
Journal  o f  Classification 12:73-90 (1995) 

Comparing Resemblance Measures 

Vladimir  Batagelj  

University of Ljubljana 

Matevz  Bren 

University of Maribor 

Abstract: In the paper some types of equivalences over resemblance measures and 
some basic results about them are given. Based on induced partial orderings on the 
set of unordered pairs of units a dissimilarity between two resemblance measures 
over finite sets of units can be defined. As an example, using this dissimilarity 
standard association coefficients between binary vectors are compared both 
theoretically and computationally. 
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1. Introduction 

In the first part  o f  the paper  we introduce some types of  equivalences 

over  resemblance  measures  and we present some general facts about  them. A 

dissimilari ty between two resemblance measures  over  finite set o f  units is 

defined. The  rest o f  the paper  is mainly devoted to applications of  this dis- 

similari ty for  compar ison  of  different association coefficients between binary 

vectors.  
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We believe that the notion of equivalence is a key to better understand- 
ing and organizing different resemblance measures encountered in applica- 
tions. It also provides a framework to study the invariance and stability prob- 
lems in data analysis: for which resemblance measures will a given algorithm 
produce the same or similar results? 

2. Resemblance Measure 

Let E be a set of units (objects, OTUs, cases, individuals,...). Quantita- 
tively, we describe the resemblance (association, similarity) between units by 
a function (resemblance measure) 

r : (X,Y) ---> JR 

which assigns to each pair of units X, Y ~ E a real number. Several examples 
of resemblances for different types of units can be found in any book on data 
analysis and related topics (Sheath and Sokal 1973; Anderberg 1973; Lerman 
1971; Sp~th 1977; Liebetrau 1983; Gower and Legendre 1986). 

For r to be a resemblance, we require that it is symmetric: 

P1. V X,Y  ~ E:  r(X,Y) = r(Y,X) 

and that it has either the property: 

P2.a V X, Y ~ E : r(X,X) <_ r(X, ]0, 

or the property: 

P2.b V X, Y ~ E : r(X,X) >_ r(X,Y). 

A resemblance which satisfies condition P2.a is called forward (straight) and 
denoted by d; it is called backward (reverse) and denoted by s if it satisfies 
condition P2.b. 

In the set of unordered pairs of units 

F-,2 = {[X,Y] : X, Y e E}, [X,Y] = [Y,X], 

a resemblance r induces the ordering <<r in the following way: 

IX, Y] <<r [U,V] = r(X,Y) < r(U,V).  

The unordered pair [X,Y] is in relation <<r with unordered pair [U,V] when- 
ever X and Y are closer (with respect to resemblance r) to each other than U 
and V. 

The relation <<r is a strict partial order. On the basis of this ordering 
we can define the notion of equivalent resemblances. Resemblances r and s 
are (order) equivalent, r =- s, iff: <<r = <<s or <<r = <<s 1- It is easy to verify 
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that = is an equivalence relation. Also: 

Theorem 1. Let f :  r(E x E) --~/~ be a strictly increasing~decreasing func- 
tion and r a resemblance. Then 

s(X,Y)  =f(r(X,Y)) forallX, Ye E 

is also a resemblance and s --- r. 

And conversely: Let r and s be resemblances and r = s. Then the func- 
tion f : r(E • E) ---> !r which is defined by 

f ( t )  = s(X,Y),  for t = r(X,Y) 

is well-defined, strictly increasing~decreasing and s( X, Y) = f (  r(X, Y) ) holds. 

Proof. The first part of the theorem is trivial, so let us prove only the second 
part. Let r and s be resemblances and r = s. From the definition of order 
equivalence we get 

V X, Y,U,V ~ E : (r(X,Y) = r(U,V) r s(X,Y)  = s (U,V)) .  

Therefore, since 

r(X,Y)  = r(U,V) = t ==> s(X,Y) = f ( r (X ,Y) )  =f ( t )  = f ( r (U,V))  = s(U,V)  

the function f : r(E x E) --->/~ is well-defined by 

f ( t )  = s (X ,Y ) ,  for t = r (X ,Y) .  

To prove the strict monotonicity of f, let us choose any two real numbers t, 
w ~ r ( E x E ) .  Then there exist X , Y , U , V ~  E such that t = r(X,Y) and 
w = r(U,V).  Suppose that r and s are of the same type. Then we have 

t < w r r(X,Y) < r(U,V) :=~ s(X,Y) < s(U,V) r < f (w) .  

Function f is strictly increasing. In the same way we can see that in the case 
when r and s are of different type the function f i s  strictly decreasing. �9 

An important consequence of this theorem is that every backward 
resemblance measure s can always be transformed by d(X, Y) = - s ( X , Y )  into 
an order equivalent forward resemblance measure d. Therefore in the follow- 
ing we can limit our discussion to forward resemblances. 

Other types of equivalences can also be defined on E2: 
Resemblances r and s are weakly equivalent, r = s, iff 

V X, Y,U,V ~ E:  (r(X,Y) = r(U,V) r s(X,Y)  = s (U,V)) .  

It is easy to verify that = is also an equivalence relation and = c --. 
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For a given resemblance r and 0 < e ~ JR we can define an open ball 

Kr(X,E) = {Y�9  E:  I r ( X , Y ) - r ( X , X ) I  <E}.  

Using it, we can introduce some types of refinement relations <: 
topological 

r <t s =- V X  ~ E V E  ~ JR+ 3~ ~JR+ : (Kr(X,~) c Ks(X,�9 

uniform topological 

r<uS - V~ �9 JR + q5 �9 V X  �9 E : (Kr(X,~) ~ Ks(X,�9 

For each type of refinement we can define a corresponding type of 
equivalence: Resemblances r and s are (uniformly) topologically equivalent, 
r - s, i ff(r  < s) ^ (s < r). It holds -u c -t.  

3. Dissimilarities 

Forward resemblances usually have the property: 

P3.a 3r* e R VX �9 E : r(X,X) = r*. 

In this case we can define a new resemblance d: d(X,Y) = r(X,Y) - r*  which 
is order equivalent to r and has the properties: 

R1. VX, Y E E:d(X,Y)>__0; 
R2. VX e E : d(X,X) = 0; 
R3. VX, Y � 9  E : d(X,Y) = d(Y,X). 

A resemblance d satisfying properties R1, R2 and R3 is called a dissimilarity. 
Many data analysis algorithms deal with dissimilarities. 

For some dissimilarities, additional properties hold: 

R4. eveness: 
d(X,Y) = 0 ~ ~/Z : d(X,Z) = d(Y,Z); 

R5. definiteness: 
d(X,Y) = 0 ~ X  = Y; 

R6. triangle inequality: 
d(X,Y) < d(X,Z) + d(Z,Y); 

R7. ultrametric inequality: 
d(X,Y) < max (d(X,Z),d(Z,Y)); 

R8. Buneman' s inequality or four-points condition: 
d(X,Y) + d(U,V) < max (d(X,U) + d(Y,V),d(X,V) + d(Y,U)); 

R9. translation invariance: Let (E, +) be a group 
d(X,Y) = d(X + Z,Y + Z). 

These properties are related in the following way: R7 ~ R6 ~ R4 ~ R5 and 
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R8 ~ R6. Dissimilarity d which has also the properties R5 and R6 is called a 
d i s t a n c e .  Monotone hierarchical clustering algorithms transform dissimilari- 
ties into ultrametric dissimilarities. Dissimilarities satisfying Buneman's ine- 
quality are t r ee  d i s t a n c e s  - -  distances between units are the shortest path 
lengths in some tree (Batagelj, Pisanski and Simoes-Pereira 1990; Bandelt 
1990). 

When the space of units E is finite we can define a dissimilarity 
between resemblances r and s as follows (Lerman 1971): 

D ( r , s )  = 

---L--1 1 <<r ~ <<s I r and s are both forward or both backward; 
IE 2 12 

1 <<r fg<<sl i otherwise; 
IE212 

where �9 denotes the symmetric difference of sets A ~ B - (A u B) \ ( A n  B). 
Therefore the dissimilarity D ( r , s )  equals to the number of pairs of pairs that 
are ordered differently by r and s, normalized by the total number of pairs of 
pairs. 

Resemblance D thus defined has properties P2a, R1, R2 and R3; there- 
fore D is a dissimilarity. D has also properties R4, R6 and: 

D ( r , s )  = 0 r r =- s . 

Therefore D is a distance over order equivalence classes set of resemblances. 
Dissimilarities usually take values in the interval [0,1] or in the interval 

[0,oo]. They can be transformed one into the other by mappings: 

d : [0 ,1]  [0,oo] 
1 - d  

and 

d 
: [o, 1 ] ,  

l + d  

or in the case dma x < oo by 

d 
- -  : [0,dmax] --~ [0,1]. 
dmax 

To transform distance into distance we often use the mappings: 

log (1 + d), min (1,d) and d r, 0 < r < 1 .  

Not all resemblances are dissimilarities. For example, the correlation 
coefficient has the interval [1,- 1] as its range. We can transform it to the 
interval [0,1] by mappings: 
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l ( l _ d ) ,  ~ / 1 - d  2 1 - 1 d l  ~ ~ . . .  

When applying these transformations to a measure d we wish that the 
nice properties of  d were preserved. In this respect the following propositions 
should be mentioned: 

Proposition 2. Let d be a dissimilarity on E and let a mapping 
f "  d(E • E) ---) ]R~ has the property f(O) = O, then d'(X, Y) = f (d(X,  II)) is also 
a dissimilarity. I f f i s  also injective then d" = d. 

Proposition 3. Let d be a distance on E and let the mapping f : d(E x E) --~ ]R 
has the properties: 

(a) f ( x )  = 0 r x = O, 
(b) x < y ~ f ( x )  < f(y),  
(c) f ( x  + y) < f (x )  + f(y),  

then d'(X, Y) = f(d(X,  Y)) is also a distance and d" =- d. 

It is easy to verify that all concave functions have also the sub-additivity pro- 
perty (c). 

The following concave functions satisfy the last theorem: 

(a) f ( x )  = txx, a > O, 
(b) f ( x )  = log (1 + x), x _> O, 

x 
,x>_0 ,  (c) f ( x ) -  l + x 

(d) f ( x )  = min (1,x), 
(e) f ( x )  = x a, 0 < a < 1, 
(f) f ( x )  = arcsin x, 0 < x < 1. 

P ropos i t ion  4. Let d : E x E --~1r has the property Ri, i = 1 . . . . .  7, then 

f (d) ,  f ~ (a) - (f) also has this property. 

From the theory of  metric spaces we know for example: 

Proposition 5. Let E be a finite dimensional vector space over 1~ or tiT. Then 
any two translation invariant distances over E are topologically equivalent. 

Some operations preserve properties Ri, i = 1 . . . . .  7: 

Proposition 6. Letr_ ~ : E x E --)/~ and d 2 " E x E --) I~ have property Ri, 

then dl  +p dE = P~[d~ + d~ also has property Ri, i = 1 . . . . .  5,7 for  p > 0 
and also has property R6 for  p > 1. 
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Proposition 7. Let  d l  �9 E1 x E1 ---)R and d2 �9 E2 x F_~ ~ R have property Ri, 

then (d 1 +p d2) ( (X I ,X2 ) , (Y I ,Y2 ) )  = P ~ d I ( X I , Y I )  p + d2(X2,Y2)  p also has 
property Ri, i = 1 . . . .  ,5,7 for  p > O and also has property R6  for  p > 1 over 

El x E 2 .  

dl +1 d2 is a distance iff d l +p d2 is a distance for  some p > 1. 

4. Resemblances on Binary Vectors 

In the case when all the m properties measured on each unit are of 
presence/absence type, a description of an unit X has the form 
X = [xl ,x2  . . . . .  xm], xi ~ B = {0,1}, where xi = 1, if unit X has the i-th pro- 
perty, and x i = 0, if X lacks the i-th property, 1 < i < m. 

With_XY we denote the scalar product XY_= Z~'=I xiYi of units X , Y  ~ E, 

and with X the complementary vector of X : X = 1 - X  = [1 -x i ] .  It holds 

X = X. Now, for any two units X , Y  e E, we define counters: 

a = XY - numbers of properties which X and Y share, 
b = _XY - numbers of properties which X has and Y lacks, 
c = X_YY - numbers of properties which Y has and X lacks, 
d = X Y  - numbers of properties which both X and Y lack, 

where a + b + c + d = m, and with them several resemblances on binary vec- 
tors (see Table 1 Lerman 1971; Hubfilek 1982; Liebetrau 1983; Gower and 
Legendre 1986; Baulieu 1989). We assume here that all properties are of the 
same importance. 

4.1 Order Equivalent Association Coefficients 

Gower and Legendre (1986) introduced two families of similarities 

a + d  a 
S O = and To = , 

a + d + O ( b  + c )  a +O(b + c )  

where 0 > 0to  avoid negative values. So s2 = S1, s3 = $2, s4 = 2S1 - 1, and 
s6 = T l , s 8  = T1/2, s9 = T2. See Table 1 for the meaning ofsi.  

1 
Functions f ( x ) -  - -  and 0(x)= 0x are strictly de/increasing and 

l + x  

since S o = f � 9  by Theorem 1, we have for every 0: 
a + d  

b + c  b + c  
So = - -  - S. Also To --- - -  - T. Therefore (Gower and Legendre 

a + d  a 
1986) for every 0,7 > 0: So = S~, and T o = T. t. 
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Table 1: 
Association Coefficients 

measure definition range 
Russel and Rao (1940) sl --~ [1, O] 

i n  

Kendall, Sokal-Michener (1958) s2 ~+d [1,0] 
rtL 

~+" [1,01 Rogers and Tanimoto (1960) s3 m+b+c 

Itamann (1961) s4 a+a-b-c [1,--1] 
w% 

Sokal &Sneath  (1963), un31, S s 5 b-4-c [0, c~] a+d 
Jaccard (1900) 86 a+-~+e [1, O] 
Kulczynski (1927), T -I s7 ~c [c~, 01 
Dice (1945), Czekanowski (1913) ss a+~(-~+c) [1,0] 

SokM and Sheath 39 a+2~'~y [1,0] 

I (~ a_~__) [ I ,0]  Kulczynski slo ~(~-T~ + ~+~ 
| a a Sokal &Sneath (1963), un4 31, ~(~-~-~ + ~-~ + ~-~ + ~+c) [1,01 

Q0 3,2 5 [0, ool 
v'z~-r [1,-11 Yule (1912), ca 313 

~d-bc [1,-11 Yule (1927), Q 3 1 4  

- bc - sls ~ [0, i] 
a Driver & Kroeber (1932), Ochiai (1957) sis ~ [1,0] 

od [1,ol Sokal &Sneath (1963), uns 8 1 7  ~/(a+b)(a+c)(d+b)(d+c) 

ad-bc [1 , - I ]  Pearson, r 8 1 8  ~/(.+b)(.+~)(d+b)(a+c) 

ai-v~ [1,01 Baroni-Urbani, Buser (1976), S** s19 ,~+b+c+./'~ 

Braun-Blanquet (1932) 32o m~x(.~-b,~+0 [1,0] 

Simpson (1943) s21 min(.~b,~+c) [1,0] 

4(ad-bc) [1, --1] Michael (1920) 322 

class 

S 

S 

S 

S 
T 
T 

T 

T 

Q 
Q 

Q 

We have: 32 =- S3 = S4 ------- S, s 6 = s 7 --" s 8 -- s 9 -= T, and 
S 13 ----- S 14 -= Qo-  These results were obtained independently also by Beninel 
(1987). 

4.2 Indeterminacy Problem 

Surprisingly little attention is given in the literature to the problem of 
the values of association coefficients in the case of indeterminacy (expres- 

0 sions of the form -'~). Also in computer programs it is ignored (Anderberg 

1973) or reported as an error (Jambu and Lebeaux 1983). 
In some cases this problem can be resolved by excluding disturbing 

units from the set of units E. For example: zero vector in the case of Jaccard 
coefficient. 
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In this paper we propose an alternative solution - -  to eliminate the 

indeterminacies by appropriately defining values in critical cases. This solu- 
tion substantially simplifies our study and also permits writing robust com- 
puter programs (which can still produce a warning message in the indeter- 
minate cases) for  calculation of  association coefficients. 

We define the Jaccard 's  coefficient by the expression 

$6 = I 1 d = m  

a otherwise 
a + b + c  

thus ensuring s 6 ( X , X  ) = 1. 
minate cases for  s8 and s9. 

To preserve the monotonic connection 
1 

Jaccard 's  coefficients T = - -  - 1 we set 

In the same way we resolve also the indeter- 

Let  us denote 

between 

$6 

0 a = O , d = m  
s~ 1 = T =  a = O , d < m  

+ c otherwise 
a 

_ - - - L - -  d 

K x -  a + x  d + x  

We cover  the indeterminate cases by setting for x = b,c 

x = O ~ K x = K x = l  

Using these quantities we can express 

1 
S 10 = -~(Kb + Kc) 

1 Kb + K~) Sll = ~(Kb + Kc + 

s 16 = "~r-KbKc 

s 17 = qKbKcK'aKc 
f 

sl8 = ~ = I sly ad-bc  

! [ -~(a + b)(a + c)(d + b)(d + c) 

Kulczynski '  s and 

bc = 0  

otherwise 
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For the coefficients of type Q we set 

S l 2 = Q 0  = 11  c a d = b c  
[ a d  otherwise 

that implies by order equivalence s 13 = s 14 ---- 0 for ad = bc. 
For Baroni-Urbani's and Braun-Blanquet's coefficients we set 

sl9 = s20 = 1 whenever b + c = 0; for Simpson's coefficient s21 = 1 when- 
ever bc = O. 

4.3 Complementary Measures 

Let ~ denotes the resemblance complementary to s defined as 
- -  m 

s(X,Y)  = s(X,Y) foreach pairX, Y~ E.  

Since a(X,Y) = d(X,Y),b(X,Y) = c(X,Y) . . . . .  we have s~ = si for i = 2, 3, 4, 
5, 11, 12, 13, 14, 15, 17, 18, 22. We shall call such measures selfcomplemen- 

tary. 
Note, that for any property L ( P1, P2a,b, P3a, R1-R8) defined in previ- 

ous section, it holds: Resemblance measure s has the property L iff s has the 
property L. 

In the space of units E = B 'n we shall prove the following statements 
about dissimilarity D introduced in section 3: 

~ m  

Statement 8. For any pair o f  resemblances p and r it holds D(p,r)  = D(p,r). 

Proof. Let p and r denote resemblance of the same kind (otherwise we can 
t_ake - r instead of r, because Dfp, r) = D ( p , -  r)) and t = [X,Y], w = [U,V] 
t = IX, Y], w = [U,V]_ Inu, n_ ediate consequences of the definition of resem- 
blance p are p(t)  = p(t) ,p(t)  = p(t)  .... 

Let us show, that (t,w) ~ <<p �9 <<r r (t,w) ~ <<~ ~9 <<7 holds: 

(~,w) ~ <<~ ~ <<T ~ (/S(t) < p(w))_'~(r(t) r(w)) r 

r (p(t) < p(w))  v__ (r(t) < r(w)) r (t,w) ~ <<p ~) <<r. 

Since the mapping X ---) Xis a bijection on E = ]Bm we have: 

[ < < p  (~<<r  ] = I < < ~ < < 7  I �9 

Sta tement  9. Let p be any resemblance on E and r a resemblance defined by 
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r(X,Y)  = r , 

where funct ion ~: •2 ___> R satisfies conditions: 

a < b ^ c < d ~ qJ(a,c) < ~(b,d) 

a <_ b ^ c < d ~ r  <_ r  ; 

then 

D(p , r )  + D(r ,p)  = D ( p , p ) .  

Proof. Evidently resemblance r is of the same type as p. 
We shall use the fact, that for any finite sets, A, B, C 

I A ~ B I  + I B ~ C I  = I A ~ C I  

i f fA  n C c B  c A  u C. 
In our case we must prove that <<p n <<~ c_ <<r ~- <<p ~ <<~. 
The first inclusion follows by the first condition on ~: 

( t ,w)  ~ <<p ~ <<~ r (if(t) < p ( w ) )  ^ (p(t)  < p ( w ) )  

::~ r < ~ (p (w) ,p (w) )  r r(t)  < r (w)  r ( t ,w) ~ <<r. 

For the second inclusion we must show the implication: 

(t ,w) ~ <<r r r(t) < r (w)  

(p(t)  < p ( w ) )  v (p(t)  < "p(w)) r ( t ,w) ~ <<p u <<~. 

Or instead, if we consider that P ~ Q - ~ Q  =~ ~P,  the equivalent implica- 
tion: 

(p(t)  >-p(w)) ^ (fi(t) >-p(w)) 

t~(p(w),p(w)) _< ~(p(t),p(t)) r r (w)  < r( t ) ,  

which follows by the second condition on ~. �9 

An immediate consequence of Statement 8 is: 

S ta tement  10. For any resemblance p on E and f o r  a selfcomplementary 
resemblance r, it holds: 

D(p , r )  = D( r , p ) .  

Two examples of the function r that satisfy the conditions of the 
Statement 9 are c(u + v) and (uv) c, for u,v >_ O, where c > 0 is a constant. 
Therefore, for r = c(p + P) and r = (p~)C, we have: 
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Table 2: 
Values of Association Coefficients s, and s,5 for m = 2 

81 815 

O0 

1 O0 0.0 0.0 0.0 0.0 
2 10 0.0 0.5 0.0 0.5 
3 O1 0.0 0.0 0.5 0.5 
4 11 0.0 0.5 0.5 1.0 

10 O1 11 O0 10 01 11 

0.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 
0.0 1.0 0.0 0.0 
0.0 0.0 0.0 0.0 

1 D ( p , p )  D(p,r) = D(r,p) = ~ 

4.4 Computat ional  Results 

For small values of m we can compute the dissimilarity D(p,q) between 
given resemblances p and q exactly by complete enumeration. In Table 2 
values of association coefficients Sl (Russel and Rao) and s 1 5 ( - b c - )  over 
binary vectors of length m = 2 are presented. In Table 3 a trace of computa- 
tion of D(Sl,S 15) is given. Since S l and s 15 are of different types we compare 
Sl and - s i s .  Note that whenever [X,Y]~[U,V] at most one of pairs 
([X, Y], [U, V]) and ([U, V], [X, Y]) contributes to dissimilarity D. 

From Table 3 we can see 

I E I = 2 m = 4 '  I E 2 1 - - [ I E I + I ]  = 1 0 2  

I <<s, I = 29 ,  I <<~-~ I = 9, I <<s, n <<s~s I = 5, I <<s, ~B <<~5 I = 28 

Therefore for m = 2 

D(sl,sls) = 
I<<s, �9 <<7~5 I 28 

- - -  - 0.28 
I E 2 1 2  100 

In Table 4 dissimilarities between (complementary) association 
coefficients are given for m = 6. Values are multiplied with 10000. From the 
table we can see many confirmations of the above statements: 

D(s6,s2) = D ( s 6 , s 2 )  = ~ D ( s 6 , s 6 )  , 

D(SlO,Sll) = D ( S l o , S l l )  = � 8 9  

D(s 16,S 17) = D ( S l 6 , S  17) = �89 16,S16); 

D(s 1,si) = D ( s l , s i ) , D ( s 6 , s i )  = D(-s6,si), D(s l o , s i )  = D(Slo,si), 
D(Sl6,Si) = D(-Sl6,Si),i = 2, 11, 14, 17, 18; 
D(si,sj) = D(si,sj) , D(si ,~)  = D(~,sj),  

(i,j) = (1,6),(1,10),(1,16),(6,10),(6,16),(10,16). 
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Table  3: 

T race  o f  Computa t ion  o f  D(st, Su) for  m = 2 

22 
24 
26 
28 
30 
32 
34 
36 
37 
39 
41 
43 
45 
47 
49 
51 
52 
54 
56 
58 
6O 
62 
64 

65 
67 
69 
71 
73 
75 
76 
78 
80 
82 
84 
85 
87 
89 
91 
92 
94 

96 
97 
99 

100 

k [X, Y] [U, V l 
1 [1, 1] [1, 1] 
3 [1, 1] [1, 2] 
5 [1, 1] [1, 3] 
7 [1, 1] [1,4] 
9 [1,1] [2, 2] 

11 [1, 1] [2, 3] 
13 [1, 11 [2, 4] 
15 [1, 1] [3, 3] 
17 [1,1] [3,4] 
19 [1, 1] [4, 4] 
20 [1,2] [1,2] 

[1, 2] [1, 3] 
[1, 2] [1,4] 
[1,2] [2,2] 
[1, 2] [2, 3] 
[1, 2] [2, 4] 
[1, 2] [3, 3] 
[1, 2] [3, 4] 
[1,2] [4,4] 
[1,3] [1,3] 
[1,3] [1,4] 
[1, 3] [2, 2] 
[1,a] [2,3] 
[1, 31 [2,41 
[1,3] [3,3] 
[1,31 [3,4] 
[1, 3] [4, 4] 
[1,4] [1,4] 
[1,4] [2,2] 
[1,4] [2, 3] 
[1,4] [2,4] 
[1,4] [3, 3] 
[1,4] [3,4] 
[1, 4] [4, 4] 
[2, 2] [2, 2] 
[2, 2] [2, 3] 
[2, 21 [2, 4] 
[2,21 [3,3] 
[2,2] [3,41 
[2, 2] [4,4] 
[2, 31 [2,3] 
[2, 3] [2, 4] 
[2, 3] [3, 3] 
[2, 3] [3, 4] 
[2, 3] [4, 4] 
[2,4] [2,4] 
[2,4] [3,31 
[2, 4] [3, 4] 
[2,4] [4,41 
[3,3] [3, 3] 
[3,31 [3,4] 
[3, 3] [4,4] 
[3,4] [3, 4] 
[3, 4] [4, 4] 
[4,4] [4,4] 

s~ (X, Y) 
o.o o.o o.o 
0.o o.o 0.o 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 1.0 1 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 1.0 1 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 1.0 1 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.0 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 0.5 1 0.0 
0.0 1.0 1 0.0 
0.5 0.5 0.0 
0.5 0.0 1 0.0 
0.5 0.5 0.0 
0.5 0.5 0.0 
0.5 0.5 0.0 
0.5 1.0 1 0.0 
0.0 0.0 -1.0 
0.0 0.5 1 -1.0 
0.0 0.5 1 -1.0 
0.0 0.5 1 -1.0 
0.0 1.0 1 -1.0 
0.5 0.5 0.0 
0.5 0.5 0.0 
0.5 0.5 0.0 
0.5 1.0 1 0.0 
0.5 0.5 0.0 
0.5 0.5 0.0 
0.5 1.0 1 0.0 
0.5 0.5 0.0 
0.5 1.0 1 0.0 
1.0 1.0 0.0 

29 

-sis(U, V) 
0.0 
0.0 
0.0 
0.0 
0.0 
-1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
-1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
-1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
-1.0 
0.0 
0.0 
0.0 
0.0 
~1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

1 

1 

5 28 
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Table 4: 
Dissimilarities between (Complementary) Association Coefficients 

32 
36 

~'6 
31 

310 

311 
316 

SIS 

317 

318 
314 

32 36 36 81 31 310 ~10 311 316 316 317 318 314 
O 1679 1679 2784 2784 1776 1776 1175 1826 1826 1538 1197 1859 

O 3357 1105 4463 749 3335 2001 289 3505 1803 1973 2311 
0 4463 1105 3335 749 2001 3505 289 1803 1973 2311 

O 5568 1676 4392 3036 1275 4610 2909 3013 3091 
0 4392 1676 3036 4610 1275 2909 3013 3091 

0 2828 1414 460 3143 1799 1472 1765 
0 1414 3143 460 1799 1472 1765 

0 1766 1766 1094 197 1026 
0 3403 1701 1738 2097 

0 1701 1738 2097 
0 897 945 

0 829 
0 

CLUSE - m i n i m u m  [0.00, 0.15] 

UB4 

Pearson 
Yule 
UB5 

SokaI-Michener 
Jaccard' 
Ochiai' 
Kulczynski' 
RusseI-Rao' 
Jaccard 
Ochiai 
Kulczynski 
RusseI-Rao 

Figure 1. Selfcomplementary association coefficients. 
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Table 5: 
Association Coefficients, Upper m = 6 / Lower m = 15 

31 

S2 
S6 

SlO 

S l l  

SI4 

816 

81"1 

S18 

/;19 
S20 
821 
S22 

Sl 82 a6 810 811 ~lt 815 316 $17 318 $19 820 S21 S22 
0 2784 1105 1676 3036 3091 3200 1275 2909 3013 1713 1082 2139 3039 

2948 0 1679 1776 1175 1859 1432 1826 1538 1197 1179 2068 2388 1275 
1076 1872 0 749 2001 2311 2508 289 1803 1973 607 628 1913 2060 
1306 1971 413 0 1414 1765 1813 460 1799 1472 1059 1377 1164 1559 
3069 889 2021 1819 0 1026 1083 1766 1094 197 1513 2513 1773 375 
3082 976 2051 1830 150 0 1154 2097 945 829 1818 2786 1476 880 
3150 912 2197 1886 726 724 0 2260 2087 1218 2205 3044 1073 1243 
1219 1941 224 189 1856 1888 2012 0 1701 1738 755 917 1624 1825 
3042 944 1969 1837 339 338 1062 1839 0 897 1196 2234 2409 1031 
3068 885 2020 1819 5 154 726 1855 339 0 1442 2447 1908 178 
1865 1103 780 940 1270 1311 1546 857 1193 1268 0 1042 2047 1542 
1204 2193 789 1202 2447 2492 2726 1013 2336 2445 1217 0 2541 2509 
1717 2290 1366 954 1908 1858 1716 1143 2060 1911 1558 2156 O 1957 
3070 921 2025 1825 132 265 729 1854 363 127 1281 2452 1921 0 

C L U S E  - m a x i m u m  [0.00, 0.34] 

Pearson 
Michael 
u n 4  

Yule 
UTI 5 

SokaI-Michener 
b c  - 

Simpson 
Jaccard 
Ochiai 
Kulczynski 
Baroni- Urbani 
Braun-Blanquet 
RusseI-Rao 

Figure  2. Assoc ia t ion  coefficients,  enumera t ion ,  m = 6. 

t 
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CLUSE - maximum [0.00, 0.33] 

Kulczynski 
Ochiai 
Jaccard 
Baroni-Urbani 
Simpson 
RusseI-Rao 
Braun-Blanquet 
Bn4  

Pearson 
Michael 
Yule 
Ul'I 5 

Soka[- Michener 
- b e -  

Figure 3. Association coefficients, Monte Carlo, m = 15. 

In the upper triangle of Table 5 dissimilarities between 14 selected associa- 
tion coefficients are given for m = 6. Since for order equivalent p and q, we 
have D(p,q) = 0 and D(p,s) = D(q,s), we considered in our study only one 
coefficient from each equivalence class (S,T, Q). 

For larger m we can obtain good approximations of D(p,q) by Monte 
Carlo method (m = 15, lower triangle of Table 5). We were repeating the 
Monte Carlo method until the results stabilized at the fourth decimal. We 
used 5 �9 106 runs. 

All three dissimilarity matrices are summarized by dendrograms 
presented in Figures 1, 2, and 3. Note that the three main clusters in Figure 1 
are: selfcomplementary coefficients, nonselfcomplementary coefficients and 
complementary coefficients to nonselfcomplementary coefficients. The top 
division in Figure 3 and 2 (with exception Simpson's coefficient) is again 
selfcomplementary/nonselfcomplementary coefficients. 

5. Conclusion 

We believe that further study of different types of equivalences of 
resemblances can give a better understanding of data analysis methods based 
on them and some guidelines for their (correct) applications. In this paper we 
presented only some special results in this direction. We expect that a more 
comprehensive and elaborate picture can be produced. 

Also some problems about dissimilarities between resemblances 
remain open. The most important is how to extend the dissimilarity D to 
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other types of resemblances; for example, to the case •m. 
For association coefficients we can pose the following questions: 

* What is a behavior of D(p,q) over E = B m when m ---) oo? We expect 
that for some coefficients p and q an explicit formula for D(p , q )  can 

be derived. 

�9 Other types of normalization of I <<p �9 ,~q I can be given. A dis- 
similarity, with the property that the upper bound in 0 < D(p ,q )  < 1 is 
attained, can be based on the solution of the (unsolved) problem 

max { I <<p @ <<q I :p ,q  ~ forward coefficients over E = B m }. 

Another interesting measure is given, for p and q of the same type, by 
the semidistance (Kaufmann 1975): 

D 2 ( P , q ) =  I <</,~<<q I 
] <<p k../<,(q ] 

and yet another  by 

D3(p ,q)  = 
max(I <<e\<<q I,I <<q\<<e I) 

max (I <<r I, I ~<~q l) 

What can be said about these dissimilarities? 
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