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Abst rac t .  We give a recursion-theoretic characterization of FP which 
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1. I n t r o d u c t i o n  

Cobham [9] characterized the polytime functions as the least class of func- 
tions which includes certain initial functions and which is closed under compo- 
sition and bounded recursion on notation. His characterization has yielded a 
number of applications; in particular it serves as the basis for several theories 
of ari thmetic ([10], [5], [13]) which formalize aspects of polytime reasoning. 

Although it has been fruitful, an unsatisfying aspect of Cobham's charac- 
terization arises in the recursion on binary notation. The recursion operator 
is a powerful one which, however, can only be applied when an explicit size 
bound is satisfied by the resulting function. Additionally, an initial function 
21~l-lyl is needed solely to provide a large enough bound for making recursive 
definitions. 

Leivant's recent elegant characterization of polynomial t ime [17] suggests 
that  one might be able to dispense with these features controlling the growth 
rate of functions. Leivant proves that  a function is polytime if and only if it 
can be proved convergent in the logical system L2(QF +) using the function's 
recursion equations and a "surjective" principle. Here L2(QF +) is second order 
logic with comprehension (i.e., definability of sets) for positive quantifier-free 
fomulas. The system has the string successor functions built in, but nothing 
like 2M'M; and bounded recursion plays no rSle. 
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Inspired by Leivant's resuit and its proof, we present here a direc~ recursion- 
theoretic characterization of the polytime functions. The result can be read 
independently of the results in Leivant's paper [17]. Our closure operations 
are essentially composition and recursion on notation, syntactically restricted 
in ways which have no direct connection to bounds on growth rates. All the 
initial functions are small, their outputs being no longer than the outputs of 
the string successors. 

Our results raise the question of how the type of recursion introduced here. 
"predicative recursion", can be used to define other complexity classes in a 
r free" manner. More generally we may ask whether Leivant's program, 
using impredicativity co characterize computational complexity~ can be carried 
out directly in a functional setting absent of logic and provability. 

1.1. B a c k g r o u n d .  [mmerman [16] and others have characterized poIytime re- 
lations in a way which is also resource free in the sense that there are no explicit 
bounds in the defining expressions. However, these are frequently characteri- 
zations of relations rather than functions; for example the exponential relation 
E(y, x) ==_ (y = 2 ~) is polytime. While there has been some related work us- 
ing functions, as in [15], the finite model theory setting has imposed output 
size bounds a przori. We approach a different problem, that of controlling the 
growth rate of functions without introducing explicit bounds. 

The work here also differs substantially from the earlier work of Clote and 
Takeuti [8] which uses logical sorts to distinguish the size of terms; there the 
explicit construction 2 t creates a term whose logical sort is one greater than the 
logical sort of t. For example the Key Lemma in [8], like other contemporary 
work, uses an explicit bound on the recursively defined function. 

Our notion of Predicative Recursion on Notation, which was developed in- 
dependently, is comparable to Leivant's "tiered recurrence" [18]. The functions 
defined there are the much smaller class of extended polynomials. Following 
our work ([31) , Leivant and Marion [19], [20] have expanded the results of [I8]. 
Further results are discussed in the conclusion below. 

In the subject of program synthesis and automatic theorem proving, Fe- 
garas. Sheard and Stemple [14] have independently formulated a recursion 
scheme which seems related to the one below'. They do not analyze the com- 
plexity of the functions computed using their scheme. 

1.2. M o t i v a t i n g  E x a m p l e .  As a motivating example, consider the definition 
of the (i) function (similar to the smash function of Buss and others) in [17]. The 
definition uses recursion on binary strings as follows: | sv) = | (i)(w, v)) 
for s E {0, 1}, where | (concatenation) has been defined by recursion on it8 
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first input, not its second. Leivant shows that convergence of the Q function 
is provable in L2(QF+). On the other hand, if we take the natural definition 
of the exponential function, 2 ~x = | ~, 2x), we see that the recursive term 2 ~ 
is substituted in the position which was used for recursively defining | The 
exponential function is not provable in L2(QF+). 

This suggests the definition below of a class B of functions. In this class, 
one does not allow recursive terms to be substituted into a position which was 
used for an earlier definition by recursion. 

2.  T h e  c l a s s  B 

Each input to a function in B will be either a "normal" input or a "safe" 
input; we write the normal inputs to the left and separate them from the safe 
inputs using a semicolon: f(~-; ~). 

We formulate the result using computation on non-negative integers, but 
the same proof carries over to computation on binary strings as in Leivant [17], 
replacing 0 with e. We write Ix] for the binary length [log2(x + 1)] of integer 
x; and the terms "predecessor" and "successor" refer to binary notation. If ~- 
is a vector of n integers we write Ixl for the vector Ix l l , . . . ,  Ix~l, and we write 
7(~') for f l  (~),. �9 f,~ (x-). 

B is the smallest class of functions containing the initial functions i-v and 
closed under vi ,  v i i :  

i .  ( C o n s t a n t )  0 (a zero-ary function). 

i i .  ( P r o j e c t i o n )  ~'~ .. 71"j (X  1 . X n ;  X n +  1 . . X n + m )  ~- X j ,  for 1 < j < n + m .  

i i i .  (Successors )  si(;a) = 2 a + i = a i ,  f o r i e  {0,1}. 

iv .  ( P r e d e c e s s o r )  p ( ; 0 ) = 0 ,  p ( ; a i ) = a .  

v. ( C o n d i t i o n a l )  

( b if a m o d 2  = 0, 
C(;a,b,c) = 

c otherwise. ( 

v i .  ( P r e d i c a t i v e  R e c u r s i o n  on N o t a t i o n )  Define the new function f by, 
f o r / e  {0,1}, 

f (0 ,~ ;~)  = g(5;N), 
f(yi,~;-5) = hi(y,-~;-5, f(y,-~;'5) ) for yi 7~ O, 

where hi and g are in B. 
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v i i .  (Safe C o m p o s i t i o n )  Define the new function f by 

f(~; ~) = h(F(~; ); 7(u ~)) 

where h, -f, and 7 are in B. 

The polynomial time functions will be exactly those functions in Y which 
have all normal inputs: i.e. no safe inputs. 

Functions in B can perform any (polytime) operation on their normal in- 
puts. but can only apply a restricted set of operations to their safe inputs. In 
particular, the operations allowed on safe inputs do not increase the length by 
more than an additive constant. Adding a function to B which operates on 
safe inputs would in general be more powerful than adding the same function 
on normal inputs, because of the asymmetry of the composition scheme. 

To understand Safe Composition, suppose f(g;  g) is given by a single ex- 
pression in ~ and 5.. Then f(5;  5") can be defined by Safe Composition (and 
Projection) from the function symbols occurring in the expression, provided 
that each sub-expression g(~; t-) has no ai appearing in the terms ~. 

Observe that in defining a function by recursion, the recursive value f ( y ,  "~; ~') 
is substituted into a safe position rather than a normal position of h. The pred- 
icative composition scheme ensures that this recursive value will stay in a safe 
position and will not be copied into a normal position. Intuitively, this means 
that the depth of sub-recursions which hi performs on y or g cannot depend 
on the value being recursively computed. This mechanism seems to have the 
effect of preventing the uncontrolled impredicativity which Leivant discussed 
as the cause of a blowup in complexity. 

In concrete terms, we can think of safe positions as input positions where 
it is safe to substitute a large value withoui greatly increasing the output size 
of the function. In contrast, the output size may increase polynomially in the 
size of the normal inputs. See Lemma 4.1 below. Intuition relating the safe 
and normal sorts to computation time is made precise in later work [2]. In 
philosophical terms, we can think of safe positions as input positions where it 
is safe to substitute an "impredicatively defined" value. 

3. B con ta ins  P T I M E  

To prove that every polytime function is in B, we use the Cobham char- 
acterization [9] of P as the least class of functions containing the Constant, 
Projection, Successor functions, and the smash function 21~I'IYl; and closed un- 
der ordinary composition h( j (g))  and the following rule: 
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DEFINITION 3.1.  ( B o u n d e d  R e c u r s i o n  on N o t a t i o n )  If hi, g, and j are in 
the class then so is f ,  where 

f(O, ~-) = g(g), 
f (y i ,g )  = h i (y ,g , f (y ,~) )  for yi r O. 

(i E {0, 1}), provided that f ( y ,g )  < j (y ,g)  for all y,g. 

See Rose [23] for a proof that  the Cobham functions are all the polynomial 
t ime functions, or see [26] for the same result formulated over binary strings. 
In particular, for each Cobham functio_2n f there is a length-bounding monotone 
polynomial b s such that  If(T)] _< bof(Ixl). 

To prove that  B contains every PTIME function f ,  we first show how to 
compute  the value of f (g )  assuming that  we already have a value w which is 
big enough. Intuitively speaking, w has to have a length at least as great as 
the max imum depth of recursion used in computing f (g) .  

LEMMA 3.2. Let f be any polytime function. There is a function f '  in B and 
a monotone polynomial pf such that f(-5) = if(w;-5) for aI1 "5 and a11 w with 
lwl _> ps(lal). 

PROOF. The proof is by induction on the length of the derivation of f as 
a function in the Cobham class. If f is a constant, projection, or successor 
function then f '  is trivially defined using the Constant,  Projection or Successor 
functions of B. In these cases, let Pf = 0. 

If f is defined by composition, I (g )  = h(g(g)), then define f '  by if(w; g) = 
h'(w; g'(w; ~)). Since the functions g are in the Cobham class, they have length- 
bounding polynomials bg. Define p] such that  

ps(Ix ) = ph(b-~(Ix-~l) ) + ~ pg, (-('dT). 
J 

The induction hypothesis can be applied to h and ~ using the facts implied by 
[w] > p](Ix[). The desired properties of f '  and pf then follow easily. 

The next case is when f is 2 Ixl'lyl. This function has a definition using 
recursion on notat ion with length-bounding polynomials bAIxl, ryl) = ixl + ryr 
and bs(Ixl, tyl) = Ixl. lyl + 1. Namely: g(0, y) = y; g(xi, y) = g(x, y)0; f(0,  y) = 
1; and f (x i ,  y) = g(Y, f (x ,  y)) (where xi r 0). In this case one can apply the 
same method  as for bounded recursion on notation. 

The difficult case is when f (y ,g )  is constructed by bounded recursion on 
notat ion as in the Definition above. Then g', h~ and h~ in B are given by the 
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induction hypothesis. Of course we cannot define f!(w; y,'g) by recursion on 
Y, since y is not in normal position. Instead we introduce a )arameter  z, and 
use recursion on z to simulate recursion on y. T h e  reeursion parameter  Z is 
initialized to w, and the part of the recursion on Izj from ]w I down to jw!-  JUl 
corresponds to recursion on y. 

To define f '  first define, using Predicative Recursion on Notation and Pred- 
icative Composition, the functions 

PAR(; a) = C(; a,0, 1), 
P(0; b) = b, r (~ ,  ~,; y) = P(P'(~, .o; ); y), 
P(~i; b) = p(; P ( <  b)), ~(~, ~; V) = PAR(; V(zl ,  ~; V)). 
P'(a, b; ) = P(a; b). 

V(O; a) 
V(xi;a) 

= PAR(; a), 
= C(; V(x; a), PAR(; P(x:~; a)), 1), 

These are explained as follows. The function P(a; b) takes ja i predecessors 
of b. The function Y(z,  w; Y) produces an initial segment of y, namely y with 
tw[ -  lz] rightmost (low-order) bits deleted. As z varies in length from lwl down 
to lwl - lyl, the output  of Y varies from y down to the trivial initial segment, 
0. Recursion depths with [z I below I w l -  ]Yl will be irrelevant. The function 
I (z ,w;y)  satisfies Y(zj ,  w;y) = si( .... ;y)Y(z,w; y), for zj r O. At  each step 
of the recursion on z we use the function I to look into y and: see which step 
function hi should be applied. The function V(x; a) compute s the logical OR 
of the rightmost Ixl bits of a. To continue formally, define 

s i, a, ~, c) 
f (O,~ ;y ,~)  

f '(w; y, ~) 

= c(;  i, h'o(W; a, ~, c), hi(w; a, ~,, e) ), 
~--- 0 ,  

= c( ;  v(w; Z ( z l ,  ~; y)), 

h(w; I(z, w; y), Y(z,  w; y), "~, f (z ,  w; y, ~-) ), ) 
= ? (~ , -<  y,~) .  

Since f is in the Cobham class, there is a monotone polynomial bf such 
that  tf(y,~-)] _< bs(Iv], fxl). Letting Ph = Pho + Phi, define pf  such that  

/ ! I p~(lyh Lxl) - ph( uJ, >i,  6j(lyL, Ixl)) + p~txl)  + ~y~ + !. 

Fixing Y and ~-, let w satisfy Iwj >__ Pf(IYJ,-~1). We prove below by induction 
on tut that: for t w l -  ]Yt <- Jut <- [wl, f (u ,w;y,•)  = f(Y(u,w;y) , -g) .  Since 
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Y ( w ,  w ; y ) =  y, we have f ' (w;y , '2 )  = f(y,-2) as desired for the main induction 
of the lemma. 

Consider any u with I w l -  lYl -< lui --< Iwl �9 Since I w l -  iYl -> 1 there is z and 
j E {0, 1} such that  u = z j .  Also note I~Jl = Izll and Y ( z l ,  ,,,; y) = Y(~j ,  w; v). 
Since lwl >_ IY(z l ,  w; y)i, the expression V(w; Y ( z l ,  w; y) ) is 0 if Y ( z l ,  w; y) = 0 
and is 1 if Y ( z l , w ; y )  7~ O. 

First, if lu[ = Izj] = I w l -  lYl then Y ( z l ,  w; y) = O. Using the definition of f 
and the main induction hypothesis on g, we immediately have f ( z j ,  w; y, "~) = 
g'(w; "~) = f(O, "~) = f ( Y ( z j ,  w; y),'~). 

Second, if Izjl > lwl - lYl we can assume f ( z , w ; y , g )  = f ( Y ( z , w ; y ) , - 2 ) .  
Using monotonicity of pf and Phi, 

iwi 
m 

ps(lyl, Ixl) 
> p~, (Ir(~, ~; y)l, Ix_!, ~s(Ir(~, ~; y)l, Ixl)) 
>_ ph,([Y(z,  w; Y)I, [x], [ f (Y ( z ,  w; y), ~)]). 

This allows us to apply the main induction hypothesis for hi: 

h}(w; Y ( z ,  w; y), ~, f ( z ,  w; y, "s = h~(w; Y ( z ,  w; y), ~, f ( r ( z ,  w; y), "s 
= h~(Y(z,  w; y),u f ( Y ( z ,  w; y),'~)). 

The condition IwL-]y[  < tzJl < Iwl implies y r 0 and Y ( z l , w ; y )  # O, so by 
the definition of f and the fact Y ( z j ,  w; y) = sz(~,~,;~)Y(z, w; y) we have 

](z j, w; y, ~) ' " f ( z , w ;  = hi(z,~;~)(w, Y(z ,  w; y), ~, y, ~)) 
= hi(z,~;y)(Y(z, w; y) ,~,  f ( Y ( z ,  w; y),~)) 
= f ( Y ( z j ,  w; y) ,u  

as desired. [] 

THEOREM 3.3. Let f(-F) be a poly t ime function. Then f ( u  is in B. 

PROOF. Let p] and f '  be obtained using the preceeding___Lemma. We will 
construct a function b(u in B such that  Ib(u > py(Ixl). Then setting 
f (~ ; )  = / ' ( b ( ~ ;  ); u finishes the theorem. 

First define concatenation of k strings (in reverse order) using one safe 
position: 

| y) 
| zk-1;xk) 

= y, 
= a~(; e~(x; y)) for xi # O, 
= e ~ ( ~ ;  e ~ - ~ ( , ~ , . . . ,  ~_~;  ~ ) ) .  
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Next define the "declining smash" function using recursion in the safe po- 
sition of | as follows, 

#(0;)  =0 ,  
# ( ~ i ; )  = , ~ ( z i ;  # ( z ; ) )  for ~i r 0. 

The length of # z  is IzI(lzi + 1)/2 = f~(Iz[2). 
Let a, c be such that ( ~ j  Ixjl) ~ + c >_ py(Ixl) for all g. Composing # onto 

itself a constant number of times and then concatenating a constant to the 
end gives a function bl(z;) such that lb'(z; )l > (Iz]) ~ + c. Using predicative 
composition again gives O___(_u ) |  xk-1; xk) and b(~';) bl(| );) 
having length at least py(Ix]) as desired. [] 

4. P T I M E  contains  B 

To prove that all functions in B are polytime, we first derive a b o ~ d  on the 
length of the computed value. Then it is easy to observe that the Predicative 
Recursion on Notation operator preserves polytime if the output is length- 
bounded. 

LEMMA 4.1. Let f be a functiorl in B.  There is a monotone polynomial qf 
such that [/(g;Y-)! -< qf(lxI) + maxi [yi[ for at! z,  y. 

PROOF. The proof is by induction on the derivation of f in B. If f is 
a Constant, Projection, Successor, Predecessor, or Conditional function,__}hen 
if(~;~')] < 1 + ~ / ]xd  § max/[Yd and therefore we can just take qs(Ix[) = 
1 + E/ lx/I .  

If f is defined by Predicative Recursion on Notation then by the induction 
hypothesis we have qg~ qho and qhl bounding g, ho and hi respectively. Letting 
qh = %o + qh~, we have 

If(0,g;g)] <_ qg([xl)-t-max/lY/[, 
] f ( z i ,g ;g)  I <_ qh(IZ], ]X]) + max(max/!Y/i, If(z,g;-Y')i) - 

Define qf such that 

qs(lz'l, ]xl) = Iz'l. qh(Lz'l, Ixl) + q~(IxL). 

We have trivially If(0, g; Y')t -< ql(101, Ixl)+max~ ly/l by the inductio___n hypothesis 
on g and monotonicity of qh. Now assuming If(z, ~; g) l <- qs (tz [, I xt) § max/ly~l 
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and Izif r 0 (hence Izil = Izl + 1), we have 

If(zi, "~; ~)] 
m 

< qh(Izl, ix_~) + max(maxi lYil, If(z, ~-; ~)1)  
<_ qh(Izl, Ix__~) + max(ma__xl lYil, qy(Izl, ix[) + maxl lY~[) 
<- qh(N, [xl) + qI(lz[, Ixl) + maxi ly,:l 

<_ qh(lzl, Ix--l) +_~lzl" qh(Iz__l,T~) + qg(N)) + maxi iy~l 
<__ Izi] . qh(IZl, Ixl) q- qg(lxl) q- maxi lYil 
<_ Izi! . qh([z__i], Ixl) + qg(Ixl) + maxi lY~I 
< qs(lzil, Ixl) + max~ lYd. 

m 

Therefore, a simple induction on Iz'! shows that  I f (z ' ,u  _< qf(lz'l, ixl) q- 
maxi ]yil for all z I, as desired. 

Finally, if f is defined by Safe Composition then using the induction hy- 
pothesis on h, T, and 7, 

If(~;~)l = Ih(~(~; ); ?(~; ~))1 
< qh(Ir(u + maxi Iti(u Y)I 
< qh(~(Ixl)) + maxi Iti(u 
< qh(~(Ix---~]))__ + max~ q(.~(~-[) + maxj lYJl) 

< qh(~([x[)) + ~ qt,(lxl) + max4 lY~l. 
m m m 

Therefore, choosing qf such that  qs(Ixl) ~ qh(~(Ixl)) + El  qt~(Ix[) finishes the 
result. [] 

THEOREM 4.2. Let f (u  be a function in B. Then f(-2,~) is polytime. 

PROOF. The initial functions are all clearly computable in polynomial time. 
For Safe Composition observe that  the composition of two polynomial t ime 
functions is a polynomial t ime function. 

With regard to Predicative Recursion on Notation, it is well known that  a 
recursion on notation can be executed in polynomial t ime if the result of the 
recursion is polynomially length-bounded and the step and base functions are 
polytime. In our case, the length-bound follows from the preceeding lemma. 

Alternatively we can observe that  the bounding polynomials of the Lemma 
are computable in Cobham's class and that  therefore every instance of Predica- 
tive Recursion on Notation is an occurrence of Bounded Recursion on Notation; 
this gives a reduction of derivations in B to derivations in the Cobham class. 
[3 
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5.  F u r t h e r  c o m m e n t s  

The presentation in this paper has used a single sort of variable and has 
classified input positions as safe or normal. A similar class of functions can 
be defined using two sorts of variables, ascribing safe or normal sort to both 
the inputs and outputs. Safe Composition is replaced by ordinary composition 
respecting the sorts of the inputs and outputs. The initial functions all take 
on safe type outputs, and Predicative Recursion on Notation results in a safe- 
valued function. One further adds the following "Raising" rule: if function 
f(g;  ) of all normal inputs is in the class with safe type output, then the function 
f "  is in the class with normal type output defined by f f ( '~ ; )  = f(g;  ). 

In such a two-sorted presentation we could replace the Predecessor and 
Conditional functions with the single function N(x ;  a) = a mod 2N. This gives 
a class B C  which (even ignoring output sorts) differs from B: for example p(; a) 
is not in B C .  But (again ignoring output sor~s) B C  and B are identical on the 
subset consisting of functions with all normal inputs. Hence B C  is as good as 
B in characterizing the polynomial time functions. The proof for B C  is simpler 
than the proof for B: however, this is somewhat offset by the fact that N is 
not a constant-time operation. 

If we take as a base the class B C  and develop a higher-type class along the 
lines used for the definition of P V  ~ terms in [13], we obtain a class apparently 
equal to the Basic Feasible Functionals discussed in [12]. Now if we add the ini- 
tial function Aa.lal of type (safe ~ normal), the resulting class is still polytime 
on its type 1 section yet is able to compute the well-quasi-ordering functional 
which Cook [11] demonstrated is not Basic Feasible. See [25]. 

6.  D i r e c t i o n s  f o r  r e s e a r c h  

Philosophically we think of normal values as those which are known in 
totality, and safe values as those which are "impredicative" in the sense that 
their definition refers to members of the set N of integers other than those 
which are immediately known. As Nelson [21] points out and Leivant [17] 
emphasises, definitions of N are impredicative because they are justified by 
inductive means, which presuppose an understanding of N. In other words, the 
validity of defining a function by recursion requires an impredicatively defined 
concept, namely N. The current work projects the idea of an impredicatively 
defined set down onto specific members of the set - -  relative to the fact that 
we have certain values given to us in their totality, references to other members 
of N are references to "impredicative values". They are values which you 
only know exist because you assume the existence of an impredicativty defined 
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set, N. We control this impredicativity by isolating such values in safe input 
positions, and performing only operations on them which are constant-time 
with respect to their size. Thus we have developed a functional analogue of 
highly predicative reasoning. 

From this viewpoint, it is interesting to investigate the complexity classes 
obtained with predicative recursion by allowing various amounts of information 
to cross over from the safe inputs to the normal inputs; or, by allowing various 
amounts of computation to be performed on the safe inputs. This project could 
be stated technically as follows: explain, for various syntactically defined and 
highly restricted function classes R, the effect of adding to B the composition 
scheme f(~-; ~) = h(F(~-; ~); 7(~-; ~)) where r E R. As mentioned above, the 
function r(; y) = lYl is permissible without exceeding polytime. 

It appears that the methods of this paper can be used to remove the size 
bounds from Clote's 'sequential' characterizations [7] of AC k and N C  k, giv- 
ing resource-independent characterizations of these classes. An alternative ap- 
proach to characterizing N C  I is given by Bloch [4] based on the methods of this 
paper and the work of Allen [1]. Recently, Leivant and Marion [19], [20] have 
used a method similar to ours and [18] to characterize the Kalmar elementary 
functions. The class of logspace-decidable problems, the class of linear space 
functions, and the class of functions computable in polynomial time using E~ 
oracles have now been given similar characterizations ([2]). 

The results of this paper can be used [2] to give a new proof of Leivant's 
result [17] that functions provable in L2(QF +) include all the polytime func- 
tions. 

The results also bear on the system PV ([10], [13]), an equational the- 
ory with a function symbol for each polytime function together with defining 
equations for the function based on Cobham's characterization. When f is in- 
troduced by bounded recursion on notation, it is necessary to prove in PV that 
the bounding inequality is satisfied. This requirement contributes significantly 
to the complication of developing the theory in PV. An alternative develop- 
ment of PV, based on the theorem here rather than Cobham's theorem, should 
be simpler. 

Finally, a category theory translation of the results in this paper has been 
given by Otto [22]. 

Acknowledgments 

In an earlier draft of this paper we used the functions D(a; b) = P(b, a) and 
E(a; b) = P(b, P(b, a)) as initial functions. We are grateful to Sam Buss for 



108 Bellantoni & Cook comput complexity 2 ~1992) 

pointing out to us that these two can be eliminated in favor of ~he single 
predecessor function, p. We would like to thank Toniann Pitassi for her helpful 
comments. We would like to thank Daniel Leivant for his comments on an 
earlier draft of this paper. 

R e f e r e n c e s  

Ill 

[2] 

[3] 

[4] 

[5] 

[71 

[8] 

[9] 

[10] 

B. Allen, "Arithmetizing Uniform NC", Annals of Pure and Applied 
Logic, p. 1-50, v. 53 (1991). 

S. Bellantoni, "Predicative Recursion and Computational Complexity", 
PhD Thesis, University of Toronto, 1992 (to appear). 

S. Beltantoni and S. Cook, "A New Recursion-Theoretic Characteriza-- 
tion of the Polytime Functions (Extended Abstract)", in Proc. 2~th 
Symposium on the Theory Of Computing, ACM, 1992. 

S. Bloch, "Functional Characterizations of Uniform Log-depth and Polylog- 
depth Circuit Families", in Proc., Structure in Complexity Theory, to 
appear, IEEE, 1992. 

S. Buss, "Bounded Arithmetic", Ph.D. Dissertation, Princeton Univer- 
sity, 1985; reprinted Bibliopolis, Naples, 1986. 

P. Clote, "Sequential, machine-independent characterizations of the par- 
allel complexity classes AIogTIME, AC k, NC k and NC." MSI Workshop 
on Feasible Mathematics, p. 49-70, Birkhauser, 1989. 

P. Clote, G. Takeuti, "'Exponential Time and Bounded Arithmetic", in 
Annual Conference on Structure in Complexity Theory, v. t, p. 125-143, 
1986. 

A. Cobham, "The intrinsic computational difficulty of functions". In 
Y, Bar-Hillel ed., Proc. of the 1964 International Congress for Logic, 
Methodology, and the Philosophy of Science, p. 24-30, North Holland, 
Amsterdam, 1964. 

S. Cook, "Feasibly constructive proofs and the propositional calculus", 
Proc. 7th Symposium on the Theory Of Computing, p. 83-97, ACM, 
1975. 



comput complexity 2 (1992)  Recursion Theoretic Characterization 109 

[111 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[2o] 

S. Cook, "Computability and complexity of higher type functions." Proc. 
MSRI Workshop on Logic from Computer Science, p. 51-72, Y. Moschovakis, 
ed., Springer Verlag, 1992. 

S. Cook and B. Kapron, "Characterizations of the Basic Feasible Func- 
tionals of Finite Type", Feasible Mathematics, p. 71-95, S. R. Buss and 
P. J. Scott eds., Birkhauser, 1990. 

S. Cook and A. Urquhart, "Functional interpretations of feasibly con- 
structive arithmetic", Annals of Pure and Applied Logic (to appear). 
Extended abstract appears in Proc. 21st Symposium on the Theory of 
Computing, p. 107-112, ACM, 1989. 

L. Fegaras, T. Sheard, D. Stemple, "Uniform Traversal Combinators: 
Definition, Use and Properties", in Ilth International Conference on Au- 
tomated Deduction, June 1992. 

Y. Gurevich, "Algebras of Feasible Functions", Proc. 2~th IEEE Confer- 
ence on Foundations of Computer Science, p. 210-214, 1983. 

N. Immerman, "Languages That Capture Complexity Classes", SIAM 
Journal of Computing, p. 760-778, v. 16 (1987). 

D. Leivant, ~'A foundational delineation of computational feasibility", in 
Proc. Sixth Annual IEEE Symposium on Logic in Computer Science, p. 
2-11, IEEE, 1991. 

D. Leivant, "Subrecursion and lambda representation over free algebras 
(Preliminary summary)", Feasible Mathematics, p. 281-292, S. Buss and 
P. Scott, eds., Birkhauser 1990. 

D. Leivant, J-Y. Marion, "Purely applicative characterizations of com- 
plexity classes (Extended Abstract)", typescript, Department of Com- 
puter Science, Indiana University, April 1992. 

D. Leivant, J-Y. Marion, "Capturing poly-time in a typed A-calculus", 
typescript, Department of Computer Science, Indiana University, April 
1992. 

[21] E. Nelson, Predicative Arithmetic, Princeton University Press, Princeton, 
1986. 



!10 Bellantoni & Cook comput complexity 2 (1992) 

[22] J. Otto, "Categorical Characterization of Ptime F', manuscript, Dept. of 
Mathematics, McGill University, 1991. 

[23] H. E. Rose, Subrecursion: .functions a~gd hierarchies~ Oxford Logic Guides 
9, Clarendon Press, Oxford, t984. 

[24] R. W. Ritchie, "Classes of Predictably Computable Functions", Transac- 
tions of the American Mathematical Society, p. 139-173, v. 106 (1963). 

[25] A. Seth, "There is no Recursive Axiomatization for Feasible Function- 
als of Type 2" in Proc. Seventh Annual IEEE Symposium on Logic in 
Computer Science, to appear, IEEE, 1992. 

[26] G. J. Tourlakis, Computability, Reston, 1984. 

Manuscript received 15 October 1991 

STEPttEN J. BELLANTONI 
Department of Computer Science 
University of Toronto 
Toronto, Ontario, Canada M5S 1A4 
s j b@theory, utoronto, ca 

STEPHEN A. COOK 
Department of Computer Science 
University of Toronto 
Toronto, Ontario, Canada M5S 1A4 
s acook~theory, utoronto, ca 


