An elementary proof of the Eberlein-Smulian Theorem and the Double Limit Criterion

By

STEFAN KREMP

0. **Introduction and notations.** In the sequel let E denote a normed vector space and Ball (E) its closed unit ball, furthermore $E^*, E^{**}, E^{***}, \ldots$ its sequence of topological dual spaces. For a nonvoid set X and a nonvoid set F of realvalued functions on X let $\sigma(X, F)$ denote the weakest topology on X in which all functions of F are continuous. A sequence $(x_n)_n$ in X converges to an $x \in X$ in $\sigma(X, F)$ iff $(f(x_n))$, converges to $f(x)$ in R for every $f \in F$. In particular $\sigma(E, E^*)$ is the usual weak topology on E and $\sigma(E^*, E)$ the weak^{*} topology on E^* .

In this paper we present an elementary and transparent proof of the Eberlein-Smulian theorem for normed vector spaces (cp. e.g. $[3]$, p. $145-149$) and of the Double Limit Criterion for Banach spaces (cp. e.g. [3], p. 157). The essential idea (Lemma 1.1) will be the simple fact that if $\emptyset \neq A \subset E$ and $\emptyset \neq T \subset E^*$ have the interchangeable double limit property, then the convergence of a sequence $(a_n)_n$ in A to some $a \in E$ in $\sigma(E, T)$ implies the convergence of $(a_n)_n$ to a even in $\sigma(E, T^{\sigma(E^*,E)})$. By combining this fact with an inductive construction we can prove (Lemma 1.2) that each $a \in \overline{A}^{\sigma(E, T)}$ is the limit of a sequence $(a_n)_n$ in A even in the topology $\sigma(E, \overline{T}^{\sigma(E^*,E)})$. With these two lemmata the abovementioned theorems can be easily proved by the usual embedding of E into E^{**} and with standard tools like the Banach-Alaoglu and bipolar theorem. We think that the proof presented here is simpler and more natural than Whitley's proof [6] of the Eberlein-Smulian theorem, which H. B. Cohen [1] and J. D. Pryce [5] refined to obtain the present version of that theorem. Furthermore our approach leads at the same time to the Double Limit Criterion for Banach spaces.

1. The two main lemmata. We fix nonvoid subsets $A \subseteq E$ and $T \subseteq E^*$. Let \mathbb{R} denote the two point compactification of R.

We say that A and T have the interchangeable double limit property (abbreviated by IDLP) in **R** if for every pair of sequences $(\varphi_i)_i$ in T and $(a_n)_n$ in A for which the iterated limits $\lim_{l \to \infty} \lim_{n \to \infty} \varphi_l(a_n)$ and $\lim_{n \to \infty} \lim_{l \to \infty} \varphi_l(a_n)$ both exist in **R**, these limits are equal.

1.1. Lemma. Let A and T have the IDLP in $\overline{\mathbb{R}}$. Then every sequence $(a_n)_n$ in A which *converges to some* $a \in E$ *in* $\sigma(E, T)$ *converges to a even in* $\sigma(E, \overline{T}^{\sigma(E^*, E)})$.

Proof. Let $\varphi \in \overline{T}^{\sigma(E^*,E)}$. Choose for each $l \in \mathbb{N}$ a $\varphi_l \in T$ such that

$$
|\varphi_l(a_k) - \varphi(a_k)| < \frac{1}{l}
$$
 for $k = 1, ..., l$ and $|\varphi_l(a) - \varphi(a)| < \frac{1}{l}$.

It follows that $\lim_{l \to \infty} \varphi_l(a) = \varphi(a)$ and hence $\lim_{l \to \infty} \lim_{n \to \infty} \varphi_l(a) = \lim_{l \to \infty} \varphi_l(a) = \varphi(a)$. On the other hand we have $\lim_{l\to\infty} \varphi_l(a_n) = \varphi(a_n)$ $\forall n \in \mathbb{N}$. Now the IDLP of A and T in R implies that lim lim $\varphi_1(a_n) = \lim_{n \to \infty} \varphi(a_n)$ exists in **R** and is $= \varphi(a)$, because each convergent subsequence of $\left(\lim \varphi_l(a_n)\right)$ must have the limit $\varphi(a)$. This is the assertion.

1.2. Lemma. Let A and T have the IDLP in \mathbb{R} . Then for each $a \in \overline{A}^{\sigma(E, T)}$ there exists *a sequence* $(a_n)_n$ *in A which converges to a in* $\sigma(E, \overline{T}^{\sigma(E^*,E)})$.

Proof. Fix $a \in \overline{A}^{\sigma(E,T)}$. We put $a =: a_0$ and construct inductively for $n = 1, 2, ...$ a sequence $(\varphi_{k}^{n})_{k}$ in T and a point $a_{n} \in A$ with the properties

(i) $\{\varphi_k^n : k \in \mathbb{N}\} | U_{n-1}$ is a countable dense subset of $T | U_{n-1} \subset U_{n-1}^*$ in $\sigma(U_{n-1}^*, U_{n-1})$, where U_{n-1} : = Linear Span { $a_0, ..., a_{n-1}$ };

(ii)
$$
|\varphi_k^l(a)-\varphi_k^l(a_n)|<\frac{1}{n}\quad \forall k,\,l=1,\ldots,n.
$$

In each induction step (i) can be achieved since dim $U_{n-1} < \infty$, and then (ii) can be achieved since $a \in \overline{A}^{\sigma(E, T)}$. Now let

$$
D := \{\varphi_k^n : n, k \in \mathbb{N}\}\
$$
 and $U :=$ Linear Span $\{a_n : n = 0, 1, 2, ...\}.$

Then

(0) $A \cap U$ and $D \mid U$ have the IDLP in \mathbb{R} ;

(1) $D|U \subset T| U \subset U^*$ is $\sigma(U^*, U)$ dense in $T|U;$

(2) (a_n) converges to a in $\sigma(U, D | U)$.

In view of Lemma 1.1 $(a_n)_n$ converges to a in $\sigma(U, T| U)$, that is in $\sigma(E, T)$; and then (again by Lemma 1.1) even in $\sigma(E, \overline{T}^{\sigma(E^*,E)})$.

1.3. Corollary. Let A and $Ball(E^*)$ have the IDLP in \overline{R} . Then for each $\xi \in \overline{A}^{\sigma(E^{**},E^*)} \subset E^{**}$ *there exists a sequence* $(a_n)_n$ *in A which converges to* ξ *in the weak topology* $\sigma(E^{**}, E^{***})$ *(to reduce notation we consider E as a subset of its bidual* E^{**} *via the canonical embedding).*

Proof. We consider $A \subset E^{**} := S$ and $T := \text{Ball}(E^*) \subset E^{***} = S^*$. Since A and T have the IDLP in \mathbb{R} , Lemma 1.2 furnishes for $\xi \in \overline{A}^{\sigma(S, T)}$ a sequence $(a_n)_n$ in A which converges to ζ in the topology $\sigma(S, \overline{T}^{\sigma(S^*, S)})$. But $\overline{T}^{\sigma(S^*, S)} = \overline{\text{Ball}(E^*)^{\sigma(E^{***}, E^{**})}} = \text{Ball}(E^{***})$ in view of the bipolar theorem (cp, e.g. [4], Theorem 6.4), so that the assertion follows.

2. The Eberlein-Smulian Theorem and the Double Limit Criterion. In the following we use the usual notions of compactness (cp. e.g. [3], p. 145).

2.1. Remark. If $\emptyset \neq A \subset E$ is relatively countably compact in $\sigma(E, E^*)$, then A and Ball(E^*) have the IDLP in \bar{R} (and even in \bar{R} since A and Ball(E^*) are both norm bounded).

P r o o f. We follow the usual argument. Let $(\varphi_l)_l$ in Ball (E^*) and $(a_n)_n$ in A be sequences such that the double limits $\lim_{l \to \infty} \lim_{n \to \infty} \varphi_l(a_n)$ and $\lim_{n \to \infty} \lim_{l \to \infty} \varphi_l(a_n)$ both exist. Let $a_\infty \in E$ be a cluster point of $(a_n)_n$ in $\sigma(E, E^*)$ and $\varphi_\infty \in \text{Ball}(E^*)$ be a cluster point of $(\varphi_i)_i$ in $\sigma(E^*, E)$, the existence of which is guaranteed by the Banach-Alaoglu theorem. One verifies that the two double limits both have the value $\varphi_{\infty}(a_{\infty})$ and hence are equal.

2.2. The Eberlein-Smulian Theorem. For a nonvoid subset $A \subseteq E$ the following proper*ties relative to the weak topology* $\sigma(E, E^*)$ *are equivalent.*

- (i) $\overline{A}^{\sigma(E,E^*)}$ *is countably compact.*
- (i') *A is relatively countably compact.*
- (ii) $\overline{A}^{\sigma(E,E^*)}$ is sequentially compact.
- (ii') *A is relatively sequentially compact.*
- (iii) $\overline{A}^{\sigma(E,E^*)}$ *is compact.*

In this case A and Ball(E^*) have the IDLP. *Hence* (after 1.2) for each $a \in \overline{A}^{\sigma(E,E^*)}$ there *exists a sequence* $(a_n)_n$ *in A which converges to* $a \in E$ *in* $\sigma(E, E^*)$ *.*

P r o o f. The following implications are clear:

$$
\begin{array}{rcl}\n\text{(iii)} & \Rightarrow \text{(i)} & \Leftarrow & \text{(ii)} \\
\Downarrow & & \Downarrow & \Downarrow \\
\text{(i')} & \Leftarrow & \text{(ii')}.\n\end{array}
$$

Now by Remark 2.1 A and Ball (E^*) have the IDLP in all these cases. Therefore it remains to prove (i') \Rightarrow (iii) and (i) \Rightarrow (ii).

 $(i') \Rightarrow (iii)$. By Remark 2.1 A and Ball (E^*) have the IDLP, hence by Corollary 1.3 there exists for $\xi \in \overline{A}^{\sigma(E^{**}, E^*)} \subset E^{**}$ a sequence $(a_n)_n$ in A which converges to ξ in $\sigma(E^{**}, E^{***})$. Since A is relatively countably compact in $\sigma(E, E^*)$ it follows that $\xi \in E$. Hence $\overline{A}^{\sigma(E^{**},E^*)} \subset E$ and therefore $\overline{A}^{\sigma(E^{**},E^*)} = \overline{A}^{\sigma(E,E^*)}$. Now A is norm bounded, so that by the Banach-Alaoglu theorem $\overline{A}^{\sigma(E^{**}, E^*)}$ is $\sigma(E^{**}, E^*)$ compact.

It follows that $\overline{A}^{\sigma(E,E^*)}$ is $\sigma(E,E^*)$ compact.

(i) \Rightarrow (ii). By Remark 2.1 $\bar{A}^{\sigma(E,E^*)}$ and Ball(E*) have the IDLP. Now let $(a_n)_n$ be a sequence in $\overline{A}^{\sigma(E,E^*)}$ and $a_{\infty} \in \overline{A}^{\sigma(E,E^*)}$ be a cluster point of $(a_n)_n$ in $\sigma(E,E^*)$. Let U : = Linear Span { $a_{\infty}, a_1, ..., a_n, ...,$ } and $D \subset Ball(U^*)$ be a countable dense subset of Ball(U^*) in $\sigma(U^*, U)$. To obtain such a subset choose for each $n \in \mathbb{N}$ a countable subset $D_n \subset \text{Ball}(U^*)$ with $D_n | U_n := \text{Linear Span}\{a_\infty, a_1, \ldots, a_n\}$ dense in $\text{Ball}(U^*) | U_n$ = Ball(U_n^*) with respect to $\sigma(U_n^*, U_n)$, and then put $D := \cup D_n$. Since D is countable there exists a subsequence $(a_{n(k)})_k$ of $(a_n)_n$ which converges to a_{∞} in $\sigma(U, D)$. Since $\bar{A}^{\sigma(E,E^*)} \cap U$ and D have the IDLP it follows from Lemma 1.1 that $(a_{n(k)})_k$ converges to a_{∞} in $\sigma(U, \text{Ball}(U^*))$, that is in $\sigma(E, E^*)$.

2,3. **The Double Limit Criterion for Banach spaces.** *Let E be a Banach space. For a nonvoid subset* $A \subseteq E$ *the properties* (i)–(iii) *relative to the weak topology* $\sigma(E, E^*)$ *occurring in Theorem* 2.2 *are equivalent to* (iv): *A is norm bounded and A and* Ball(E*) *have the* IDLP.

P r o o f. In view of Theorem 2.2 it suffices to show (iv) \Rightarrow (iii). By Corollary 1.3 there exists for $\xi \in \overline{A}^{\sigma(E^{**}, E^*)}$ a sequence $(a_n)_n$ in A which converges to ξ in $\sigma(E^{**}, E^{***})$. By the bipolar theorem ζ is in the norm closure of the convex hull of A in E^{**} . Since E is a Banach space it is norm closed in E^{**} , and therefore $\zeta \in E$. The assertion follows as in the proof of $(i') \Rightarrow (iii)$ in Theorem 2.2.

In conclusion we remark, that the method presented above can be used to prove more general results concerning the so called "Angelic Spaces" (cp. e.g. [2], p. 30). The author will treat this in another paper.

References

- [1] H. B. COHEN, Sequential Denseness and the Eberlein-Smulian theorem. Math. Ann. 172, 209-210 (1967).
- [2] K. FLORET, Weakly compact sets. Berlin-Heidelberg-New York 1980.
- [3] R. B. HOLMES, Geometric functional analysis and its applications. New York-Heidelberg-Berlin 1975.
- [4] H. K6NIG, On some basic theorems in convex analysis. Modern applied Mathematics-Optimization and Operations Research, 108-144, Amsterdam-New York-Oxford 1982.
- [5] J. D. PRYCE, A device of R. J. Whitley's applied to pointwise compactness in spaces of continuous functions. Proc. London Math. Soc. 23, 532-546 (1971).
- [6] R. WmTLEY, An elementary proof of the Eberlein-Smulian theorem. Math. Ann. 172, 116-118 (1967).

Eingegangen am 17.7. 1985

Anschrift des Autors:

Stefan Kremp Fachbereich 9 Mathematik Universität des Saarlandes D-6600 Saarbrücken