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Given a lattice L we are looking for a basis B ----- [bl , . . . ,  bn] of L with the property that both 
B and the associated basis B* -- [bl,. . .  ,bn] of the reciprocal lattice L* consist of short vectors. 
For any such basis B with reciprocal basis B* let S(B) -- max (Ibil.lb~l). Hkstad and Lagarias 

l<i<n 
[7] show that each lattice L of full rank has a basis B with S(B) _< exp(c 1 �9 nl /3)  for a constant c 1 
independent of n. We improve this upper bound to S(B) _< exp(c 2 .(lnn) 2) with e 2 independent 
O f  T~. 

We will also introduce some new kinds of lattice basis reduction and an algorithm to compute 
n 

one of them. The new algorithm proceeds by reducing the quantity ~ Ibl2.1b~ 12. In combination 
i--1 

with an exhaustive search procedure, one obtains an algorithm to compute the shortest vector and 
a Korkine-Zolotarev reduced basis of a lattice that is efficient in practice for dimension up to 30. 

1. I n t r o d u c t i o n  a n d  n o t a t i o n  

In this paper  we study n-dimensional lattices of full rank. A lattice (of full 
n 

rank) is the additive subgroup ~ b i Z  generated by a basis B = [b l , . . .  ,bn] of 
i=1 

~n  with nonzero determinant.  We will denote the basis vectors of a lattice as 
column vectors. Then the basis itself is an n x n-matr ix  which consists of the 
column vectors of the basis. 

For any two vectors u, v E ]R n we denote their scalar product  by u .  v and 
we write Ivl for the Euclidean norm ( v .  v)  1/2 of v. For n x n-matrices A, B, ... 
the co lumn vectors are denoted by a/,  b i ,  . . .  and  the en t ry  in row i, co lumn j is 
denoted  by ai,j ,  bi,j, . . . .  for i, j = 1 , . . . , n .  We wri te  A -1  for the inverse ma t r ix  

of A.  The  basis B* -- [b~, . . .  ,b*] defined by B* -- ( B - l )  T is called the reciprocal 
basis of B. I t  satisfies b i . b ~  = 5i,j (with 5i,i = 1 and  ~i,j = 0 for i ~ j ) ;  the vectors 

b*, i = 1 , . . .  , n  denote  the Column vectos of the reciprocal basis B*. 

Mul t ip ly ing  a lat t ice basis B with an  or thogonal  ma t r ix  K from the left hand  
side corresponds to a ro ta t ion  of the coordinate  system; such a ro ta t ion  does not  
change the lengths of the basis vectors Of a lat t ice basis B or its reciprocal basis B*. 
If K is an  or thogonal  ma t r ix  we consider the two bases B and  K .  B as equivalent.  

AMS subject classification code (1991): 11 H 55 
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The basis transformations of a lattice basis B are obtained by multiplying the 
basis B with an SLn(Z)-matrix on the right hand side. For any transformation 
matr ix  T E SLn(Z) the two lattice bases B and t~ = B .  T define the same 

lattice ~ biZ. The lattice reduction theory deals with identifying and computing 

a reduced basis for a given lattice. There are several concepts of reduced lattice 
bases, see e. g. [5], supl~ement to chapter 2, for an overview. 

We are going to study lattice bases where the basis vectors of the lattice and 
also the basis vectors of its reciprocal lattice are short. For any lattice basis B of 

n 

dimension n let S(B)  the the quantity ~ Ibil 2 �9 2 �9 ]b/I . We have S ( B ) = n i f a n d  
i=1 

only if the basis vectors are orthogonal, otherwise S(B)  > n. A small value of S(B)  
indicates that  both  the basis vectors of B and the basis vectors of the reciprocal 
basis B* are short. 

In section 4 we will show that  every lattice of dimension n has a basis B which 
satisfies S(B)  = exp(O((lnn)2)) .  This improves an earlier result of Hs and 
Lagarias [7]. To obtain this result we will have to consider lattice bases which are 
reduced in the sense of Korkine and Zolotarev [10] and we will also have to study 
the group N(n,]~) of all upper  triangular unipotent n x n-matrices with diagonal 
equal to one. This will be done in sections 2 and 3. 

In section 5 we will introduce a new concept of lattice basis reduction. A lattice 
basis B will be called S-reduced if S(B)  is minimal. We will also introduce the 
weaker concept of S2-reduction, and we present a simple algorithm to compute an 
S2-reduced basis of a given lattice. 

The new reduction algorithm is similar to the lattice basis reduction algorithm 
of Dieter [3] and Knuth [9], section 3.3.4, which reduces the size of the basis vectors 
and the size of the vectors of the reciprocal basis of a lattice in separate steps. In 
contrast to the well known lattice basis reduction algorithm of Lovs as described 
in [14], we cannot prove a bound for the running t ime of the new algorithm or the 
size of the basis vectors after the reduction has been completed. 

It  is not known whether S(B)  is bounded for all S2-reduced lattice bases of a 
given dimension n. Experimental  results obtained by running the new algorithm 
with random lattices of dimension 30. . .80 make it seem unlikely that  there is a 
(small) polynomial bound for S(B)  for S2-reduced lattice bases. We also do not 
know a bound for the number of different S2-reduced bases of a lattice of a given 
dimension. 

The new algorithm for S2-reduction can also combined with an exhaustive 
search procedure (see e. g. [8]) to find the shortest nonzero vector in a lattice. The 
computat ional  problem of finding a reduced basis of a general lattice in the sense of 
Korkine and Zolotarev is polynomial t ime equivalent to the problem of finding the 
shortest nonzero vector in a general lattice, see [5] or [11] for details. The above 
procedure can easily be extended to an algorithm which computes a reduced lattice 
basis in the sense of Korkine and Zolotarev. Some possible variations of the new 
reduction algorithm will be discussed in section 6. 

In section 7 we discuss some practical results obtained with the algorithm for 
S2-reduction. The new algorithm works well in practice for lattices of dimension 
up to 30; there it will usually compute very short basis vectors. For dimension >__ 35 
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the basis vectors found by the new algorithm are much larger than the basis vectors 
obtained by the algorithm of Lovs The algorithm has also been implemented by 
LaMacchia, see [13]. He found a similar behaviour of the new algorithm and also 
observed that  the new algorithm is faster than the algorithm of Lov~z.  

The procedure for Korkine-Zolotarev reduction works well for lattices of di- 
mension up to 25. With some refinements of the original procedure, a Korkine- 
Zolotarev reduced basis for most lattices of dimension 30 can be computed within 
only a few minutes of computer time. 

Lattice basis reduction is a fundamental technique for solving various types of 
combinatorial problems such as integer programming [8], [15], factoring polynomials 
[14], finding integer relations [6] and factoring integers [18]. Most recently lattice 
reduction techniques have been succesfully applied to subset sum problems, see [2], 
[4], [12], [13]. In most of these applications the algorithms for lattice reduction are 
extensions or improved versions of the algorithm of Lov~z;  see Schnorr [16], [17] 
for efficient lattice reduction algorithms. In [13] our new algorithm has also been 
applied to subset sum problems. 

2. G r a m - S c h m i d t  o r t h o g o n a l i z a t i o n  a n d  K o r k i n e - Z o l o t a r e v  reduction 

A nonsingular n • n-matrix B can be uniquely decomposed into a product B -- 
K .  H of an orthogonal matrix K and an upper triangular matrix H = (hi,j) with 
positive diagonal entries hi,i. 

For an ordered lattice basis B = [b l , . . . ,  bn] this means that  there is a uniquely 
defined orthogonal matrix K such that  the basis H = K -1 �9 B (which is equivalent 
to the basis B)  satisfies hi,i > O, hi,j = 0 for i > j .  Given a basis B the basis H can 
be computed as follows: 

First we compute the Gram-Schmidt  orthogonalized basis B = Jill, . . .  ,l~n] 
associated with B which is defined by: 

i - 1  

I~1 = b l ,  bi "~ b i  - ~ ]~i,j~)j, 2 < i < n; 
j=l  

Then we put  

bi'  1)j 
]~i,j  - -  ^ ^ 

bj �9 bj  
for i > j .  

^ ^ 

(Here bi/[bil denotes the i-th column vector of K.)  Let H := (hi,j) be the 
matrix defined by: 

0 if ' j  < i 

hi,j = I bi[ if j = i .  
#j,i" ]~)il i f j  > i 
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Then we have B = K.H,  K is an orthogonal matrix, (since the vectors 1~1,..., l~n 
are orthogonal,) and H is upper triangular. 

For simplicity we call H the Gram-Schmidt orthogonalization of the lattice 
basis B. 

We will now introduce the notion of lattice basis reduction in the sense of 
Korkine and Zolotarev (see [10]): 

Definition 1. A lattice basis B is Korkine-Zolotarev reduced if its Gram-Schmidt  
orthogonalization H satisfies the following conditions: 

1.1 The first basis vector h i  of H is the shortest nonzero vector in the lattice 
n 

hiZ generated by H. 
i = 1  

1.2 ]hl,il < �89 " lhl,ll for i =  2 , . . . ,n .  
1.3 If n > 1, the submatrix H2 of H which consists of the rows and columns 

2 , . . . ,  n of H defines a Korkine-Zolotarev reduced lattice basis of dimension 
n - - 1 .  

Each lattice has (at least) one Korkine-Zolotarev reduced basis. Korkine-- 
Zolotarev reduced bases are extensively studied in [11]. We take the following 
result from [11]: 

Theorem 2. For the Gram-Schmidt orthogonalization H of a Korkine--Zolotarev 
reduced lattice basis we have 

(hi,i) 2 > (hi, l)  2. i -1-1ni 

f o r i>  l. 

Proof. See [11], Proposition 4.2. | 

Since the concept of Korkine-Zolotarev reduction is recursive Theorem 2 im- 
mediately implies 

Corollary 3. For the Gram-Schmidt orthogonalization H of a Korkine-Zolotarev 
reduced lattice basis of dimension n we have 

hi,i/hj,j = exp(O((ln n) 2) 

for j > i. 

3 Unipotent  matrices 

Let N(n ,R)  be the group of upper triangular unipotent n x n-matrices, i. e., 
matrices A which satisfy ai,j = 0 for i > j and ai,i = 1. Let N(n,  •) be the subgroup 
of N (n ,R )  which integer entries ai,j. 

For any real matrix A let 

IIA[l~o = m~(lae,jl} 
z,3 
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and for any invertible real matrix A with inverse A -1 let 

S'(A) = max{IIAIIcc, IIA -I IIoo}. 

Given a matrix A E N(n,~), we are interested in a transformation matrix T E 
N(n,Z) such that SI(A �9 T) becomes as small as possible. 
Definition 4. For all n E N let 

S(n)= sup ~ inf {S'(A �9 T)]-) 
A E N ( n , R )  I, T E N ( n , Z )  

Remnrk. For a fixed matrix A E N(n, ]~) we can always find a To E N(n, Z) such 
that S ' (A.  To) is minimal in the set {S'(A. T)IT E N(n,Z)}. 

To see this, note that IITIIc~ < n .  IIA-11]c~ �9 IIATIicc and hence S'(AT) _> 
IIATII~ > IITII~. (CA) -1, where CA is the positive number n. IIA-1IIc~. Since the 
infimum of the set {S'(A. T)IT E N(n,Z)} is at most S'(A) we obtain it as the 
minimum of the finite set {S ' (A.T)IT E g(  n, Z), ]lTiIc~ < S'(A)'cA}. This implies 
that for every matrix A E N(n,]~) there is a transformation matrix T E N(n,Z) 
such that S'(A. T) ~ S(n) holds (with equality in the worst case). 

In [7] it is shown S(n) = exp(O(nl/3)). We will now show S(n) = 
exp(O((lnn)2)). This result follows immediately from the following proposition: 

Proposition 5. S(2. n) < S(n). max{l, ~}. 

Proof. We may assume n > 2. Let A E N(2n,]R). We decompose A into four 
n • n-submatrices as follows: 

A=(PO Ql=t) withP, I:tEN(n,]R) and Qbeinganynxn-matrix. 
Since P and R belong to N(n,]~), there exist n• T and U in N(n,Z) 

such that each of the values fJPTII~,Jf(PT)-IJI~,IfRUIJ~ and II(RU)-lll~ is at 
most S(n). 

For any x E ]~ let Lx 1 be the value of x rounded to the nearest integer (with 
Ix+ �89 - -x  for x E Z). Given any matrix A = (hi,j), we write [A 1 for the matrix 
([ai,j~), where each entry of A is rounded to the nearest integer. 

Define 

V : = (  T0 - T [ ( P T ) - I Q U 1 ) u  

Clearly, V belongs to N(2n,Z). We show that both, IiAV]Ioo and II(AV)-III~ 
are at most �89 S(n). 

To this end, define W := ( P T ) - I Q U -  [ (PT)- IQU1.  So [IWlloc < �89 
Moreover, 

AV = (PT PTW 
\ 0 Ru ] 

and hence 

(AV)-I = ((PT0)-I -W(RU)-I 
(av)-i ]" 
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Since IIPTItoc < S(n) ,  IlRUIIoc <_ S(n) ,  and []Wlloc <_ �89 it follows that  
[IAVHoc < �89 S(n) .  Similarly, since I}(PT)-I[Ioc <_ S(n) ,  [](RU)-ll[oo < S(n) ,  

and IlWll~ < �89 it follows that  II(AV)-ll}oc < �89 S(n) .  I 

Proposition 5 immediately implies: 

Theorem 6. 
S(n)  = exp(O((ln n)2)) 

Remark. Given an n x n-matrix A E N(n,]~),  the number of arithmetic operations 
for finding a transformation matrix T E N(n,Z)  with S ' (A .  T) = exp(O((lnn)2)) 
can be bounded by O(n3). 

4. P r o o f  of  t h e  m a i n  t h e o r e m  

Theorem 7. For every lattice L there is a basis B = [bl , . . .  ,bn] with reciprocal 
basis B* = [b~,... ,  b~] which satisfies 

Ibil �9 Ib*l < exp(c2. (Inn) 2) 

for i = 1,...  ,n and c2 fixed and independent of  n. 

Proof. The theorem is a simple consequence of Theorem 6 and Corollary 3. The 
proof is along the lines of [7], section 4. 

Given a lattice L we start with a Korkine-Zolotarev reduced basis B of L. Let 
H be the Gram-Schmidt orthogonalization of B. Then we have B = K -  H,  where 
K is orthogonal and H is an upper triangular matrix. Since H is upper triangular, 
it can be decomposed into a diagonal matrix D with di,i = hi,i and a unipotent 
matrix A E N(n,R):  

H - b . A .  
By definition of S(n)  there is a tranformation matrix T with S ' (A.  T) < S(n) .  

Let t3 = B .  T, ITt = H .  T, A = A . T .  Then t3 is the desired reduced basis of the 
lattice. So we have 

~! = K . H . T = K . D . A ,  S(~k) < S(n) ,  hi,i = hi,i = di,i. 

Let l~l,...,l~n be the basis vectors of 13 and let i~ , . . . , l~* be the basis vectors 

of the reciprocal basis t3" of t3. Define A* := ( i - 1 ) T ,  I:I* := (I:I-1) T. Then we 
have ]lA*l]oc -- IIA-111~ <_ S(n); and ]3" -- K .  D - 1 .  A.* = K .  I:I* holds for the 
reciprocal basis B* of t3. Let (hi,j), (5i,j) and (5~,j) be the entries of the matrices 

I=I, .~ and A*, respectively. 
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For i = 1,. . .  ,n we have: 

Igd 2. If, l 2 = If il 2 �9 If ;I 2 
i / ~ ,  \ 2  

j = l  k = l  \hk,k] 

hj,j  ~* )2 
=- ~ " (Ctj,i " k,i 

j = l k = l  hk,k 

max'% 
- <>J 1 J 
= n 2 . exp(O(( lnn)2) ) .  (,..q(n)) 4 

- = exp(O((ln n)2)) 

(since I3 = K .  I2I, K orthogonal) 

(since 5j,i = 5~, i = 0 for j > i > k) 

(note that  tzi, i = hi,i) 

(by definition of S(n ) )  

(by Corollary 3) 

(by Theorem 6) | 

Remark.  It  is not known whether the bound for S(A)  stated in the main theorem 
is sharp or whether it could be improved to a bound which is polynomial in the 
dimension of the lattice. Note that  the bound in theorem 7 is basically n 2 multiplied 
by a constant power of the product of the bounds in theorem 2 and 6. Therefore it 
would be of great interest to improve the bounds in the theorem 2 and 6. 

5. A n e w  c o n c e p t  o f  l a t t i c e  bas i s  r e d u c t i o n  

In this section we propose some new kinds of lattice basis reduction and 
an algorithm to compute one of them. The algorithm works directly with the 
symmetric  matr ix  A = B T.  B which is associated to the lattice basis B and with 
the inverse A -1  of A. The goal of the new algorithm is the simultaneous size 
reduction of the diagonal elements of the matr ix  A and its inverse A -1.  

The quadratic form associated with a lattice basis 

To each lattice basis B = [b l , . . . , bn ]  there is the associated positive definite 
~--~n 2 

quadratic form A which maps i = [ l l , . . . ,An]  E Z n onto . ~ _ l i b  i = I T B T B A .  

This quadratic form will be identified with the symmetric  matr ix  A = B T .B.  (Here 

the basis vectors b i are the column vectors of B,  and B T is the transposed matr ix  
of B). The inverse A -1 of A is also positive definite and symmetric.  If  A is a 
symmetric  matrix,  we will write a.*. for the entry of the matr ix  A -1  at row i, %J 
column j .  Then we have ai,i = [bil 2 and ail i = ]b*[ 2 for the diagonal elements of 

A and A -1 .  The basis t ransformation B --~ B .  T,  T E S L n ( Z )  corresponds to the 
t ransformation A--* T T .  A - T  of the associated quadratic form A. All quadratic 
forms considered in this paper  will be positive definite. 
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S-Reduction 

For any quadratic form A = (hi,j) with inverse A - l =  (a* j) we define: 

n 

S(A) = a* 
i--1 

A lattice basis and its associated quadratic form A will be called S-reduced if 
S(A) < S ( T  T.  A - T )  holds for all T E SLn(Z). 

Theorem 7 immediately implies: 
Every S-reduced quadratic form A satisfies S ( A ) ~  exp(O((lnn)2)).  

Successive min~]ma 

We will now introduce the concept of successive minima of a lattice (see e. g. 
[5], chapter 2), since this allows us to bound the coefficients of a quadratic form A 
and A -1 in terms of S(A).  

For any lattice L let hi(L) be the i-th successive minimum of the lattice defined 
by: 

;~i(L) -- inf{;~ >_ 0 : L contains (at least) i linearly independent 

vectors b , ;  ~ = 1 , . . . , i  with Ibvl < ;~}. 

If B is a basis of the lattice L, define hi(B) :-- ;~i(L). If K is any orthogonal 
nxn -ma t r ix  and T E SLn(Z) we have s  = hi(B).  For any positive definite 

quadratic form A with A = B T �9 B we define hi(A) := )~i(B). (This definition 
is consistent, since B T B  = I~TI3 implies ( t3B-1)  -1 = ( t3B-1)  T and hence the 
matrix K := I~B -1 satisfying t3 - K .  B is orthogonal). The successive minima of 

a quadratic form are invariant under SLn(Z) transformations; i. e. h i ( T T A T )  = 
hi (A ) holds for any positive definite quadratic form A and T e SLn(Z). 

The following theorem bounds the size of the coefficients of a positive definite 
quadratic form A and its inverse A -1 in terms of S(A)  and hi(A): 

Theorem 8. For every positive definite quadratic form A = (hi,j) with aj,j ~ ai,i for 
j > i we have: 

Ai(A) 2 <_ ai,i <_ S(A) 2" Ai(A) 2 

1 S(A) 
S(A).  < <_ 

Proof. hi(A) 2 _< ai,i follows immediately from the definition of the successive 

minima and a~,~ _< ai,i for ~ < i. Since ai,ia~, i <_ S(A),  we have a*.~,z <- S(A) 'Ai(A) -2" 

For j >_ i we have a~,j < S ( A ) .  (aj,j) -1 < S(A) - (a i , i )  -1 < S(A)  . (a*,i ). Hence 

(hn+ l_ i ( A- 1 ) )  2 < maxi<_j<_n(a~,j) < S(A) .a*,r Since ;~i(A). h n + l_ i (A  -1)  > 1 

(see e. g. [5], chapter 2, Theorem 5), it follows 1 < a* . .  hi(A) 2- S(A),  and hence 
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(A/(A)) -2- (S(A)) -1 _< a*,i. Finally, ai,i <_ S(A). (ai*i) -1 and 1 < a*,i. Ai(A) 2. S(A) 

imply ai, i ~_ S(A) 2. Ai(A) 2. | 

Corollary 9. For a fixed positive definite quadratic form A and a fixed positive real 
number x the number of  transformations T E S L n ( Z  ) with S(TTAT) < x is finite. 

Proof. The coefficients of the positive definite quadratic form A = (ai,j) can be 
n 

bounded by tr(A) := ~ ai,i; and the coefficients of the transformation matrix T --- 
i=1 

(ti,j) can be bounded by IIT[I := ~ t/2,j . It is not difficult to check that 
i,j=l 

t r (TTAT) _> (llTl[)2/tr(A -~) holds if T, A are n x n-matrices and A is positive 
definite and symmetric. W.l.o.g. we may assume aj,j >_ ai, i for j > i. 

From Theorem 8 we obtain 

T~ 

t r (TTAT) -< (S(TTAT))2 " E Ai(A)2 <- n.  (S(TTAT)) 2- An(A) 2 
i=1 

and 
n 

tr(A -1) _ S(A) .  E ( )~ i (A) ) -2  _< n.  S(A)-(AI(A))  -2. 
i=1 

This proves n. (S(TTAT)) 2. )~n(A) 2 >_ ]IT[[ 2. n -1 .  (/kl(A)) 2- (S(A)) -1 and hence 
S(TTAT) _> IITll �9 CA for the positive constant 

CA := n -1 "  ( S ( h ) )  - 1 / 2 "  - 1 .  

But the number of different transformations T 6 SLn(Z)  with IITH "CA_<X is 
finite. | 

$2 -reduction 

Given a lattice L, it is computationally difficult to find an g-reduced basis for 
this lattice. But there is a very simple algorithm which reduces the value S(A) by 
working on the 2 • 2 submatrices of A. We introduce the concept of S2-reduction 
for the presentation of this new algorithm�9 

Let T k be the SLn(Z)-matr ix  In + k.  Ei, j ,  where In is the identity matrix in i,k 
SLn(Z)  and Ei,j is the matrix with all entries zero except for the entry in row i, 
column j ,  which is one. The transformation B --, T/k,j.B (respectively, B --* B.T/k,j) 
is simple row (respectively, column) operation on the n • n-matrix B. 

A quadratic form A will be called S2-reduced if 

S(A) _< S(Tk, i �9 A k �9 

holds for all i , j ,  k E Z with 1 _< i r j _< n. 
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For any x E R let Ix] be the value of x rounded to the nearest integer as in 
section 3. 

The following simple algorithm performs an S2-reduction of the quadratic 
form A: 

Algorithm S2-reduction 

do while (A is not S2-reduced) 
{ 
choose i , j  such that  there is an integer k with 

then put 

s(A) < a .  T j); 

) A = Tk, i �9 A .  T .k- with k = - w  ai , j  
a*  ~,3 ~ j,j ai,i 

) 
Remarks. The quantity S(A) decreases after each reduction step of the algorithm, 

since for fixed i and j ,  the value S ( T k i . A . T k j ) i s  minimal for k = [ �89 ( _a~. _ ~ ~ ] \aj,j a,,,//" 
(Note that  T.  k �9 transforms a j , j  and a.*. as follows: Z~J Z~Z 

a j , j  ---* a j , j  q- 2 k  . a i , j  q- k 2 �9 ai , i ,  

�9 * - 2 k  * + k  2 * "  ai, i ---* ai, i �9 aj ,  i �9 a j , j ,  

all other diagonal elements of A and A -1 are left invariant.) 
Since the number of transformation matrices T E S L n ( Z )  with S (TTAT)  < S(T) 
is finite by corollary 9, the algorithm terminates after a finite number of steps. 

In the algorithm we did not specify the sequence in which i and j are updated 
to test the violation of the condition for S2-reduction. The easiest way to perform 
this testing sequence is lexicographically scanning through all pairs (i , j)  and then 
repeating this process until S(A) cannot be reduced any more. (This will be called 
the lazy  selection method.) But also other methods for selecting a pair ( i , j )  are 
possible. LaMacchia [13] suggested selecting the pair ( i , j )  which yields the greatest 
possible descent of S ( A )  in each reduction step. (This will be called the greedy  
selection method.) 

6. Va r i a t i ons  o f  t h e  new a l g o r i t h m  

Several variations of the algorithm for S2-reduction are possible. Instead of 

S(A) = ~-~ai,i" a*. . ~ ~ , i "  a*. . or 1-~ai,i .  a*. . ~,~ we can minimize e. g. the functions ~,z ~,z 

on the 2 • 2-submatrices of .4. and A -1. 
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These variations of the algorithm for S2-reduction have been tested experi- 
mentally; they did not have a noticeable effect on the size of the reduced basis 
vectors. 

Perhaps the most interesting variation of the new algorithm can be obtained 
by extending the notion of S2-reduction as follows: 

For 2 < m _< n, m �9 N let Tm,n be the set of n x n-matrices defined by: 

U I n +  A v . E k , i ~ [ l < _ i v , k < _ n ; i v r  iv, A v , k E Z  

Clearly, Tm,n C SLn(Z) ,  and a matr ix  in Tm,n has at most m -  1 nonzero 
entries off the main diagonal, and all these m - 1 entries must occur in the same 
row or in the same column of the matrix.  

A positive definite symmetric  n x n-matr ix  will be called Sin-reduced if S ( T  T.  
A .  T)  <_ S(A)  holds for all T �9 Tm,n. An Sin-reduced matr ix  is also Sm,-reduced 
for m~< m, so tha t  we obtain a hierarchy of reduction algorithms for m - - 2 , . . .  ,n. 

In practice it turns out that  S3-reduction can still be performed within in a 
reasonable amount  of time. But an S3-reduction step should be performed only on 
a matr ix  for which no further S2-reduction steps are possible. We briefly state the 
formulae for an S3-reduction step of an S2-reduced matrix. 

Consider the t ransformation matr ix  T := In + Ai �9 Ei, k + )~j �9 Ej, k for fixed 
different values i , j ,  k �9 N and variable integers )~i, )~j. (For a complete S3-reduction 
we must also consider matrices of type In--b)~i. Ek,i-b )~j'Ek,j but this case is similar 
to the above one and it will not be investigated here.) 

The transformation A ~ T T.  A .  T changes no entries in the main diagonal of 
A or A -1  apar t  from the entries ak,k, a*.:,, and aj,j.* �9 

2 ak,k ~ ak,k -b 2,kiai,k + ~2ai,i + 2.,kjaj, k --b .,kjaj,j -~ 2)~i)~jai, j 
2 �9 

a*v,v --* a*v,v - 2Ava*,k + )~vak,k; v = i , j .  

For A(~i ,Aj)  :---- S ( T  T �9 A .  T)  - S(A)  we obtain: 

�9 2 
A(~i,  ~j) = 2a~,k ()~2ai,i + )~jaj,j + )~i)~jai,j - )~iai,ixi - )~jaj,jxj); 

av, k av,k 
Xv -- a* , ~---- i , j .  

k,k av,v 

Note tha t  Ix,,] <_ 1, v = i , j  holds for an S2-reduced matr ix  A and (ai,j) 2 < 
ai , i .aj , j  holds since A is positive definite. We will assume aj,j >_ai,i otherwise the 
role of i and j must be exchanged. 

We have to find a pair ()~i,Aj) C Z 2 which minimizes A(A/,Aj) under the above 

conditions�9 I t  turns out tha t  one of pairs (0,0) or ( [ � 8 9 1 8 9  ,s) ,  with 
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s = 1 for xj  >_ 0 and s -- -1  otherwise, is always an optimal solution for (Ai,Aj). 
Furthermore, (0,0) is always optimal if Ixj[ <_ �89 and Ixil + Ixjl < 1 hold. 

When an S2-reduced matrix is tested for being S3-reduced, O(n 3) triples 
( i , j ,k)  must be tested with the above formula. In most cases the number of 
necessary tests can be greatly reduced by a suitable arrangement of these triples. 
For a lattice of dimension 30... 40, the basis vectors after S3-reduction are usually 
much shorter than the basis vectors after S2-reduction. 

We can also consider transformations matrices T of type T = In -~ ~ )~iEi,k 

which have nonzero entries in a whole column (or matrices with nonzero entries 
in a whole row). This type of transformation is also used in the basis reduction 
algorithm of Dieter [3] and Knuth [9]. It turns out that the real optimal solutions for 
the )~i in the above matrix T are given by )~i = ai*k/a~,k. It is natural to conjecture 
that the choice )~i = [ai*k/a~,k7 leads to a solution which is almost optimal for 
integer values Ai. But with an implementation of this additional reduction step the 
author did not obtain significantly shorter basis vectors. 

7. P r a c t i c a l  r e s u l t s  o n  c o m p u t i n g  t h e  s h o r t e s t  l a t t i c e  v e c t o r  

The algorithm for S2-reduction has been implemented on a PC-AT (20 MHz, 
with coprocessor 80287) in floating point arithmetic for effectively finding the 
shortest vector in a lattice. The implementation runs with a speed of roughly 
130000 floating point operations per second. For dimension > 20 a procedure for 
S3-reduction has been added. S3-reduction is about three to four times slower than 
S2-reduction. 

The reduced basis computed by the new algorithm is then ordered by the size 
of the reciprocal basis vectors. Finally, the shortest vector of the lattice is computed 
with a simple exhaustive search procedure, as described in [8] and [9], without any 
further changes on the lattice basis. 

The algorithm has been tested with the Leech-lattice of dimension 24, (which 
is conjectured to be the densest lattice at dimension 24, see [1]). The run time of 
the above PC implementation for computing the shortest vector(s) of the Leech- 
lattice is approximately 15 minutes, where most of the running time is spent for the 
exhaustive search procedure. For a typica 1 lattice of dimension 24 (generated at 
random) the run time for computing the shortest vector is about 15 seconds. The 
algorithm has also been applied to the search for the shortest vector of lattices with 
dimension 30. Here in most cases the shortest vector could be computed within 5 
minutes. 

For larger dimensions (up to dimension 80), the shortest basis vector computed 
by the algorithm for $2-  or S3-reduction is much larger than the shortest non-zero 
vector of the lattice. 

LaMacchia [13] has independently tested the algorithm for S2-reduction. He 
observed that the lazy selection method needs roughly 2.5 times as many reduction 
steps as the greedy selection method (compare section 5). He found that the greedy 
selection method can be used with profit, if large integer arithmetic is used for 
the reduction steps, and floating point arithmetic is used for finding the optimal 
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reduction step. If  only floating point ari thmetic is used, the lazy approach is 
superior to the greedy approach. 

LaMacchia [13] also tested the S2-reduction algorithm with random bases of 
the cubic lattice (with s tandard basis In).  He observed that  the algorithm usually 
finds a s tandard basis for dimension < 31, but for dimension > 35 the algorithm 
halts at a local minimum. 
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