem 1.2 is that the asymptotic speed in any 
direction scales also as el/d. Moreover, at any time, the furthest occupied point 
in the first coordinate direction is not much further than the furthest occupied 
point on the first coordinate axis itself. The first fact can also be proven more 
directly, using the arguments in the proof of Theorem 1.1. 

Remark 1.1 R. Koteck)  asked us what happens if the vertex x becomes 
occupied at rate e(j) if it has a single occupied neighbor in thej- th coordinate 
direction (positive or negative), and at rate 1 if it has two or more occupied 
neighbors (in any direction). Thus occupation spreads at different rates in 
different directions in this version. Abbreviate (e(1) . . . .  , e(d)) to g. Our 
proofs then carry over essentially unchanged to show that there exists an 
asymptotic shape A(g) (as t --* oo ), and the following analogue of Theorem 1.2 
holds: 

There exists strictly positive finite constants C1 and C 2 and functions 
/j:(0, oc )e--, [C1, C2] such that for every 3 > 0 there exists an eo = ~o(6) > O, 
such that for all 0 < e(j) < ~o, 

d 
(1 -- 6) l-[ [ -- :j(g)~(j)l/d, :j(g) e(j)l/d] C A(g) 

j = l  

d 
= (1 + 3)  l ~  [ - -  f j(~)~(j)l/d,  :j(g) 3(j)l/d]. 

j = l  

In particular, for very different e(j) the asymptotic shape will be near to some 
kind of rectangular box, rather than to a cube. 

Remark 1.2 It is worth stressing that it is not hard for one to become 
convinced that Theorem 1.2 should be true by the wrong reasoning! In the 
first stages of the growth of the system, the occupied region is likely to be most 
of the time a rectangle, because for a first protuberance to be created at the 
surface of a small rectangle the time needed is of order ~ 1, while the time 
needed for a new rectangle to be reached after such a protuberance appears is 
of order 1. (By 'rectangle' we mean a product of lattice intervals.) If the 
rectangle is far from being a cube, then it is more likely that the next 
protuberance will appear adjacent to one of the larger faces, and will help the 
growing occupied region to approach a cubic shape. While the statements 
above are correct, they only refer to times which are short compared to e-1. 
Our interest, on the other hand, is in the behavior of the system with fixed 
small e after very long times. One way to say it is that we are interested in first 
letting t ~ oo and then letting e J,0. When the linear size of the growing 
occupied region becomes comparable to e -~/(e-1), protuberances appear 
throughout the surface at a rate of order 1, and the simple picture described 
above breaks down. In fact when the occupied region is roughly a cube of edge 
size L, protuberances will appear on its surface at a rate eL d- a 

Theorem 1.2 gives some information about the asymptotic shape in the 
particular case in which e is small. It is worth pointing out that few results are 
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available about the asymptotic shapes of growth models. A well known 
exception is the 'flat edge' result of Durrett  and Liggett (1981). 

We next describe our results for a (partially) oriented generalization of the 
basic model. Let ~ be some finite subset of Za which does not contain the 
origin. The basic model is then of the following form: an unoccupied vertex 
x becomes occupied at rate 0 if there are no occupied vertices in x + X ,  
at rate e if there is exactly one occupied vertex in x + JV, and at rate 1 
if there are at least two occupied vertices in x + .A/'. The set Y for the basic 
model is 

We now replace this by 

~/'o: = { ! e i :  1 ~ i<_d}. 

~2~:={  +_e,:l  < _ i < d - v } ~ { - e j : d - v + l < j < d } .  

Thus, in this case occupation of vertices can 'spread only in the positive 
direction' for the last v coordinate directions. T(x) is still defined by (1.1) and 
the following limits still exists almost surely (compare (1.2)): 

and 

n 
v(e,d,v)= l i m - - ,  l _ < r < d - v ,  

n ~  oo T n e  r 

n 
w(e,d,v)= lim~-~[,~, d - v +  l <_r<d. 

?1~ ~176 r 

These limits do not depend on r in the indicated ranges because of obvious 
symmetry properties of the model, v(e,d,v) and w(e,d,v) are the speeds at 
which occupation spreads along the coordinate axes. In analogy with con- 
cepts in first-passage percolation we will call these point-to-point speeds, since 
they measure the time needed for the occupation to spread from the point 0 to 
the point net. Also of interest are point-to-hyperplane speeds which should be 
defined as follows. In the above model let 

a(n,r,z,v) = inf{T(x):  Xr = n} 

= first time a point in the hyperplane {x: xr -- n} becomes 
occupied. 

Then the point-to-hyperplane speeds should be 

n 
s(e, v) = lira 

,~o c~(n,r,e, v) 
for l < r < _ d - v ,  

t(~, v) = lira 
,400 c~(n,r,z, v) 

~ r d - v + l ~ r s  
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Unfortunately we have at the moment no complete proof that these limits 
exist when v > 0. We therefore only give results about 

n n 
lira sup and lira inf 

,-+oo a(n ,r ,g ,v)  ,-+oo a(n ,r ,e ,v )  

in the next theorem. 
In the basic model with all coordinates unoriented (v = 0) it follows from 

the argument of Cox and Durrett  (1981), proof of Theorem 5, that the limit for 
s(e, 0) exists and that 

s(e, O) v(e, d, O). 

When exactly one coordinate is oriented (v = 1), then the same argument can 
be used to show that the limit for t(e, 1) exists and 

t(e, 1) = w(e,d, 1), 

i.e., the point-to-point and point-to-hyperplane speeds are the same for the 
single oriented direction. However, for general v neither s(e, v) = v(e, d, v) nor 
t(e, v) = w(e, d, v) are expected to hold and our next theorem implies that the 
former definitely fails for small e. 

Theorem 1.3 For v < d 

v(e,d,v)  = v(e,d - v,O) (1.5) 

and there exist constants 0 < C1, C2 < c~ such that 

C1 ~l/(d-v)~ V(F,, d, v) < C2e 1/~a-v). (1.6) 

Moreover for  0 < v < d 

w(e,d ,v)  = w(e,d - v + 1,1) (1.7) 

and there exist constants 0 < C1, C2 < oo such that 

Cl el/(~-v+ l) < w(e,d, v) <= C2,9,1/(d-v+1). (1.8) 

Finally 

n n 
C1 ~(d+l)/(d~d-v+l)) < l i m i n f  < lim sup 

= n--oo o ' ( n , F ~ , ~ ) )  = n~oo a(n,r ,z ,v)  

C2 e(d+l)/(d(d-v+l)) for  1 <_ r <_ d - v, (1.9) 

and 

n n 
C~ e */(d-~+*) < liminf < lim sup 

= ,+oo a(n ,r ,e ,v)  = ,-+oo a(n ,r , z ,v)  

< C 2 e  1/~-v+1) f o r d - v + l  <_r<_d. (1.10) 

Remark 1.3 (1.9) and (1.10) show that the process moves faster (in the sense of 
point-to-hyperplane speeds) in the oriented than in the unoriented directions. 
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We have no intuitive argument for this fact. Note also that the point-to-hyper- 
plane speed in the unoriented directions (given by (1.9)) is larger than the 
point-to-point speed in the totally unoriented model in dimension d - v, because 

d + l  1 

d ( d -  v + 1) d -  v 

Thus, the oriented directions still 'help' the process to move in the unoriented 
directions. 

Further variants of the basic model can be obtained by changing the rates 
at which points are occupied. For  instance we considered the totally un- 
oriented model in which a vertex x becomes occupied at rate e when one or 
two neighbors of x are occupied and at rate 1 when at least three neighbors of 
x are occupied. We were unable to prove the following conjecture. 

Conjecture For the above rates there exist constants 0 < C1 < C2 < oc such that 

t l  
Cl~ < lim < C2e. (1.11) 

~ tt-~ oo ~ n e l  z 

The lefthand inequality is trivial; only the right hand inequality is significant. 
The conjecture is true for d = 2, but for d = 3 we could only prove the 
following weaker result. 

Theorem 1.4 I f  d = 3 and if x becomes occupied at rate ~ when it has 1, 2 or 
3 occupied neighbors, and at rate 1 when it has at least 4 occupied neighbors, 
then (1.11) holds. 

Since this seems a far from optimal result we shall not prove this theorem here. 
We merely state here that the proof rests on showing that if x = (xi, . . - ,  xd) is 
occupied at a certain time t, then at t there exists a chronological path from 
0 to x of f vertices which contains at least C3E slow points for some ( (see the 
lines before Lemma 2.3 for the terminology). From this one concludes that 
x will not become occupied before time C4~/e outside an event of negligeable 
probability. Since necessarily ~ > maxj lxjl, we conclude that w.p. 1, T(x) is at 
least C4 L] x ][ ~/e = C4 maxjlx~l/e for all large x. The rules for constructing the 
chronological path are, however, much more complicated in this case than in 
the proof of Lemma 2.3. 

As usual we will use Co, C1 ..- to denote strictly positive, finite constants 
whose precise value is irrelevant and may change from appearance to appear- 
ance. All of these will be independent of ~, but they may depend on the 
dimension d. Some further notation which we shall use is 

l (A) or ~ A = indicator function of A; 

d 

[iXill = ~ lxi] and 
i = 1  

Ilxllo~= max Ixil w h e n x = ( x l ,  . . . ,xd) ;  
l < _ i < d  

a/~ b = min(a, b); 

0 = the origin and ei = i-th coordinate vector. 
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2 Proof of Theorem 1.1 

It is convenient to construct our basic growth model by means of exponential 
clocks. To each site x ~ 7Z d associate two independent exponential random 
variables, z(1)(x) and z(2)(x), with respective means 1/e and 1 / ( 1 -  e). We 
suppose that all these random variables associated to the sites of 2U are 
independent. Recall the definition (1.1), and let V(i)(x), i =  1,2, be the first 
time when the site x has at least i occupied iaeighbors. Then the process which 
starts with only the origin occupied can be constructed recursively by setting 
To = 0 and for x # 0, 

T(x) = min{V(1)(x) + ~(1)(x), V(2)(x) + z(2)(x)}. (2.1) 

More precisely, let B(0) = {0} and 

B(t) = {x: x is occupied at time t} 

= {x: T(x) __< t}, 

OB(t) = {x:x is adjacent to B(t) but x(~B(t)}. 

Each x e #B(t) has at least one occupied neighbor in B(t), so that V~l)(x) < t. 
If x has two or more neighbors in B(t), then even V(Z)(x) < t. Let 

01 = {x e OB(t): x has exactly one neighbor in B(t)}, 

~32 = {x e ~?B(t): x has at least two neighbors in B(t)}. 

Now for a given t and B(t) take B(s) = B(t) for all 

s < S = S( t ) := rain{ V(l)(x) + r(1)(x): x e ~7l} A min{V(Z)(x) 

+ ~2~(x): x e c92}. 

At time S, B(t) changes to 

B(S) = B( t )u{x} ,  

where x ~OB(t) is such that S = V(1)(x)+ z(1)(x) or S = V(2)(x)+ z(Z~(x). 
S = T(x)  for this x. Due to this change from B(t) to B(S), also 0B changes and 
so do ~?~ and ~72. One now finds the next S on the basis of the new 0t and 02 
and so on. 

Remark 2.1 So far we assumed that the r(l~(x) and z(2)(x) are exponentially 
distributed. As we saw, the resulting basic model is a generalization of 
Richardson's growth model. It is well known that Richardson's growth model 
is a special case of first-passage percolation. We therefore describe here 
a corresponding generalization of first-passage percolation with different 
passage time distributions, depending on the number of occupied neighbors, 
but one in which the r(i)(x) do not need to be exponentially distributed. 
Instead we take F (~ as a general distribution on [0, r and take all ~(~)(x) 

(1) independent, now with v (x) having distribution function F~ .) and r(2)(x) 
having distribution function F(2)((1 - e).). The set of occupied sites at time t, 



444 H. Kesten, R.H. Schonmann 

B(t), is defined in the same way as above. The basic model is obtained as 
a special case of this last model by taking F (1) and F (2) standard exponential 
distributions, while the classical first-passage percolation model corresponds 
to taking the limit F (2) ~ ~oc, that is F(2)(x)  --> 0 for each fixed x. We shall not 
prove anything about this more general model, but we believe that most of 
Theorems 1.1 and 1.2 will continue to hold provided the distributions F (~ 
have exponentially bounded tails, have a dens i ty f  (z) on [0, a] for some a > 0 
and satisfy the following conditions: 

0 < l i m i n f f ( ~  < limsup f(i)(x) < oo, 
x~O x.tO 

and for some 0 < C1, C 2 < oo 

Fli)(x + Y ) -  F(i)(x - )  <= Cxy, 
1 - F(O(x - ) 

(2.2) 

1 - F(i)(x + y - - )  
- - F ~ Y ( x - )  - - < C 2 [ 1 - F ( ~  x , y > O .  (2.3) 

These properties come in when one must bound the rate at which a site 
becomes occupied, conditionally on the site not yet being occupied but having 
i neighbors occupied already for x time units. (2.2) (2.3) says that this 
conditioning does not drastically increase (respectively, decrease) the prob- 
ability for a site to become occupied in the next y units of time (when 
compared to the unconditional probability). E.g. (2.2) prevents the process 
from exploding. 

To carry out our proofs it is convenient to also define the analogous process 
~/(~ which has initial state 

~ o  ~ = ~ A ,  

where A is any given finite subset of Za. This process starts with all points in 
A occupied, rather than just the origin. It will be defined by means of the same 
z(i)(x) as the process r/.. For  this definition we identify our probability space 
with the space of all values of {r(~ i = 1,2, x e 2U}. For  a given sample 
point co, i.e., a specification of these variables, we can then define the processes 
~/.A simultaneously for all finite A c 2~ a. t1A is defined in the same way as r/t 
above, except that we take T(x)  = 0 for all x e A (rather than just for x = 0) 
and B(0) = A. We shall write r/f for r/i ~. The previous r h is then the same as r/~ 

It is important for our arguments that this construction makes r/A into 
a strong Markov process with the jump rate from B to B u y  given by 

0 if y(~OB, 

e if y e 01B, 

1 if y e 632 B. 
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Moreover ,  this process does not  explode, as one can see for instance by 
compar i son  with the process in which each site in ~?B(t) becomes occupied at 
rate 1. (Alternatively, one can use the fact that  if tk is the k-th j u m p  t ime of the 
process, then the cardinal i ty of  B(tk) equals IAI + k w.p. 1 (where [AI stands 
for the cardinal i ty of A), and given B(tk), t k + ~ -  tk has an exponent ia l  
dis tr ibution with mean  at least 

1 1 _ _ >  
[SB(tk)l = 2d(IAI + k) '  

Since ~(IAI  + k) -z  = ~ our  claim follows f rom Breiman (1968), Sects. 15.5, 
15.6. 

A simple but  very useful fact is that  if C, D are finite subsets of ~d for which 
C c D, then the s imul taneously  constructed processes t/. c and t/. D satisfy 

qC(x) < fl?(x) for all t > 0, x e 2U, (2.4) 

on each sample  point  for which 

C(s ) :=  {x: ~/sC(x) = 1} is finite for all s > 0 

z(i)(x)< oo f o r i = l ,  2 and a l l x e Z  d. (2.5) 

We shall not  prove  this, but  the p roof  is very similar to the following l emma  
which holds even for the part ial ly oriented model  defined before Theo rem 1.3. 
No te  that  the processes in bo th  sides of(2.4) use the same z(~ and that  this is 
a determinist ic lemma.  

Let  C ~ 7Z d be finite and let the sample point be such that (2.5) Lemma 2.1 
holds. Then 

flc+s(x) > flc(~ s > O, x e Z a. (2.6) 

Proof. Fix t _>_ 0 and assume that  (2.6) fails. Then 

S : =  inf{s: qc(~ = 1 and flCqs(X) = 0 for some x} < oQ. 

Thus  there exist Sk$S, Xk e 7Z a such that  

It  is not  hard  to see that  if flsC(~ = 1, then there exists a pa th  Yo, Yl . . . .  , y ,  on 
7Z/with Yo ~ C(t), y ,  = x and rlCs(~ = 1 for 0 _< i _< n. We claim that  this 
allows us to choose d(xk, C(t + S + 1)) =< 1, where d(x, C ) : =  inf{ Hx - y ][ 00: 
y e C}. To  see this assume that  Sk < S + 1 and Usk"Cr ---- 1 and rlC+sk(Xg) = 0 
but  d(xg, C(t + S + 1)) > 1. Then choose a pa th  Yo e C(t), . . . ,  y ,  = x f rom 
C(t) to x for which rlc~(~ = 1 as above.  If  y~ is the first point  on this pa th  
outside C(t + Sk), and hence t/c+~(y~) -- 0, then we m a y  replace Xk by y~. 
Indeed,  this y~ satisfies 

d(y~, C(t + S + 1)) = < d(y~, C(t + Sk)) = < 1, fiC~t)(y,) = 1, fltc~(y~) = O. 
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From now on we assume that d(xk, C(t + S + 1)) ____ 1. Since, by assumption, 
C ~ C(t) ~ C(t + S + 1) is a finite set, Xk takes on finitely many values only 
and there must exist an x such that Xk = X for infinitely many k. Then the right 
continuity of s ~ tlc(t)(x) and of s ~ r/C+~(x) shows that 

r/sC(~ = 1, r/C~(x) = 0. (2.7) 

On the other hand, the minimality of S implies that 

=rh+~(y ) for a l l s < S  and a l l y e Z a  

and in particular qc(~ = 0 for s < S, so that T(x)  > S, where for the course 
of this proof we use T(z) for the first time that z becomes occupied in the t/c~t) 
process. Similarly we shall use V (~ for the first time i neighbors of z become 
occupied in the ~/c(0 process. Thus 

T (x) = S 

and this means that 

S = min(V(1)(x) + z(l)(x), V(2)(x) + r(2)(x)). 

For  the sake of argument, let S = V(2)(x)+z(2)(x)> V(2)(x). But then 
V(2)(x) = T(z2)  for some neighbor Z 2 of x with T(z2)<S and there 
exists another neighbor zl of x with T(z l )  < T(z2) < S. Then 
1 . c ( t )  c = ,r r(zj) (Z j) < = t/t+ r~zj)(Zj), that is, zj is already occupied at time t + T(z~) in 
the process ~c. Finally then, at time t + T(z2) + r(2)(x) = t + S, x must also 
be occupied in the t/c process (by (2.1)), or equivalently rlC+s(X) = 1, which 
contradicts (2.7). [] 

We remark that the hypothesis (2.5) of Lemma 2.1 is fulfilled w.p. 1 when- 
ever C is finite. Clearly r(i)(x) > 0 w.p. 1, and the finiteness of C(s) for s > 0 
follows from the fact that t/c does w.p. 1 not explode. 
One immediate consequence of (2.6) is the subadditivity relation 

T (x + y) < T(x)  + T~(x + y), (2.8) 

where T(z) and T X(z) denote the first time that z becomes occupied in the 
process t/. = 77. ~ and the process r/. ~, respectively. This can be seen by taking 
C = {0}, t = T (x), s = T X(x + y) and by replacing x by x + y in (2.6). Then 
x e c ( r ( x ) )  and 

rlr~x~+~(X + y)  > rlc(r(x'(x + y) > rlf(X + y) = t/~X(x+r~(X + y) = 1, 

from which (2.8) follows. (2.8) of course implies (1.2) via Kingman's subaddi- 
tive ergodic theorem, and the existence of the asymptotic shape A (e) as in (1.3) 
follows by Richardson's argument (cf. Durrett  (1988, Ch. 1)). 

Repeated use will be made of the following simple lemma, which again 
holds for the partially oriented model. 
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Lemma 2.2 Let  C ~ ~a be finite and D ~ 7] a arbitrary. Assume that to < oo 
and 6 >= 0 are such that 

�9 { fo _>- 

= lP{all o f  D is occupied at time to by the process which starts with C} > 6. 

Then 

IP{r/Co>~D} > 1 - ( 1 - 6 )  k, k > 0 .  

Proof. We use induction on k. Let 

= cr{qc: s _-< t}. (2.9) 

Then it suffices to show 

C 

But this follows easily from the Markov property, since, with C(s) as in (2.5), 

=> c => __> 6. 

For  the one but last inequality we used the fact that C(kto) ~ C and (2.4). []  

Remark 2.2 The preceding temma and Lemma 4.1 are the main steps which 
are nontrivial to generalize to the more general model in which the z(~ are 
no longer exponentially distributed. 

We now turn to the proof  o f  Theorem 1.1. The lower bound on v(e,d) is the 
easier one to obtain. We first describe the argument in a somewhat informal 
way. The idea is that of considering a 'moving front' of the right size, 
embedded in the growth process. Consider the sets of sites 

f n ,  m :---- {x = ( X 1 , X  2 . . . . .  Xa) U. 7]d: X 1 = H and 0 < xi < m for i = 2 . . . .  , d}. 

If at a certain time all the sites of F,, m are occupied, and all the sites of F,  + 1,r, 
are vacant, then the rate at which a first site in F,  + 1,m becomes occupied is 
e(m + 1) a-1. If we choose m = ]e -~J ,  then some site in F,+l,m will become 
occupied after a time of order e ~(a- 1)- ~ =. tl. On the other hand, once such 
a site is occupied, its neighbors in F,+ 1,m have at least two occupied neigh- 
bors, and, hence, are being occupied at rate 1. Once these sites are occupied, 
their neighbors in F,+ 1,,, have at least two occupied neighbors, and, hence, 
are being occupied at rate 1, and so on. It is clear that F,+ 1,m should become 
completely occupied after an extra time of order m = e -= =: t2 beyond tl. The 
order of the total time for F,+t,m to become completely occupied by the 
mechanism described above is minimized by making t, and tz be of the same 
order. This is accomplished by taking e = 1/d. The total time for F ,+I , , ,  to 
become occupied then is of the order e-1/d. Repeating this reasoning for 
successive values of n, one sees why we used the term 'moving front' above. At 
each time there is a largest n for which F,,m is completely occupied, and the 
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F,,,, for this n is our moving front. This front moves with speed given 
by the inverse of the time needed for it to move one unit, i.e., at a speed of 
order e 1/d. 

To transform the reasoning above into a rigorous argument, we will 
compare the growth model with a modified model in which each one of the 
sets F,,m can only start to become occupied after the set F,_l.m is fully 
occupied (except for the case n = 0, for which we use the original dynamics). 
For concreteness we suppose also that in this modified process the sites which 
do nol belong to any of the sets F ...... n = 0,1 . . . .  , stay vacant forever. We will 
call this modified process the 'front process'. It is easy to see how to couple the 
original growth model and the front process so that the former one has always 
a larger set of occupied sites than the latter. To obtain such a coupling we 
construct the front process using the same exponential clocks as used to 
construct the growth process. We will denote by T r the time when the site 
x is first occupied in the front process, and by VI(1)(x) and VY(2)(x) the times 
when the site x first has, respectively, 1 or 2 occupied neighbors in this process. 
The front process is constructed using the exponential clocks r(1)(X) and ~(2)(x) 
by means of the following definitions. First, T Y(0) = 0 and if x~ [)~ => o F.,m 
then TS'(x) = oe. For  x in Fo,.~ we define TI(x) by using the original basic 
model restricted to Fo,,., that is, we use the growth process as if none of the 
vertices outside Fo,,. are present, Now, define inductively Oo := 0, 

O. := max(T;(x): x ~ F,-1,,,}, 

for n > 0, and for x e F  . . . .  n > 0, 

T'~(x) : = min{max{V*(l~(x), O,} + r(l~(x), max{ VY(2)(x), O,} + z<g)(x)}. 

We leave it to the reader to show (by arguments similar to those in Lemma 
2.1) that indeed for all x, Tr >= T(x), as claimed. 
Based on the informal computations above, we will choose m = ~e-a/aj. We 
have to show that in the front process, the expectation of the random time 
A,, := O,,+~ - O., for the set F.,,. to become fully occupied after the set 
F~_ ~,,, became fully occupied, satisfies 

IE(A.) < C,e -l/e, (2,10) 

for an appropriate constant C1, for all n > 0 and all e > 0. (This inequality is 
false for n = 0, but the obvious fact Ao < o0 a.s. is enough for our purposes.) 
The lower bound in the theorem follows immediately from (2.10), the law of 
large numbers (i.e., (l/n) O, --* lEA 1) and the comparison between the original 
and the front processes (which ymlds T(nel)< 0,). To check (2,10) it is 
enough to show that for some C2 and ~ > 0, independent of e, 

lP{3. > Cue 1/,,} < 1 - a. 

Indeed, (2.11) implies 

(2.11) 

IP{A. > kC~g -~/d} < (i - 6)k, k _--> 0, (2.12) 
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by virtue of L e m m a  2.2. To  show (2.11), divide the r a n d o m  time interval An 
into the t ime A,(, 1) needed for a first site in Fn,m to be occupied and the extra  
t ime At, 2) needed for tha t  set to become fully occupied after one of its sites first 
became occupied. It  is clear that  A~, 1) is an exponent ia l  r a n d o m  variable  with 
mean  [(m + 1)a- l~]  -1 =< e -1/a and that  

> __< e - '  

So all we need is to also show that  for some constant  C3, 

IP{A}ff ) > C3e-ue}  < �89 (2.13) 

In dimension d = 2, (2.13) follows immediate ly  by compar i son  with a pair  of 
rate 1 Poisson processes because of the a rgument  given above.  If Ez is the 
event  that  z is the first site in F .... to become occupied, then on the event Ez 
with z = (zl,  22), the difference between the times at which (zi, Z 2 -~ k)  and 
z become occupied is bounded  by 

k 

"C(2) (zl, z2 + j ) ;  
j = l  

a similar est imate holds for the difference between the times at which 
(21,22 - k) and z become occupied. In higher dimensions,  the same sort  of 
compar i son  with rate 1 Poisson processes can also be used to p rove  (2.13). 
Given z ~ F  . . . .  choose for each site x ~ F , , m  a sequence of sites 
z = x(0),x(1), . . . , x ( n ) =  x such that  I I x ( i ) - x ( i -  1)111 = 1 for i =  1, . . . ,  n 
and  n = II x - z l[ 1. In par t icular  n < din. In the front process, when the site 
x(i) is occupied and x(i + 1) is not  yet occupied, this lat ter  site is being 
occupied at rate 1 (because using the exponent ia l  clocks as indicated above  we 
can specifically write 

Ts(x )  > on + s i c 2  
i 

__< < =< < 

where Z is a Poisson r a n d o m  variable with mean  s. By taking s = C3e -~/a, 
averaging over  z, and  using the s tandard  large deviat ion est imate (A.1) (see the 
Appendix  for formulae  numbered  (A. *)), one obtains  

< (e 1/a + 1)aC0(d~-Ua + 1)e(d c,)~ ~'~ (2.14) 

This implies (2.13) when C3 is large enough,  and finishes the p roof  of the lower 
bound  in Theo rem 1.1. 

We turn now to the p roof  of the upper  bound  on v(~,d) in Theo rem 1.1. 
First  we define three concepts  which are useful below: A site x ~ 72, a is called 
a slow site if it becomes  occupied at a m o m e n t  in which it has exactly one 
occupied neighbor,  i.e., if T(x)  = V(X)(x) + ztl)(x). A chain in 77, a is a sequence 
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of distinct sites x(1), x(2), . . . ,  x(n) such that, for i = 1, . . . ,  n - 1, x(i) and 
x(i + 1) are neighbors. We say that x(1) and x(n) are the endpoints of the 
chain and that n is its length. A chronological path at time t is a chain of sites, 
for which 0 < T(x(1)) < r (x(2))  < ... < T(x(n))  < t. We will say that this 
path goes from x(1) to x(n). 

To prove the upper bound in Theorem 1.1, we will show that if a site is 
occupied at time t, then it has to be connected to the origin by a chronological 
path which contains (in a certain sense) many  slow sites. Once this is realized, 
the proof  is completed by estimating the probabili ty of such an event. In order 
to be more precise about what we mean with 'many slow sites' we need the 
notation 

H i : =  {x = (xl,x2, . . . , x a ) ~  7/a: x l  = j ) .  (2.15) 

Lemma 2.3 (Deterministic statement) For arbitrary k > O, if the site x e Hk is 
occupied at time t, then there exists at time t a chronological path from the origin 
to x which contains at least one slow site in each one of  the hyperplanes Hi ,  
j = l ,  ... ,k.  

Proof We construct such a chronological path by moving backwards in time. 
Start from x(n) = x. We have to say how to find x(i - 1), once we have x(j) ,  
j = i, . . . ,  n. It is clear that if a site which is not the origin is occupied at time t, 
then at least one of its neighbors was occupied before this site. To assure that 
in the path that we are constructing we actually obtain a slow site in each 
H j , j  < k, we use the following rule. Choose x(i  - 1) from the neighbors ofx(i)  
which were occupied before x(i), but if there is more than one such site never 
choose x ( i ) -  e~ (otherwise the choice is arbitrary). In other words, only 
choose x ( i ) - e ~  for x ( i - 1 )  if forced to do so. This means that if 
x(i - 1) = x(i) - el ,  then x(i) is a slow site. It is clear that, because only 
finitely many sites are occupied at any given time, and only the origin is 
occupied at time 0, the procedure just described produces a chronological 
path with the desired properties. (Note that n is determined only after the 
whole path has been constructed.) []  

Suppose now that at time t there is an occupied site x in Hk with k = [_2t] for 
some )~ > 0. Then by Lemma 2.3 the event 

F(t ,  2 ) : =  {at time t there exists a chronological path from the origin 

to some point in Hk with a slow site in each Hi, 1 ~ j < k} 

must occur. The proof  of the upper bound in Theorem 1.1 will be completed 
once we show that there is a constant C1 and an eo > 0 such that if2 = C1~ TM 
and e < eo, then 

lim lP(F(t,2)} = O. (2.16) 
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In order to prove (2.16), we first observe that we can choose a constant C2 so 
large that no chronological path present at time t is likely to be longer than 
C2t. More precisely, for suitable C3, C4 

IP{there exists a chronological path starting at the origin 
and of length > C2t} 

C 3 e  - c ~ t .  (2.17) 

This is a well known fact, which follows from the observation that the number 
of chains of sites which have the origin as one endpoint and have length Y is 
bounded above by 2d(2d - 1) e- 1, while the probability that any given one of 
these chains is a chronological path present at time t is bounded above by 
IP{Z > E -  1}, where Z is a Poisson random variable with mean t. The 
standard large deviations estimate (A.2) for Poisson random variables implies 
then that the probability of having any chronological path with length at least 
C2t present at time t is bounded above by 

~, 2d(2d - 1 ) e - l l P { Z  > ( - 1 }  =< 2d ~ (2d - 1 ) ~ e  - ~ ( ~ ~  
g" > Cat f > Czt 1 

By taking C2 large, this upper bound tends to 0 exponentially fast as t ~ oo. 
The problem of proving (2.16) is now reduced to showing that 

lim IP{G(t,2, Ca)} = 0, (2.18) 
t ~ o O  

where G(t, 2, C2) is the event that at time t there is a chronological path from 
the origin to some point in Hk with length not larger than Czt and which 
contains at least one slow site in each one of the hyperplanes Hi, i = 1 . . . . .  k 
(recall that k = LAtJ). 

In order to estimate the probability that G(t,2, C2) occurs, we basically 
need an upper bound for the number of choices for the set of slow sites which 
appears in the definition of this event. For  a sample point at which G(t, 2, C2) 
occurs, let S = {y(1) . . . .  , y(k)} be a set of sites on a chronological path from 
0 to a point in Hk at time t, such that y(j) ~ Hi, and such that y(j) is a slow site. 
There may be several possible choices for S, but this will not influence our 
argument. One may make the choice of S unique by ordering the collection of 
possible sets S lexicographically and by picking for S the first possible one in 
this ordering. Define for each j, z ( j ) = z ( j ; S ) = y ( j ) - y ( j - 1 ) ,  where 
y(0) = 0. The components of these vectors will be identified by the usual 
notation z ( j ) =  (zl(j) . . . .  , ze(j)). The set S is completely specified by the 
sequence (z(j): j = 1, . . . ,  k), or, equivalently, by the sequences (zi(j): 
j = 1, ... ,k), i = 2, ... ,d  (while zl(j) = 1 for each j). 
Since G(t,2, C2) cannot occur if 2 > C2 we suppose 2 < C2. If we define 

k 

K i =  ~ [zi(j)t, (2.19) 
j = l  
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then for any chronological path of length < C2t and corresponding set S, we 
must have 

K i <= C2t.  (2.20) 

Let S = {y(1) . . . . .  y(k)} be a set of sites such that y( j )  e H j , j  = 1 . . . . .  k and 
such that (2.20) is satisfied. The number of ways in which the sequence (zi(j): 
j = 1, . . . ,  k) can be chosen (for fixed i) is bounded above by 

~, 2k Ki k - 1 < Czt2 k C2 + k < C3t2 k 
Ki=l -- 1 ~ 

for some constant C3. The factor 2 k comes from the choices of the signs of the 
z~(j), j = 1, . . . ,  k, while the binomial coefficient comes from the number of 
ways in which the Izi(j)l, j = 1, . . . ,  k, can be chosen, given the constraint 
(2.20) (see Feller, 1968, Sect. II.5). The final inequality above is a simple 
consequence of Stirling's formula and is derived in the Appendix, as (A.3); here 
we are also using the fact that k < 2t < C2t. 
For M(t ,2 ,  C2): = the number of sets S which can arise, we now have the 
bound 

m(t, .~, C2) ~ C3t2 k 

for some constants C4 and C5. 

* {Cs'~ k'd-l ,  (2.21) 
--< \ T J  ' 

From the construction of the growth model using exponential clocks, one 
can see that the following holds. Given a set of sites S, of cardinality 
k, the probability that there is at time t a chronological path which 
goes through all these sites and that all sites in S are slow, is bounded 
above by 

lPf  ~ z~l)(y) < t }  = IP{Z' > k }, 
Ly~S 

where Z' is a Poisson random variable with mean re. Using again the standard 
large deviation estimate (A.2), we obtain, for 2 > e, 

1P{Z' > k} < e k. (2.22) 

Combining this inequality with (2.21) and using k = L2tj, we obtain for 
large t 

(Cve']  a -1  (2.23) ]P{G(t , ,~,C2) } ~ M ( t , ) ~ , C 2 ) ] P { Z  ' 2> k} ~ c 6 t d - l \ ~ - /  , 

for some constants C6 and Cv. This inequality implies (2.18) when 2 = C1 ~ l/a, 
and C 1 is chosen large enough. This completes the proof of the upper bound in 
Theorem 1.1. 
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3 Proof  of Theorem 1.2 

First we introduce some terminology, In arbitrary dimension we shall use the 
term rectangle for a product of intervals, thus extending the usual meaning of 
a rectangle in two dimensions. When considering the lattice Z a, a rectangle 
will mean a product of lattice intervals. When considering the asymptotic 
shape A(e), we will be dealing with compact convex subsets of IR a which have 
many symmetries. It is natural to use the name radius of such a set for the 
smallest value of ~ for which the set is contained in Q(f), defined by (1.4). 
Equivalently, the radius of a set A equals max { II x II 00: x e A }. Below, we shall 
refer informally to the two-neighbors mechanism. By this we mean the phenom- 
enon of vacant sites which have at least 2 occupied neighbors becoming 
occupied at rate 1. 

Having tried to convince the reader, in Remark 1.2 in the introduction, 
that Theorem 1.2 is less obvious than it might seem at first sight, we will argue 
next that it should nevertheless be true. The rigorous proof will be a direct 
adaptation of a reasoning that we first present informally. We know that for 
fixed e there exists an asymptotic shape, in the sense that (1.3) holds. So after 
a long time t, the fattened occupied region, ~r, should be close to the set tA(e). 
Because of Theorem 1.1, the linear size of this set in the coordinate directions 
should be of order r t :=  C3te 1/a (here e is fixed and t tends to oe). In other 
words, at a large time t the coordinate axes should be occupied up to 
a distance from the origin of order rt, but there should be no occupied vertices 
on the coordinate axes much further out than r~, It is easy to see that A(s) is 
convex, compact and invariant under permutations and sign changes of the 
coordinates (cf. Kesten 1986, pp. 158-160). As in Cox and Durrett  (1981), 
proof of Theorem 5, it follows from this that A(e) is contained in the cube 
Q(f~), where ~ = max{x: x e  I e A(~)}.  That is, the furthest occupied points (in 
the II II ~ sense) are roughly along the coordinate axes, and for any 6 > 0, 0i 
will eventually be contained in Q((1 + 8)r~), Wait now an extra time C4te l/d, 
where C~ is large. Ife is small, this extra time is short compared to t. Therefore, 
at time t' = t(1 + C4 ella) the occupied region should not be much bigger than 
the dilation by a factor close to 1 of the occupied region at time t. The 
fractional increment in the radius should actually be of order 
C4te~laC3~ll~/C3t~ ~ld = C4~ lid, The crucial step in the argument now is that 
during this extra time interval, the two-neighbors mechanism is likely to have 
filled up the cube of radius r~ (provided C4 is large enough; this step has to be 
proven uniformly in e). Before we argue for this last statement we observe that 
it leads to the desired conclusion, since then we have at time t' a shape which is 
larger than the cube of radius r ,  but smaller than a cube of radius (1 + 6)r~,. 
Because t' can be made arbitrarily large by taking t large, what we see at time 
t' must be close to the asymptotic shape_ The asymptotic shape A(e) must 
therefore be close to a cube. 

The occupation of the cube of radius r, = C3te I/a by the two-neighbors 
mechanism in a time t' - t = C4te ~/a, should occur as claimed above, if C4 is 
large, because we are starting from a configuration in which each coordinate 
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axis is occupied essentially up to a distance rt of the origin. If time were 
discrete and the two-neighbor mechanism completely deterministic (at each 
unit of time, sites which have two occupied neighbors would become occu- 
pied), then this claim would be trivially true: indeed, if at time t each of the 
coordinate axes is occupied up to a distance r, then at time t + s all sites in {x: 
II x I[1 < s} would be occupied, for s < r. In the continuous time setting that we 
are considering the proof of the same statement is not so trivial, and if one tries 
to directly adapt the argument indicated for the discrete time case, it will not 
work (for the time needed to fill up the cube one would obtain a useless upper 
bound of the order r, log(r~)). We will state and prove next a precise version of 
what we need. After this is done, we will complete the proof of Theorem 1.2 
along the lines sketched in the previous paragraph. 

At no extra cost, we will state and prove the next lemma in a form which is 
slightly stronger than the one we use, but which clarifies its content better. 
First we introduce a new comparison process, which will be called continuous 
time oriented bootstrap percolation model or just CTOBPM (see Aizenman and 
Lebowitz (1988) and Schonmann (1992) to understand the motivation for the 
name). 
Define the oriented neighborhood of a site x by 

J V o r ( x ) = { - e i : l < i < d } + x .  

In the CTOBPM, a site which is vacant becomes occupied at rate 1 if and only 
if at least two sites in its oriented neighborhood are occupied. Otherwise the 
rate of becoming occupied is 0. As usual in growth models, occupied sites 
never become vacant. We will be concerned with this process started from an 
occupied set S at time 0, and will denote by ~s or ~,(S) the random set of 
occupied sites at time t. Note that in the CTOBPM sites become occupied 
slower than in the completely oriented model of Theorem 1.3 with v = d, 
because in the CTOBPM no site can become occupied before at least two of its 
neighbors are occupied. In particular {s will be contained in the occupied set 
at time t for the basic process starting with S, i.e. ~s c {x: fitS(x) = 1}. We will 
consider initial sets of the form 

S(nl,  . . . ,  rid):= Ud=l {kei: 0 ~ k ~ hi}. 

To state the lemma we need also the following notation for the rectangles 

d 
R(n~ . . . .  , r id) '=  [ I  EO, ni3. 

i = 1  

Lemma 3.1 For the C T O B P M ,  there exist positive finite constants C1, C2 and 
C3 such that if n = nl + "" + rid, then 

IP{R(nl ,  . . . ,  n e ) r  . . . ,  ha))} < C z e x p ( -  C3n). 

Proof  We construct the CTOBPM using the mean 1 exponential clocks 
r(3~(x)'= min{zm(x), r(2)(x))}. We will use the notation T BP(x) for the time 
when x is first occupied and vBP(x) for the first time when in SVor(X) there are 
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at least two occupied sites. The process ((s)~eo is constructed by setting 
T BP(x) = 0 if x e S, and for other values of x, inductively 

T BP(x) = min{ VBP(x) + z(3)(x)}. 

For x e R(nx  . . . .  , ha) define ~ as the set of oriented paths from the origin to 
x, that is, the set of sequences of sites 0 = x(0), x(1) . . . . .  x (k )  = x such that 
x( i  - 1) e ~A#o~(x(i)) for i = 1, . . . ,  k. We further define 

~(n ..... na) = Ux~l~(n ..... ha) ~ x .  

The following inequality is the crucial step in the proof. Suppose that initially 
the occupied set is S ( n b  . . . ,  rid). Then for every x e R(n~, . . . ,  ne), 

TBP(x)  < max ~, r(3)(z) (3.1) 

This inequality will be proven by induction. First we introduce some terminol- 
ogy. A site in R ( n l ,  . . . ,  na) will be said to be in the k-th class if exactly k of its 
coordinates are different from 0. Clearly (3.1) is true if x is in the 0-th or 1-st 
class for then x ~ S. Suppose now that k > 2 and that (3.1) is true for sites in 
the 0-th to (k - 1)-th classes and also for sites x = (xl, . . . ,  xa) in the k-th class 
which have [Ixlll = xl + .-. + xd < j .  We want to show that then it will also 
hold for sites y in the k-th class which have I] Y I[ 1 = J. To see this, observe that 
for such a y at least 2 coordinates are different from 0, and hence at least 2 sites 
in A#or(y) are in the set of sites for which we supposed that (3.1) holds. Call 
these sites y' and y" (the choice is arbitrary if there are more than 2 sites). 
From the construction of the model with exponential clocks we have 

T B P ( y )  <= max{ TBP(y ' ) ,  TBP(y")} + "c(3)(y). 

This inequality and the induction hypothesis impty that (3.1) also holds for 
y (even if we restrict the maximum there to paths which pass through either y' 
or y"). This completes the proof of (3.1). 
Using (3.1) we have 

le { R (n~, . . . ,  n~) r ~ , (  S(n~, . . . ,  n,,))} 
= IP{ T Be(x) > C l n  for some x ~ R(na,  ... , ne)} 

< I P t  max ~ 3 ) ( z ) > C l n } .  
[.TZ~;'~(n,, , h a )  z ~ T z  

We can now use again a well known type of estimate, which was also used in 
the last section. First one observes that the cardinality of ~( . . . . . . . .  ), is 
bounded above by d", where, as defined before, n = nl + "" + na. On the 
other hand, for each ~ e .~( ........ d), IP{Zz~ z(3)(z) > Cln}  = IP{Z < length of 
re} __< IP{Z < n}, where Z is a Poisson random variable with mean C~n. Using 
(A.1), we obtain now 

IP{R(nl, . . . ,  n e ) r 1 6 2  . . . . .  na))} < d"Co(n + 1)e"-C~"(C1) ", 

which decays exponentially with n if C1 is large. []  
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Recall now the definition (1.4) and define E(e) as the radius of e-1/dA(e). 
Tautological ly,  

1/~ A(~) ~ Q(:(~)). 

F r o m  Theo rem 1.1 we know that  for some 0 < C1 < C2 < oo, 

C1 ~ :(g) ~ C2. 

The p roof  of Theo rem 1.2 is reduced now to showing that  for arbi t rary  a > 0 
there exists g0, such that  for all e < go, 

(1 - 6)Q(g(e)) c e-  I/d A(e). (3.2) 

Fo r  each fixed e, (1.3) holds and hence, given 4) > 0, we have for large t 

IP{(1 - 4))sA(e) c ~l, c (1 + 4))sA(e) for all s => t} => �89 

Set t' = t'(t,e, C4):= t + C#el/dt. Then, f rom the above,  we obtain  

IP{(1 - 4))tA(g) c :h and tlc c (1 + 4))t'A(e)} >= 1. (3.3) 

Because : (e)  is the radius of g-1/a A(e), compar i son  between the growth  model  
and the C T O B P M  and the symmetr ies  of the growth  model  yield 

IP{(1 - 4))tA(e) c 0t and (1 - 4 ) ) t g l / d Q ( : ( e ) ) ~ g t - l t  ,}  

2dip { R((1 - 4)) t g l / d : ( f . ) ,  . . .  , (1 - 4)) te*/a#(g)) 

dg ~c~,ldt( S((1 -- 4) )te*/d g(e), . . . ,  (1 -- 4) )tel/d ~(g) ) }. 

By virtue of L e m m a  3.1 and the fact that  ((~) __< C2 < o9 this inequali ty 
implies that  for large C4 ( independent  of e) 

IP{(1 - 4))tA(e) c Flt and (1 - 4))te,1/dO(#(g))r ,} --+0, (3.4) 

as t--+ o9, provided C4 > C,C2,  where C~ is as in L e m m a  3.1. Combin ing  
(3.3) and (3.4) we conclude that  there are points  in the sample  space for which 
we can find t so that  

(1 -- 4))tga/dQ(~:(e)) c 0,' c (1 + 4))t'A(g). (3.5) 

Therefore  for each e > 0 and 4) > 0, 

t' 1 + 4) ~/aA(e)( 1 -}- C4el/d ) 1 + 4) Q(:(~)) ~ ~-I/~A(~) - ~- 
t l - 4 )  1 - 4 )  

Because C4 does not  depend on 4) or e, and 4) is arbi t rary,  this leads to the 
desired conclusion (3.2), and completes  the p roof  of Theo rem 1.2. Actually it 
leads to the semi-explicit expression 

1 
1 + C~e TM Q(:(e)) c ~- 1/dA(e). 

The constant  C4 is taken as C2C~ (see (3.4)). 
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4 P roo f  of  Theorem 1.3 

First  we shall p rove  the est imates for the poin t - to-poin t  speeds v and w, which 
are easy. Fix 0 _< v _< d and consider the model  with the last v coordinates  
oriented. In this model ,  if x becomes occupied at the t ime T (x), then at least 
one of its neighbors  y ~ x + .A/'v mus t  have been occupied. Accordingly,  we 
change the definition of chronological  pa th  somewhat  f rom the definition 
used for L e m m a  2.3. N o w  a chain x(1) . . . .  , x(n) will be called a chronological  
pa th  at t ime t if 0 < T (x(1)) < ...  < r (x(n)) < t and x( i )  e x ( i  + 1) + JV~, 
1 _< i < n. With  this definition the s ta tement  and p roof  of  L e m m a  2.3 carry  
over  unchanged  to the model  with the last v coordinates  oriented. In part icu-  
lar, a vertex x is occupied at t ime t if and only if there exists a chronological  
pa th  at t f rom the origin to x. 

N o w  observe that  if 0 = x(1) . . . .  , x ( : )  = ne i is a chronological  pa th  f rom 
the origin to the point  nej on the j - th  coordinate  axis, then 
x( i  + 1) - x(i)  = +_ er~i) for some r(i) (because x( i  + 1) and x( i )  are adjacent  
on 7/e). I f d  - v + 1 =< r(i) < d, then we must  even have x ( i  + 1) - x( i )  = e~i), 
because the last v coordinates  can only increase along a chronological  path.  
This implies that  for any  s ~ [-d - v + 1 ,d]  with s r  no steps at all can be 
taken in the s-th direction (otherwise we would have x~(:)  = s-th coordinate  
of nej > s-th coordinate  of  0 -= 0). Therefore  the presence of the coordinates  
numbered  d - v + 1 to d, other  than j, has no influence on the rate at which 
nej becomes occupied. When  we remove  the coordinates  numbered  d - v + 1 
to d, other  than  the j - th  coordinate ,  we obtain  (1.5) and (1.7). 

(1.6) is now immedia te  f rom (1.5) and Theo rem 1.1. Also the upper  bound  
in (1.8) follows f rom (1.5) and Theo rem 1.1, because any speed in a part ial ly 
oriented model  cannot  be greater  than  the same speed in the totally un- 
oriented model  of the same dimension. As for the lower bound  in (1.8), this still 
follows as in Theo rem 1.1 f rom the moving  front construct ion,  because in this 
cons t ruc t ion  occupat ion  was al lowed to move  in the positive first coord ina te  
direction only (from F ,  1,m to F, ,  m). Thus,  apar t  f rom an interchange between 
the first and  last coordinate ,  the p roof  of Theorem 1.1 still applies to 
w(e, d - v + 1, 1). 
Next  we turn to proving  the right hand  inequalities in (1.9) and (1.10). These 
proofs  are still essentially the same as for the upper  bound  in Theo rem 1.1. We 
begin with (1.10). Consider  the events 

L ( t , 2 )  = {at t ime t there exists an occupied vertex 

x = ( x l ,  . . . , X a )  with Xd-v+l  = [_2tJ, Xj <[_2t ] ,  

d - v + 2 < j < = d } .  

and 

(~(t, 2, C2) = {at t ime t there exists a chronological  pa th  of length 

< C2t  f rom 0 to some point  x = (x l ,  . . . ,  Xa) with 

Xd_v+ 1 = [)el:J, Xj <= [ 2 t J ,  d - v + 2 < j  < d, and 

at least one slow point  in each -Oi, i = 1, . . . ,  [ 2 t / } ,  
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where 

/~i  = {X = (Xl ,  . . . ,  Xd): X d _ v +  t = i } .  

Then as in the proof of Theorem 1.1, with C2 as in (2.17), 

IP{L(t, 2)} < C 3 e - C ' t +  IP{(~(t, 2, Ca)}. 

If G(t,2, C2) occurs, let x(1), . . . ,  x(n)  be a chronological path at time t from 
0 to a point in/4k~J with the properties stated in the definition of 8(t, 2, CJ .  
As in the proof of Theorem 1.1, let S = {y(1), . . . ,  y(h2t])} be a set of slow sites 
on this path, one in each H~, 1 < i < L2tJ. With z ( j )  = y ( j )  - y ( j  - 1), as 
before, (2.20) must still hold for all 1 N i < d. However, for d - v + 1 < i < d 
we even have the stronger requirement 

L'~J 
z , ( j )  > 0 and K ,  = E z i ( j )  < x,(n) < L2tJ. (4.1) 

j= l  

Therefore, for d - v + 2 < i N d, the number of ways in which the sequence 
{zi(j), 1 < j  < h2rJ} can be chosen is bounded above by 

E \ L2tJ- 1 < Zt <= C3tCLfl j 
Ki = 1 

(by (A.3)). Consequently, if we again denote the number of ways in which S can 
be chosen by M ( t , 2 ,  C;) ,  then (2.21) can be replaced by 

M (t,2, CJ =< (C~t2L'~': \ L2tJ ]{2~c~r)L*':Y] " ( c ~ t c i , , : )  ~ , 

{co'? 
s c~t  ~ - '  \:~. 7 " 

As in (2.23) this yields, again with Z' a Poisson variable with mean te, 

( C7c ~)/ 
~,{8(t,2, c j }  __< M(t,2,C~)~{z' >= LZtJ} __< c W  -~ k~] " 

It follows that for 

with C8 sufficiently large, 

2 > C 8 8 1 / ( d - v + l ) ,  

~'{cU, x)} _-< C9e -c,~ 

By symmetry in the last v coordinates we even have 

lP{for arbitrarily large t there exists at time t an occupied vertex x 

with maxa-v+ 1 < j N d X j  ~ C8F~ 1 / (d-v+ 1)t} = O. 

The right hand inequality of (1.10) follows. 

(4.2) 
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Next we prove the right hand inequality in (1.9). This time we define 

/2(t, 2) = {at time t there exists an occupied vertex x = (xl, . . . ,  xd) 

with xl = L 2 t J  and xl < Cs~l/(a-*+l)t for d -  v + 1 _< i < d} 

and (with Hj as in (2.15)) 

G(t, 2, C2) = {at time t there exists a chronological path of length < C2t from 0 

to some point x in HLX, ], with at least one slow site in each H~, 

1 < j  < L2t], and with 0 <-_ x~ < c8gl/(d-v+l)t ,  

d - v + l < = j < d } .  

Again we take C2 so large that (2.17) holds. On the event L(t,2) one can 
construct, as in Lemma 2.3, a chronological path at time t from 0 to x which 
has a slow point in each Hi, 1 < j  < L2tJ. Moreover, by (4.2) we know 
that 

lP{at time t there exists an occupied vertex x with 

X i > C s  gl/(d v+l)t for some d - v + 1 < i < d} < dC9 e-cl~ 

From these relations it follows as in the proof of Theorem 1.1 that 

IP{at time t there exists an occupied point x with Xl > L2tj} 

=< IP{L(t, 2)} + dC9 e-c~~ 

< IP{G(t, 2, C2)} + C3e c4t + dC9e-Clot. 

It therefore suffices to prove that 

IP{G(t, 2, C2)} --+ 0 exponentially fast (4.3) 

for any 2 > Cii  g(a+l)/(e(d-*+i)) for Cli  sufficiently large. It even suffices to 
prove this for 2 = [ C i t e  (a+ 1)/(d(d-v+ 1))J. 

(4.3) can now be proven by imitating the end of the proof of Theorem 1.1. If 
G(t, 2, C2) occurs, and x(1) . . . . .  x(n) is a chronological path with the proper- 
ties listed in the definition of G(t,2, C2), then let S = {y(1) . . . .  , y(L2tJ)} be 
a set of slow points on this path, one from each Hi, 1 < j  < L2tj. With 
z ( j )  = y ( j )  - y ( j  - 1) as before, (2.20) must again hold for all t < i < d - v. 
F o r d - v +  1 < i < d t h e r e l a t i o n  

k;. t j  
zi(j) > 0 and Ki = ~ zi(j) < C881/(d-v+ l)t 

j= l  

must hold (compare (4.1)). It follows that this time 

/ "  _Lz, j l /2eC2t '~Lz~J'~d~i((c8gi / (a- '+i) t  + 
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We take •=LC1117, (d+l)/(d(d v+l))j and for brevity write 7 = C 8  el/(a v+l). 
Without loss of generality we take e so small that 2 < 7. By (A.3) we then have 

M(t ,2 ,  C 2 ) <  r~ , a - v - a t  13~ 

As in (2.22) and (2.23) we finally obtain 

(nte~ ~L ~'J < C 14 t a - v -  l (C l sy~e '~ t  I P { G ( t ' 2 ' C 2 ) } < = M ( t ' 2 ' C 2 ) \ L 2 t J J  \ 2 a J " 

Substituting our values for 2 and 7, we see that for sufficiently large C~1 
(independent of e) this tends to 0 exponentially fast in t (for fixed e), so that (4.3) 
follows. 

As for the left hand inequality in (1.10) this is immediate from the left hand 
inequality in (1.8) and the fact that the point-to-hyperplane speed in any 
direction is at least as large as the point-to-point speed in the same direction. 

Finally, for the lower bound in (1.9) we shall use the following lemma. 

Lemma 4.1 Let  C c 7l a be a finite set which contains 0 and define ~ as in (2.9). 
Fix  1 <_ r < d. Let  0 be an ~,~-stoppin 9 time and assume that w.p. 1 

~1 c >= ~c +~ 

for  some (random) vector d = (al . . . . .  aa) with 

a~ = 1 and aj > O, d - v + 1 < j < d. (4.4) 

Then 
n 1 

lira inf > - -  (4.5) 
, - ~  a(n , r ,e ,v )  = lEO" 

Proof  Of course (4.5) is equivalent to 

~(n,r,~,v) 
lira sup < IEO w.p.1. (4.6) 

n 

Note that the r-th component of ci equals 1, so that at time O, the occupied set 
contains a copy of C, shifted one unit in the rth direction (and shifted aj units 
in the j th direction for j r r). One can then expect that the occupied set will 
reach the hyperplane {x~ = n} after n time intervals which are stochastically 
'similar' to O (actually they will be stochastically smaller than O). This is the 
reason for (4.6). 
Now to the details. Note that C will be completely occupied after some finite 
random time ~c. Define 

aC(n, r, e, v) = first time a point in the hyperplane {x:xr = n} is occupied in the 
t/C-process. 

Then it follows from Lemma 2.1 that 

a(n , r ,e ,v )  < lc + aC(n,r,e,v).  
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It therefore suffices to prove (4.6) with o replaced by ~c. Define 

Oo = 0, 

0 1  ~ -  O ,  a(1) = 8, 

Ot+l = inf{t > Or: ~c > ~c+~c+I) for some vector d(d + 1) 

with ar(d + 1) = # + 1, aj(# + 1) > aj(d), d -  v + 1 < j  < d}. 

Note that ,i(1), and at the later stages 8((), may not be uniquely determined. 
Any ~or choice for d(d) will do for our purposes, though. Since 
d(n) ~ C + 8@) has r-th coordinate equal to n, we have 

n - - 1  

~rC(n,r,e,v) < O, = ~ (Od+ 1 - -  Og~). (4.7) 
l ' = 0  

Furthermore by the strong Markov property applied to O~ 

1 1 ' { O ~ + 1  - O ~  > slgo~} 

= Ip{qcr+s does not contain any set of the form C + d(d + 1)[-~o~} 

= IP{~ c~~ does not contain any set of the form C + 8(d + 1)) 

where C(O0 is defined by (2.5) with s = O~ and 8(d + 1) has to have the 
properties listed in the definition of Oc+ ~. But C(Ot) = C + ti(d), so that by 
(2.4) the last probability is at most 

IP{~/c+~(~) does not contain any set of the form C + d(d + 1)) 

= lP{q c does not contain any set of the form C + 8(d + 1) - d(d)} 

(by translation invariance) = IP{O > s}. 

In summary, we have 

~'{o~+~ - o ~  > slgo,}  <-_ ~'{o > s}. 

We can therefore couple the Ot+~ - O~, d > 0, with a sequence p~, d > 0, of 
i.i.d, copies of O so that 

n - 1  

0 , =  ~ Pr, n > l. 
d = O  

This coupling is fairly standard; for a more general coupling result see Kamae 
et al. (1977). Together with (4.7) and the strong law of large numbers this 
proves 

lim sup a(n, r, e, v) . 1 "- 1 =< llm s u p -  ~ Pt = lEO. []  
n ~ o o  y/ n ~ o o  / /  d = O  

To prove the lower bound in (1.9) we apply Lemma 4.1 with 

C = [0, L] a-~ x {O}L 
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where 

M = Le-1/(d(d-~+l))J and L = MLe-1/('~-'~+l)J ~ e -(e+l)/(d(~-~+l)) 

Fo r  the sake of a rgument  we take r = 1 th roughou t  this p roof  and give 
a lower bound  for l iminf  n/a(n, 1,e,v). We define 

O = inf{t > 0: t/c > l c+a  for some vector  d satisfying (4.4)}. 

lEO is es t imated in two stages. First we est imate IEO', where 

O '  = inf{t > 0: qc __> "O[O,L] a vxO,M]@. 

For  any vector  f =  (Jl, ... , j e - , )  e [ 0 , M  - 1] e-~ define 

d v 

D = D(f)  = [ I  rJiLz-1/(d-'~+l)J,(Ji 4- 1)L e-l /(" ~+~)J] x [ 0 , M ]  ~. 
i = 1  

For  the time being we shall suppress the f i n  the notat ion.  
To  est imate lEO' we use the moving  front me thod  of the beginning of the p roof  
of Theo rem 1.1. Define for 6 =  {be-v+l ,  ... , be} 

d - v  

E(b) = E (b , j )  = 1] [JiL e 1/(e v+l ) J , ( j i  4- 1)Le-1/(d-v+l)jl  
i = 1  

x {be-~+l,  - . . ,  be} 

and fix d - v + 1 _< s -< d. Then  there exis,ts a C1 < oo and ~ > 0 (indepen- 
dent  of b, j and s) for which 

E ( b )  , = lP{tlc,~ 1 . . . . . . .  > 1~(~+o,)} 

= IP{at t ime C~e -~/(e-'~+~) the set 

d - v  

1~ [J~Le-~/(e-v+x)],  (J~ + 1)[ -e- t / (d-~+l) ] ]  
i = 1  

x{be ~ + l , - . . , b ~ - I , b ~ + l , b ~ + l , . . . , b e }  

is fully occupied by the t/E(~)-process} 

_>6. 

This is simply est imate (2.11) in the dimensions 1, . , . ,  d - v, s; the dimensions 
numbered  d - v + 1, . . . ,  d other than s play no role in this estimate. By 
L e m m a  2.2 we then also have 

P [j im~-l/(d-~+1)], (Ji 4- l )Le-1/(e-~+i) ] ]  
i 

x{bd-~+ l ,  . . . ,b~ 1,bs+ 1, b~+b . . . , be}  

is not  yet fully occupied by the t/.nb)-process at t ime kClc-1/(e-~+i)} 

< (1 - 5) k. (4.8) 
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N o w  we essentially repeat  the a r g u m e n t  leading to (2.14). Let  
= (cd-~+l ,  . . . ,  ca) e [ 0 , M ]  ~ and  cons ider  the or ien ted  pa th  on ~ f rom 0 to 

g which  first goes f rom (0, . . . ,  0) to (Cd-~+ 1 . . . .  ,0 ,  . . . ,  0) by  c d - , + l  steps in 
the posi t ive ( d -  v + 1)-th coo rd ina t e  direct ion,  next  goes f rom 
(cd-~+l ,  ... , 0, ... , 0) to (ca -~+, ,cd  v+z,O,...,O) in cd - ,+2  steps in the 
(d - v + 2)-th coo rd ina t e  d i rec t ion ... and  finally f rom (cd- ~ + 1, -.. , cd- l,  0) 
to g in ca steps in the d-th coo rd ina t e  direction.  The  tota l  n u m b e r  of  steps in 
this p a t h  is n:=E~_~+lci<vM. We write this p a t h  as b - ( 0 ) = 0 ,  
/7(1), ... ,/7(n) = g and  define 

N o t e  tha t  

~o = Ko(r = 0 

~c,-+, = ~c~+ 1(~) = inf{t >= ~c~: E(b(i + 1)) is occupied  by r/c} 

= inf{t  > ~ci: r/c >__ ~Etai+ 1))}. 

r/Co = ~ c > ~ ~(ao)), 

because  f o r f e  [ 0 , M  - 1] d - , ,  

d - v  

e(b(0)) = 17 (ji + 1)L  ,/ca , + l ) j ]  • {oF c c .  
i = , 

Also, by  definit ion,  for i > 1, r/c > ~eia0) or  C(~c~) ~ E(b(i), with C(s) as in 
(2.5). Aga in  by the s t rong  M a r k o v  p r o p e r t y  

IP{tci+l - tci > ka -  1/(d-~+ i)1 f~-~} 

C = IP{r/~+k~-,,'~ ..... does  no t  o c c u p y  E(b(i + 1))Igor} 

= ~ ~.c(~,) > fails } JJL [ r l ~  e , / ta  ~+a) ~ E ( b ( i + l ) )  

< ~ j'~ etai)) > fails } 
= ~ ( r l ~ e - ~ / ( a  ~+~  "~E(E(i+I)) 

< (1 -- c5) k (by (4.8)). 

Moreove r ,  at  t ime ~c,, the whole  set E(b(n)) = E(f)  is occupied.  Therefore  

IP{E(a) is no t  yet occup ied  at t ime :e -x/(a-~+n by the r/C-process 

=< IP{ c. > 

< I P  2 ~ > E  , 

where  2o, 2~, ... are  i.i.d, with 

I P { , ~ > k } = ( 1 - 6 )  k, k = 0 , 1  . . . . .  
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A standard large deviation estimate shows that  for large C2, some constant  
C3, and all # > C2n, 

In0 ~1 } ]e /~i>: 

__< inf e :'(lEe'~~ s_>0 
e C3:, 

Therefore,  for each 6 ~ [0, M]  ~ and : > C2vM, 

IP{E(6) is not  yet occupied at time :e-~/(a-~+l)} 

} < IP 2 i > :  <= e - c J  

and 

IP{D(f)  is not  yet occupied at time :e  1/(e v§ the ~/C-process} 

=IP [jiLe 1/(a-v+l)J,(j i+ l )Le-1/(a-~§ M J V i s n o t y e t  
i 

at time :e  1/(a ~§ by the t/C-process t occupied 
3 

<= (M + 1)~e -c31. 

(The factor (M + 1) v represents the number  of 6 in [0, MjV.) Finally, if D ( f )  is 
occupied for a l l f e  [-0, M - 1] d ~, then also C x [0, M ]  ~ is occupied. Therefore 
for : > C2vM and e so small that (M + 1) d < e c~c:M/2 we have 

�9 {O' > :c  -1/~a-v+l)} 

= IP{D(f) is not  yet occupied at time :e  i/(a-~+ 1)for s o m e f e  E0, M - 1] e-~ } 

< M d - v ( M  + 1)Ve - c j  < eC~C~M/2e - c J  < e c~:/2. 

It follows that 

lEO' <__ CaMe-  1/(d-~+ 1) <= Cae-(e+ 1)/(d(d- v+ 1)) (4.9) 

for some constant  Ca. This completes the first stage. 
For  the second stage we set 

F = [0, LJ a-~ x [0, M ]  ~ 

and consider the process ~/.P. We define 

O" = inf{t > 0: ~/~ > ~c+a for some vector d satisfying (4.4)}. 
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We then have 

I e { O  - o '  > s 1 2 o , }  

= lP{t/c,+s does not  fully occupy any C + d for an d satisfying (4.4) 12o,} 

= P{t/c(~ does not  fully occupy any C + ci for an d satisfying (4.4)} 

__< lP{t/s F does not  fully occupy any C + d for an d satisfying (4.4)} 

(because F ~ C(O'))  = IP{O" > s}. (4.10) 

Consequent ly  

lE(O - O') ____ l E O " .  

Assume now that  we also prove for some constant  Cs that 

lEO" < Cse -(a+ l)/(e(e-v+ l)) (4.11) 

Then we obtain from (4.9) that  

IEO < (C~ + Cs)e -(e+1)/(e(e-~+ l)), 

so that  by Lemma  4.1 

n 
lim inf > (C 4 _}_ C5 ) -  1 F(d + 1)/(d(d-v+ 1)) 

n-+oo a ( n , l , e , v )  = 

Thus we only have to prove (4.11) to complete the proof  of (1.9). 
To  prove (4.11) we follow the argument  for (2.14). We shall be dealing with 
vectors d = (al, . . . ,  ad) which satisfy 

a l = L + l ,  O<=ai<=L f o r 2 < _ i < d - v ,  

O < a ~ < = M  f o r d - v + l < _ i < _ d .  (4.12) 

We define 

A (1) = inf{t > 0: d = (L + 1, a2 . . . .  , de) is occupied by th e for some 

ci satisfying (4.12)}, 

and take for a* some 2~, , -measurable  choice of an d which satisfies (4.12) and 
which is occupied at time A (~). Thus @l,(a*) = 1. In addit ion we define 

A (2) = inf{t > 0: [1 ,L  + 1] x [ 0 ,L ]  e•  

x {ae-~+a, . . . ,  a~} is occupied by @1,+,} 

= inf{t . . . . . . . .  > 0: C + {1,0, ,0,ad-~+~,* a*} is occupied by r/AV, l,+~}. 

Then O" < A (~) + A (2) and hence 

lEO" < lEA (z) + l E A  (2). 
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Now A ~1) is bounded by the minimum of (L + 1) a-~- I(M + 1)' exponential 
variables of mean l/e, so that 

IEA ~1) < (L + 1)-(a-v-1)(M + 1) -~-1 < Co ~-~a+l)/(a~a-~+l)~ (4.13) 
g 

Moreover, as in (4.10), 

~,(~(2~ < si~,~,} => n ' { c  + {1 ,0 ,  . . . ,  0, ad-~+~,* . . . ,  ~} 

is occupied by rua ~d f* I+g f  , 

Therefore, 

= aa v+l, . .-, IEA (z) < maax IE{time for C + (1,0, . . . ,  0, * a~) 

to become fully occupied by t/F'~ }}. (4.14) 

Now the argument which gave (2.14) shows that uniformly in a* whose 
coordinates satisfy (4.12), 

]P{C + (1,0, ... ,O, aa-~,+~,* . . . ,  a*) is not fully occupied by J/~{"')} 

< (L + 1)a-~-*IP{Z(s) < ( d -  v -  1)L}, (4.15) 

where Z(s) is a Poisson variable with mean s. Indeed, r/e~'{~*~ starts with 

(C + (0 . . . . .  0, a*_~+~, . . . ,a~)w{a*} c Fro{a*) 

already occupied. To occupy a point ~ = (L + 1, c2 . . . .  , ca-~, 
aa-v+l,* . . . ,  a*) with 0 =< c~ =< L at time s, it suffices to occupy a path from 
a* = (L + 1,a* . . . . .  a*) to g in  {L + 1} x [0,L] a-~-~ x {a~_~+a, . . . ,a~} by 
time s. But the points on any such path are successively occupied at rate 1 by 
the two-neighbors mechanism. Finally, (4.14) and (4.15) give for suitable 
C7 - C9 

IEA (2) = f IP{A (2) > s} ds 
O 

< C T L + ( L + I )  a-~-* ? I P { Z ( s ) < ( d - - v - I ) L } d s  
C~L 

<= CTL + (L + 1) a-~-I ? e(a-~-l)LlEe-Z('~ds 
CvL 

< CsL  < C9g .-(d+l)/(d(d-v+I)) 

Together with (4.13) this proves (4.11) and completes the proof of the left hand 
inequality in (1.9). 
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Appendix 

In this appendix we prove a few elementary inequalities used in the paper. One 
of the ingredients in the derivations will be Stirling's formula, 
n! ~ (2~n)(1/2)n"e-n as n ~ oo. First we derive two upper  bounds  for the large 
deviations of  a Poisson r andom variable, Z, with mean p. If : </~,  then 
e-"#g/k!  is an increasing function of k e {0, 1 . . . .  , #}. Hence 

IP{Z < :}  ~, e - "  < ( :  + 1)e -u < Co( :  + 1)e: ~ ~ )  (A.1) ' 

where in the last step we used Stirling's formula, and Co is an appropr ia te  
constant.  If Z is still as above, but now : >/~,  then 

#i-: :i-: 
I P { Z > : } :  ~, e u <#: ~ i! <--#: ~' i! 

i>: i>: i>_: 

<= i ~" <= e:  = e -(l~ 1): (A.2) 

Next  we derive an inequality involving the binomial coefficients. First observe 
that for arbi t rary strictly positive integers A and B, 

< ~ .  < Co B1/2BBe_ B < Co 

where Co is an appropr ia te  constant.  Therefore, if 0 < B __< A, then 

- < Co (A.3) 
B = 
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