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Abstract. Technological innovations have been investigated by means of substitu- 
tion and diffusion as well as evolution models, each of them dealing with different 
aspects of the innovation problem. In this paper we follow the well known research 
traditions on self-organisation models of complex systems. For  the first time in the 
literature we show the existence of a specific niche effect, which may occur in the 
first stage of establishment of a new technology. Using a stochastic Master equation 
approach, we obtain analytical expressions for the survival probabilities of a new 
technology in smaller or larger ensembles. As a main result we demonstrate how a 
hyperselection situation might be removed in a stochastic picture and thresholds 
against the prevailing of a new technology in a step-by-step process can be 
overcome. 
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Introduction 

In physics, a tradition has developed (since the introduction of thermodynamic 
descriptions in the 19th century at the latest) where systems with large numbers of 
subsystems are considered. The many-subsystem approach has brought about a 
distinction between microscopic and macroscopic considerations, which emerged 
at about the same time as modern industrial society. The whole history of 
self-organisation and synergetics is focused on a surprising new understanding of 
the relationship between micro- and macro-level descriptions (see e.g. Nicolis and 
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Prigogine 1987; Haken 1983). One of the main results of these historical findings 
was, that relatively independent of the nature of the sybsystems mainly the manner 
of their co-ordination is important for the demonstration of the well-known 
macroscopic phenomena of spontaneous structure formation. The macroscopic 
phenomenon results from the coherent behaviour of the subsystems, leading to a 
co-operative effect. 

This fact generates a trend towards general models. To describe the manner of 
co-ordination, the mechanisms might be considered without providing them with 
substantial physical or biological meaning. Formally, mechanisms from different 
disciplinary contexts might be integrated. Thus, the self-organisation research 
tradition has led to a generalisation, which opens up new application areas. 
Interdisciplinary research tasks appeared within a disciplinary framework. 

A few remarks to some general concepts 

Following this line of research we use a modelling framework introduced in 
Bruckner et al. (1989), which allows a rather general view on an evolutionary 
process, especially useful to describe processes in social systems. 

To specify the units of the evolutionary process, a general field concept is 
introduced. An enumerable set of fields is considered, each field being characterised 
by the number N i and the properties of its representatives (occupying elements). 

In the process of evolution, the occupation of new fields begins with a rather 
small number of representatives and is strongly influenced by stochastic effects. An 
adequate description of this initial phase of innovative instabilities is possible only 
on the basis of a stochastic model. The probability that the system at time t is in a 
particular state may then be described by the probability distribution function P. 
To describe the change of the probability distribution over time we assume that we 
can determine elementary processes, which, in one time step, change only the 
number of representatives of a single field (Ni-~N i +_ 1) or simultaneously two 
occupation numbers (describing transitions to other fields). Introducing the corre- 
sponding transition probabilities as functions of the occupation numbers, we define 
a Markov process in the occupation number space. 

To have a more sharp picture of the processes under consideration, we'll always, 
if it is convenient (or necessary), use a combined view of the stochastic and the 
deterministic picture of description. 

If we observe the system over time, in the stochastic picture a sequence of 
occupation states for the entire system will be realised. Such a sequence can be 
interpreted as a realisation of the stochastic variables, e.g., as a result of a defined 
experiment (simulation experiment). In another experiment the resulting occupa- 
tion numbers will be different from the first one according to the stochastic nature 
of the processes. The differences between the realisations express the effect of 
fluctuations within the system. 

In large systems we can assume that, in general, the fluctuations are small 
compared with the realised value of the stochastic variable. Then, the different 
realisations will be grouped together. In such a case it is possible to consider an 
average realisation which expresses the expectation of the behaviour of the system. 
The average trajectory can be understood as a trend behaviour. The corresponding 
deterministic model allows to specify the conceptual framework of stationary states, 
stability or instability of states, constraints and competition, selection, attractors, 
multistability and thresholds (separatrices) in the state space. 
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Competition is introduced by global constraints concerning the growth of fields. 
Within a situation, in which each of the subsystems tries to follow a common goal, 
e.g., securing the population size by self-reproduction, the constraints do not enable 
a satisfying result for all fields, only a few are able to be successful. Then, some fields 
can only grow at the expense of other fields. Mostly, competition is accompanied 
with selection. Selection appears as a coherent behaviour which leads to the 
disappearance of at least one field. 

One of the simplest models for competition is the well known Fisher-Eigen 
model of competing fields i which have different growth rates Ei (Eigen 1971). With 
the condition of a constant size of the total population a constraint for the growth 
of the fields is introduced, which leads to a competitive behaviour. The resulting 
dynamical equation shows that fields with growth rates better than the ensemble 
average (E )  will succeed the competition and the others will fail. Asymptotically, 
the field with the largest growth rate will be the "winner". Therefore, in Eigen's 
concept the growth rate E i can serve as selection value. With references to the 
Darwinian principle of the survival of the fittest, the parameter Ei serves as a 
quantitative expression of the qualitative property of fitness. 

In general, competition and selection can be described by equations, which are 
generalised Lotka-Volterra-equations (see e.g. Bruckner et al. 1989). Especially, 
non-linear growth terms describing self-amplification and self-inhibition typically 
lead to the existence of thresholds (or separatrices) in state space. In difference to 
the simple Eigen model referred above in the presence of such thresholds the 
evolution of a field depends critically on the initial conditions (Mosekilde et al. 1988). 
In particular, in such a situation "hyperselection" can occur. "Hyperselection" 
means that due to the threshold new possibilities (mutants) never can succeed in 
the selection process if they start with a small initial number of representatives. As 
a consequence evolution stops. 

In difference to the deterministic description in the stochastic picture the 
situation can change dramatically. If in the stochastic model the fluctuations reach 
a certain range (so-called critical fluctuations) due to co-operative processes in the 
system, the realisations can differ significantly. That means, by crossing a separatrix 
another behaviour of the system (e.g. another stable stationary state) can be 
obtained. In the case of occurrence of critical fluctuations averaging over an 
ensemble of trajectories is no longer a useful method. Thus, the crossing of separa- 
trices has no deterministic analogue. 

To combine the two pictures one can assume that in many cases the maxima of 
the probability function in a stationary behaviour (t tends to infinite) correspond 
to the location of attractors. In general, the probability function is a smooth varying 
function and sharp borders do not exist. A change in the attractor landscape of the 
deterministic picture corresponds to a change in shape of the stationary probability 
function in the stochastic picture. The deterministic picture thus gives important 
information on the system behaviour if a trend can be determined. 

Our line of research in the present paper 

Technological innovations have been investigated by means of substitution and 
diffusion as well as evolution models, each of them dealing with different aspects 
of the innovation problem. The evolutionary point of view has been proposed in 
earlier works on self-organisation models of complex systems by Allen (1975, 1976), 
Feistel and Ebeling (1976), Bruckner (1980, unpublished), Jim6nez Montafio and 
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Ebeling (1980), Weidlich and Haag (1983), Silverberg (1984) and later demonstrated 
e.g. by Allen (1986), Bruckner et al. (1989, 1990), Silverberg (1992), Allen et al. (1992), 
Weidlich and Braun (1992), Troitzsch (1993), Saviotti and Mani (1993), Dosi and 
Kaniovski (1993) etc. In the present paper we concentrate on the competition of a 
new technology against an established one in a situation of hyperselection. 

In section I. 1. the general modelling framework has to be re-established in terms 
of technological evolution. Within this framework, the innovation process appears 
to be connected with other phenomenologically well-known processes like substi- 
tution or imitation. In every case a technology is linked to a firm, which experiences 
market conditions. Due to the importance of this connection, according to the 
approach of Nelson and Winter technological parameters are expressed by 
economic indicators (section 1.2.). In section 1.3. the deterministic analogue to the 
stochastic technological model is derived. Especially, we discuss how social averages 
govern the technological evolution process. In section 1.4. We consider innovation 
in its first stage (as infection). We discuss whether and how the system structure 
then will change and how stability properties can be investigated in the deterministic 
as well as in the stochastic picture. 

In section II. this considerations will be concentrated to the substitution problem 
and deterministic as well as stochastic substitution models will be considered. For 
the deterministic model a stability analysis of the stationary states will be carried 
out. 

In section III. we investigate the time behaviour of the probability function for 
the stochastic substitution model. Assuming linear growth properties for the 
technologies (simple substitution model), an analytical solution of the Master equa- 
tion can be obtained; including the stationary behaviour. Therefore, the prob- 
abilities of survival as well as of extinction are obtained for the long-term (as well as 
short-term) development. Thus, we can show that the short-term and long-term 
survival probabilities differ remarkable. 

For more complex growth functions, we obtain analytical expressions for the 
survival probabilities of a new technology in the stationary behaviour. Therefore, 
we can show that in the case of hyperselection (Ayres 1991) (non-linear growth 
processes), the once-for-ever selection can be overcome in the stochastic picture. 

In this way we can show that the results of Batten and others on conditions for 
change to a new technology are only valid within a certain limit and particularly 
not valid in a stochastic picture. Further, we can show that the survival probability 
not only depends on the growth rates, but also on the size of the ensemble and the 
initial conditions. Particularly in small ensembles, the survival probabilities change 
dramatically. On this basis we show a specific niche effect which is responsible for 
the remarkable change of the competition conditions in local areas. 

I. Technological change 

Modern economic growth is characterised by structural changes based on the intro- 
duction of new technologies in the economic sphere. 

Following the original contributions of Schumpeter (1912) and Alchian (1950) 
a rapidly growing number of authors attempt to construct formal models of 
economic competition, growth, technological change, diffusion, and technologically 
induced fluctuations as an evolutionary process. 
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Beginning with the pioneering work of Nelson and Winter (1976, 1982) the 
methods of evolutionary theory have been successfully applied to innovation 
processes (see e.g. Dosi et al. 1988; Arthur 1989; Saviotti and Metcalfe 1991). To 
describe the process of evolution of technologies, the basic idea is that man has few 
elementary needs to be satisfied: food, clothing, shelter, transportation, communi- 
cation, education, recreation, entertainment, etc.. Then, technological evolution 
consists on the microeconomic level mainly in substituting a new form of satisfaction 
for the old one. 

To describe the technological evolution problem one has to determine the 
system, the subsystems, the elements, and their interactions relevant for the problem 
considered. We consider firms, plants (production units of firms) and technologies. 
The firms are introduced in the role of decisions carriers (represented by firm 
management) for what has to be done with plants (opening up, choosing a 
technology, closure) according to market (or non-market) conditions. The plants 
are on one hand thought to be units of survival according to market (or/and other) 
conditions. On the other hand, they play the role of users of a particular technology. 
Thus, firms (resp. plants) as well as technologies are considered as carriers of 
technological change. 

In our view technological evolution cannot be described without such a close 
connection to the economic processes and the economic units which use the 
technologies. Of course, in such a conceptual framework the technological evolution 
process radically changes its pattern if the market itself changes significantly. But 
this is no argument against the method. Change for "better" and "better" 
technologies, which can be expected as the outcome of a "good" technological 
evolution process, is only imaginable on the base of a long-term functioning 
efficiency mechanisms. 

I.I. Microeconomic carriers of technological chanye 

Technological change usually is imagined as a macroeconomic change process, e.g. 
from the radio tube to the transistor. To describe it as an evolutionary process one 
has to identify its microeconomic carriers, which in a co-ordinated activity govern 
and cause the macroeconomic change process. In our view firms (resp. plants) as 
well as technologies are considered as microeconomic carriers of technological 
change. Therefore, to describe the process of technological change not only 
technological change has to be taken into account. 

The new events appear within the system (a) by new mieroeconomic carriers; (b) 
by combination and re-combination of existing and new carriers. 

Even a re-combination of existing carriers (e.g., existing plant re-combined with 
existing technology) represents from the point of view of the firms an innovation 
process, if the technology hasn't been in the firm before. Thus, concerning the 
innovation problem the macroeconomic level (system level) and the microeconomic 
level (firm level) has to be differentiated. 

Macroeconomically an innovation appears in the system if a new technology 
has been produced. On the microeconomic level all combination and re-combination 
possibilities (excluding the process, which represents non-innovative firm extension) 
include an innovative effect. 
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Innovation matrix (firm level) 

Creation and (re-)combination possibilities 

E. Bruckner et al. 

Innovative processes 

Existing New 

firm = unit, techn. Creation of a small firm 
(firm = unit) combined with 
creation of a new technology a) 

techn, firm = unit Creation of a small firm combined 
with choosing an existing 
technology b) 

firm, unit, techn. Creation of a new production unit 
combined with a new technology 
(firm extension, innovative) c) 

firm, techn, unit Creation of a new production 
unit combined with an existing 
technology on the system level 
(firm extension, innovative) d) 

firm, techn, unit Creation of a new production 
unit combined with an existing 
technology on the firm level 
(firm extension, non-innovative) 

e) 

firm, unit, techn. Creation of a new technology, 
combined with an existing 
production unit f) 

firm, unit, techn. Re-combination of an existing 
production unit with an existing 
technology g) 

To describe the technological evolution process a good  model should be able 
to fit the creation as well as the (re-)combination possibilities of microeconomic  
carriers occurr ing in the system. An overview of  the creation and (re-)combination 
processes for the two types of  carriers of technological change is given in the 
Innovat ion  matrix. 

N o w  we have to find an application of  the general model  (Bruckner et al. 1989) 
which fits the creation and (re-)combination possibilities occurring in the system. 
To  enable a useful application, the model must  be re-constructed in terms of general 
features of  technological change. 

In reality, the multi tude of  possible technologies forms an infinite cont inuous 
set. Here we assume that  the number  of  potential technologies is large but discrete 
and countable. Let us now specify our  model by introducing an industrial state as 
a set of integers (N t, N2 . . . . .  Ni . . . .  ) (1) where Ni denotes the number  of  product ion 
units (plants) using the technology i. The complete set of  occupat ion numbers  N t, 
N 2 . . . . .  N s determines the state of  the system at a given time. Due to the large 
number  of potential technologies most  of  the occupat ion numbers  are zero. 

The plants using technology i might belong to different firms. Furthermore,  we 
assume that the system is open, e.g., that  product ion  units can be created (new plants 
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enter the system) and closed down (plants leave the system). The production units 
may also change (plants change to a different technology). Such decision processes 
in the model occur as transitions of plants between technologies. If we assume that 
all decisions leading to a change of the set {Ni} depend mostly on the present state, 
we can apply the concept of a Markov process. To be able to apply the general 
model we assume that the microscopic substitution and innovation activities may 
be considered as elementary processes (no more than two numbers can be changed 
simultaneously). 

Then, re-construction of the general model, introduced in Bruckner et al. (1989), 
starts with the construction of the elementary processes in terms of the problem of 
technological change. 

1.1.1. Entry of plants into the system 

1.1.1.1. Self-reproduction. In economics the term reproduction implies self-mainte- 
nance of a firm on the market. Self-reproduction here means enlargement of the 
production unit (on the basis of extended reproduction) to the degree of creating a 
second production unit. If the firm has earnings remaining (gross profit) after paying 
wages and required dividends, such profit can be invested in the purchase of new 
capital. The capital stock, reduced by depreciation, is then increased by the firm's 
gross investment. 

1.1.1.1.1. Creation of new production units. A firm may create new production units 
if it has a positive gross investment. In this case the remaining capital will be used 
as capital stock for a new plant (daughter plant) entering the system. In this way 
self-reproduction means entry into the market of a new production unit governed 
by one firm (this may also be described in terms of a concentration process). 

In the following we assume that the probability that the new unit is equipped 
with technology i is proportional to Ni or powers of Ni. (That means the firms look 
for an attractive technology to equip the new production unit.) The process may 
therefore be understood as the entry of a plant into technology field i. 

The firms are not acting in isolation from the development of other firms using 
other technologies, they are all part of a network of inter-relations. To describe a 
process in which a self-reproduction process of technology i might be sponsored by 
other firms we introduce a term proportional to N~ and Nj. 

W(N i + 1, NjlNi,  Nj) --- m~ + m~Ni 2 + BijNiN j (2) 

where A ~ is the coefficient of linear self-reproduction, A~ measures self-amplification 
(second-order self-reproduction), and Bij measures sponsoring from other firms. 

I.I.I.1.2. Innovation of a new technology. A firm may use the remaining capital not 
only to create a new production unit but also to create a new technology by R&D. 
Then we have an entry of a plant into an empty technology field i governed by a 
firm. We will assume that this process of creation of a new technology in some way 
is oriented to an existing technology j which, although commonly used in the 
industry, is considered unattractive. Then, the probability of changing to a new 
technology i is proportional to Nj. If the firm invests capital in this way, we will call 
the process the foundation of a daughter plant with new technology. This is a second 
possibility for the entry of a plant into the system. In the model the probability is 
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given by: 

W(N i + 1, NjlNI, Nj) = MijNj (3) 

where the coefficient M~j measures the rate at which a technology i is generated by 
self-reproduction of technology j. 

Let us introduce the total rate A i which describes all possible entries of new 
plants linked to the number of existin O plants using technology i 

Ai = A ~ + A~Ni + BIjN i + M~jNffN~ (4) 

and the transition probability of the step N~ --, N~ + 1 as the sum of the processes 
mentioned above with: 

W(N i + 1, NjIN~, Nj) = A~ + A~N 2 + BijN~N j + M~jNj = AiN i. (5) 

I.I.1.2. Input. The creation of a small firm (=uni t )  may be combined with the 
creation of a new technology or with the take-over of an existing technology. Such 
a process appears as a spontaneous generation of an element of technology field i, 
which may already be occupied or not. In any case, the risk of survival here is carried 
entirely by the new firm. 

There might be (or might not be) positive conditions for such a process, including 
influencing actors within the given system of technologies (e.g. investment, help, 
sponsoring by a given firm). The spontaneous generation process may be modelled 
as an inflow into the system from outside. Because such events are relatively seldom, 
the inflow is assumed to be small with a constant probability: 

W(N i + 1, NjlN i, Nj) = q)o (6) 

where ~o is a constant rate. 

1.1.2. Decline 

Death (decline, bankruptcy). The dependence of firms on market developments 
implies the risk of closure that exists for every production unit. In this way, firms 
as well as plants are active only for a limited period of time. If the gross profit and 
the consequent gross investment of a firm are negative over a time period and the 
resulting capital stock declines then the production unit may be closed. This process 
can be described as the exit of plants from the technology field i. In the model, the 
corresponding probability is given by: 

W(N i - 1, NjIN i, Nj) = DIN I. (7) 

As in the case of A i the process described by D i includes the whole set of influencing 
factors for the survival probabilities of the production units of firms under 
consideration (among them saturation conditions). It follows that a production unit 
may close due to factors other than its use of a certain technology i. However, if a 
certain production unit is closed, a member of technology field i vanishes. If the 
technology i itself is a "good" one, this decline will be compensated by other growth 
processes such as self-reproduction or imitation. If it is a "bad" one, the decline will 
have a characteristic shape. We differentiate between two processes of decline D ~ 
D~ with D i = D o + D~ N i. Then we obtain 

W(N~-  l, NjlNI, N j) = Di~ + t~  N~ (8) 
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where D O corresponds to the decline rate in a normal demand situation and D~ 
describes processes of self-inhibition which become relevant for the description of 
saturation processes. 

1.1.3. Transfer to other technologies 

It is assumed that firms have the capability of changing the technologies used by 
their production units. Therefore, a plant representing a certain type of technology 
can make a transition to a different type and then become one of its representatives. 
This is a characteristic feature of elements in social systems. From a different 
perspective, such transitions can be interpreted as an exchange of elements (plants) 
between types of technologies (Bruckner et ai. 1989). 

1.1.3.1. Imitation. Firms always look for possible ways in which they can improve 
their gross return. If a firm has a gross return of less than the target level, it will 
begin to search for ways to achieve this (for example, by imitation). In the model, 
we consider the probability: W(N~ + 1, Nj - 1 I Ni, Nj). In a first step, we assume that 
this transition probability is proportional to the number of plants which are able 
to carry out an imitation process, i.e., to Nj. On the other hand, a searching plant 
may examine the activities of other plants. The probability of finding a particular 
technology is proportional to the fraction of the total industrial output produced 
by that technology in the period in question (as found by Fisher, Pry). In terms of 
our model, we assume that the probability of finding a different technology i is 
proportional to Ni/N. 

The transition rate W then depends on the possibility of carrying out this 
transition for the existing technology j and on the possibility of finding another 
technology i: 

W(N i q- 1, Nj - l lNi, Nj) = A~jNjNi/N. (9) 

The non-linearity of the r.h. term describes the mutual influence of technology i and 
technology j performing some kind of adaptation process within the system. 
Imitation is therefore described as a co-operative phenomenon oriented to the 
survival of the fittest. This process in particular may be connected with competition 
and selection. 

1.1.3.2. Innovation o f  a new technology. An exchange process may not only be 
carried out by imitation but also by R&D. This is the case if field i is not already 
occupied. In this case R & D  is done to provide an existing production unit with a 
new technology i. We assume that the search process is oriented on the technology 
j which the production unit already uses. Such a process will be carried out if 
technology j should be changed and if no appropriate technology seems to be 
available on the market. In the model this process corresponds to: N i = 0 ~ N~ = 1. 
For the probability we assume: 

W(N i = 1, N j -  llNi =0 ,  Nj) = A~ (10) 

where A ~ describes the ability to find new technologies and to apply them. Clearly, 
this process will be seldom and A ~ will therefore be small. If a firm looks for a new 
technology by R & D as mentioned'above this process is described by the coefficients 
M~j as well as A ~ 
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All coefficients in eqs. (2-10) have non-negative values. At least one element of 
the inflow rate must be non-zero. This guarantees that the system will not be 
absorbed by the zero state with all N i = 0. 

By means of the given transition probabilities (Eq. (2, 3,6,8,9,10)) the stochastic 
process is completely defined. A corresponding representation in terms of probability 
distributions is the Master equation (see Bruckner et al. (1989)). 

Innovation matrix 

Creation and (re-)combination of carriers 
Elementary Described 
process by 

Existing New 

firm = unit, t e c h n ,  spontaneous ~o 
generation 

techn, firm = unit spontaneous ~0 
generation 

firm, unit, t e c h n ,  self-reproduction Mij 

firm, techn, unit self-reproduction A~ 

firm, unit, t e c h n ,  non-co-operative A ~ 
exchange 'J 

firm, unit, techn, co-operative A * i j  
exchange 

Let us now summarise where and how new events occur in the framework of the 
general technological model. The main issue is that the innovation process must be 
differentiated and understood as connected with re-combination of carriers within 
the system. It follows that, within an evolutionary approach, different types of 
innovative behaviour and different types of innovative strategies must be taken into 
account. The main difference to a chemical or biological system is that the 
innovation and (re-) combination strategies are based on a to a high degree 
developed rational behaviour of the (microscopic) decision carriers. Probability and 
rationality thus meet in the interplay of microscopic and macroscopic levels of 
consideration. 

1.2. Economic indicators and assumptions 

1.2.1. Technology indicators 

Nelson and Winter (1982) proposed to characterise a given technology i by the 
values of two state variables its coefficient of labour input per unit output alla ~ and 
its coefficients of capital input per unit output a~id. 

As discussed, the capability of identical or creative self-reproduction is related 
to the amount of capital available for investment, which will be different for each 
individual plant according to its strategic behaviour. Otherwise, the gross return is 
related to the technology used by the plant. Technologies competing within a system 
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can be differentiated by different rates of self-reproduction. Therefore, following 
Nelson and Winter Ai can be described as a function of the gross investment (gross 
return) as well as of economic factors characterising a given technology such as the 
coefficient of labour input per unit output -~) and the coefficient of capital input a~a 
per unit output a~ci~. A simple Ansatz is: 

Ai = (Gross return) al~la~i~. (11) 

1.2.2. Technology distance and R & D  indicators 

Since the search process of R & D  will be mostly local, the transition probability is 
concentrated on technologies close to the current one and decreases rapidly with 
the "distance", which also can be modelled with help of economical factors. 

Let us consider the process linked with A ~ Nelson et al. (1976) proposed for the 
distance between technologies i and j the expression: 

(i) ( j)  d(i,j) = (WTL) [ log alia ) - log ~la~J) l, + (WTK) I log aca - log ac~ [ (12) 

where (WTL)+  (WTK)=  1. The numbers (WTL) and (WTK) are the weights of 
labour and capital coefficients, respectively. Furthermore, they propose that the 
transition probability decreases linearly with d(i,j), i.e., they assume that 

A ~ oc (IN)(dc,i,- d(i,j)) (13) 

where (IN) stands mnemonically for "case of INnovation" and where d.i ,  is the 
maximal technological distance which can still be crossed under reasonable 
assumptions. 

Let us assume.that R& D increases with gross return expressed by means of the 
rate Aj. On the other side, in the case where the currently calculated gross return 
exceeds a critical value, the plant shows in general a satisfying behaviour, i.e., it does 
not look for new technologies. Taking all this into account we assume the 
coefficients for local search and satisfying processes are 

A ~ = (IN)(d~,it - d(i,j))Aj if d(i,j) < d . i  t and Aj < A. i  t 

A ~ = 0 if d(i,j) > dcrit and Aj > Acrit. (14) 

We have assumed here following Nelson et al. a step-like behaviour a t  dcrit and Acrit. 
It is easy to change to a smoother behaviour, e.g., by assuming A ~ = (IN)Ajqij where 

d c r i t  1 
% = ( I N , ( d ( i . j , )  [ ( A  j_) 2 ] (15, 

1+ 7 , I+ .A . , , .  j 

might be read as a research policy function. 
The function qij determines the probability of finding a new technology i in a 

local R & D  search process outgoing from the parameters of a used technology j. qij 
is of reasonable value if d0,j) is sufficiently small and if Aj is in a reasonable range 
between zero and Ar 0 < Aj < A,i  t. Then, a second function 

Qk = 1 -- ~(IN)qlk (16) 
1 

is an expression of successful R & D  activities of firms using technology k. We call 
Qk the R & D  influence factor in the system. Qk ---- 1 if there is zero R & D  activity of 
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firms using technology k. The more successful R & D  activities undertaken in the 
system the smaller is Qk < 1 (any k). 

1.3. Role of social averages 

Technologies have to be chosen by firms to be adopted. According to it's qualitative 
properties a technology might be more or less attractive to a firm. 

Denoting by ~ the attractiveness of a technology i we may assume that [2~ might 
be expressed in terms of rates of self-reproduction and imitation behaviour in the 
system. A very simple Ansatz would be 

1 
Ai + Ai~j = (DE)f2i; f~i = ( ~ ( A i  + A~j), (17) 

with (DE) being a general DEmand factor which translates the attractiveness f~ of 
the technology i to the growth of the field i (number of firms using technology i). 

To understand the role of the demand factor (DE) let's distinguish the two 
extreme cases: 

(DE) >> 1 due to the high demand also relatively "low" attractive 
technologies are chosen and 

(DE) << 1 due to the low demand also relatively "high" attractive 
technologies are seldomly chosen. 

One may assume that a technology i according to its qualitative parameters is 
equally attractive for the self-reproduction and the imitation process. That means, 
that it does not depend so much on the technology parameters (but on general 
market conditions) if a firm rather will introduce technology i by construction or 
re-construction of production units. Thus, we may assume: 

A~ --- (SR)fti, A~j = (IM)f~,, (18) 

with (SR) and (IM) being the demand factors for self-reproduction and imitation 
behaviour respectively. Assuming [2 i # 0 then, if Ai = 0, (SR) = 0 follows and, if 
Ail i = 0, (IM) = 0 follows. If (SR) = 0, there is no demand for an existing technology 
bemg chosen to equip new production units and therefore no self-reproduction 
behaviour, if Mij -- 0. If (IM) = 0, there is no demand for an existing technology 
being chosen to equip existing production units and therefore no imitation 
behaviour. Equation (18) together with eq. (17) leads to (DE)= (SR)+ (IM). (19) 
E.g., for a demand factor (DE)= 1 (attractiveness fll fully expressed in self- 
reproduction and exchange rates) we get: ~"~i = Ai "~ A~j and (SR) + (IM) = 1. (20) 

Now we introduce the attractiveness Ansatz (eqs. (17), (18)) into the transition 
probabilities (Eq. (2,3,6,8,9,10)) with the notations A i = A ~ + A~(N i -  1), Di = 
D ~  and setting �9 o, Mij, Bij, Cij equal to zero. By 
multiplying the resulting Master equation with N k and performing the average 

( N k )  = ~ . . . ~ N k P ( N 1  . . . . .  Nk .. . .  Ns, t)) (21) 
NI N2 Ns 

after some manipulations we finally obtain the following differential equation for 
the mean occupation numbers of the industrial state (using the assumption 
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A~ = (IN)Alqkl): 

d 
d~(Nk)  = [((SR) + (IM))f~ k - ( IM)(f~)  - Dk] ( N k )  

+ (IN) ~ [qu At ( N J )  - q~kAk ( Nk ) ]- (22) 
I 

where 

f~' ( Nl ) (23) ( t a )  = 
( N )  

We denote the average attractiveness ( f~)  taken over all technologies in the 
system as a social average. Equation (22) is formally similar to the Eigen equation 
for the evolution of biopolymer species. 

Including the R & D  influence factor 

Qk = 1 -- Z (IN)q~k (24) 
l 

we may also write ( ( N k )  = Nk)l: 

d 
--Nk(t) = [(SR)~kQk -- Dk]Nk + ( IM)[~ k - ( f ~ ) ] N  k + ( IN )~  qklAiNt. (25) 
dt 

A given technology k has a good chance to survive if it guarantees a high 
self-reproduction and/or high imitation behaviour. A sufficient number of firms 
(more than in average) must be interested to equip new and existing plants with 
technology k. The social average is taken over all technologies in the system. Thus, 
technologies compete for firms to use them. 

Ifa firm's technology is weaker than the social average its only chance to survive 
is to move to a better technology by imitation or by R&D. Since a successful R & D  
needs already a relatively high value of gross return the best strategy for a "bad" 
firm is probably imitation. On the other hand, the best strategy for a "good" firm 
(with production units using technology k with (f~k > ( f~) )  might be self-reproduc- 
tion. 

Equation (25) shows the close connection between the imitation behaviour and 
the (increasing) attractiveness of technologies in the process of technological 
evolution. We see that the social average ( ~ )  plays an important role as a threshold 
value which separates successful from unsuccessful technologies, if imitation is 
present in the system. 

If(IM) = 0 and (DE) = l, eq. (20) gives (SR) = 1 and f~k is expressed by A~. Then 
the opening up of new production units must exceed the closure rate to have a 
positive growth for technology k. In this case of extension of the number of 
production units, the firms have no social limitation factor to take into account. If 
there is no demand (or no money) for an extension of production units, the firms 
are dependent on a re-construction of their existing production units. 

If(SR) = 0 and (DE) = l, eq. (20) gives (IM) = 1 and f~k is then expressed by A~r 
A positive growth rate for technology k requires in this case the re-construction of 

Let us note, that in the following we note ( N k ) as N k, if N k represents a deterministic variable 
in the deterministic description. Only if N k represents a stochastic variable, we use the brackets 
(N k ) to differentiate between the stochastic variable and the deterministic average. 
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existing production units (equipped with technology k) at a rate exceeding the 
closure rate. From the point of view of firms, a number of "bad" firms is fighting 
against closure of their production units by means of imitation. 

If self-reproduction as well as imitation behaviour occur in the system, a survival 
strategy may be found by controlling the weight factors (IM) and (SR) of both 
processes according to eq. (20). 

For the "bad" technologies (O k < ( f~))  there is no strategy at all, apart from 
bad firm management. Since the third and the second term on the r.h.s, of eq. (25) 
are always positive, the best survival strategy for a "good" technology (O k > ( O ) )  
probably consists mainly of taking measures to exceed the closure rate Dk by 
concentrating on self-reproduction processes and by diminishing the R & D influence. 
Then, imitation strengthens the effect of the difference (Ok - ( f l ) ) .  

Equation (25) also shows the influence of R&D on the growth possibilities for 
established technologies. The last term on the r.h.s, of eq. (25) cannot be excluded 
but must be regarded as very small, if the competition area is sufficiently large. As 
Qk ~< 1 always holds, the growth of established technologies due to self-reproduction 
processes is always diminished by successful R&D activities. If there are too many 
experimenting firms in the system, E~ (IN)qlk will be large and Qk correspondingly 
small. If Qk << 1, the self-reproduction chances of existing technologies are hardly 
influenced. 

For a "good" technology, the creation of "better" technologies and the dis- 
appearance of "bad" technologies are two dangers, which might be overcome 
only in a limited time scale. Thus, attractiveness increases necessarily. 

If a co-operative process begins within the system and leads to a spontaneous 
structure-formation process (transfer to a new stable stationary state), no averaging 
process can take place and therefore the social average loses its meaning as threshold 
value. 

1.4. Infection 

Innovation in its first stage may be understood as infection. Considering a 
technology which first appears in the system we can say, that the system consisting 
of s technologies has been infected with a new technology. 

Let us first regard the infection problem in terms of the deterministic trend 
analysis, in which stability/instability concepts may be applied. 

Let us assume that the system of the s existing technologies is in a stable state. 
That means we have certain relations (fractions) in which the technologies are 
represented in the system. We call this situation a given structure of the system. 
Then, the question occurs if and how by an infection with a new technology this 
structure will change. 

The following cases are possible: 

- the new technology will be integrated in the system without significant changes 
of the fraction of the old technologies (coexistence) 

- t h e  infection with a new technology performs a competition process in which 
(a) the new technology cannot survive. The old stable state will be reproduced 
(unsuccessful infection) or (b) one or several of the old technologies will disappear 
and the new technology will win the process (substitution: thc old stable state 
becomes unstable, a new stable state will be adopted). 
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That means, that the approval of a new element in the game of evolution is 
connected with a test of the deterministic system for stability. 

In this way, the question of the selection value of a new element with respect to 
the already existing population becomes a well-posed problem. Mathematically it 
reduces to an eigenvalue problem of rank (s + 1) (Hofbauer and Sigmund 1984). 

When we consider processes that include exchange between the firms i and j 
combined with non-linear growth functions of self-reproduction and decline, a 
calculation of the competition properties of an innovation becomes an extremely 
complicated mathematical problem, which requires a detailed stability analysis of 
the deterministic problem following the above mentioned method (Prigogine et al. 
1972). 

In this case a new technology is of higher selection value with respect to the 
existing occupation if the deterministic system is unstable with respect to a 
corresponding perturbation. In analogy to Eigen's concept one can say that the 
stability properties of the system represent the selection value of a new technology 
appearing by a transition process, by diffusion, or by innovation. 

We have already noted that co-operative processes, as imitation, e.g., due to 
their property of mutual directedness (expressed by non-linear terms), may 
significantly influence the result of selection processes. In systems with non-linear 
interactions of the type considered here, the selection process no longer depends 
only on the growth properties of a new field but also on the existing configuration. 
We find multistability where the behaviour of the system depends on the initial 
conditions in such a way that a new "better" field is a potential possibility for the 
system but under the given conditions not a real one. Such a situation can describe 
the selection between two or more equivalent possibilities for the system (Eigen and 
Schuster 1977, 1978). 

Infection of a stochastic system 

In the stochastic description (e.g., by means of the Master equation formalism) the 
state of the system is characterised by the temporal development of a probability 
function P(N 1, N z . . . . .  N i . . . .  t), which describes the probability of finding N1 firms 
using a technology 1, N z firms using technology 2 etc. at time t. A stable stationary 
state is then related to a maximum of the stationary probability function, and 
changes of the location of stationary states and their stability properties correspond 
to changes in the landscape described by the probability function over the state 
space. To obtain answers on the behaviour of the system according to an infection 
with a new technology, one must determine the time-dependent behaviour of 
P(N 1, N 2 . . . . .  N~ . . . .  t) by solving the corresponding stochastic equations. In general, 
analytical solutions are hardly to obtain. In special cases, some expressions 
concerning the survival probability of the infecting technology can be obtained. 
This is analogous to an analysis of the stationary behaviour in the deterministic case. 
In this way, it can be shown, that in the stochastic picture the deterministic 
conclusions remain true in average. 

By analysing the survival probability of new technologies, and also by computer 
experiments, we can show that the deterministic order can be destroyed or 
relativised by fluctuations. Separatrices, which in the deterministic picture separate 
different parts in the state space from each other, can be crossed. In this way, new 
channels of evolution are opened up by fluctuations. 
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II. Substitution 

Under the presuppositions discussed in the former sections substitution may be 
described as an infection problem. As substitution is a replacement of an old 
technology for a new one only two technologies are taken into account. In our 
model only two fields are considered: N~ + N 2 = N. The infection problem in such 
a substitution process occurs with the condition N 2 << N. 

11.1. Earlier models re-interpreted 

II.l.1. A logistic substitution model (The Fisher-Pry model) 

In the early seventies Fisher and Pry (1971) developed their simple substitution 
model of technological change most studied and empirically tested. Since the work 
of Fisher and Pry is of fundamental importance to the whole range of later 
developments we will take the basic assumption of Fisher and Pry as our starting 
point. The main mathematical assumption is that: "The fractional rate of fractional 
substitution of new for old is proportional to the remaining amount of the old left 
to be substituted." (1971). 

The corresponding model for the fractional growth rate per time unit reads: 

d 
- - f  = af(1 - f). (26) 
dt 

The solution of this equation is well-known. If a > 0 the fractional rate increases 
according to the Verhulst-Pearl law up to the saturation point. This S-shaped 
growth curve is in good accordance with empirically obtained results concerning 
the substitution process of technologies. By generalising the growth rate as was, e.g., 
done by Sharif and Kabir (1976), Easingwood et al. (1981) the accuracy of 
forecasting can be improved. 2 

II. 1.2. A generalised model of substitution 

To enable improved understanding of the mechanisms of the substitution process 
several authors have proposed a two-dimensional system of coupled differential 
equations to describe the mutual influence between the new and the already existing 
technology (Mahajan and Peterson 1979; Batten 1982; Kwasnicka et al. 1983; 
Karmeshu et al. 1985; Bhargava 1989). In particular, we will refer here to an 
approach using generalised Lotka-Volterra-equations to describe the substitution 
process in terms of competition between technologies. 

To introduce our model, we assume that the system is occupied by N 1 "master" 
producers with the reproduction rate E1 and we infect the system with a few producers 
using a new technology with rate E 2. Further, we assume that the total number of 
producers is N = N 1 + N2 = const.. This condition leads to competition where a 
new technology can only succeed if it replaces the old one. The dynamics is described 
by: 

d 
- - N  i = (E i + BiNi)N i - koNi, i = 1,2. (27) 
dt 

2 For a classification of different generalizations of the Fisher-Pry model see Tingyan (1990). 
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The existence of different growth laws is expressed by help of a different choice for 
the parameters Ei and B~. In the case of linear growth functions E~ ~ 0; B i = 0 holds, 
while in the case of non-linear growth functions E i = 0; B i 4: 0, and in the case of 
growth functions containing a combination of linear and non-linear growth E i, 
B i :/: 0 is valid. 

The condition of constant overall number N of production units leads to 

(E2 + B2Nz)N2 + (El + BINt)N1 
k o . . . . . . . . . . . . . . . . . . . . . . . . .  . (28) 

N 

In the special case of linear growth this model contains the model proposed by 
Batten (1982) with a certain parameter  choice. 

Further, it should be noted that the model is in a certain sense located between 
the one-dimensional logistic substitution model and the two-dimensional L o t k a -  
Volterra approach. Introducing the condition N~ + N 2 = N = const., we reduce the 
two-dimensional problem in a certain sense to a one-dimensional problem. 
Therefore, the substitution model of F isher-Pry  can be obtained from our model 
(case of linear growth) replacing N1 with (N - N2) in the equation for N2. 

First, let us consider the states in which the system is in a stationary behaviour. 
The stationary points of the model (eq. 29-30) (d/dt N~ = 0, dt/dt N 2 = 0) are: 

s s (i) N ~ = N ;  N z = 0  

(ii) N] = 0; N~ = N 

NB2 + E 2 -  E1 NB1 + El - E2. 
(iii) N] . . . .  B~ + B 2 N2 = -B~ + B 2 (29) 

For the case of linear growth, state (iii) is coincident with state (i). 
Which one of these states can be realised depends on the stability analysis and 

is determined by the relationship of the various growth parameters. In the following, 
we use the growth rates Ei and Bi as indicators for the quality of a technology. In 
terms of our model the relation a = E2/E 1 in the case of linear growth, and 
:t = B2/B t in the case of non-linear growth resp. determines a selection advantage. 
The new technology 2 in comparison to the master technology 1 may be 
characterised as a "good" one, if ct > 1 or as a "bad" one, if ct < 1. 

As it is well known for ct > 1 in the linear case state (ii) is stable and state (i) 
unstable. 3 Thus, in the deterministic linear case "good" new technologies will 
substitute the master, "bad" ones will become extinct. This sharp selection 
behaviour is independent of the degree of infection (initial conditions) and has a 
direct effect. 4 

The (post) modern society is characterised by rapid changes. In particular, some 
industrial branches are characterised by very fast growth processes (up to saturation), 
which must be described by non-linear growth rates. In such cases the chances of 
survival of a new variant starting with a few elements are not very large. 

In the case of quadratic growth, the system exhibits bistability. The stationary 
states (N] = N; N 2 = 0) and (N, = 0; N~ = N) are stable. The state (iii), which lies 

3 This result is in accordance with the condition of successful substitution given in the Batten 
model. 
4 In the linear case the model is of the type of a Fisher-Eigen equation where the growth rate E~ 
serves as selection value and only the field with the highest growth rate will survive in the selection 
process. 
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between 0 and N, is unstable and separates the stable states. It is a separatrix. (The 
model in this case corresponds to the competition of hypercycles in the Eigen 
theory.) Then the fate of the new technology depends on the initial conditions. 

If the initial number of the new firms is lower than the threshold 

N 
N2(0) < (a + l~-)' (30) 

the new technology has no chance of survival within the deterministic picture. The 
threshold value corresponds to the state (iii). For example, for an initial condition 
below the unstable stationary point, technology 2 is located in the attractor basin 
of the stable state (N~ = 0 and N~ = N correspondingly) and cannot leave it. 

If N is 200 and a = 2, the new technology must start with around 70 (exactly 67) 
firms, to substitute the old one with security. If N2(0) is smaller than 67 the new 
technology has no chance to substitute the old one. Such an initial condition is 
hardly to realise. On the other hand, if N is 200 and the new technology starts with 
around l0 firms, then a must be within the range of 20 for the new technology to 
survive. 

We see that the hyperselection situation, which is in many cases not unrealistic 
is hard to overcome and thus we have to look for possibilities of a real substitution 
in a stochastic world. 

In the case of mixed growth, bistability occurs again and analogous to eq. (30), 
a threshold can be determined as: 

NB1 + E1 - E2 
N2(0 ) < (3 l) 

B1 + B2 

The location of the separatrix in relation to the two attractors depends again on 
the size of the ensemble. From eq. (30) and (31) it can be seen, that the greater N is 
the closer the unstable state will be to N, and the higher the threshold will be for a 
new technology to replace the old one. 

11.2. Stochastic substitution models 

In a stochastic dynamics which is based on integer particle numbers N i = 0, 1, 2,. . .  
the picture changes completely. Let us assume that N 1 is the number of plants using 
the old technology and N 2 the number of plants using the new one and furthermore 
that N 1 + N 2 = N = const.. 

The elementary stochastic process is assumed to be a substitution, i.e., one plant 
substitutes the new technology for the old one, or, in mathematical terms, we have 
the transition: 

N 1 --~ N 1 -- 1, N 2 ~ N 2 + 1 (32) 

with the transition probability 

W(N i + 1, Nj - l[Ni, Nj) = AIjNjNI/N. (33) 

Under the condition NI + N2 = N = const, in the state space only certain states 
resp. transitions are possible. Therefore, also in the stochastic description the 
two-dimensional problem can be reformulated as an one dimensional problem 
(Fig. 1). 

To determine the probabilities W + and W -  let us start with the case of linear 
growth (El, E2 # 0; B 1, B 2 = 0). According to the corresponding deterministic model 
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W + W + 

N 2 -1 W" N2 W-  N2 +1 Fig. I. 

E 1 as growth rate of technology 1 can be understood as loss rate of technology 2 
and vice versa. Then, E 2 - E 1  is the total growth rate of N 2. The corresponding 
transition probability (Ei = A~j) is assumed to be 

W + = W(N 2 + 1 IN2) = EzN2 (N - N2). (34) 
N 

with N~ = N - N 2.  The opposite process has the transition probability 

= W(N 2 - l IN2) = EI(N - N2)N-2. (35) W -  

Let us assume now that the probability to find at time t the number of plants N2 
using the new technology is given by P(N 2, t). Following the standard methods of 
the theory of Markov processes we describe the growth of the new technology as 
balance equation of loss and gain processes with the Master equation 

0tP(N2, t ) = W + ( N 2 - l ) P ( N  2 -  l ) +  W- (N  2 + 1)P(N 2 + I ) - ( W + ( N 2 )  

+ W-(N2))P(N2). (36) 

Introducing the approach for the W + and W -  in the case of linear growth we obtain 
(using N 1 = N - N 2 ) :  

__E2 I ) ) P ( N  2 1,t) ~3t P(N2, t )=  \ ~ ( N 2  - I ) ( N -  N 2 +  

+ ~- (N 2 + I ) ( N - N  2 - 1 )  P(N 2 + l , t )  

) - + EE)N2(N - N2) P(N 2, t). (37) 

The four terms on the r.h.s, correspond to the two gain processes (N 2 - l) ~ N 2 
and (N 2 + 1) ~ N2 and to the two loss processes N2 ~ (N2 - 1) and N2 ~ (N2 + 1). 

In order to investigate the relation to the Fisher-Pry model let us turn now to 
the mean value of ( N 2 ) .  We get after some manipulations 

(N2( t ) )  = N(E 2 - E~)(N2(N - N2))). (38) 

With the approximation ( N2N 2 ) = ( N 2 ) ( N 2 ), the shortening f = ( N 2 ) / ( N ), 
which is the fraction of new technology, and a = ( E  2 - E1)-- the fractional growth 
rate per time unit, we get from eq. (38) the Fisher-Pry differential equation (comp. 
eq. 26). On the other side, eq. (38) corresponds to the equation for N 2 in the Eigen 
model resp. the Lotka-Volterra  system, if we express in eq. (27) (with B i = 0) N~ by 
(N - N2). 
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In the case of non,linear growth processes (E i = 0; B i ~ 0 and BiNi/V = Ai~j) we 
assume: 

W + = W(N 1 - 1, N2 + 11Nx, N2) = B2 (N - N2)N2 (39) 
NV 

(N - N2)2N2 
W -  = W(N~ + 1, N 2 - -  11Nx, N 2 )  = B~ (40) 

NV 

Now, the transition probabilities contain a quadratic and cubic term of N2, e.g., we 
consider growth processes accelerating with N2. The variable V is an additional 
parameter which allows to control the strength of the non-linear growth. 

In the case of mixed growth (linear as well as non-linear growth) we obtain 
combining eq. (34) and (39) (resp. (35) and (40)) the following transition probabilities: 

W + E2 (N - N2)N 2 (N - N2)N ~ = + B E (41) 
N NV 

(N - N 2 ) N  2 (N - -  N 2 ) 2 N 2  
W -  = E 1 + B 1 (42) 

N NV 

In the combination of linear and non-linear growth properties the parameter V can 
be used to control the strength of the non-linear growth properties in relation to 
the linear growth properties. 

In the following section we consider analytical solutions of the corresponding 
Master equation in the cases introduced. 

I I I .  R e s u l t s  

III.1. Short-term effects 

In general, the stochastic master equation is difficult to solve. A problem which may 
be studied by means of the stochastic theory is the time-dependent behaviour of a 
new technology 2 infecting an equilibrated industrial state where the technology 1 
dominates. Let us assume that at the time t = 0 only M plants with M << N, e.g., 
M = 1 or 2, are infected with the new technology. In other words the initial condition 
reads 

P(N2,0) = (10 i fN2--  M ) .  (43) 
if N2 

Due to our assumption that only a few plants are infected we will have N 2 (< N in 
the initial state of evolution and the master equation in the linear case (37) may be 
simplified by neglecting terms (N2/N) resulting in 

- -P(N2, t  ) = E2(N 2 - 1)P(N 2 - 1,t) + EI(N 2 + 1)P(N 2 + 1,t) 
t~t 

- (E 1 + E2)N2P(N 2, t). (44) 

Following Bartholomay (1958, 1959; see also Eigen 1971) the solution of this 
equation P(N 2, t) with the initial condition (43) can be derived. The most interesting 
application of the distribution is the determination of the probability of extinction 
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Fig. 2. Survival probability of a new infecting technology P~,,v(t) as function of the relative 
selection advantage r after n generation 

of the new technology after a t ime t which is given by (Allen and Ebeling 1983) 

P(0, t) = ( exp ((E 2 - E 0 t  ) - 1 ~M. 
(45) 

\ E 2 / E  1 exp((E 2 - E1)t ) - 1 / 

Correspondingly,  the survival probabi l i ty  in the system after t ime t is 

P . . . .  (t) = 1 - a(0, t). (46) 

Now,  we ask for the survival probabi l i ty  of  the new technology int roduced by one 
produc t ion  unit (M -- l). n generat ions after the appearance  (denoted by n = E 1 t), 
P . . . .  can be writ ten as: 

K 
Psurv(t) = (47) 

1 + ~c - e x p ( -  nx) 

where x is the relative selection advantage:  

E E - - E  1 
x - - ct -- 1. (48) 

E1 

According to eqs. (47, 48), the survival probabi l i ty  for the new technology depends 
on the relative selection advantage  x. 

According to Darwin,  selection leads to a survival of  the fittest. Al though valid 
in t radi t ional  approaches  in a stochastic subst i tut ion model  this sentence is only 
valid as a long- term effect. A shor t - term survival even of a "bad"  technology 
infecting an equil ibrated industry where a certain technology domina tes  cannot  be 
excluded. The  "bad"  technology (with E 2 < Ex) may  survive for some generat ions 
against  the evolu t ionary  trend towards  "bet ter"  and "bet ter"  technologies. The  
trend is given by the sharp  boundar ies  of  the corresponding determinist ic picture 
(indicated in Fig. 2 by the broken  line). 

To  analyse the long- term behaviour  of  the survival probabi l i ty  within a definite 
t ime period, the survival probabi l i ty  in the s ta t ionary  state (t tends to infinity) can 
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be derived: 

Psurv(t ~ OO) = 0 for E 2 < E t (49) 

and  

P . . . .  (t--* c ~ ) = l - ( E ~ )  for E2 > El. (50) 

The survival probabi l i ty  in the s ta t ionary  state will be zero if the new technology 
is a "bad"  one (E2 < Et) and depends on the selection advan tage  in the other  case. 
Thus,  selection in a stochastic model  shows stringency in the long run only. 

111.2. Ensemble size and niches 

If an analytical  solution of the mas ter  equat ion  as a whole is not  accessible, we can 
investigate analytically the behavi0ur  of  the system in the limit t ~ oo. The  
calculation of the s ta t ionary  distr ibution P(N, t ~ oo) cor responds  to the analysis 
of  the s ta t ionary  states in the determinist ic description. Fo r  a birth and death  
process in the case of a two-dimensional  system (with N t  + N2 = N = const, and 
two absorber  states N 2 = 0 and N2 = N) the final s ta t ionary distr ibution must  have 
the shape (Sch imansky-Ge ie r  1980; Ebeling et al. 1981; Ebeling and  Feistel 1982): 

P(N 2, t ~ oo) = a f (N ,  N2) + (1 - a)6(0, N2) (51) 

where a is the survival probabi l i ty  of the new technology 2 in the s ta t ionary  state 
and  6 s tands for the Kronecker  symbol  (6(N, N2) = 1 for N 2 = N and zero else). 

In this case the survival probabi l i ty  cr can be derived f rom just  one cons tant  of  
mot ion.  In the mos t  general case (eq. (36) for a system with two absorber  states), 
the result is 

1 +  I - I w  + 
j = l  i = 1  i 

aN2(O),N -- t j - for 0 < N2(0 ) < N 

j = l  i 
(52) 

in the linear case 

W+i = E2 (N - i)i W~- = E 1 (N i)i 

N N 

in the quadratic case 

(N - i)i 2 (N - i)2i 
W i  + = B 2 -  W i- = B 1 - -  

N V  N V  

(53) 

(54) 

and 

aN2tO),N = 1 for N 2 ( 0  ) = N 

where W~ + = W(i + 1 l i) and W~- = W(i - 1 [i), with i = N 2. o depends not  only on 
the parameters  of  the system but  also on the initial condit ions and  the ensemble 
size N. 

Assuming the corresponding probabil i t ies  are 
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and in the case of mixed growth 

E2(N - i)i + B2(N - i)i 2 W + 
N NV 

and 

Wi- = El (N  - i)i + B1 (N  - i)2i, 
N NV 

(55) 

after some manipulations, we get the following survival probabilities for the new 
technology. 

In the linear case we obtain: 

O'N2(O) 'N - -  N (56) 

For large systems (infection problem) eq. (56) reduces to: 

aN2(O~,N~oo = 0 for E 2 < E1 

and (57) (:;,o, 
~N2~O~.N~ = 1 -- for E 2 > E 1 

which is equal to eqs. (49, 50) for N2(0) = M = 1. 
In the quadratic case we obtain 

N2'0'- I ( B I " ] J ( N  ; 1)  
1+ 

j=l \ B z /  
~N~(O>,N= ( BarN-1 (58) 

and in the mixed case: 

N2(O)-I j E l + B 1 N - i  
V 

1+ E rI 
j = l  i = 1  i 

E2 + B2~ 

aN~O),N = (59) 
B 1 N - i  

N-1 j E l +  V 

1+ E 1-I i 
j=l i=l E2 + B2~ 

The survival probabilities now depend not only on the selection advantage but 
also on the degree of infection (initial conditions of the new technology) and the size 
of the ensemble in which the competition takes place. 
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Fig. 3. Survival probability ~r of a new technology in the case of linear growth as function of the 
selection advantage ct depending on the ensemble size N (N2(0) = 1) 

The most important result obtained so far is that the probability of survival is 
in general a smooth function which is continuously increasing with the relative 
advantage. There is no sharp difference between the better and the worse 
technologies. In contrast to the deterministic picture, a new better technology will 
not automatically survive. In the linear case (eq. 56) we observe in the limit o fN ~ oo 
a kinetic phase transition of second order. Figure 3 shows that in reality, this 
situation will practically be realised for ensembles of a size greater then N = 50. 
Then, for ~ < 1, the new technology has no chance of survival. 

Besides the time-dependence of selection explained in section III.1., within a 
stochastic picture a "space" dependence of selection also occurs which we have 
called a specific niche effect. 

Selection shows its stringency only in a sufficiently large competition area. On 
the other hand, a sufficiently small competition area acts as a niche in which the 
stringency of selection is softened. 

For  systems with a linear growth law, the niche effect means that any im- 
provement (positive or negative) less than 10~o has no significant effect on sur- 
vival. As Fig. 3 shows, the new technology must be twice as good as the old one 
to get a survival probability exceeding 50~. On the other hand, a new technology 
which is worse by about 10~o still has a certain chance of survival provided that no 
exceptionally good technology is produced (consider, e.g., case N = 5). This region 
of + / -  10~/o is neutral with respect to selection since stochastic effects here allow a 
variety of possibilities. The situation of the new technology can be improved 
decisively when the system is initially infected with more than one representative of 
the new technology (Fig. 4). 

Locally developed niches may play a decisive role in a two-stage strategy of 
establishing a new technology. Although within the niche the Hamlet question 
(temporarily) is solved, in the case of linear growth rates the competition process is 
very unspecific and contains no recognition of the true quality of the new variant. 
Since recognition is a consequence of successful usage consequently the next step 
of establishment of a good new variant is the enlargement of the competition area. 
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Fig. 4. Survival probability a of a new technology in the case of linear growth as function of the 
selection advantage ct depending on the initial condition N2(0) (N = 100) 

In the case of quadratic growth laws, in the deterministic model (eq. 30), the 
survival of a new technology initially may require a number of firms within a range 
of 1/3 of the total existing population of firms, which is in economic standard 
situations impossible to fulfil. In the more realistic stochastic model represented by 
eq. (58) the picture is somewhat softer but the chances might be considered to be 
still worse. I fN is 200, ct = 2 and the new technology starts with 67 firms, the survival 
probability is around 50%. To have a survival probabiltiy of 90%, one must start 
in this case with 75 firms. On the other hand, in contrast to the deterministic model, 
if the new technology starts with fewer than 67 firms, it still has a certain survival 
probability (with 65 firms 40%, with 60 firms 10%). If N is around 200, the new 
technology starts with I0 firms (N2(0) = 10) and ct is in the range of 20, the new 
technology has a survival chance of around 50%. To have a survival probability of 
90%, ~ must be in the range of around 30. 

As it is seen, the only real possibility of overcoming the hyperselection effect is 
to create a niche by limiting the competition area. As Fig. 5 shows, a finite 
population size in any case improves the survival probability of the new technology. 
This effect is essential since it guarantees the survival of mutants in hypercyclic 
systems with finite population size (Fig. 5). 

Also in the non-linear growth case locally developed niches may play a 
constructive role in the technological evolution process. The new variants in the 
niche may first grow to considerable numbers and thus afterwards in the global 
system, the hyperselection situation may be overcome. 

Figure 6 shows in a simulation experiment how a new technology can "tunnel" 
through the separatrix (Fig. 6). Also in this case the survival probability of the new 
technology increases if the degree of infection of the substitution process is increased 
(Fig. 7). 

In the case of mixed growth (eq. 59), the survival probability depends on both 
the relations of E~/E 2 and B~/B 2 and is also determined by the strength of the 
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Fig. 5. Survival probability tr of a new technology in the case of quadratic growth as function of 
the selection advantage 0t depending on the ensemble size N (N2(0) = 1) 
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Fig. 6. Tunneling through the separatrix after several unsuccessful trials (Parameters Bz/B1 = 3, 
N = 20, N2(0) = 1) 

quadratic growth relative to the linear growth represented in the model by the 
parameter  V. A technology can significantly improve its position if it can develop 
growth properties different from the old one. It follows that a technology which is 
weaker in relation to the linear growth properties can nevertheless substitute the 
old one if it can develop other growth properties. As shown in Fig. 8, a technology 
which must in the linear case be twice as good as the old one arrives at the same 
survival probability (50%) already with only 50% of the linear reproduction rate 
but with a quadratic growth characteristics (B 2 = 1.0) (Fig. 8). In the case of mixed 
growth characteristics with the same properties of linear growth, the survival 
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Fig. 7. Survival probability ~ of a new technology in the case of quadratic growth as function of 
the selection advantage :t depending on the initial conditions N2(0) (N = 20) 
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Fig. 8. Survival probability (7 of a new technology in the case of mixed growth as function of the 
quotient (E2/Et) depending on B2 (N = 100, N2(0 ) = 1, BI = 0) 

probabil i ty of the new technology will be lowered for bad technologies and 
improved for better technologies in relation to the linear case. This means that the 
competi t ion will be tougher  in the existence of  quadratic growth laws. 

IV. Discussion 

Evolut ion of technologies is a complex dynamic process which is connected with 
innovations,  competit ion,  and selection. In this paper, some basic elements of  a 
stochastic evolut ionary theory of  technological change were presented. It is 
proposed that this theory provides the framework for a deeper analysis of  the 
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processes of technological change and dynamic competition. Competition is 
introduced by imposing constraints, which limit the number of firms sharing a 
market. Therefore, technologies (as fields) "are competing" for firms resp. plants (as 
elements). In other words, firms using different technologies compete for higher 
capital gross return. 

The model reflects the fact that any new achievement in technology is due to 
research and development in the same way the origin of any progress in biology is 
due to mutations. A new element in the evolution of technologies in comparison to 
the molecular evolution seems to be imitation of successful technologies. The 
importance of this process has been underlined by Nelson and Winter. 

We consider as an interesting result that substitution, realised by imitation, leads 
to an increasing attractiveness of technologies in the process of technological 
evolution. In the case of a non-zero imitation rate the social average of attractiveness 
plays the role of a threshold which marks a border between successful and 
unsuccessful technologies. The stochastic evolutionary process selects in principle 
from the infinite reservoir of potential technologies only those which have an 
attractiveness above this average. In this way, the (average) attractiveness of 
developed technologies increases monotonously. This process will never stop as 
long as research and development continue to introduce new technologies. 

In traditional substitution models, selection leads with certainty to the survival 
of the fittest. In a more realistic stochastic picture, this statement is only true with 
a certain probability, which also implies conversely that the "weaker" variants have 
a limited chance of survival. 

In particular, a short-term analysis demonstrates reasonable deviation from the 
deterministic trend. While in the short-term weaker new technologies (with E2 < El) 
may survive and consequently remain present in the system, in the long-term the 
quality factors of the technologies become efficient. 

It is a well-known empirical fact that it needs some time to establish a good 
technology on the market. 

A fundamental role for the evolution of technologies is played by the behaviour 
of new participants in the game. This leads to the basic importance of random effects 
for technological evolutionary processes. Deterministically, a sharp distinction is 
drawn between advantage and disadvantage and the decision concerning the fate 
of new technologies is definite. 

We consider an important result the fact that limited competition areas act as 
niches for the survival of variants which are present in the system in small numbers. 
In such niches the global selection rules are neutralised to some extent. This fact 
leads in the case of linear growth to a temporary coexistence of"good" and "bad" 
new technologies. In the non-linear growth case the niche is the only possibility for 
a "good" technology to overcome the once-for-ever selection predicted by the 
deterministic theory. Better new technologies can win the competition if the 
competition area is sufficiently small, say N << 100. 

The competition area in large systems including economic and social ones may 
be kept in a local domain simply because of the Markovian character of the process. 

In the niche, the new but not yet established quality is protected against 
extinction for a limited time scale. After winning the competition in a small group, 
the new technology may infect the whole system. In this way, the stochastic effects 
open up new channels for the evolutionary process and may deeply influence the 
perspectives of economic systems. 
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Finally, we express our  belief that  the deep and not  only formal analogy between 
biological and technological processes which has been discussed already by many  
authors,  may  be very fruitful for the development of  mathematical  models of  
technological change. 
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