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ALGEBRAS GENERATED BY IDZMPOTENTS AND THE SYMBOL
CALCULUS FOR SINGULAR INTEGRAL CPERATORS

Steffen Roch and Bernd Silbermann

It is proved that in Banach algebras generated by Lwo
idempotents and, perhaps, by a certain flip operator the standard
identity F. is fulfilled. The maximsl ideal space of such
algebras is determined and the corresponding symbol is given.

By means of local techniques these results are applied to obtain
a. synbol celculus for singular integral operators with Carleman
shift (changing the orientation) in weighted Banach spaces.

0. INTRODUCTION

In the late sixties, the C*-algebra generated by two
idempotents p and ¢ when the gpectrum of pqp is the inter-
val [0,1] was studied by several authors from an operator theo-
retic point of view. We ouly mention the papers of P, Halmos [H]
and G+ K. Pedersen [Pe]. Perhaps, Re Go Douglas was the first
who recognized that these results combined with certain local
techniques lead to a symbol calculus for singular integral oper—
ators with piecewise continuous coefficients. 8. C. Power suc—
ceeded in applying such ideas to the study of Fredholm properties
of Hankel operabtors and Fourier integral operators with piecewise
continuous generating functions (cf. [P1 - P3]). Recently,
B. Silbermann [S] also utilized such ideas for describing the
C*-algebra generabted by Toeplitz and Hankel operators with piece=
wise quasicontinuous coefficients. Moreover, this approach imme-
diately yields a symbol for singular integral operators with
Carleman shift changing the orientation on the Hilbert space L2,
Note that questions of this kind were previously studied in IP-
spaces with Kvedelidze weight (in the case of piecewise continuous
coefficients) using gquite different methods. Here the pioneer work
of L. Z. Gohberg and N. Ya. Krupnik should be quoted (see [GK 2]),
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Sece alsc the paper of M. Costabel, who tried to simplify some
of Gohberg and Krupnik's arguments.
We shall show ‘that in the above mentioned C*-glgebra techhniques
the underlying C*-algebras can be replaced by Banach algebras and
we shall demonstrate how these results apply to the theory of
singular integral operators.
The paper is organized as followss Its first part deals with
Banach slgebras generated by two idempotent elements respective
by two idempotents and a certain flip element. LU turns
out that the results obtained are widely analogous to their C*-
algebra versions. On the other hand, the methods used here are
partially related to Krupnik's book [K] and are quite different
from the standard ones known from the C*-~theory.
In the second part we apply these results to determine a "local
symbol for the Fredholm property in Banach algebras generabted by
singular integral operators with piecewise continuous coefficients
and by a Carleman shift chenging the orientation. Then local
techniques will be employed to construct a "global" symbol. In
particular, we apply this approach to algebras of operators defi-
ned on the weighted Banach spaces 1PV | H%(Q) and LP(T,0).
4s far as we know for the first two of the mentioned spaces the
results seem to be newe.

1« STANDARD IDENTITIES AND MAXIMAYL, IDEALS
For the reader's convenience and to fix notations we

record some results from Krupnik's book [K].
Let ® be an algebra with unity e , GR 1its group of invertible
elements and M(R) the set of its two~sided maximal ideals.
Given aqyessyay € & define the standard polynomial (of order m)
by
Em(aq,...,am) = ogs (~1)°a0(1)...av(m) . (1)
pil

Herein §; denotes the symmetric group and (-’l)c refers to the
sign of The permutation o € Spe The algebra R is said to fulfil
the standard identity of order m (in that case we shall write

R € F) if F (a4yeee98;) = O for arbitrarily taken aqjee.,a €
€ R .
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THEOREM 1. Let R € F2n' Then

(a) for M € M(R) +the quotient algebra R®/M is isomorphic to
*L with some 1 = 1(M) < n ;
() if Ny 1is the canonical homomorphism & - R/M, if Iy is
the isomorphism #/M » €%, and if vy = §m,, then x € &
is in GR if and only if det v(x) £ O for all M € M(R);
(¢) the radical R(R) coincides with the intersection of all
two=-sided maximal ideals of R.

Let ;(R) (1=1,eseyn) stand for the set of all maximal ideals W
of & with R/MT €XN. TLet & >0, Xgyees,xye 8, MM (R),
and putb

ij,...,Xf,G(Mo) = {MeMl(R)‘”“M(Xk)“”uo(xk)”L

k= 1,-0-,1‘}.

<€,

(¢*)

The sets U <form an open neighborhood base of Mo‘ These neigh=
borhoods determine the so~called Gelfand topology on W(R®), which
is the coarsest topolo so thav for each x € R the function
smb x : M vy(x) € 01%%)X1(M) is continuous. Note that M(R)
provided with its Gelfand topology is Hausdorff but, in general,
not compact (see section 2).

THEOREM 2. Let R € an be a Banach algebra with
unity e and let € be a (closed) subalgebra lying in the center
of R. Then each maximal ideal in the Shilov boundary of € is
coutained in a certain two-sided maximal ideal of R.

If n=1, 1ees if R is a commutative Banach algebra, Theorem 2
is well-known. A proof for the commutative case is in [GRS], for
n > 1 only minor modifications of this proof are needed,

2. ALGEBRAS GENERATED BY TWO IDEMPOTENTS

Let B Dbe a Banach algebra with unity element e. If
there are elements 849e+0,8,€ 3. such that the algebra
alg,(a1seeeya,) of all finite sums of products of Bajyeseydy, 1is
dense in B , then we say that 8490900458, generate 3 and write
3 = alg(asseessan)e
Throughout this section let B = alg(e,pyaq) where p and g are
idempotents in 3, di.ese p? = p and q? = q. The following ob-
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servation is the basis for our objective to construct a matrix-
valued symbol which determines the invertibility in 8,

THEOREM 3. alg(e,p,q) € Fye

PROOF., By the continuity of the mapping
(8qs0eey80) ¥ Fu(@qyeregan) it suffices to show that Fa(a,,-..
eesy8s) = O for ay € algo(e,p,q). Bach a € algo(e,p,q) can
be written as

a = pEq(x)p + pE2(x)g + afs(x)p + afu(x)q (2)
+ Bsq + 563
where X i= pgp , xg = D fi are glgebraic polynomials in x
and Bs , Bg complex numbers. Hence, a 1s a linear combination
of the terms
o 0% 44 o

DXy PX'Q 5 QX P 5 9Xq 5 (for @ > 0), q and e (3)
Further, each a € % can be written as

a = pap + pa(e~p) + (e-plap + (e-p)a(e-p). (4)
Taking into account (3) and (4) it follows that each aEalgo(e,p,q)
is a linear combination of terms of the form e, A% i= pxgp ’
o o o
47 1= pxq(e-p) , AY 1= (e-p)ax'p , and 4% = (e-p)ax“q(e-p)
with o > =1,where we ddfine X = € .
The following table shows how to compute the products Ag . A%

AP
SN 4 A8 a5 I
A% P a et 0 0
Ag 0 o A%+B+1—A3+B+2 Agc+B+1_Aic+B+2
2% Feats AF*P 0 0
< o o g§+5+1~A§+B+2 A%+B+1~Af+5+2

Let 4; = {4y ¢+ @ > -1}, By the multilinearity of F, it suffi-
ces to verify that F,(ag,eesyas) = O if each a; belongs to
one of the A4;'s.

If two elements (say, a4 and a) lie in the same 4; then
Fu(B4yseeya4) = O Indeed, let for instance a4,a; € A4. Then
divide F, into the sum Y4 = Lz Wwhere L, is the sum of all

. ~4 -~ 3 .
products 2g(1) " Bo(4) with o (1)< ¢ '(2) and L, 1is the
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gum of all products with 0'1(1) > 0"1(2). Each product r =

= c(,i)...aU )¢ Y. corresponds with a produet T in )X, which
is obtgined from r by interchanging the elements a4 and aj.
We point out that » = p = O If the elements a4, and &, stand
in r side-by-side then r =T since a4, and a, commute.

If there is exactly one elemen?t (Say, as) standing in r between
a4 and a; then =0 and T =0 Zfor a,; € Ay (i > 1) (cp.
the table)s If as € A, then a4 , a, , as commube and, hence,
r =T = 0s Finally assume that there are two elements standing
between a4 and a; , and let b be their product. By the table,
b is in Ay or in A; - A, for some 1 2> 1. Thus, as in the
previous step, r = r = 0 , or the elements a4, b, @, commute
pairwise, and so T = T = O, Analogously the cases when a1,a2€Ai,
i>1, can be checked.

What remains to prove is that Fy(asssesyas) = O when a€ Ay

for i = 1,ese,4e In this case we obtain

Fu(B4582,83,85) = = 24828483 + 82843384 + 83248224 ~ 84838482
(note that the other 20 products occuring in (1) vanish), and an
easy compubtation yields the assertione
: REMARK. If p and g do not commute then
alg(e,pyqa) § Fs , as the example F3(p,q,e-p) = pg ~ qp shows.

By Theorem 11 there exists an at most 2x2 symbol on M(B)e Before
we explain the structure of M(8) and the explicit form of the
symbol we quote an elementary lemma which describes tThose matrices
in 02X2 which are idempotents

LEMMA 1. Let 4= (% 3)e ¢®2, The natrix 4 is
idempotent if and only if one of the following conditions is ful-
filleds

A= D, a=G . (5.1)
A=Q D, a=F D, 2= Y, (5.2)
a=@ D

with some b€ €, b4 0.
There exist a g $ O such that

a
4= X ety ama N o) (5.3)
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where |/~ stands for the main branch of the root function. The
proof is a straightforward computation.

Let (H1) denote the following hypothesis:
(H1) The spectrum c%(pqp) is connected and

{0,1} = Geg(P) = 03(‘1) E_GB(PQP> .

THEOREM 4 (&) If (H1) is fulfilled then M,(B)
consists of exactly four ideals. These are clos id(p,q),
clos id(pye-q), clos id(e-~p,q) and clos id(e-p,e~q), where
clos 14" stands for the smallest closed two-sided ideal in 3
generated by the elements quoted in parentheses.
(b) If M e Mp(B) then there exist an invertible matrix E €
€ 02 and a complex number a (both depending on M) such thab

(smb p)(i) s= B vy(p)E = (3 ) »

(smb g)(M) = E vy (q)E = ( 2 VatT=aj),
ja(T~a =g,

(smb e)(M) 3= E’qu(e)E = (g 2) .

PROOF. (a) If M € M,(B) then vy(p) and vy(q)
can take the values 0, 1 only, so that at most the four ideals
quoted exist.

Consider M = clos id(p,q) (Lse. vy(p) = vy(a) = 0)s First we
show that M 1is a proper ideal in Bs: Assume bthe contrary, le.c.
that e € M. By (2) we can represent e as

e = 1im p£{®)(x)p + p£88(x)g + f$(x)p + qefM(x)qr 88%)q .

Multiplying this equation from both sides by p gives

p = lim pf n)(x)p, where f(n) are polynomials im X = DPQpe

Thus, p € alg(pap).

By (#1), GB(p> = {0,1}s Let 2 be a disjoint union of two suf-
ficiently small open disks Do’ D, with O ¢€ Do' 1 € Dye The
theorem on the upper semiconbinuity of spectra in Banach algebras
(see [R], Theorem 10.20) involves that for each polynomial

f(x)€ alg(p q p) which is sufficieatly close to D, og(f(pqp)lgfl.
This is a contradiction since Og(pqp) was assumed to be connected,
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what implies the connectedness of Og(f(pqp)) by the spectral
mapplng theorem for polynomials. Hence, M 1is a proper ideals

It remains to prove that B/M = €1. Let Ty denote the canonical
homomorphism of 8 onto B/M. For a € alg (e,p,q) the iden-
tity (2) gives ny(a) = anM(e), and this immediately gives the
assertion since ny(e) # O.

(b) Let M € Mp(8)s The eigenvalues of the matrix vy(p)e €2%2
must be O and 1 since otherwise wy(p) = (8 8) or

vy(p) = (g 2) (cps (541) in Lemma 1), both contradicting

8/M = 02X2. Hence there is an invertible matrix D +transforming
vy(p) inbo its Jordan canonical form: D—1VM(p)D = (g g). If

D'qu(q)D were of the form (5.1) or (5.2) (see Lemma 1) this
would also contradict the fact that B/M ¥ €22, Hence, by (5.3),
there is a matrix G = (g g) with g # O such that

_1 -1 8. al’i—-a
G D wy(q)DG =

with an a € €.
Now put E = DG and notice that B wy(p)E = (3 §) and
E'qu(e)E = (g 3) to finish the proof,

For a € 8, we define the symbol of a at M € M(B)
by (smb a)(iL) = E'qu(a)E 3 E the matrix occuring in (b).

Our next concern is the determination of the maximal

ideal space of B+ To thab end put
8p = alg(p,pap), 3B := alg(e,ape)
Bomp = 8lg(e-p,(e-p)(e-q)(e-p))
Bp,e~p = 8l&(e,pa@ + (e~p)(e=a)(e-p)).

LEMMA 2. (a) B

[i]

]

pye-p 15 @ subalgebra of the center

of B.

(b) Let ac®. Then pap € 8 and (e~p)a(e-p) € B

P e~p*
PROOF. (a) Obviously, e and p commube with
pap + (e~p)(e-g)(e=p), and a simple compubation shows that

a(pap+(e=~p)(e~q)(e=p))= (pap+(e=p)(e=q)(e~p))a = apq.
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(b) Let a € B, Approximate a by a, € alg,(e,p,q)s The re-
presentation (2) yields immediately that pa,p € 3p’ Hence,
lim pa,p = pap € B,e Analogously, (e~p)a(e~p) € Bemp®

Besides the hypotheses (H1) we need the following one:

(H2) oy(b) = Ggp . g(b), where we put b = pgp+(e=p)(e=qg)(e-p)
,em
for brevity.
LEMMA 30 a)
og(b) = 0y (pap) U oy  ((e=p)(e=q)(e=p)) « (6)
P e~p
b) If (H1) is fulfilled then
Ggp(Pqp) = Gg(Pqp) o (7)
¢) If the hypotheses (H1) and (H2) are fulfilled then
Ofg (b) = Ug (Pqp) .
Pye~p P

PROOFs a) Let A ¢ 0y(b)e Then there is an a € 3
such that af{b-Ae) = e. Multiplying this from both sides by p
we obtain pap(pgp-Ap) = e. By Lemma 2, pap € B3_. Hence,
Ad o (pqp) Anglogously we have A § cge p((e—p)(e-q)(e—p)).

Now let A ¢ oy (pa) U oy ((e=p)(e=g)(e~p)), and let pap
P e~

resps (e-p)e(e-p) be the inverses of pgp = Ap Tesp.
(e=p)(e=g)(e=p) = A(e=p) in B, Tesp. Benpe Obviously,
pap + (e~p)e(e~p) 4is the inverse of b =~ Ae in B, and this
gives (6).

b) Let A ¢ oy (pgp) U {O} and let pap be the inverse of
PQP = Ape Then Ppap - A (e—p) is the inverse of pgp =~ Ae

in 3 , i.es A ¢ G og(pap)s On the other hand, if A ¢ 0y (pap)
and if a is the inverse of pgp - Ae im B +then
pap(pap = Ap) = p, and by Lemma 2, pap is the inverse of

(pap = Ap) in Bpr iees A ¢ ng(pqp). Moreover, in this case

A # 0 since otherwise the equality a- pgp = e would imply that
e~p = 0 what contradicts (H1).

¢) In the first step we prove that for arbitrary idempotents p, q
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the equality
(pqp) U {0,1} = oy B,_ ((e-p)(e-q)(e-p)) u {0,1} (8)

holds. Obvn.ously, (8) is valid if p,q € {0,e}s Let p,q % O,e.
In what follows we need the well-known equalitby

o(aB) U {0} = o(Ba) U {0} , (9)
halding for elements A, B of an arbitrary algebra., Thus,

9__ ((e=p)(e=a)(e=p)) U {0,1} =
= 0y ((e=p)-(e=p)g(e=p)) U {0,1}

S

=1 - (o___((e=p)ale=p)) U {0,1))

= 1= (5((e=p)a(ep)) U {0,1}) by (7)
= 1 = (o(ale=p)a) U {0,1}) by (9)
=1 - (aaq(q(e-p)q) U {0,1}) by (7)

= o, (apa) U {0,7)
q

= oy(qpa) U {0,1) by (7)
= oy (pap) U {0,1) by (9)
= g (pgp) U {0,1} by (7) .
P
Now we can conclude as follows: By (6) and (H2),
cgp e_?(b) = Og (Pqp) U %, _ ((e=p)(e=g)(e=p)) » (10)
By (7) and (H1),
{0,1} € g (pqp) , (11)

and by (11) and (8)
0y ((e=p)(e=a)(e=p)) ¢ Ggp(pqp) .

(S

Lemma 3 is complebely proved.
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CORGLLARY 1« The maximal ideal space of B is
homeomorphic to the spectrum O (pgp)e Tecey DY (H1% lt is con=
P

nected, and 0,1 € M(Bp’e_p).

The fact that M(Sp -p) is homeomorphic to the spec-
trum of pgp is extremely favourable since pgp is the "simplest
Toeplitz operator", and for Toeplitz operators numerous properties
of their spectra are known.

Now we are in a position to identify the maximel ideal
space of B:

THEOREM 5. Let (H1) snd (H2) be fulfilled.

MeM Th MN i ] i £ N
(a) 1If (8) en B, ,e~p IS & maximal ideal of B . o

(b) Every maximal ideal m of B e—p With m £ 0,17 is con-
tained in exactly one maximal ideal M of 3 which, moreover,
belongs to Mz(B)e Furthermore, M,(8) is homeomorphic to

oy (pap)\{0,1}.

(c% Each of the points O and 1 € Oy (pap) = (B ) is

P,ye-D
contained in exactly two ideals both be%onging to M4(B)e
Thereby, {1} ¢ clos id(p,q), {1} ¢ clos id(e-p,e-q),

{0} © clos id(pye~q) and {0} c clos id(e-p,q).
Here, {0} and {1} wvefer to the ideals corresponding with the
points O and 1, respectively.

PROOF. (a) 8ee [a].

(b) Let % Dbe the set of all maximal idesls of B, . . which
are contained in a maximal ideal of B. Assume That there is an
n*e M(ap )\ﬁ. Let b = pgp + (e~p){e~q)(e=p)s Then

b - m*(b)e’ e m*, i.e. b - mn*(b)e is not invertible in 35, 6=p°
By (H2), b -~ m*(b)e is not invertible in B; thus there exists
a maximal ideal M € WM(B) such that b - m*(b)e € M. By (a) we
can find a maximal ideal m (= M N 8 of B, em such that
b - m¥(b)e € ms This implies that mg(bs = m(b), and since b

generates the algebra B, o _.» this gives n*(a) = m{a) <for each

ace , whence m* = m. Thus, each maximal ideal of B

X% P,e~p
is e endlble to a maximal idesgl of 3,
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Now let m € M(B IN{{0},{1}}s The characteriza-

Pye-p
tion of the ideals in M.(B) given in Theorem 4 shows that
these maximal ideals can only generate the points {0},{1} of
M(BP e-p)‘ Hence, if m is extendible to the matrix ideal

9

M€ M(B) +then 3/U = GZX2. Again by Theorem 4, the symbols of
a Va(1-a)

Va(1-a) 1-a

If there were another maximal ideal W € M(8) with m ¢ W, then
10 a V &(1-4) ,

(emb p)(M) = (5 o) » (smb @)(®) = ( = ~ )+ This
007 BO-3)

1=-a

Py g on B(M) are (g 8) respective (

yields
(smo b)) = (3 9), (amd B)®) = E9),

and so we obtain a = & = m, i.e. the symbols on M and N
coincide, i.e. M = N

Now we are going to prove that M,(B3) and Oy (pap)\
b

{0,1} ane homeomorphic,

Since the topologies on M(3 ) respective on M(B) are gene-

Dye~p

rated by all elements (symbols) of 3 respective of 8, the

Pye=p
topology on 0, (pap)\ {0,1} = M(Bp,e—p)\ {{0},{1}} is at most co-
B ,

arser than that on 1,(38).
On the other hand, let for M € 1,(B)

a(i)  Va(u)(1-a(i)) .
Va(i)(1=a(i)) 1-a(M)

(aéf*’l) 9 ), and by the hypothesis (H1),

(sub p)(i) = (§ §) » (sub q)(M) =

Hence, (smb b)(M)

a(i1)
a(li) is the value of the Gelfand transform of b ab the ideal
m € o (b)N{0,1} which corresponds with M. So, a(M) is

Pse=p
nothing else than the identical mapping of M(Bp e—p)\ {{0},{1}}
?
onto itself; +this means that a is continuous on M(BP e-p)\

?
\{{0},{1}}. Therefore, each 2x2-symbol of an element of B is a
continuous matrix function on M(Bp e_p)\{{o},{'l}}, and thus,

?
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the topology on M(Ep’e_p)\\{{o},{ﬂ}} is finer than that on M,(3).
Part (b) is proved.

(¢) Let, for instance, M = clos id (p,q)e.

Then (smb b)(M) = 0¢0+0 + 1011 = 1, i.es {1} C M. Analogously
one checks the other cases. The proof of Theorem 5 is complete.

By Theorem 5, we can consider the symbol smb a (a € B)
as a function defined on My U (ou(pap)\ {0,1})s The continuous
extension of smb a ontbo CB(pqp) gives

(smb p)(0) = (smb p)(1) = (3 )

and (smb @)(0) = (§ 9) » (amd Q)(1) = (§ O

A comparision with Theorem 4 shows that for a € 3 (smb a)(0) is
invertible if and only if the images of a in 8/clos id(p,e-q)
and in ®/clos id(e~p,q) are invertible, and that (smb a2)(1) is
invertible if and only if the images of a in 8/clos id(p,q)

and in B/ clos id(e-p,e~q) are invertible., Therefore, we can
extend smb a formally onto GB(pqp), and we consider smb a

as the continuous matrix function given on ou(pgp) by

xm]

fl

Vx(1=-x) 1=x

and (smb e)(x) = (g 2) where the square root is unterstood in
the sense of the main branch.

COROLLARY 2 (C*-algebra version, c¢f. [P3]) .
Tet 5, T and g€ 6([0,1], ¢2*%) be defined by

- - _ x Ve(1-x)
5(x) = (§ 9)» F(x) = (g §) an Q(")‘[vzzz?-‘;) M] :

and let e, p and g be self adjoint elements of a certain
C*-algebra B with ca(pqp) = [0,1] and p?=p, g®* = q «

Then the G*-algebras alg(e,p,q) and alg(e,p,q) are isometri-
cally isomorphic, and the isomorphism transforms e,p,q into
€,Pyqy Tespectively.

The proof results from the Theorems 4 and 5 by using some simple
C*-glgebra arguments. Notice that Corollary 2 is essentially due
to Halmos ([H], see also [P2}), who gave a proof when p and g

(smb p)(x) = (3 3, (amb @)(x) = [

fi.
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are self adjoint projection operators on a Hilbert space.
We conclude this section by mentioning btwo sufficient
conditions for (H2) to be fulfilled.

PROPOBITION 1. ZEach of the following conditions im—
plies (H2): (a) €\ou(pap + (e=p){(e=q)(e=p)) is connected.
(v) M(Bp e—p) coincides with its Shilov boundary (i.c.

’

o} (pap + (e-p)(e=g)(e-p)) coincides with its topologi=

8P!e"‘P
cal boundary).
PROOF. (a) See [R], Theorem 10.18.
(b) TImmediate from Theorem 2.

3. ALGEBRAS GENERATED BY TWO IDEMPOTENTS AND ONE FLIP
Let € be the Banach algebra alg(e,p,q,j) with the
unit e where

pP*=p, g*=4q, J*=e and jpj = e-p, Jaj = e-q. (12)
We are going to consbtruct a symbol related to the invertibility
in GC.
THECREM 6.  alg(e,DyQ5d) € Fue
PROCF., This proof is an extended copy of the proof of

Theorem 3. As in the latter, each element a € algo(e,p,q,j) is
a (finite) linear combination of items of the form

=00 » A5 =px" qajp

A3 = p 2 q(e-p) » Ay =D x j(e-p)

a5 = (e-p)a ¥ p » g = (e-p)a ¥ qjp (13)
47 = (e=p)a x* q(e=p) , A% = (e-p)g ¥* j(1-p) ,

where x = pgp, X° i= P, 1z e,

The following table shows how to compube the products
A%Ag. Put v = o + Be
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. G 8.
AV m+m4lv+m4 2eAV L +AY V= 0 0 0 0 oV
- G ¢
m+m4sr+m< mtm(é v+»d w+w<.._\+W4 g+A¥mLA¥ | 0 Y 0 0 oy
o 0 (o] o »« v+m4tm+w< _\+m¢lm+m4 w« w«
0 ) o 0 i i\ g T v
L

m - N+Ndlv+w< 2+ AT+ AV 4 .0 0 o wq

€
oY Lt m+m<..._\+m4 2l ek ..._\+\_Q 0 0 0 0 0
o Y 0 a m.« _\+N<lm+w4 _\._:_m« N+w< w« m«
0 0 0 0 ol i\ i o Y

8 1 € T
v i L L v c o



Roch and Silbermann 399

Let A; = {47 8 @ 2 =1} (i=7,044,8) and By = Ay 4 U Ay
(i=1,0e044)s If two elements (say a4 and a,) 1lie in the same
B; ‘then F4(a,,aa,a3,a4) = Os This can be proved in the same
wey as the corresponding assertion in the proof of Theorem 3.
Hence we can restrict ourselves to the case when a; € Bi'
A straightforward evaluation of the resulting 16 terms F.(a,,
eesy8s) shows that Fy(@q,eeesas) = O if a; € By, bhence € € Fy.
Note that there is at least one more proof of Theorem 6,
which runs as follows:
The mapping F' : € -

Fa) = (% 2SR

is a homomorphism of € into €2*2 with a trivial kernel, and
there are constants c4,¢, > O such that

caflall < 1B (a)ll < caliel] »

Put Fa) = (2 9) ' (a)(& Q), where the mapping (& 9):e2%2, g2x2
03 C d O J

€2xg given for a € € by

is obviously invertible, Since

G (ED)a  (EEBLE D = (222 pade )

e~p)ap D )a(e~p) pdap Dpiajp

B 1s a continuous homomorphism of € into the algebra (p@p)gxa.
Notice that a is invertible in € if and only if F(a) is in=
vertible in (p@p)2x2 (with the unit (8 g)). The second proof
is finished by the observation that pEp is a commutative Banach
algebra, which follows from p€p = alg B, (see (13) and the table
after (13)),

The analogue of Theorem 4 reads as follows:

THEOREM 7. H(C€) = 1,(C), and for each W € M,(C) there
is an invertible matrix B € @2x2 and a complex number a both
depending on M such that

(smb e)() = E-qvm(e)E (g 2) s
(smb p)(H) = 8 vy(p)e = (J 9,

W) = 1 ; a Va{1-2)
(smb q)(i1) = B vy(q)E (m 1_3)

[}

fl

]



400 Roch and Silbermann

and either

(smb 3)(M)

e} . i
ETvy(3)E = ((§  §) or

(B

REMARK., For a € € we call (smb a)(il):= E_1vM(a)E
the symbol of a at M. Deviating from the situation in gection 2,
the "axioms" (12) do not determine a wunique symbol. This is
consequence of the fact that (12) remeins invariant if J 1s re-
placed by =j. We shall see later which kind of additional infor-
mation sllows to overcome this difficuliy.

(smb §)(i) = E vy (3)B

PROOF. 4 little thought shows that there are no complex
numbers a, b, ¢ such that

a® = a, b?*=Db, ¢ =1, and cac = 1-a, cbec = 1-b.

Hence, M,(€) 1is empty.
Let ¢ M(E) = 1p(C). Since v2(3) = (J9) fthe assumptions that

10 . ] .
vle) = (g 1) respective vm(p) = {3 8) would imply that

. . 10

Vm(ﬁ)"m(l’)"m(a) = \’D,I(P) % (O 1) - Vm(P)'
Hence, in accordance with Lemma 1, the eigenvalues of vy(p) are
0 and 1. Let D denote the (invertible) matrix transforming
vy(p) into its Jordan canonical forms D"qu(p)D = (g 8), and
let D lvy(3)D = (2 8). The identities 32 = and Jpj = e=p
imply immediately that a=d =0 and c = b |, i.e. thab
D-qvm(j)D = (3“1 b) with some b € @\ {0} A simple computation
C

shows that if D-qu(q)D were of the form (5.2) then Jjqj = e=q
is violated. Hence there is a matrix G = (g g) (g €€ g+0)

such that G-qD_qu(q)DG = [ a ha(1-a)] with some a € €.

Va(1-a) 1=-a

Notice that transformation by G does not change the
structure of p wrespective J3



Roch and Silbermann 401

o hy(e)ne = (5 9)
1=, (. _¢ O bg
G D Vm(J>DG = ((bg)-1 o ).

To guaranbtee the identity Jaj = e=q it is necessary that
(bg)? = =1, i.c. either bg =i or bg = —=i. Now set E = DG
to finish the proof.
LEMMA 4. a) The algebra 8,,6-p Lies in the centre
?
of €,

b) The algebras 35 e=p and B, are isomorphic, and hence, the
?

maximal ideal space of %p e=p is homeomorphic to G@(pqp)-
1

PROOF. a) Apply Lemma 1,b and the identity
dpap = (e=p)(e=q)(e=p)J »
b) Obviously,

S Bpte"P —’ 23P '

. - -1,
defines a homomorphism from B, . . into B,, and 8" 3B, =B, .,

a » pap

b b+ jbj is its inverse.
THEOREM 8. The maximal idesl space M(€) is homeo=
morphic to M(3 )% o, (pap), and the symbol smb a (for
P’e-p 3P

a € C) is given at X € o, (pap) by
P

(smb e)(x) = (§ )

(smb p)(x) = (3 9)

(an @)(x) = [ W“*q

Vx(1-x T=x

and either (smb §)(x) = (LY 1) or (smb §)(x) - ¢ ~5.

We omit the proof since it is only a slight modification
of the proof of Theorem 5.

One possibility to decide whether the symbol of J is
( 0 i

-1 o) or (g -é) is the followings
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+ Vx(1-x) ©
By Theorem 8, smb(ipgip)(x) = ( o 0)s iee. the spectrum

of ipqgjp im € equals either
Fee: y=+x(1x), xe¢ oy (pap)}
P
or Feec: y=-(=x) , xe oy (pap)}
b

where | refers to the main branch. If the spectrum o, (pgp)
25

is given then the knowledge of only one suitable point of Gg(iqup)
would allow to decide which sign(+ or -) holds and so to make the
symbol uniques

4s a simple consequence we mention a C*-algebra version
of Theorem 8 (see [P2]).

COROLLARY 3. Let 8,5,d,7 € € ([0,1], €2*2) be defined

by 5(x) = (19, 30 =0, a<x>=[ x VX("-@] ana
Vx(T=x) 1-x
=) = (9 L),
and let e,p,q,j be self adjoint elements of a certain C*-algebra
€ which fulfil (12) and

1]

ipejp 2 0 and og(pap) = [0,1] (13)
Then the C*-algebras alg(e,p,q,Jj) and a1g(€,p,q,J) =
= C([0,1], ®ZX2) are isometrically isomorphic, and the isomorphism
transforms e,p,q,J into €,pP,d,J, Tespectively.

PROOF., The relations (13) guerantee that smb j = (_g é),

and that the mapping smb is isometric follows from simple C*-
algebra arguments.

We conclude this section with a few remarks on the uni-
gueness of the symbols obtained. To that end we assume the symbols

smb e = (g ?) and smb p = (g 8) to be fixed and agk how the
symbols smb q, smb J could look like.

PROPOSITION 2. a) The general form of the syubol on
alg(e,p,q) is (for fixed smb e and smb p) 8iven by

(smb q)(x) = [b—q(x§V§(7:§3b(X)bxzj:i)]’ where b(x) 3 Ggp(pqp}»m
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is an arbitrary invertible functione
b) The general form of the symbol on alg(e,p,q,j) is (for fixed

smb e and smb p) given by
(smb o)(x) = (_*___ BV(I=x),
v~ Vx{1=x) I=x

0 +2 _
( = %) where Db* =1 and z? = -b%,
0

The simple proof is omitted.

and  (smb j)(x)

4, TOEPLITZ AND HANKEL OPERATORS ON WEIGHTED 1P-SPACES

In this and the next sections The general results of the
sections 2 and 3 will be applied to give matrix-valued symbols
related to the Fredholm property of Toeplitz and Hankel operators
and of singular integral operators with a Carleman ghift changing
the orientation and with piecewise continuous coefficientse Let

lP,Y 3 {X

i
H

{25 & 1=, igolxilp(imm < w}

——
and 1Y = {x

1}
L]

T ot Iy = B 1 P(2]+)?Y < o)

r—~—~ Fr——
and put 1P := 1P9°% ang 1P = 1P90, mne operators
L vard
P: 1P’Y -» 1P’Y H {1&}1__00 B> {...,O O 'x1'.oo}

PsY PsY o
and J & 1¥? - 1¥28 {Xi}1=-«)“—'€> {X 1_1}1_4»

are bounded and P? = P, J2 = I (I the identity operator).
Given a € L™(F) with Fourier coefficients {ay}, o we define

L
the operator M(a) on the space of all sequences in 1P*Y with
a finite support by
e o0
i)+ (), —> L Loay )7
If M(a) can be extended to a bounded operator on 1P’Y we call

M{a) € L(lP’Y) the multiplication operator with symbol a(t) and

write a € M .
PaY
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Now defi M T
ow define (DY) as followss

i [2¢]
Mo 0 =t o (=17(W),
M(g,y) = {a in MQ,V for all ¥ in some neighborhood of y}

if v ¢ 0,

I\d(p,()} = {a in Mﬁ,c for all 7P in some neighborhood of p}

» if p# 2y
M(Pﬂ) = {a in I'ﬂrﬁlﬁ for a1l (P,¥) in some neighborhood

: of (p,v)}
if p%2,Y# 0
For a € M, . the operator T(a) s= PM(a)P : 1P*Y 5 1P7Y ig cal-
led Toeplitz and the operator H(a) : PM(a)JP : 1P2Y  1Ps¥
Hankel (here we identify im P and 1P?Y),
The function ¥ which is 1 on the upper half circle and O on

] 1
1< [e9] —— —
the lower belongs ‘bo IV[(P’Y) fOI’ all P < and D < Y <

q
(see [V, Lemma 10])s Obviously, Xx® = X.

1 ;
Let 8, . =7~ 2n(§ + v) and define, for s €[0,1],
if o = 0
(s) 3= g (8) = 5 PyY
%00,y PsY sin O y8 exp(id; ,s) o bhe TWiSe .

— :
sin 9, . exp(if, . )

If s runs from O to 1 then g, Y(s) runs in € for
1

%( % + v (resp. % +y < %) along a c¢ircular arc Joining O

%0 1 and located on the left (resp. right) of the line segment

[0,1], and the segment is seen from each point of the arc under

the angle 2%(% +y) if % + vy < % respective 2n(1 - % -y) =

1 . 1 1
..21c(q-*() £ 5 <Gt Y.

PROPOSITION 3. a) The spectrum o(B(X)) equals the
lentiform domain bounded by the arcs gp’Y([O,ﬂ]) and g, _Y([O,1]).
3
b) The spectrum o(iH(x)) equels the drop-shaped domain bounded

by the curve dP,Y = M%P,Y<1~gP,Y> ([0,1])
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PROOF. a) Well-known (see [VK] or [BS]).
b) Since ©No(T(x)) is connected, the spectrum of T(x) in
L(1P*¥) is the same as its spectrum in alg(®,X,J,I)s By Theo=
rem 8 the spectrum of iH(Xx) in alg(P,X,J,I) is either the do=

main bounded by dP,Y or the domain bounded by -dp,Y'

Let first Yy =0 and 1<p<2. Then 1P is conti-
auously embedded inbo the Hilbert space 12. The adjoint operator
of iH(x) (considered in 1P) is again iH(x) (considered in 1%).
This shows that the operator iH(x) is bibounded (see [GK],
chapter V) and that iH(X) coincides with its classical adjoint
(iH(x))*+ By Theorem Ve 3.2 of [GK] the spectrum oy 2 (iH(x)) is

contained in © p(iﬁ(x)). Since oiz(iH(x)) is the straight line
[0,4] (see [P1]), the spectrum of iH(x) in alg(Py,J,I) with

respect to 1P must be located on the right of the imaginary axis,
i.es it 1s the domain bounded by dP o* Note that this spectrum
} 4

coincides with the spectrum of iH(x) im L(1P?°), This is due
to the equality (iH(x))? = T(x) - T2(x), to the fact that the
spectra of T(x) in L(1P*Y) and in a1g(P,x,d,I) coincide,
and to the spectral mapping theorem for polynomials.

Taking adjoints it is easily seen that the assertion remains true
for Yy =0 and 2 < p< », 00,
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Now let y # O Since (1®Y)* T 197V (with p'1+qf1=1),
by the Stein-Weiss interpolation theorem (see [BL], 5.5.4) there
exists a p, 1ying between p and q such that the space 1 e
is interpolated by 1P'Y and 19™Y, Let u € R, and assume
iH(x) = BI to be invertible in L(1P*Y). Then (iH(X) = uI)* =
= iH(x) = I, and since the action of iH(Xx) = MI and
(iH(x) = MI)* on finitely supported sequences is the same on both
1P*Y  ana 197V, the inverses of iH(Y) - pI in 1P*Y respec~
tively in 19*™Y have the same action on a dense subset of 1P?Y
respectively of 197, Hence, by the Stein~Weiss theorem the
operator which acts on the finitely supported sequences in 1p°’°
as iH(x) - pI, exbtends continuously to an invertible operator
on 17010, Consequently, the resl points of the spectrum of
1H(x) on 1P99° must belong to the spectrum of iH(y) on 1PeY,
As we have shown above, the spectrum of iH(X) on 17010 35 10~
cated on the right of the imaginary axis. So the spectrum on
1P*Y nmust 1ie at the right, too, what finishes the proof.

COROLLARY 4. The maximal ideal space of alg(PyXsJ,1)
(in 1P%Y) is homeomorphic to the domein. bounded by &y Y([0,1])
and gq’_y([o,1]), and a symbol for the invertibility im

alg(Pyx,J,I) is given by

. , (10 %) = a % T=-x
(o 2)) = (3 Q) s (a0 = [ 2 Zq_}j] ,

(sub 7)(x) = (0 L) ana (smb I)(x)=(§ D .

Now we are going bto exbtend these results to a symbol
caleulus for the Fredholm property of operators belonging bto the
slgebra generated in L(1P*Y) by I, P, J and by the piecewise

conbinuous fupctions £ which are multipliers on 1P2Y,  i.e,

fePCN M(PoY) =3 PO(P9Y> .

Let R stand for alg(I,P,J,PC<p’Y> )s

of the compact operators, 7= for the oanonical'homomorphism from
L(1P?Y) onto TL(1P'Y)/ LC(1P*Y) and A" for the quotient algebra
a/Lo(1P1Y). The algebra A™ contains a copy of the algebra

LC(1P*Y) Zfor tvhe ideal
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) N MGy

the continuous functions £ with £(t) = £(t~7)) the maximal
ideal space of which is homeomorphic to the upper half unit circle
T, := {z € T: Imz >0}s For given x € T, denote by J, the
smallest closed two-sided ideal of A" conbtaining x, put

in their center (where T(T) stands for the set of

Rg $= R“/Jx, and write @2 for the canonical homomorphism from
T T
R onto HXQ

THEOREM 9. Let A € A, Then

o n(n(4)) = xgm;cﬂg(éﬁ(A)) .

Compare [A] for a proof.

PROPOSITION 4. The local algebra R} is generated by
the idempotents &43(P), &7(x) and by the flip @7(J), which can
occupy the place of p, g and J in (12), respectively. The lo-

cal spectra o n(@f(PxP)) and © Tc(@?(iPxJ’.P)) equal the curves
A4 R4

gP’Y[O,1] and d, y» Tespectively.

PROOF. The first assertion is immediately clear. For a

proof of the second assertion let a € PC(P > denote a function
?

which is continuous at each point + $ 1, which only takes values
lying on the arc gp’y([0,1]), and with a(1-0) = 0, a(1+0) = 1,

and let b € PC(p,Y) denote a function which is continuous at

each point +t % 14, which only takes values lying on the straight

line [0,1], and with b(1-0) = 0, b(1+0) = 1. Since the essen—

tial spectrum of T(a) equals the arc & 4[0,1]) (see [VK]) the
9

spectra of n(T(a)) in L(AP?Y)/Lc(1P?Y) respective in A"

coincide, Thus, the local spectrum oan(@?(T(a)) is contained
1

in &, Y([O,'I]). On the other hand, o© TE(@?(T(b)) =0 TE(@?(T(a))
? 'R.' ‘R1
and oRn(QE(T(b)) = b(x). Hence, cRn(n(T(b)) is contained in

x
gP’Y([O,1]) U [0,1]s Since the "global® essential spectrum of
T(b) coincides with gp,Y([O,1]) U [0,1], the inclusion
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o n(@?(T(a)) 2 &, Y([0,1]) follows. This shows the second asser—
Ry ’
tion, and the third one follows immediately from o© 1E(@?(T(x)) =
R4

= &, Y([0,1]), Theorem 8, snd from the fact that the spectium

]
o (iH(x)) 4is located on the right of the imaginary axis
L(]_P)Y)
(Proposition 3), what finishes the proof,
Thus, Theorem 8 provides a symbol for the invertibility in the
quotient algebra R?. Similarly oke obtaing a symbol in Rf1.

Now let x € T, Im x > C. A moment's thought shows
that the corresponding locgl algebras R; are not generated by

only two projections and a flip. For that reason we explain a
scheme which allows to eleminate the flip: Let € be an aglgebra
with identity e and with elements p,q,J satisfying p? = p,
p+qg=¢e, j2=e and Jpj = gqe As in the second proof of Theo—-
rem 6, the mapping

Pree G e G B
proves to be a continuous homomorphism, and a € € is invertible
if and only if F(a) €(pEp)®*? is invertible (in a similar form
this approach was proposed by Krupnik [K], § 23).
Next assume that € 1s generated by the flip J and by another
algebra € (containing e and p) with the property that J&L jc&
and that psp = ap = pa for a € ¥ . Then we can write each ele~
ment a € € in the form a = a4 + asj with a4,a, € £ , and this
gives

F(a)

]

Piaqp + pjasdp PJasdp + piaap

| pasp PaLD pa;p  pap |
pja2dp  pdasdp| T |pa.p  pasp

where we put 'Sfi = jaij € £ . What results is that the mgpping F

[paqp + DazJp pPaq Jp + pasp ]

is a continuous homomorphism of € into the gl gebra (ptp)zxz,
and that a € ¢ is iovertible if and only if #(a) €(pgp)>=?
is invertible.
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i i £ enM i-
To reify this scheme, let (DsY> denote a conti

nuous function with £(x) = 1 which vanishes outside a small
neighborhood of x and for which £(t) « f(%) = 0 holds for all
t €M Put p= 0y (R(£)), q=e-p, and J = 83(J). Further,

identify € and R;z and put & := ?{:' ES-W/JX where B stands

for the algebra 3 = alg(P,PC Obviously, D € By , and the

(P'Y>).
bypotheses of the scheme are fulfilleds Thus, At ig homomorphic

x
to a subalgebra of (pazp)zxg; hence, we need a symbol calculus
for pagp. Notice that the algebra pazp is generated by the
two idempotents p@Q(P)p and p@;(xx)p where x, denotes the
characteristic functions of the arc joining =x and =~1 on the
upper half unit circle, and the same considerations as those in
the proof of Proposition 4 yield that the local spectrum of
p@E(PxXP)p in the algebra ngp coincides with the are gp,Y({0,1]).
Hence, the spectrum of p@g(PxxP)p in the algebra
elg(p,p@fc(fbcx?)p) is gp,Y([Q’ﬂ)' too, and this shows that the
spectrum of p@i(Pxxf)p in alg(p@;(P)P ’ p@g(PxXP)p) equals
gp’Y([0,1]). Analogously, the spectrum of p@i{(l—P)(Iéxx)(I~P))p
in alg(pey(I-P)ps pOR((I-P)(I~x,)(I-F))p) is also g, \([0,1]).
Lemma 3a shows that then the spectrum of p@l(Pxx3+(I—P)(I—xx)(I-P))p
in pﬁgp is nothing else than the arc gP’Y([O,1]). Consequently,
(H1) and (H2) are fulfilled (see Proposition 1), and Theorem 5
applies to give the following result:

PROPOSITION 5. For x € m;, Im x > 0, there is a

4x4-symbol for R which is given at + € 8, Y([O,’i]) by
14

X

1000 0010
- 0000 n 0001
o (B)«—> |5000 ] %@ e [J030

0001 0100
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. VE(T=E) 1=t 0 0
and @X(xx) C >
0 1=t - V&%)
0 0 - VE(I-%) t .

PROOF., The representatioas for @?{(P) and @g(xx)
follow easily from Theorem 8, For @?{(J) note that
al(7) <> (g ) by the scheme, and that p is the ideabity ele=
ment in pi%;;_p.

REMARK. If only a symbol for operators from
alg(P,PO<p’Y>) is seeked then the 4~dimensional symbol given in
Proposition 5 reduces to two 2-dimensional symbols which may be
assumed to be given at x and x"", respectively.

THEOREM 10. A symbol for A" = alg(I,P, 3,80, )/
/LG(W) can be given as follows. For (x,%)e T, x Sp,y([o'ﬂ)

let (smb P)(x,t) be

1000
1 . 000 .
(08) if x=+1, 0008 if Imx>0,
0001
define (emb J)(x,t) as
¢ 0 1 O
6 0 © .
(9 5 iz x=21, 9991 if Imx >0,
1 0 O

and for a piecewise continuous function a let (smb a)(x,t) be
equal to

a(x+0)t + a(x~0)(1=t) (a(x+0 )=a(x=0) )VE(T=5)
(a(x+0)=a(x~0) WE(T=E) a(x+0)(1=t) + a(x~0)t

if X:i‘ﬂ
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and equal to (§ ,§ ) with
[a(x+0)t + a(x=0)(1=t)  (a(x+0)ma(x=0))VECTE]
-ba(x+0)-a(x50))VETW:Ej a(x+0)(1-t) + a(x=0)%

a7 140) (1=t ra(x1=0)6  (a(x~1~0)=a(x"1+0) WETT=E]
(a(x?q—o)-a(x71+0))VETT:E7 a{x +O)t+a(x 1~0)(1-t)

in case Im x > O,

X =

Thé proof follows immediately from Propositions 4 and 5
and from Allen's local principle (Theorem 9)e
COROLLARY 5. Let A € A = alg(I,P,J,BEC

<0 Y))° Then
~ (n(4)) = 5 a(T(4)).

LI )/me({B)

PROCF. Approximate A by operators Ay which are fi-
nite sums of products of the operators P,J,I and of multiplica=-
tion operators M(a) when a is piecewise polyuaomial and has
only & finite number of discontinuitiess. The spectrum of Ag in
A" consists by Theorem 10 of a (finite) set S of curves which
can impossibly be obbvained as the union of another set of curves
S' with some bounded and connected components of €\ 8'. Hence,
the essential spectra of Ag in A" and in L(iﬁj?)/LG(lp’Y)
¢oincide, respectively.

We need the following elementary fact:s If x is an invertible

element of a Banach algebra and if | x~y] <w<§T- then y 4is in-
X

I

15 < TJ%'ﬂL—- . (14)

==l ==l

vertible and
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Since (n(a)) ¢ ng(n(A)), assume to finish the

GL(lrm )/Lc(fm)

proof that there is a A € € such that =(A-A) is invertible in
L(lP'Y)/Lc(lp’Y), but not in A"s By (14), n(A ~A) is then
invertible in L(lp'y)/LC(lp’Y) for n large enough, and

T (nCa=a)) .
IH(nag=2))"" < 1=} (n(4-2)) " | m (A=t )l "

By what has been shown above, w(A,~A) is invertible in A"

for a large enoughs The estimation (15) guaranties that there

is an =n such thab

Q
I Cama)ll <

1
- 1]
I (mCag=2))7
but this implies via (14) the invertibility of w(4=A) in R™

CORCLLARY 6. Let a € PCZP vy*

spectrum of the Hankel operator H(a) : 1P*Y » 1P*Y cquals

Then the essential

(—i(a(’l-n-o)-a('l—o))dp’y) U (-i(a(-’l+0)-a(-’l-0))dp,y) U

-

0 U (aGn0)ma(x0) o o) 0)) 4y

PROOFs The first two items result from Theorem 10 and
Proposition 33 the third term is obtained from Theorem 10, which
gives the matrix

0 0 0  (a(x+0)-a(x~0))VE(T-%)

0 Q 0 ¢]

0 0 O ¢
(a(x1=0)=a(x 1+0)VET=E] o o 0

as a symbol for PadP @ 1P2Y 1P,
If PaJP is considered as an’ operator acting from 1PsY o 1P9Y
this symbol reduces to

0 (a(x+0)~a(x~0) )VE(I-F)
(a(x" =0 )ma(x"1+0) WWECT=E) 0 !
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and this gives immediately the assertion.

REMARKS. a) Power.[P1,2] gave the description of the
essential spectrum of a Hankel operator for the space 12’0.
b) The results obtained in this section evidently carry over bo
the space F1P*Y of all functions £ € L*(E), the sequence of
the Fourier coefficients of which belongs to 1P1Y,
¢) Now it is an easy matter to obtain Fredholm criteria, for in-
stance for paired equations with Carleman shifd

aP + bQ + (a'P + b'Q)T & 1P , 1P9Y

where a,b,a',b' € PC but we renounce to do this,

DyY

5. SIHGULAR INTBGRAL BQUATIONS ON WEIGHTED SPACES
OF HOLDER-CONTINUOUS FUNCTIONS
For 0<'w< 1 we denote by H' +he Banach space of
all H6lder—~continuous functions of degree U on the unit circle
T, i.es of all functions £ € L°(T) with

f tg "'f 'b
£y, 3= 121_o + sup GaSi2aulSPl <.,
L”

1=l= P £

1’2
Lot tyyeseyty€ M Let H'(t4,ee.,%,) denote the space of all
functions £ € L°(T) which fulfil the H8lder condition of de- :
gree M at t # Tyyese,t, and which may have jumps at Tagesaytye

Let H%(t,,...,tn) stand for the subspace of ik consisting of
all functions vanishing at Tagennyb e

n oak
Put o(%) 3= ynqlt-tkl with
B<o <p+1 for k=1,eee,n. (16)

The set® Hg(g) s= {£ 3 of € Hg(t,,...,tn)} becomes a Banach space
under the norm '

£
f HHg(Q)

and the singular integral operator S,

(s2)(v) = & 4 e |

= ol _y
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is bounded on ‘Hg(g) if and only if (16) holds (see [Du] or

[GK], ppe 276=279)s Put P = 4(I+8) and @ = I-P, and, fox

£ € T°(W), define (J£)(t) = £(F)e If the weight ¢ is symmetric
with respect to the real axis, ie.8. if

o(t) = 1l I(t"tk)(t"tk)l ’
k=1
then J is bounded on HE(g), and J% = I.

Let o = { 0 S

and, for s €[0,1], define gﬁt(s) = gi(s) as in section 4.

Further we put, for + ¢ T,

dy &= Vgt(q"gt) ([0y11),

where the square root is understood in the sense of the main branch.
PROPOSITION 6. If the weight is specified to o(%) =
[t=1]%1]4+1|%" and if yx stands for the characteristic function

of the upper half unit circle, then

a) the spectrum o(PxP) in L(Hg(g)) equals the lentiform do-
main bounded by the arcs g4([0,1]) and g~1([0,1]);

b) +the spectrum o(iPxJP) in L(Hg(g)) equals the drop-shaped
domain bounded by dg.

PROOF, a) See [GK], Chapter IX, Theorem 10.1.
b) sSince HY is continuously embedded into L2(W), there is a
¢ >0 such that for £ € H (o)

£l = fleffl_, < ellefll_, < cllelli£l_, »
H L2 L2

H(e)
ieca H%(Q) is continuously embedded into the Hilbert space L2(T).
Morecover, the classical adjoint (iPxJP)+ coincides with iPyxdP

so that the same proof as that of Proposition 3 applies in this
situation, toos It only remains to verify that the operator

iPyJP is positive when considered on L2(T). But this is easily
shown (see [P2] for the similar proof related to 12), and the
proof is finished.
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Our further consgiderabtions proceed as in the fourth sec=-
tions Let A stand for the algebra generated in L(H”(Q)) by
P, J, I and H“(t,,...,t )e Here and in what follows the weight ¢
is assumed to be symmetric with respect to the real axise.

Finally, let A" refer to the quobtient algebra R/LC(H“(Q)).

Since for £ e gV the comnmubator fP - PL is compact
on Hg(g), the center of A" contains a copy of the algebra HY
consisting of those £ € H' with £(t) = £(F) for te€ M
The maximal ideal space of the latter algebra is homeomorphic
to T, so that we can localize A" relative to m; by Theorem 9.
As in section 4, we denote the local algebras by R (x € T, ) and
the homomorphisms from A" into R by @g.

PROPOSITION 7. Assume that 1 € {tyyee.,t,} and let
x € B (t,,...,t ) denote a piecewise constant functlon with
x{1+0) = 1, x(1-0) = Os Then the local algebra Ay is generated
by the idempotents o4%(P), @4(x), and by the flip @3(J). The

local spectra o TE(@?(PXP)) and O TB(@?(iPxJP)) equal the curves
AJ AT
84([0,1]) and d&,, respectively.

The proof is only a slight modification of thabt.of Pro=
position 4.

If 1 ¢ {taye.eyt,} then the situation is essentially
simpler: Indeed, since each multiplier is HOlder conbtinuous at 1,
the algebra A7 is generated by p s= @3(P) and j s= 3(J).
Taking into account that pj = j(e-p), the scheme presented after
Proposition 4 yields immediately that F(p) = (§ 9), B(j) = (g 2)

and  Fle) = (p O) defines a symbol on alg(p,J,e)s Since

Pt alg(p,dse) » (p adlelp,e)p)>? = (a1g(p))?? ,

and since alg(p) is obviously isomorphic to €, +he correspon-
dence

e = (9,
I - G,

3h(2) <> (fé1> f? )) for £ € H'(bqyeee,t,)
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represents a symbol for AT in the case when 1 ¢ {Eaganeyt te
We renounce to indicate the symbols for the local algebras

ﬂg (Im x > 0) explicitely but prefer to give the following sum=
marizing theoren

THEOREM 11. A symbol for
A" = alg(P,J,I,H“(t,,...,tn))/LC(Hg(Q)) is given
a) if x=+1 by

(smb B)(x,t) = (3 Q) (awb 3)x8) = (§ 3),
a(x+0)t+a(x~0 )(1~-t) (a(x+0)=a(x=0 ) ZWE(I=%)
(a(x+0 )=a(x=0) )VE(T-%) a(x+0 ) (1=t )+a(x=0)t

where t runs through gax([0,1]) =: g.([0,1])

(smb a)(x,%t) =

b) if Im x> 0 by

1000 0010
V)
(smb P)(x,%) = 0 8 8 8 y (smb J)(x,%) = 2 g 8 g '
0001 0100
(smb a)(x,t) = |¥ 9| with
0 X

a(x+0 )+a(x-0)(1-t) (a(x+0 )-a(x~0) )VE(T=%)

(a(x+0)-a(x=0) )\F(I=%) a(x+0) (1=t )+a(x~0)t
a(x~1+0)(1~t)+a(x"1-0)t  (a(x~1=0)=a(x"T+0) WETT=E)
(a(x"1-0)-a(x"T+0) WETTTE)  a(x"M+0)t+a(x"1=0)(1-t)

L4
1

where t runs through g.([0,7]).

PROOFs &) If x € {tqy4ees,t,}, the assertion is a
consequence of Proposition 7. If x ¢ {t,,...,tn} then a must be
continuous at x, and the symbol quoted gbove reduces to

smb P = (g 8), smb J = (_g é), smb g = (aéx) a?x))‘ (17)

The invertible transformation (% g)l+ (g S)($ g)(g _g) applied
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to the matrices (17) gives exactly the symbol at x = + 1 obtai-
ned after Proposition 7.
b) If x € {tyyeesyt,}, the proof runs completely parallel to
that of Proposition 5. For x ¢ {t,,...,tn} oue can argue com—
bining the arguments given after Proposition 7 and part a) of this
prootas

REMARKS. a) The analogues of the Corollaries 5 and 6
hold in the HOlder space case, T00e
b) The results remain valid if the unit circle T is replaced by
any system I of piecewise Lyspunow curves the singular points of
which belong to the set {t,,...,tn} of the zeros of the weight ¢,
and if J is replaced by a Carleman shift changing the orienta=-
tion of T
To that end one makes I' to a closed pilecewise Lyapunow curve by
£illing in straight lines between the endpoints of the single
curves, and then one considers only multipliers which are identi-
cally 1 on these lines (see [GK] for deteils).
¢) For the algebra generated by P and H“(t,,...,tn), (i.e4
if the flip J is absent) the results of this section were ob-
tained by Duducava (see his survey [Du] for further references).

6, SINGULAR INTEGRAL BQUATIONS ON WEIGHTED 1P~SPACES
For given tayees,t € T put o(t) = ﬁ It-tlek (t e m
K=

and let LP(g) stand for the Banach space of all functions f

with |[|£|] p s= [lef] b < s The singular iantegrsl operator S
¥ (o L
defined in section 5 is bounded on LP(¢) is and only if
1 1 4,1 ; .
-5 < By < 3 (5 tg= 1) for k = 1yee.on. Define P, Q, J

as in section 5. If the weight ¢ is symmetric with respect to
the real axis, the opergtor J is bounded on LP(g) and J2 = I
(I the identity).

2 R
Tt(1— ‘-) if & ¢ Tygeneyt
Let ﬁt = p { 13 ? n}

2 .

and for s €[0,1] define gy (s) =3 gy(s) and
T

dg := VB {T=8;J ([0,1]) as in section 4.
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The same arguments as in section 5 lead us to the follo~
wing theorem

THEOREM 12, For the algebra A"= alg(I,P,J,PC)/LC(LP(0))
the symbol has the same form as that given in Theorem 11. One only
has to replace the 8y in Theorem 11 by the gg  defined above.

X b'd

(8ee [GK], chapter IX, § 3 for the essential spectra of the
special singular operators necessary for the proofs, )

RENMARKS, a) This result is well-known. For the case
that no flip occurs the proof is in [GKfle For the general case
see [GKZ] and [C].

b) The results remain valid when replacing T by a system of
piecewise Lyspunow curves I’ and J Dby a Carleman shift changing
the orientation of I' (see the concluding remarks of section 5)s
¢) The analogues of the Corollaries 5, 6 hold, tooe

d) Taking into consideration Theorem 11,2 of Chapter IX of [GKi,
an anslogue of Theorems 11, 12 can be formulated for symmetric
spaces B(® or EB(I') (see [GKf, IX).

CONCLUDING REMARK., ©Nobte that the considerations of the
sections 4 - 6 also apply to the matrix case.
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