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ALGEBRAS GENERATED BY IDF/v~OTENTS AND THE SYi~OL 

CALCULUS FOR SINGULAR INTEGRAL OPERATORS 

Steffen Roch and Bernd Silbermann 

It is proved that in Banach algebras generated by two 
idempotents and, perhaps, by a certain flip operator the standard 
identity F~ is fulfilled. The maximal ideal space of such 
algebras is determined and the corresponding symbol is given. 
By means of local techniques these results are applied to obtain 
a symbol calculus for singular integral operators with Carleman 
shift (changing the orientation) in weighted Banach spaces. 

0. INTRODUCTION 

In the late sixties, the C'-algebra generated by two 

idempoteats p and q when the spectrum of pqp is the inter- 

val [0,1] was studied by several authors from an operator theo- 

retic point of view. We only mention the papers of P. Halmos [H] 

and G. K. Pedersen [Pe]. Perhaps, R. G. Douglas was the first 

who recognized that these results combined with certain local 

techniques lead to a symbol calculus for singular integral oper- 

ators with piecewise continuous coefficients. S. C. Power suc- 

ceeded in applying such ideas to the study of Fredholm properties 

of Hankel operators and Fourier integral operators with piecewise 

continuous generating functions (cf. [PI - P3]). Recently, 

B. Silbermann [S] also utilized such ideas for describing the 

C*-algebra generated by Toeplitz and Hankel operators with piece- 

wise quasicontinuous coefficients. Moreover, this approach imme- 

diately yields a symbol for singular integral operators with 

Carleman shift changing the orientation on the Hilbert space L ~. 

Note that questions of this kind were previously studied in L p- 

spaces with Kvedelidze weight (in the case of piecewise continuous 

coefficients) using quite different methods. Here the pioneer work 

of I. Z. Gohberg and N. Ya. Krupnik should be quoted (see [GK 2]). 
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See also the paper of ~I. Oostabel, who tried to simplify some 

of Gohberg and KrupnikSs arguments. 

We shall show that in the above mentioned C*-algebra techniques 

the underlying C*-algebras can be replaced by Banach algebras and 

we shall demonstrate how these results apply to the theory of 

singular integral operators. 

The paper is organized as follows. Its first part deals with 

Banach algebras generated by two idempotent elements respective 

by two idempotents and a certain flip element. It turns 

out that the results obtained are widely analogous to their C*- 

algebra versions. 0n the other hand, the methods used here are 

partially related to Krupnikls book [K] and are quite dirferent 

from the standard ones known from the C*-theory. 

In the second part we apply these results to determine a "local" 

symbol for the Fredholm property in Banach algebras generated by 

singular integral operators with piecewise continuous coefficients 

and by a Carleman shift changing the orientation. Then local 

techniques will be employed to construct a "global" symbol. In 

particular, we apply this approach to algebras of operators defi- 

on the weighted Banach spaces I p'u , Ho~(q) and LP(P,Q). ned 

As far as we know for the first two of the mentioned spaces the 

results seem to be new. 

I .  BTANDARD IDENTITIES AND NAXI~ IDEALS 

For the readerls convenience add to fix notations we 

record some results from Krupnikls book [K]. 

Let s be an algebra with unity e , G~, its group of invertible 

elements and M(R) the set of its two-sided maximal ideals. 

Given al,...,a m E R define the standard polynomial (of order m) 

by 

Fm(a,,...,am) = ~ ( -1)~ . (1) 

Herein S m denotes the symmetric group and (-I) a refers to the 

sign of the permutation o E Sm. The algebra R is said to fulfil 

the standard idemtity of order m (in that case we shall write 

R E Fro) if Fm(al,...,am) = 0 for arbitrarily taken al,...,am E 
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Let 

of 

and put 

( ) I (a) k)ll (el ) 
k = 1,...,r}. 

THEOREM 1. Let ~ E F2a. Then 

Ca) for Ivi ~ M(~) the quotient algebra f</M is isomorphic to 

~xl with some 1 = l(I~) <_ n ! 

(b) if ~M is the canonical homomorphism ~ * ~/I~I, if ~M is 

the isomorphism f~/~i * cl• and if ~I~ = ~IvI~M , then x E 

is in GE if and only is det ~M(x) ~ 0 for all M e M(R); 

(c) the radical R(~) coincides with the intersection of all 

two-sided maximal ideals of E. 

~(~) (l=~,...,n) stand for the set of all maximal ideals M 

with ~/M ~ ~lxl. Let ~ > O, x~,...,zr~ 2, Moe~(~), 

The sets U form an open neighborhood base of I~ o. These neigh- 

borhoods determine the so-called Gelfand topology on l~i(~), which 

is the coarsest topology so that for each x E ~ the function 

smb x : M ~ ~M(X) E G l(~)xl(M) is continuous. Note that I~(~) 

provided with its Gelfaad topology is Hausdorff but, in general, 

not compact (see section 2). 

THEOREM 2. Let E E F2n be a Banach algebra with 

unity e and let g be a (closed) subalgebra lying in the center 

of R. Then each maximal ideal in the Shilov boundary of ~ is 

contained in a certain two-sided maximal ideal of ~. 

If n = 1, i.e. if R is a commutative Banach algebra, Theorem 2 

is well-known. A proof for the commutative case is in [GRS], for 

n > 1 only minor modifications of this proof are needed. 

2. ALGEBRAS GENERATED BY TWO ID~OTENTS 

Let ~ be a Banach algebra with unity element e. If 

there are elements al,...,arE ~ such that the algebra 

algo(al,...,a r) of all finite sums of products of al,...,a r is 

dense in ~ , then we say that al,...,a r generate ~ and write 

: alg(a,,...,ar). 

Throughout this section let $ = alg(e,p,q) where p and q are 

idempotents in ~, i.e. p2 = p and q2 = q. The following ob- 
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servation is the basis for our objective to construct a matrix- 

valued symbol which determines the invertibility in ~. 

THEOREM 3. alg(e,p,q) E F~. 

PROOF. By the continuity of the mapping 

(al,...,a~) ~ F~(al,...,a~) it suffices to show that F~(al,... 

...,a~) = 0 for a i E algo(e,p,q). Each a e algc(e,p,q) can 

be written as 

a = pf~(x)p + pf,(x)q + qf~(x)p + qf~(x)q (2) 

+ ~sq + ~6 e 

o fi are algebraic polynomials in x where x := pqp ~ x i := p 

and ~ , ~6 complex numbers. Hence, a is a linear combination 

of the terms 

Further~ each a ~ ~ can be written as 

a = pap + pa(e-p) + (e-p)ap + (e-p)a(e-p). (~) 

Taking into account (3) and (~) it follows that each a~algo(e,p,q ) 

is a linear combination of terms of the form e, A~ := px~p , 

A~ := px ~q(e-p) , A~ := (e-p)qx=p , and A~ = (e-p)qx=q(e-p) 

with ~ _> -1,where we d~fine x -I := e . 

The following table shows how to compute the products ~ �9 A~ 

A~ A~ A~ 

o o 

~+~+1 ^=+~+2 ~=+~+1 ^=+~+2 
0 0 ~ t  --~I =-2 --~ 

o o 

~+P+I ^~+~+2 ~+~+I ~+~+2 

Let ~ : {~ : ~ > -q}. By the multilinearity of F~ it suffi- 

ces to verify that F~(al,...,a~) = 0 if each aj belongs to 

one of the Ai Is. 

If two elements (say, al and az) lie in the same A i then 

F~(al,...,a~) = 0. Indeed, let for instance al,a2 E At. Then 

divide F~ into the sum ~I -~2 where )~I is the sum of all 

products a~(1) .... a~(4) with o-I(1)< ~-1(2) and ~2 is the 
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sum of all products with ~-I(1) > o-1(2). Each product r = 

= a~(17...a~(~)E ~I corresponds with a product �9 in ~2 which 

is obtained from r by interchanging the elements a4 and am. 

We point out that ~ - ~ = O. If the elements al and aa stand 

in r side-by-side then r = ~ since a9 and a2 commute. 

If there is exactly one element (say, as7 standing in r between 

a4 and aa then r = 0 and ~ = 0 for a~ E A i (i > 1) (cp. 

the table 7. If a~ E AI then al , a2 , a3 commute and, hence, 

r - ~ = O. Finally assume that there are two elements standing 

between al and aa , and let b be their product. By the table, 

b is in ~ or in _~ - ~ for some i _> 1. Thus, as in the 

previous step, r = r = 0 , or the elements al, b, a2 commute 

pairwise, and so r- ~ = O. Analogously the cases when al,a~E~, 

i > 1, can be checked~ 

What remains to prove is that F~(al,...,a~) = 0 when aiE 

for i = 1,...,4. In this case we obtain 

F~(a~.a2,a3,a~) = - a~a2a~a~ + a2a~a~a, + a3a~a2a~ - a~a~a, a2 

(note that the other 20 products occuring in (17 vanish), and an 

easy computation yields the assertion. 

RENARK. If p and q do not commute then 

alg(e,p,q 7 $ F~ , as the example F3(p,q,e-p) = pq- qp shows. 

By Theorem I there exists an at most 2x2 symbol on M(S). Before 

we explain the structure of M(~) and the explicit form of the 

symbol we quote an elementary lemma which describes those matrices 

in z2x2 which are idempotents 

LF~ul I. Let A = (a b) E z2x2. The matrix A is 

idempotent if and only if one of the following conditions is ful- 

filled: 

with some b E C. 

There exist a g ~ 0 such that 

A =  (0 
b~:O. 

A= (I 0 O)( a ~ (I 
%Tr U 1-a ) o 

~ 

0 
g-l) , 

(5.1) 

(5.2) 

(5.37 
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where ~r- stands for the main branch of the root function. The 

proof is a straightforward computation. 

Let (H1) denote the following hypothesis: 

(Hi) The spectrum c~(pqp) is connected and 

{o,I} = %(~) = %(q) _~ %(p~) . 

THEOREM ~. (a) If (HI) is fulfilled then ~I(~) 

consists of exactly four ideals. These are clos id(p,q), 

clos id(p,e-q), clos id(e-p,q) and clos id(e-p,e-q), where 

"clos id" stauds for the smallest closed two-sided ideal in B 

generated by the elements quoted in parentheses. 

(b) If M E M,(~) then there exist an invertible matrix E E 

~2x2 and a complex number a (both depending on M) such that 

( ~ b  p)(M) .= E - I ~ ( p ) E  = (I0 0 ~ , 

(smb q)(M) ,= E-Iv~(q)E : ( a ~ -~j), 

( ~ b  e)(M) := E'I~:M(e)E -- ( I  O) �9 

PRooF. (a) If I~ ~ ~,(~) then ~I~(P) and ~M(q) 
can take the values O, 1 only, so that at most the four ideals 

quoted exist. 

Consider M = clos id(p,q) (i.e. vM(p) = V~l(q ) = 0). First we 

show that M is a proper ideal in ~s Assume the contraz~y, i.e. 

that e E M. By (2) we can represent e as 

l~lultiplying this equation from both sides by p gives 

p = lira pfkn)(x)p,7, where f(n) are polynomials in x = pqp. 

Thus, p E alg(pqp). 

By (HI), ~$(p) = {O,q}. Let ~ be a disjoin t union of two suf- 

ficiently small open disks D o , DI with 0 ~ Do, 1 E D I. The 

theorem on the upper semicontinuity of spectra in Banaoh algebras 

(see JR], Theorem 10.20) involves that for each polynomial 

f(x)g alg(p q p) which is sufficiently close to p, ~s(f(pqp))c_~. 

This is a contradiction since q$(pqp) was assumed to be connected, 
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what implies the connectedness of ~$(f(pqp)) by the spectral 

mapping theorem for polynomials. Hence, M is a proper ideal. 
It remains to prove that ~/M ~ ~i. Let ~M denote the oanonical 
homomorphism of ~ onto ~/~. For a E algo(e,p,q ) the iden- 

tity 42) gives ~M(a) = ~M(eT, and this immediately gives the 
assertion since ~M(e) ~ O. 

(b 7 Let M E Mz(~). The eigenvalues of the matrix ~M(p)E C 2• 
must be 0 and I since otherwise ~M(p)= (0 007 or 

~M(P) ~- (~ ~7 (cp. (5.17 in Lemma 17, both contradicting 

~/M ~ G 2x2. Hence there is an invertible matrix D transforming 

~M(p) into its Jordan canonical formz D-I~M(P)D = (I 0 0). If 

D'IvM(q)D were of the form (5.17 or (5.2) (see Lemma I) this 
would also contradict the fact that ~/M ~ ~2x24 Hence, by (5.37, 
there is a matrix G = (10 O) with g ~ 0 such that 

G-ID'I M(q)  = ]la 
with an a E C. 

Now put E = DG and notice that E-IVM(p)E = (~ ~7 and 
E-lvM(e7 E = (I 0 ~) to finish the proof. 

For a E ~, we define the symbol of a at I~ ~ M2(~ ) 

by (smb a)(~) := E-I~M(a)E ! E the matrix occuring in (b). 
Our next concern is the determination of the mammal 

ideal space of $. To that end put 

~p := alg(p,pqp), Bq := alg(q, qpq) 

~e-p := alg(e-P' (e-P) (e-q) (e-P 7 ) 

Sp,e-p := slg(e,pqp + (e-p)(e-q)(e-p)). 

L~v~LA 2. (a) ~p,e-p is a subalgebra of the center 

of ~ �9 

(b) Let a ~ ~. Then pap ~ ~p and (e-p)a(e-p7 ~ ~e-p" 

PROOF. (a) Obviously, e and p commute with 
pqp + (e-p)(e-q)(e-p), and a simple computation shows that 

q(Pqp+(e-p)(e-qT(e-p))= (pqp+(e-p)(e-q)(e-p))q = qpq. 
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(b) Let a e ~. Approximate a by a n s algo(e,p,q ). The ~e- 

presentation (2) yields immediately that panp E ~p. Hence, 

lira PauP = pap E Sp. Analogously, (e-p)a(e-p) E ~e-p" 

Besides the hypotheses (H1) we need the following one: 

(H2) ~(b) = ~ (b), where we put b = pqp+(e-p)(e-q)(e-p) 
p,e-p 

for brevity. 

LF~3. a) 

os(b) = qSp(pqp) U qSe-p((e-p)(e-q)(e-P)) . (6) 

b) If (H1) is fulfilled then 

: . (7) 

c) If the hypotheses (H1) and (H2) ame fulfilled then 
: . 

PROOF. a) Let h ~ a~(b). Then there is an a e $ 

such that a(b-he) = e. multiplying this from both sides by p 

we obtain pap(pqp-hp) = e. By Lemma 2, pap ~ ~. Hence, 

h $ OSp(pClp). Analogously we have h $ C~e_p((e-~)(e-q)(e-p) ). 

Now let k ~ OBp(pqp) U ~ and let pap 

resp. (e-p)c(e-p) be the inverses of pqp- hp resp. 

(e-p)(e-q)(e-p)- h(e-p) in ~p resp. Se-p" Obviously, 

pap + (e-p)c(e-p) is the inverse of b - he in ~, and this 

gives (6 7 . 

b) Let h ~ ~ (pqp) U 1(0} and let pap be the inverse of 
pqp - hp. Then Ppap - %- (e-p) is the inverse of pqp - he 

i n  , i . e .  Onth otherh d, i f  

and if a is the inverse of pqp - he in ~ then 

pap(pqp - hp) = p, and by Lemma 2, pap is the inverse of 

(pqp - hp) in Sp, i.e. k $ CSp(pqp). ~Ioreover, in this case 

h ~ O since otherwise the equality a o pqp = e would imply that 

e-p = 0 what contradicts (H1). 

c) In the first step we prove that for arbitrary idempotents p, q 
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the equality 

(~Sp(pqp) U {0,I} = qBe_p((e-p)(e-q)(e-p) ) U {0,1} (8) 

holds. Obviously, (8) is valid if p,q E {0,e}, Let p,q $ 0,e. 
In what follows we need the well-known equality 

,~(AB) U {O} = a(BA) U {0} , (9) 
holding for elements A, B of an arbitrary algebra. Thus, 

O~e_p((e-p)(e-q)(e-p) ) U {O,1} = 

= d~e_p((e-p)-(e-p)q(e-p) ) U (0,1} 

= 1 - (O'~e_p((e-p)q(e-p)) U {0,1}) 

= 1 - (o'B((e-p)q(e-p)) U {0,1}) 

= 1 - (e$(q(e-p)q) U {0,I}) 

= I - (%q(de-p)q) U {0,I}) 

= % (qp~) U {0,I} 

= %(qpq) U {0,I} 

by (7) 

by (9) 

by (7) 

by (7) 

= o~(p~) U {0,i} by (9) 

= %p(p~) U {0,I} by (7) 

NOW we can conclude as follows: By (6) and (H2), 

O~p, e-p(b) = ~p(pqp) U ~e-p((e-p)(e-q)(e-P)) . 

By (7) ann (~I), 
{o,I} ~ %p(p~)  , 

~d by (11) ~d (8) 
G1~e_ p((e-p)(e-q)(e-p)) _c CSp(pqp) . 

Lemma 3 is completely proved. 

(lo) 

(11) 
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GOR(FuLARY I. The maximal ideal space of B~ ~ ~ is 

homeomorphio to the spectrum C~p(pqp). I.e., by (Hfl), it is con- 

nected, and 0,1 ~ ~(~p,e_p). 

The fact that M(~p,e_p) is homeomorphic to the spec- 

trum of pqp is extremely favourable since pqp is the "simplest 

Toeplitz operator", and for Toeplitz operators numerous properties 

ef their spectra are known. 

Now we are in a position to identii~j the maximal ideal 

space of ~: 

THEOREM 5. Let (HI) and (H2) be fulfilled. 

(a) If M E M($) then ~ ~ ~p,e-p is a maximal ideal of 

(b) Every maximal ideal m of ~p,e-p 

rained in exactly one maximal ideal M 

belongs to M,(~). Furthermore, i~2(~) 

% 
t~ 

of points 0 I i l( p,e_ p) 

contained in exactly two ideals both belonging to MI(B). 

Thereby, {I) c clos id(p,q), {I} c clos id(e-p,e-q), 

{0} c clos id(p,e-q) and {0} c clos id(e-p,q). 

Here, (0} and (1) refer to the ideals corresponding with the 

points 0 and 1, respectively, 

PROOF. (a) ~ee [A]. 

(b) Let ~ be the set of all maximal ideals of ~p,e-p which 

are contained in a maximal ideal of ~. Assume that there is an 

m*E ~i(~ ~_~)\~. Let b = pqp + (e-p)(e-q)(e-p). Then 

b - m~(b)e E m*, i.e. b - m*(b)e is not invertible in ~p,e-p" 

By (H2), b - m*(b)e is not invertible in ~! thus there exists 

a maximal ideal RI ~ ~i($) such that b - m~(b)e ~ M. By (a) we 

can find a maximal ideal m (= M N $ ~b~)= of. Sp,e-p such that 
b - m*(b)e E m. This implies that P~ re(b), and since b 

generates the algebra Sp,e-p' this gives m*(a) = m(a) for each 

whence m* = m. Thus, each maximal ideal of Bp,e_ p ae B~ ~ ~ , 
is e~end~ble to a maximal ideal of ~. 

Sp,e-p" 

with m ~ 0,1 is con- 

of ~ which, moreover, 

is homeomorphic to 



Roch and Silbermann 395 

Now let m g M($p,e_p)\{{0},{1}}. The characteriza- 

tion of the ideals in MI($ ) given in Theorem # shows that 

these maximal ideals can only generate the points {0},{1} of 

M($p,e_p). Hence, if m is extendible to the matrix ideal 

M E M(~) then ~/M ~ ~2x2. Again by Theorem ~, the symbols of 

a Va(1-a) ). 
p, q on ~(M) are (I 0 O) respective (~a(1-a)  1-a 

If there were another maximal ideal ~ E M2(~) with m c_ ~, then 

a ~(1-~) ). T~s 
yields 

(stub b)(l~i) = (~ Oa) = , , (smb b)(~) (8~) 

and so we obtain a = ~ = m, i.e. the symbols on M and 

coincide, i.e. M = ~. 

Now we are going to prove that Mz(~) and (pqp)\ ~p 
{0,1} ame homeomorphic. 

Since the topologies on M(~p,e_p) respective on M($) are gene- 

rated by all elements (symbols) of ~p,e-p respective of 3, the 

topology on ~ (pqp)\ {0,1} = li(~p,e_p)\ {{0},{1}} is at most co- 

arser than that on M2(~ ). 

On the other hand, let for 

(smb p)(~) : (~ 0 ~ 

~ence, (stub b)(M) = (a(M) 
0 

[ a(~)VaO~O(1-a(M))]. 
(stub q)(~O = Lda0~)(1_a(M)) 1-a(M)J 
0 ), and by the hypothesis (H1), a(M) 

a(M) is the value of the Gelfand transform of b at the ideal 

m E c~ (b)\ {0,1) which corresponds with M. So, a(M) is 
p,e-p 

nothing else than the identical mapping of Ivl(~p,e_p)\ ({0},{I}} 

onto itself| this means that a is continuous on M($p,e_p)\ 

\{{0),(I)). Therefore, each 2x2-symbol of an element of ~ is a 
continuous matrix function on M($p,e_p)\{{O},{1}} , and thus, 
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the topolo  on is finer than that on 

Part (b) is proved. 

(c) Let, for instance, I~ = clos id (p,q). 

Then (stub b)(M) = 0.O.0 + 1.1.1 = 1, i.e. (1} _~ M. Analogously 

one checks the other cases~ The proof of Theorem 5 is complete. 

By Theorem 5, we can consider the symbol smb a (a E ~) 

as a function defined on ~i U (~B(pqp)\ (0,1}). The continuous 

extension of stub a onto c~(pqp) gives 

(smb p)(O) = (stub p)(1) = (I O) 

A comparision with Theorem @ shows that for a ~ ~ (smb a)(O) is 

invertible if and only if the images of a in ~/clos id(p,e-q) 

and in B/clos id(e-p,q) are invertible, and that (stub a)(1) is 

invertible if and only if the images of a in ~/clos id(p,q) 

and in B/ clos id(e-p,e-q) are invertibleo Therefore, we can 

extend smb a formally onto ~(pqp), and we consider smb a 

as the continuous matrix function given on o~(pqp) by 

[ (stub p)(x) = (1 O) , (stub q)(x) = 

and (smb e)(x) = (1 ~) where the squame root is unterstood in 

the sense of the main branch. 

CORGLLARY 2 (O*-algebra version, cf. [P3]) �9 

Let W, ~ and ~ E C([0,1], C 2x2) be defined by 

and let e, p and q be self adjoint elements of a certain 

C*-algebra B with a~(pqp) = [0,1] and pr= p, q2 _ q . 

Then the C*-algebras alg(e,p,q) and alg(S,~,~) are isometri- 

cally isomorphic, and the isomorphism transfox~ns e,p,q into 

e ,p, q, respectively. 

The proof results from the Theorems ~ and 5 by using some simple 

C*-algebra arguments. Notice that Corollary 2 is essentially due 

to Halmos ([HI, see also [P2]), who gave a proof when p and q 
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are self adjoint projection operators on a Hilbert space. 

We conclude this section by mentioning two sufficient 

conditions for (H2) to be fulfilled. 

PROPOSITION I. Each of the following conditions im- 

plies (H2): (a) g\e~(pqp + (e-p)(e-q)(e-p)) is connected. 

(b) M(~p,e_p) coincides with its Shilov boundary (i.e. 

~ (pqp + (e-p)(e-q)(e-p)) coincides with its topologi- 
p,e-p 

cal boundary). 

PROOF. (a) See [R], Theorem 10.18. 

(b) Tmmediate from Theorem 2. 

3. ALGEBRAS GENERATED BY TWO IDE~0TENTS AND ONE FLIP 

Let g be the Banach algebra alg(e,p,q,j) with the 

unit e where 

p2 = p, q2 = q, j2 = e and jpj = e-p, jqj = e-q. (127 

We a~e going to construct a symbol related to the invertibility 

THEGRE~ 6. alg(e,p,q,j) E F~. 

PROOF. This proof is an extended copy of the proof of 

Theorem 3. As in the latter, each element a ~ algo(e,p,q,j ) is 

a (finite) linear combination of items of the form 

where 

~=px~p 

A~ = p x ~ q(e-p) 

= (ep)q x p 

= (e-p)q x ~ q(e-p) , 

x = pqp, X O := p, X -1  = e. 

= p x asp 

A~ = p x (~ S(e-p) 

A~ = (e-p)q x C~ qSP 

= (e-p)q x ~ j(1-p) , 

03) 

The following table shews how to compute the products 

Put y = ~ + p. 
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Let A i = {~ | ~ >-q} (i=I,...,8) a~d B i = A2i_1 U ~i 

(i=1,...,~), If two elements (say al and an) lie in the same 

B i then F~(al,aa,a3,a~) = 0. This can be proved in the same 

way as the corresponding assertion in the proof of Theorem 3. 

Hence we can restrict ourselves to the case when a i E B i. 

A straightforward evaluation of the resulting 16 terms F~(al, 

�9 ..,a~) shows that F~(al,,..,a~) = 0 if a i E Bi, hence g E F~. 

Note that there is at least one more proof of Theorem 6, 

which runs as follows: 

The mapping F i : ~ ~ g2x2 given for a E g by 

F' (a) I pap pa(e-o) 
= ~(e-p)ap (e-p)a~e-p)) 

is a homomorphism of g into ~2x2 with a trivial kernel, and 

there are constants c~,c2 > 0 such that 

c111aII < IIF i (a)II <_ c~llaII �9 

0).g2• g2x2 

is obviously invertible. Since 

(~ 0)( pap pa(e-p) )(~ 0 ( pap pajp ) , 
(e-p)ap (e-p)a(e-p) j) = "pJap pjajp 

F is a continuous homomorphism of g into the algebra (p~p)2X2. 

Notice that a is invertible in ~ if and only if F(a) is in- 

vertible in ( p>2x2 (with the o>>. second proof 
is finished by the observation that p~p is a commutative Banach 

algebra, which follows from p~p = alg BI (see (13) and the table 
after (13)). 

The analogue of Theorem 4 reads as follows: 

T~EOP~E~ 7. I~(~) = ~i,(~), and for each i~ E I~z(~ ) there 
is an invertible matrix E E r and a complex number a both 

depending on M such that 

(smb p)(Ivl) = ]~'Ivl, cl(iz))E = (I 0 O) , 
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and either 

(szb J)(~0 = ~'-IvM(J)E = (_0 

0 (smb j)(M) = E-I~M(O)E = ( i 

REMARK. For a c ~ we call 

iC)) or 

-~) . 

(stub a)(M),= ~-I~M(a)E 
the symbol of a at M. Deviating from the situation in section 2, 

the "axioms" (12) do not determine a unique symbol. This is 

consequence of the fact that (12) remains invariant if j is re- 

placed by -j. We shall see later which kind of additional infor- 

mation allows to overcome this difficulty. 

PROOF. A little thought shows that there are no complex 

numbers a, b, c such that 

a z = a, b 2 = b~ c 2 = 1, and cac = l-a, cbc = 1-b. 

Hence, MI(G) is empty. 

Let  ~i E M(~) = M~(~). Since v~(~) = (10 O) the  assumptions t h a t  

v~1(j)~M(p)vM(j ) -- ~(p) ~ (I ~ o) - ~M(P)" 

Hence, in accordance with Lemma 1, the eigenvalues of ~M(p) are 

0 and 1. Let D denote the (invertible) matrix transforming 

~I(p) i~to it~ Jordan c~onica fo~, D-I~I~(p)D = (I ~ 0), and 

D-lvM(J)D = (c a _ b). The identities j~ = e and JP0 = let e-p 

imply immediately that a = d = 0 and c - b -1, i.e. that 

D-I~M(J)D = (O 1 b) with some b E �9 {0}. A simple computation 
b 0 

shows that if D-19M(q)D were of the form (5.2) then jqj = e-q 

there is a matrix G = (1 g) (g E G, g ~ O) is violated. Hence 

a ~ 1  with some a E @. G-1D-lvM(q)DG = ~/a(i---~-~ 1-a J such that 

Notice that transformation by G does not change the 

structure of p respective j: 
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dO 0 ~ 
G-1D-lvM(j )DG 0 bg) �9 

= ( (bg)  - I  0 

To guarantee the i d e n t i t y  j q j  - e-q i t  is  necessary tha t  
(bg) 2 = -1, i.e. either bg = i or bg = -i. Now set E = DG 

to finish the proof. 

LFA~A 4. a) The algebra Sp,e-p lies in the centre 

of ~. 
b) The algebras ~p,e-p and ~p are isomorphic, and hence, the 

maximal ideal space of Bp,e_ p is homecmorphic to o$(pqp). 

PROOF. a) Apply Lemma q,b and the identity 

jpqp = (e-p)(e-q)(e-p)j . 

b) Obviously, 

S : ~p,e-p * Sp ' a ~ pap 

defines a hcmomorp~sm from Sp,e-p into ~p, and S -I :$p ~ ~p,e-p' 

b~ b + jbj is its inverse. 

THEOREM 8. The maximal ideal space M(E) is homeo- 

morphic to ~(~p,e_p) ~ a~p(pqp), and the symbol amb a (for 

a E E) is given at x E C~p(pqp) by 

(amb e)(x) = (1 ~) 
(smb p ) ( x )  - (1 8) 

and either (stub j)(x)= (_0 io)or  (stub j)(x)= ( i  0 -io). 

We omit the proof since i t  is oDly a slight modification 
of the proof of Theorem 5. 

One possibility to decide whether the symbol of j is 

(_0 io)or (0-~) is the following: 
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By Theorem 8, 

of ipqjp in g equals either 

(y ~ c y : + ~(1-x) 

or (y ~ c : y : - ~(q-x) 

+ Vx(1-x) 0 
smb(ipqjp)(x) = (- 0 0) , i.e. the spectrum 

C~p 

where ~- refers to the main branch. If the spectrum (pqp) a~p 
is given then the knowledge of only one suitable point of ~(ipqjp) 

would allow to decide which sign(+ or -) holds and so to make the 
symbol unique. 

As a simple consequence we mention a C*-algebra version 
of Theorem 8 (~ee [P2]). 

COROLLARY 3. Let e,p,q,~ E C ([0,1], C 2• be defined 

and let e,p,q,j be self adjoint elements of a certain C*-algebra 

g which fulfil (12) and 

ipqjp_> 0 and cg(pqp)= [0,1]. (13) 

Then the O*-algebras alg(e,p,q,j) and alg(~,~,~,S) = 

= C([0,I], r are isometrically isomorphic, and the isomorphism 

transforms e,p,q,j into ~,~,~,S, respectively. 

PROOF. The relations (13) guarantee that smb j = (_0 ~), 

and that the mapping smb is isometric follows from simple C*- 
algebra arguments. 

We conclude this section with a few remarks on the uni- 

queness of the symbols obtained. To that end we assume the symbols 

= (~ ~) and stub p = (10 0) to be fixed and ask how the 
A 

smb e 

symbols stub q, smb j could look like. 

PROPOSITION 2. a) The general form of the symbol on 
alg(e,p,q) is (for fixed smb e and smb p) given by 

(stub q)(x) = ~[b_l(x)~X b(x)~],l_x l where b(x) : GSp(pqp~@ 
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is an arbitrary invertible function. 

b) The general form of the symbol on alg(e,p,q,j) 

stub e and stub p) given by 

(smb q)(X) = ( b_IVx_.C~ ~ 1 - x  ! 

is (for fixed 

I 
0 ~d (=b j)(~): ( • where b'= I ~d ~'=-b'. 

+z 0 

The simple proof is omitted. 

4. TOEPLITZ AND H_ANK~ OPERATORS ON ~EIGHTED IP-SPACES 

In this and the next sections the general results of the 

s e c t i o n s  2 and 3 w i l l  be a p p l i e d  t o  g i v e  m a t r i x - v a l u e d  symbols  

related to the Fredholm property of Toeplitz and Hankel operators 

and of singular integral operators with a Carlemaa shift changing 

the orientation and with piecewise continuous coefficients. Let 
CO 

{~}• =IIxlf ,~ i:o 
CO 

and I p'~ ,: (~ : {~}i~ CO, llxll~, v = ; l~IP(lil+1)~ < CO} 
i=--co 

and put i p := i p'~ and i p := i p'~ The operators 

CO 

~ �9 l p , ~ ' . ,  lp,'c , { ~ } i = - ~ '  > { ' ~ 1 7 6 1 7 6  

1 CO X ~ and J : IP'7 ~ i p'Y {xi}i=.m, > { _i_1}i=_ ~ 

ame bounded and pz = p, j2 = I (I the identity operator). 
CO 

Given a ~ L~(~) with Fourier coefficients {an}n=_~ we define 

t h e  o p e r a t o r  I~(a) on t h e  space  o f  a l l  s e q u e n c e s  i n  i p 'Y  w i t h  
a finite support by 

O0 

I~(a) �9 {xi}i: ~ ~> 

If IvI(a) can be extended to a bounded operator on i p'Y we call 

~(a) E L(I p'u the multiplication operator with symbol a(t) and 
write a E 5~p,y. 
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Now define M<p,7 > as follows: 

~vt~2,o> = ~ , o  (:  ~(m)), 
M<2,7 > = {a in N.2, ~ for all ~ in some neighborhood of Y} 

if 7 $ O, 

~I<p,O ~ = {a in J~,O for all ~ in some neighborhood of p} 

if p$2, 

M<p,7 ) = {a in l~I~,~, for all (~,V) in some neighborhood 
o~ (p,7)} 

i~ p~2,7r 

For a E ~,7 the operator T(a) := PM(a)P : I p'7 * i p'7 is cal- 

led Toeplitz and the operator H(a) : PM(a)JP : lP'7~ I p'Y 

Hankel (here we identify im P and lP'7). 

The function X which is I on the upper half circle and 0 on 
1 < 7 < 1  the lower belongs to ~<PjY> for all 1 < p < ~ and - ~ 

(see IV, Lemma 10]). Obviously, % 2 = X. 

Let ~P,7 = ~ - 2~(~ + 77 and define, for s E[0,1], 

s if ~P~Y = 0 

~p,y (s) := gp,y (s) := si..n. 9p,ys ex~. (i~p,yS) otherwise. 

sin 9P,7 exp(i~p,7) 

If s runs from 0 to 1 then ~,y(s) runs in ~ for 
1 1 (resp. 1 .~) < ~ + y ~ + y < along a circular arc joining 0 

to 1 and located on the left (resp. right) of the line segment 

[0,1], and the segment is seen from each point of the arc under 

the angle 2~ + y) if ~ + u < respective 2~(I - ~ - 

--2~( -y) i~ <~+7. 

PROPOSITION 3. a) The spectrum ~(T(X)) equals the 

lentiform domain bounded by the arcs gp,y([0,fl]) and gq,_7([0,1]). 

b) The spectrum o(iH(%)) equals the drop-shaped domain bounded 

by the curve dp, 7 : Vgp,7(1-gp, 7) (Eo,1]) .  
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s 

PROOF. a) Well-known (see [VK] or [BS]). 
b) Since r is connected, the spectrum of T(X) in 

L(1 p'Y) is the same as its spectrum in alg(P,X,J,I). By Theo- 

rem 8 the spectrum of iH(%) in alg(P,X,J,I) is either the do- 

main bounded by dp,y or the domain bounded by -dp,y. 

Let first y = 0 and I < p ~ 2. Then I p is conti- 

nuously embedded into the Hilbert space 12. The adjoint operator 

of iH(x ) (considered in i p) is again iH(X) (considered in lq). 

This shows that the operator iH(x) is bibounded (see [GK], 

chapter V) and that iH(x ) coincides with its classical adjoint 

(ill(X)) +. By Theorem V. 3.2 of [GK] the spectrum tin(ill(X)) is 

contained in ~lp(iH(x)). Since ql,(iH(X)) is the straight line 

[0,~] (see [PI]), the spectrum of iH(x) in alg(P,x,J,I) with 

respect to I p must be located on the right of the imaginary axis, 

i.e. it is the domain bounded by dp, o. Note that this spectrum 

coincides with the spectx~m of iH(x) in L(lP'~ This is due 

to the equality (ill(X)) 2 = T(X) - Tn(X), to the fact that the 

spectra of T(X) in L(1 p'Y) and in alg(P,X,J,I) coincide, 

and to the spectral mapping theorem for polynomials. 

Taking adjoints it is easily seen that the assertion remains true 
for y = 0 and 2 < p< ~, too. 
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Now let y ~ O. Since (lP'Y) * ~ i q'-Y (with p-1+q-l:l), 

by the Steia-~eiss interpolation theorem (see [BL], 5~176 there 

exists a Po lying between p and q such that the space i p~ 

is interpolated by i p'Y and I q''Y. Let ~ E ~, and assume 

ill(M) - DI to be invertible in L(lP'Y). Then (ill(X) - ~I) ~ = 

= iH(%) - DI, and since the action of iH(%) - DI and 

(~_E(%) - ~I)* on finitely supported sequences is the same on both 

I p'Y and i q'-Y, the inverses of iH(M) - DI in I p'7 respec- 

tively in I q'-Y have the same action on a dense subset of i p'Y 

respectively of i q'-Y. Hence, by the Stein-Weiss theorem the 

operator which acts on the finitely supported sequences in I p~176 

as iH(%) - ~I, extends continuously to an invertible operator 

on i p~176 Consequently, the real points of the spectrum of 

iH(x) on I p~ must belong to the spectrum of iH(x) on i p'Y. 

As we have shown above, the spectrum of ill(X) on i pc'~ is lo- 

cated on the right of the imaginary axis. So the spectrum on 

i p'7 must lie at the right, too, what finishes the proof. 

COROLLARY @= The maximal ideal space of alg(P,X,J,I) 

(in I p'Y) is homeomorphic to the domain bounded by gp,y([O,q]) 

and gq,_y([0,1]), and a symbol for the invertibility in 

alg(P,z,J,I) is given by 

(stub J)(x) = ( 0 i) and (smb I)(x)= (10 ~) . 

Now we are going to extend these results to a symbol 

calculus for the Fredholm property of operators belonging to the 

algebra generated in L(1 p'Y) by I, P, J and by the piecewise 

continuous functions f which a~e multipliers on i p'Y, i.e. 

f E PO O M(p,y~ =: PG(p,y~ �9 

Let ~ stand for alg(I,P,J,PC(p,y) ), LC(I p'Y) for the ideal 

of the compact operators, ~ for the canonical homomorphism from 

L(I p'Y) onto L(lP'Y)/ LC(1 p'Y) and ~ for the quotient algebra 

~/LC(lP'Y). The algebra ~ contains a copy of the algebra 
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~(~) N M<p,y) in their center (where ~(~) stands for the set of 

the continuous functions f with f(t) = f(t -I)) the maximal 

ideal space of which is homeomorphic to the upper half unit circle 

~+ := (z E ~ : Im z > 0}. For given x E ~+, denote by Jx the 
smallest closed two-sided ideal of A t containing x, put 

~ for the canonical homomorphism from gx := g~/Jx' and write ~x 
% 

~q~ onto ~X" 

THEOREM 9, Let A E ;l. Then 

= . 

Compare [A] for a proof. 

PROPOSITION 4. The local algebra g~ is generated by 

the idempotents ~(P), ~(X) and by the flip ~(J), which can 

occupy the place of p, q and j in (12), respectively. The lo- 

cal spectra og~(~(l~xP)) and ~(~(il~JP)) equal the curves 

gp,y[0,1] and ~,y, respectively. 

PROOF. The first assertion is immediately clear. For a 

proof of the second assertion let a E PC(p,y> denote a function 

which is continuous at each point t ~ 1, which only takes values 

lying on the arc ~,y([0,1]), and with a(1-0) = 0, a(l+0) = 1, 

and let b ~ PC<p,y> denote a function which is continuous at 

each point t ~ 1, which only takes values lying on the straight 

line [0,1], and with b(1-0) = 0, b(l+0) = 1. Since the essen- 

tial spectrum of T(a) equals the arc ~,~[0,I]) (see [VK]~ the 

spectra of ~(T(a)) in L(lP'Y)/LC(I p'Y) respective in ~ 

coincide, Thus, the local spectrum ~ ~(~(T(a)) is contained 

in co the othe  hand, o : 

and o~(~(T(b)) = b(x). Hence, a ~(~(T(B)) is contained in 

gp,y([0,1]) U [0,1]. Since the "global" essential spectrum of 

T(b) coincides with gp,y([0,1]) U [0,1], the inclusion 
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--O ~(~(T(a)) o gp,y([0,1]) follows. This shows the second asser- 

tion, and the third one follows immediately from ~g~(~(T(%)) = 

= gp,y([0,1])~ Theorem 8, and from the fact that the spectrum 

_~,(IP'y)(iH(x)) is located on the right of the imaginary axis 

(Proposition 3), what finishes the proof. 

Thus, Theorem 8 provides a symbol for the invertibility in the 

quotient algebra g~. Similarly one obtains a symbol in g-~1" 

Now let x E T+, im x > 0. A momentms thought shows 

that the corresponding local algebras gx are not generated by 

only two projections and a flip. For that reason we explain a 

scheme which allows to eleminate the flip: Let g be an algebra 

with identity e and with elements p,q,j satisfying pa = p, 

p + q = e, ja = e and jpj = q. As in the second proof of Theo- 

rem 6, the mapping 

F : ~ ~ (pep) 2• , a~ (pap pajp ] 
�9 -pjap P3a3P" 

proves to be a continuous homomorphism, and a E ~ is invertible 

if and only if F(a) E(p~p) 2x2 is invertible (in a similar form 

this approach was proposed by Krupnik [K], w 23). 

Next assume that ~ is generated by the flip j and by another 

algebra ~ (containing e and p) with the property that j ~ j c_~ 

and that pap = ap = pa for a E ~ . Then we can write each ele- 

ment a E ~ in the form a = a~ + aaj with a~,a2 E ~ , and this 

give s 

palp + pa~jp pa~jp + pa2p ] 
F(a) 

L 
! 

pjalp + pJa2JP pjaljp + pja2p] 

I palp pa2p palp pa2p 

= [pja2jp pjaljp] = P~2P P~IP ' 

where we put ~i := JaiJ E ~ . What results is that the mapping F 

is a continuous homomorlohism of ~ into the algebra (p~p)2• 

and that a E ~ is invertible if and only if F(a) E(p~p) 2x2 

is invertible. 
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To reify this scheme, let f E ~(p,y) denote a coati- 

nuous function with f(x) = 1 which vanishes outside a small 

neighborhood of x and for which f(t) �9 f(~) = 0 holds for all 

t ~ ~. P~t p = ~(T(f)), q-e-p, ~d j = ~x(J). ~u~ther, 

identify E and fix and put �9 := B x ~/Jx where ~ stands 

for the algebra ~ = alg(P,PG(p,y)). Obviously, p E Sx ' and the 

hypotheses of the scheme are fulfilled. Thus, ~x is homomorphic 

to a subalgebra of (p~)2• hence, we need a symbol calculus 

for p~p. Notice that the algebra p$~p is generated by the 

two idempoteats p~x(P)p and p x(Xx)P where Xx denotes the 

characteristic functions of the arc joining x and -1 on the 

upper half unit circle, and the same considerations as those in 

the proof of Proposition ~ yield that the local spectrum of 

P~(PX~)P in the algebra p~p coincides with the arc gp,y([0,1]). 

, ~ ~ Hence the spectrum of p x(PXxP)p in the algebra 

alg(p,p x(PxxP)p) is gp,y([0,1]), too, and this shows that the 

alg(p~(P)p p~x~(PXxP )p) equals spectrum of p~x(PXxP)p in 

gp ,y( [0 ,1] ) .  Analogously, the spectrum of p ~ ( ( I - P ) ( I - X x ) ( I - P ) )  p 

in alg(p~x(I-P)p , p~x((I -P)(I -Xx)(I -P))p)  is  also gp ,y( [0 ,1] ) .  

Lemma 3a shows that then the spectrum of p*~(PxxP+(I-P)(I-xx)(I-P)) p 

in I~P is nothing else than the arc gp,y([0,1]). Consequently, 

(H1) and (H2) are fulfilled (see Proposition I), and Theorem 5 

applies to give the following result: 

PROPOSITION 5. For x E ~+, Im x > 0, there is a 

~• for A x which is given at t E ~,y([0,1]) by 

0 0 0  0 0 1  
~ , P ,  < ~ o o o , o o o 

0 0 1  1 O 0  
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and x Xx ~ " 

t ~ o o } 
1-t 0 0 

o o 1-t - 

o o - ~  t . 

PROOF. The representations for ~x(P) and ~x(Xx ) 

follow easily from Theorem 8. For ~(J) note that 

0 ~(J) < > (p ~) by the scheme, and that p is the identity ele- 

ment in p~p. 

REMARK. If only a symbol for operators from 

alg(PtPC<p,y ~ ) is seeked then the %-dimensional symbol given in 

Proposition 5 reduces to two 2-dimensional symbols which may be 

assumed to be given at x and x -1, respectively. 

THEORE~ fl0. A symbol for g~ = alg(I,P,J,PC<p,y>)/ 

/LO(1 ~) can be given as follows. For ( x , t ) 6  ~+ X g p , y ( [ 0 , 1 ] )  

let (stub P)(x,t) be [ ooo I 
loO o o o  ( ) if x=_+l, ooo 

001 

define (smb J)(x,t) as 

0 0 1 0 
io ' 0 0 0 1 (_0 ) if x = + 1, 1 0 0 0 

0 1 0 0 

and for a piecewise continuous function 

equal to 

a(x+O)t + a(x-O)(1-t) 

a(x+0)-a( x-0 ) )~Z~ 

if Tm x>O , 

if Imx>O, 

a let (smb a)(x,t) be 

7 
(a(x+o)-a(x-o ) ) ~  | 

J a(x+0)(1-t) + a(x-0)t 

if x = ~1 
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and equal to (X 0 ) with 
o 

a(x+O)t + a(x-O)(1-t)  ( a ( x + O ) - a ( x - O ) ) ~ "  
X= J 

~a(~*o)-a(~-o))V'~ a(~:+o)(1-t) + a(~-o)t 

,., [,,(~-%0)(1-t)+a(~1-O)t (a(~-t-o)-~,(~'%o))V'TC'C=~ ] 
X [(a(x_l_O)_a(x_l+O)) ~ a(x_1+O)t+a(x_1_O)(1_t ) 

ia case Im x > O. 

The proof follows immediately from Pr~positions # and 5 

and from Allenls local principle (Theorem 9). 

COROLLARY 5. Let A E A = alg(I,P,J,PO(p,y)). Then 

. ~,-~-~,, (~(A)) = ~O:(A)). 
( ~ ) ~ O ( , l " , ' " )  

PROOF. Approximate A by operators A n which are fi- 

nite sums of products of the operators P,J,I and of multiplica- 

tion operators •(a) when a is piecewise polynomial and has 

only a fiuite mumber of disoonti~uities. The spectrum of ~ in 

R ~ consists by Theorem 10 of a (fimite) set S of curves which 

can impossibly be obtained as the union of another set os curves 

S i with some bounded and connected components of r S'. Hence, 

the essential spectra of ~ in R ~ and in L(lP~' )/LO(I p'Y) 

coincide, respectively. 

We need the following elementary fact: Tf X is aa iavertible 

< I element of a Baaach algebra and if llx-yll iix-~ then y is in- 

vertible and 

11 y - l i t  < .... ll_x: 111 (1#)  
1-11x-' i l  II x-~ll " 
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Since ~L( l~ ty ) /LO( l f~ ) (~ (A) )  c ~R~(~(A)), assume to f i n i s h  the 

proof that there is a ~ E C such that ~(A-~) is invertible in 

L(I~tY)/LC(I~VtY), but not in ~E. By (1#),  ~ ( ~ - k )  i s  then 

invertible in L(IPtY)/LC(1 ~p'Y) for n large enough, and 

II (~ (A-~))-111 (I~) 
[] (%(An-~))-ll[ < I-I] (~(A-~))~II[N~(A-An)[I " 

By what has been shown above, %(An-k ) is invertible in g~ 

for n large enough. The estimation (15) guaranties that there 

is an n o such that 

ii ~ (A_Ano)[l < 1 

but this implies via (14) the invertibility of ~(A-~) in ~. 

COROLLARY 6. Let a E PC~p,y>. Then the essential 

spectrum of the Hankel operator H(a) | I p'Y * I p'Y equals 

( - i ( a ( l + O ) - a ( f - O ) ) ~ , y )  U ( - i ( a ( - l + O ) - a ( - 1 - O ) ) ~ , y )  U 

u u + V-( 'a (x+O' i -a (x-O)) (a(~-1 '+ 'O)-a(~-1-O))  ap ,u  . 
Imx>O -- 

PROOF. The first two items result from Theorem 10 and 

Proposition 3! the third te~m is obtained from Theorem 10~ which 
gives the matrix 

I i o o 0 0 

0 0 

a( x-1-0 )-a(x-l+ O) )~-C~ o o 

(a(x+o) a(~-o))~] o o o 

as a symbol for PaJP : I p'Y * i p'Y. 
If PaJP is considered as an operator acting from I p'T to i p'T 

this symbol reduces to 

[ 0 (a(x+O)-a(x-O))~ l 

(a(~-1-o)-a(x-1§ o ' 
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and this gives 4mmediately the assertion. 

~ .  a) Power [P1,2] gave the description of the 

essential spectrum of a Hankel operator for the space 12'~ 

b) The results obtained in this section evidently carry over to 

the space F1 p'Y of all functions f E LI(~), the Sequence of 

the Fourier coefficients of which belongs to I p'Y. 

c) Now it is an easy matter to obtain Fredholm criteria, for in- 

stance for paired equations with Carleman shift 

aP + bQ + (a'P + b'Q)J : i p'Y * i p'Y 

where a,b,a a ,b ~ E PC p,y but we renounce to do this. 

5. SINGULAR INTEGRAL EQUATIONS ON WEIGHTED SPACES 

OF K'OLDER-GONTiI~JOUS FUNCTIONS 

For 0 <'p < I we denote by H p the Banach space of 

all HSlder-continuous functions of degree p on the unit circle 

~t i.e. of all functions f E L~(qP) with 

I f ( t , ) - f ( t l ) l  
tlfll~ := Ilfll oo + sup < 

t~%t, l~,-t~ i ~ 
tl ,taE~ 

Let t1,...,tnE ~ Let H~(t,,...,tn) denote the space of all 

functions f E L~(~) which fulfil the HSlder condition of de- 

gree p at t ~ tl,...,t n and which m~y have jumps at tl,...,tn. 

Let Ho~(tl,...,tn) stand for the subspace of H p consisting of 

all functions vanishing at tl,...,t n. 

n ~k 
Pu~ Q(t) ,= H t t - tk l  with 

k=1 

P < ~k < p + 1 for k = q,...,n. 

set -: , Qf } 
under the norm 

and the singular integral operator S, 

(Sf)(t) 1 

(16)  

becomes a Banach space 
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is bo~.ded on ~o~(~) i~ and only i f  (16) bolas (see [ ~ ]  or 
[GK], ppo 276-279) .  Put P = ~(Z+S) and % = Z-P, and, for  

~ T~(=) ,  define ( J f ) ( t )  = ~(~) .  I f  the weight ~ is ~ e t r i o  
wi th  respect  to the rea l  ax is ,  i . e .  i f  

~ ( t )  = I1 I ( t - t ~ ) ( t - t ~ ) l  ~k , 
k=l 

then J is bounded on Ho~(~), and J' I. 

Let Ot = [ 0 if t ~ tl,...,t n 

L ~-2~(~k-g ) if t = t k 

and, for s E[0,1], define g0t(s) = gt(s) as in section #. 

Further we put, for t E ~, 

where the square root is understood in the sense of the main branch. 

PROPOSITION 6. If the weight is specified to Q(t) = 

It-ll~11t+il ~4 and if X stands for the characteristic function 

of the upper half unit circle, then 

a) the spectrum ~(PXP) in L(HoP(Q)) equals the lentiform do- 

main bounded by the arcs gi([0,I]) and g_1([0,I]) ! 

b) the spectrum o(iP%JP) in L(Ho~(Q)) equals the drop-shaped 

domain bounded by dl. 

PROOF. a) See [GK], Chapter IX, Theorem 10.1. 

b) Since H p is continuously embedded into L2(~), there is a 

> 0 such that for f E Ho~(Q ) O 

tlfHHo~(e ) = ltefllH~ s clleflln, < cllell~llfllT ' , 

i.e. Ho~(Q ) is continuously embedded into the Hilbert space L2(~). 

Ivloreover, the classical adjoint (iI~XJP) + coincides with iPxJP 

so that the same proof as that of Proposition 3 applies in this 

situation, too. It only remains to verii~y that the operator 

iPxJP is positive when considered on L2(~). But this is easily 

shown (see [P2] for the similar proof related to 12), and the 

proof is finished. 
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Our further considerations proceed as in the fourth sec- 

tion. Let a stand for the algebra generated in L(H~(~)) by 

P, J, I and H~(tl,...,tn). Here and in what follows the weight 

is assumed to be symmetric with respect to the real axis. 

Finally, let a ~ refer to the quotient algebra A/LC(H~(~)). 

Since for f E H ~ the commutator fP - Pf is compact 

on H~(Q), the center of a ~ contains a copy of the algebra H ~ 

consisting of those f E H ~ with f(t) = Z(T) for t s 7. 

The mammal ideal space of the latter algebra is homeomorphic 

to ~+, so that we can localize a ~ relative to ~+ by Theorem 9. 

As in section ~, we denote the local algebras by ~x 

the homomorphisms from a~ into ~x by ~x" 

PROPOSITION 7. Assume that I E (tl,...,tn} and let 

E H~(tl,...,tk) denote a piecewise constant function with 

%(I+0) = I, %(I-0) = O. Then the local algebra a~ is generated 

by the idempotents ~(P), ~(X), and by the flip ~(J). The 

local spectra o x(I(PMP)) and ) equal the curves 

gI([0,I]) and dl, respectively. 

The proof is only a slight modification of that of Pro- 
position ~. 

If q $ (t~,...,tn} then the situation is essentially 
simpler: Indeed, since each multiplier is HSlder continuous at ~, 

the algebra ;~ i s  generated by p ,= ~ ( P )  and j := ~ ( ~ ) .  
Taking into account that p~ = j(e-p), the scheme presented after 

0 Proposition ~ yields ~m~ediately that F(p) = (~ ~), F(~) = (p ~) 

and F(e) = (~ ~) defines a symbol on alg(p,~,e). Since 

F , (p : 

alg(p) is obviously isomorphic to @, the correspon- and since 

dence 

(~ D 
(f(1) o 

o f (1 )  
) for f E H~(tl,...,tn) 



416 Roch and Silbermann 

represents a symbol for a~ is the case when I $ {t1,...,ta}. 

We renounce to indicate the symbols for the local algebras 

(Im x > O) explicitely but prefer to give the followimg sum- a x 
mamizing theorem 

THEOP~'I 11. A symbol for 

~ = alg(P,J,I,H~(tl,,..,ta))/LC(Ho~(@)) is given 
a) if x = + I by 

(smb P)(x,t) = (i 0 O0) , (stub J)(x,t ) = (_O io) ' 
t 

(smb a)(x, t )  : I 
a(x+O)t+a(x-O)(1-t) ( a ( x + O ) - a ( x - O ) ) ~ / ~  

L(a(~+o)-~(~-o))~U a(x+O)(1-t)+a(x-O)t 

whe~ t ~ns t~ough go ([0,I]) :z g~([0,1]) 

b) if Im x > 0 by 

o o (arab S ) ( x , t )  0 0 0 ' (s~b P ) ( ~ , t )  : o o , = 
O0 1 0 0  

(smb a)(x,t) = IX O l with 

X = 
l a(x+o)t+a(x~)(1-t) 

a(x+o)-a(x-o) ) ~  

a(x -1+o)(1-t)+a(x -1-o)t 

a(x-l-O )-a(x'l+o ) )~-~ 
X= 

( a (x+O) -a (x -O  ) ) ~ - ( - ~  

a ( x + O ) ( 1 - t ) + a ( ~ - O ) t  

I t 

 oxo 
a(x %o)t+a(x-l-o)(d-t) ] 

w h e ~  t ~ n s  t ~ o ~ h  g ~ ( [ 0 , 1 ] ) .  

PROOF. a) If x E {tlt...,tn} , the assertion is a 
consequence of Proposition 7o If x $ (tl,...,tn} then a must be 
continuous at x, and the symbol quoted above reduces to 

stub P = (i O O), stub J = (_O io) ' smb a = (a(Ox)a~x) ), (17) 

The invertible transformation (y PS) ~ (io O ~ ~ 10 i)(y 8)(o-i) applied 
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to the matrices (17) gives exactly the symbol at x = _+ 1 obtai- 

ned after Proposition 7. 

b) If x E (t4,...,tn} , the proof runs completely parallel to 

that of Proposition 5. For x $ (tl,...,t n} one can amgue com- 

bining the arguments given after Proposition 7 and part a) of this 

proof. 

REI~RKS. a) The analogues of the Corollaries 5 and 6 

hold in the HSlder space case, too. 

b) The results remain valid if the unit circle ~ is replaced by 

any system P of piecewise Lyapunow curves the singular points of 

which belong to the set (t~,...,tn} of the zeros of the weight Q, 

and if J is replaced by a Carleman shift changing the orienta- 

tion of P. 

To that end one makes P to a closed piecewise Lyapunow curve by 

filling in straight lines between the endpoints of the single 

curves, and then one considers only multipliers which are identi- 

cally I on these lines (see [GK] for details). 

c) For the algebra generated by P and HS(tl,...,tn) , (i.e. 

if the flip J is absent) the results of this section were ob- 

tained by Duducava (see his survey [Du] for further references). 

6.   UA IONS ON  P-SPAOES 

For given tl,...,tnE ~ put Q(t) = ~ It-tkl pk (t E ~) 
k=1 

and let LP(Q) stand for the Banach space of all functions f 

with IIfllLp(Q ) := IIQflILp < ~. The singular integral operator S 

defined in section 5 is bounded on LP(Q) is and only if 

I < ~k < I (~ I = I) for k = 1,...,n. Define P, Q, J 

as in section 5. If the weight Q is ~ymmetric with respect to 

the real axis, the operator J is bounded on LP(Q) and j2 = I 

(I the identity). 

Let Ot = ~ ~(I-2) if t $ {t~,...,tn} 

[ 2 
~(1-~- ~k) if t = t k. 

and for s E[0,1] define gOt(s) =: gt(s) and 

d t "= ~gt(1-gt) ([0,1]) as in section ~. 
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The same arguments as in section 5 lead us to the follo- 

wing theorem 

THEORF~4 12. For the algebra g~= alg(I,P,J,PC)/LC(LP(~)) 

the symbol has the same form as that given in Theorem 11. One only 

has to replace the g~x in Theorem 11 by the gOx defined above. 

(See [GK], chapter IX, w 3 for the essential spectra of the 

special singular operators necessary for the proofs.) 

REIiL&RKS~ a) This result is well-known. For the case 

that no flip occurs the proof is in [GKI]. For the general case 

see and [O]. 
b) The results remain valid when replacing ~ by a system of 

piecewise Lyapunow curves r and J by a Carleman shift changing 

the orientation of P (see the concluding remarks of section 5). 

c) The analogues of the Corollaries 5~ 6 hold, too. 

d) Taking into consideration Theonem 11.2 of Chapter IX of [GKI], 

an analogue of Theorems 11 t 12 can be formulated for symmetric 

spaces E(~) or E(r )  (see [GKff], IX). 

CONCLUDING REY~. Note that the considerations of the 

sections 4 - 6 also apply to the matrix case. 
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