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STATE-DEPENDENT VECTOR 
HYBRID LINEAR AND 
NONLINEAR A R M A  MODELING: 
APPLICATIONS * 

Yuanjin Zheng, 1 Zhiping Lin 1 and David B. H. Tay 2 

Abstract. In a recent companion paper, a new method has been presented for modeling 
general vector nonstationary and nonlinear processes based on a state-dependent vector 
hybrid linear and nonlinear autoregressive moving average (SVH-ARMA) model. This 
paper discusses some potential applications of the SVH-ARMA model, including signal 
filtering, time series prediction, and system control. First, a state-space model governed by 
a hidden Markov Chain is shown to be equivalent to the SVH-ARMA model. Based on this 
state-space model, the extended Kalman filtering and Bayesian estimation techniques are 
applied for noisy signal enhancement. The result of a noisy image enhancement verifies 
that the model can track the time-varying statistical characteristics of nonstationary and 
nonlinear processes adaptively. Second, the SVH-ARMA model is used for a vector time 
series prediction, which can attain more accurate multiple step ahead prediction, than 
conventional forecasting methods. Third, a new technique is developed for predicting 
scalar long correlation time series in the wavelet scale space domain based on the SVH- 
ARMA model. Dyadic wavelet transform is employed to convert a scalar time series to 
a vector time series, to which the SVH-ARMA model is applied for vector time series 
prediction. More accurate and robust forecasting results in both one step and multiple step 
ahead prediction can be gained. See also the companion paper on theory, by Zheng et al., 
pp. 551-574, this issue. 
Key words: SVH-ARMA model, extended Kalman filtering, long correlation time series, 
one step ahead prediction, multiple step ahead prediction, dyadic wavelet transform. 

1. Introduction 

A general signal process may not be accurately modeled by only a linear model 
because of the potential nonlinear correlation between successive signal samples. 
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Many signal processes such as speech, medical images, and economic time 
series display this feature [5], [17], [19]. The merit of the state-dependent vector 
hybrid linear and nonlinear ARMA (SVH-ARMA) model presented in a recent 
companion paper [22] is that it can automatically and adaptively represent the 
linear and/or nonlinear parts of a nonstationary process. Further. this model 
can be converted to a Markov chain switched state-space model. B y this state- 
space model, the possible nonstationary varying of the process can be tracked 
by the Bayesian posterior estimation of the distribution of Markov chain s~ate 
evolution. Moreover. the equivalent state-space model possesses both lilaear and 
nonlinear (approximated by Taylor series expansion) components and can be used 
to optimally filter and smooth the linear and/or nonlinear components of a noisy 
signal process separately and adaptively [1]. 

Neither a linear nor a nonlinear ARMA model alone can track the long cor- 
relation features of time series processes [7]. The long correlation of a random 
process means that the covariance function of the process decays to zero very 
slowly. Therefore, the value of a sample may be affected substantially by samples 
far away from this sample. Many time series such as sun spots, speech, stocks. 
exchange rates, and other chaotic time series show strong long-range temporal 
correlation structures [5]. It has been reported that a model combining a linear 
AR model with a compressive nonlinear model would possess a certain ability to 
represent the long second-order correlation characteristics of time series [7]. This 
discovery is extended in this paper. A vector linear ARMA model is integrated 
with a vector nonlinear ARMA model to construct a hybrid ARMA model Al- 
though a linear model or a nonlinear model alone cannot produce long correlation 
characteristics, the interaction between the linear model and the nonlinear model 
makes it possible for the hybrid model to track the long-range dependence of 
vector time series. Moreover. the time series in reality are not always stattonm'y. 
For example, some time series in economics such as stock returns, and exchange 
rates are stationary within a regime, but globally nonstationary. To track this 
nonstationary varying of the processes, a state-dependent model may be em- 
ployed. The model parameters change adaptively with the varying of statistical 
characteristics of the process. In this paper, by virtue of the prediction of the 
Markov chain hidden in the SVH-ARMA model [10], it is possible to attain 
dynamic self-tuning shomrange or long-range predictions. 

From the point of view of time series prediction, many methods can onty 
attain accurate one step ahead prediction. For instance, the famous Box-Jenkins 
strategy can achieve the optimal Iinear vector one step ahead prediction [4]. The 
sample delay multilayer feedforward (MLFF) neural networks or recurrent nenral 
networks (RNN) techniques can attain the optimal nonlinear vector one step ahead 
prediction [15]. Unfortunately, neither of these approaches possesses good long- 
range and multiple step ahead prediction ability because of their exponentially 
decreasing second-order correlation characteristics. It has been verified by ex- 
tensive simulations that onr SVH-ARMA model can track the tendency of long 
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correlation time series and thus may attain more accurate and robust multiple step 
ahead prediction. 

Wavelets have been combined with neural networks for function learning and 
time series modeling [8], [20]. We can decompose a one-dimensional scalar signal 
into signals with different scales by dyadic wavelet transform [ 13] and then group 
these signals along scales to form a vector signal. This vector signal represents the 
multiresolution features of the original scalar signal and may be modeled by the 
SVH-ARMA model. In this way, the problem of scalar time series prediction can 
be solved through vector time series prediction in the wavelet transform domain. 
Simulation results verify that this method for scalar time series prediction greatly 
improves the accuracy of one step ahead prediction and makes multiple step ahead 
prediction more robust. 

The rest of the paper is organized as follows. The various potential applications 
of the SVH-ARMA model are summarized in Section 2. In Section 3, extended 
Kalman filtering based on the SVH-ARMA model for signal enhancement is 
derived. In Section 4, the SVH-ARMA model for long correlation scalar and 
vector time series prediction is discussed. The simulation results are shown in 
Section 5. 

2. SVH-ARMA (ARMAX) model for filtering, prediction, 
a n d  contro l  

Some potential applications of the SVH-ARMA model and the SVH-ARMAX 
(autoregressive moving average with exogenous input) model are summarized in 
this section. 

2.1. Filtering 

If the original signal process { Y t } t = l  ..... T is contaminated by a white noise 
{vt}t=l ..... T, only the noisy observation {zt}t=l ..... r can be observed. That is, 

zt = Yt + Yr. (1) 

The aim of filtering is to estimate the true signal process, denoted by Yt, from the 
noisy observed sequence zr for each time t. Further, the backward filtering of zt to 
obtain the estimates {Yt' }r <f is called smoothing [1 ]. If the true signal process {Yt } 
can be well modeled by a SVH-ARMA model, both the filtering and smoothing 
of the noisy signal can be realized by the extended Kalman filtering algorithm, 
which will be discussed in Section 3. 

2.2. Prediction 

First, let us consider the problem of one step ahead prediction of time series. 
Assuming that we have obtained the SVH-ARMA model parameter estimates {~)} 
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based on the already-known sequence Yr = [Yl . . . . .  Yt]t=l ..... T, the objective 
of one step ahead prediction is to predict the value Yt+i based on the sequence 
Yt [2], [9], [19]. There are L different conditional forecasts associated with the L 
possible states at time t + 1. The unconditional forecast based on actual observable 
variables is in the form 

L 6) t E(yt+I [Yt, ~) = f_ Yt~l 2 P(Yt+I, Xt+ltYt, dyt+l 
d j= l  

= j  Yt+l f [u(yt+llXt+l dyt+l  

L f 

Z P(xt+1 = jlYt,  ~)) tY t+lu(y t+t[Xt+l  = j, Yt, (~) dYt+i 
j=I  d 

L 
= ~ P(Xt+l -- jlYt, ~)E(y t+l  IXt+l = j, Yt, ~). (2) 

.j=l 

According to the property of first-order Markov chains, the one step ahead 
prediction of the state probability is 

L 
P(xt+l = jlYt,  ~)) = Z dij P(xt = ilYt, ~),  j = 1 . . . . .  L. (3) 

i=1 

Recalling the forward inference equation (24) in [22], we know tha~ this 
probability can be estimated with flt+~ = [P(xt+l = llYt, ~)  . . . . .  P(xt+~ = 
L I Y,, 6)1'. 

It is straightforward to observe that 

E(yt+llx~+l = j, Y~, ~) = ~( j )  + s + h(Tt; W~nn(jj) , ^ s  ., (4) 

So the final one step ahead prediction is 

L 
~rt+! E f i t+l(j)(ft(j)  + C ( j ) T / +  h(T  t ^s . = " W 2 . n ( J ) ) )  

j= l  

L L 

j=l j=l 

L 

+ E ]~+,(j)h(Tt; W[nn(J))" (5) 
j= l  

Based on this one step ahead prediction, the multiple step ahead prediction can 
also be gained. We will revisit this topic in Section 4. 

Remark 1. The number of states L could be determined according tothe a priori 



SVH-ARMA MODELING: APPLICATIONS 579 

knowledge of the possible stationary regimes of  a nonstationary process by as- 
signing one state to a regime. If  too little a priori knowledge is available, we could 
estimate L by observing the time-varying regimes of  the nonstationary process. 
Taking a large state number can track the nonstationarity well but will increase the 
complexity of  the model and the computational load of  parameter estimation. On 
the other hand, taking a small state number may keep the model parsimonious but 
is sometimes not sufficient to represent the changing of  a nonstationary process. 
In extensive simulations we find that the performance of  filtering or prediction is 
not so sensitive to the selection of  the state number. Commonly, taking the state 
number as L = 3 ~ 5 is sufficient for most applications in practice. 

2.3. Control 

It is natural to extend our SVH-ARMA model to the SVH-ARMAX model, which 
potentially has wide applications in controls [9]. 

The SVH-ARMAX model can be written as follows: 
p r q 

Yt = t~(i) q- Z Ak(i)yt-k + Z l'~k(i)(t-k + ~ Bk(i)et-k 
k = l  k = l  k = l  

+h(y t -1  . . . . .  Yt-p, ~'t-I . . . . .  ~'t-r, et-1 . . . . .  et-q; WSn(i)) '~ et, (6) 

where {r is the exogenous variable input and {N~(i)}l:=~ ..... r;i=l ..... c is the 
exogenous variable coefficient matrix. The remaining parameters are the same as 
those of  the SVH-ARMA model. If  we take {~t }t=l ..... r as the control input vector 
and { Y t } t = l  ..... T as the control output vector, a linear and nonlinear mapping is 
readily founded. 

Introduce a new model coefficient matrix as 

C(i) = [AI(i)  . . . . .  Ap(i), ~l(i) . . . . .  Nr(i), B1 (i) . . . . .  Bq(i)], (7) 

and a new model input vector as 

T t  / / I . .  if/ t I = [ Y t - 1  . . . . .  Y t - p ,  ( t - l ,  " ' t - r '  e t - 1  . . . . .  e t - q ] "  ( 8 )  

Then model (6) is equivalent to SVH-ARMA model (10) of  [22], which can be 
identified using the techniques introduced in Section 3 of  [22]. 

In the rest of  the paper, we focus on some applications of  the SVH-ARMA 
model in filtering and prediction. Applications of  the SVH-ARMAX model in 
controls will be considered elsewhere. 

3. Extended Kalman filtering for signal enhancement 
based on SVH-ARMA model 

In the time domain, if a nonstationary and nonlinear (scalar or vector) process 
{Yt}t=l ..... T is contaminated by a Gaussian white noise {vt}t=I ..... r ,  the observed 
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noisy sequence {zt }t=l ..... r becomes 

zt = Yt + vt. (9) 

In this paper, to simplify the derivation of the equivalent state-space mode:: 
below and reduce the computational complexity of the filtering algorithm, we 
assume that the true signal process {Yt}t-1 ..... 7" can be modeled well by an SVH-. 
AR model (a degenerated SVH-ARMA model) as 

P 
S �9 

Yt r -r ~ A k ( i ) y t - k  + h (y t -1  . . . . .  Yt-p; Wmn(t)j  + et. (10) 
k=l 

Then, for a certain state xr = i at time ~. equations (9) and (10) can be converted 
to a Markov chain state-dependent vector state-space model [1] as 

dot+l = D(i)dot + N(dot: i) + [2(0 + Fet (1 ~) 
zt Gdot + vt,  

where 

AI( i )  A p - l ( i )  Ap ( i )  
I j  . , .  0 0 

D(i )  = : "'. : : , 

0 ~ �9 ]J 0 Jp x Jp 

N(dot;i) = [h(dot; WSmn(i)) ' 0 . . .  0 ] ' ,  (42) 

dot = [Yt' " "  Ylt_p+ 1 ] ' ,  

/ ~ ( i ) = i # ( i ) '  0 .- .  0 ] ' ,  

F = [ I  0 . . .  0 ] ' ,  

G = [ I  0 . . .  0] .  

Expand the nonlinear functions N(dot; i) in a Taylor series about the conditional 
mean vector +t  as 

N(dot; i) = N(+t ;  i) + VN(~r ;  i)(dor - + t )  + - " ,  (t3) 

where 

VN(+ , ;  i) = 

and 

h4(i)  = Oh 
J 

0do[ (•/:i) 

0 0 - . .  O 4 
0 0 -.-  0 I , 

0 O "" " 0 j j p •  

(t4) 

j = 1 . . . .  , p (do[ is the j th  element of vector dot)- 

(15) 
Neglecting higher order terms and assuming knowledge of dot and do,,~_~ 
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enable us to approximate the signal model (11). Then equation (11) can be 
rewritten as a linear state-space equation: 

cDt+l = [D(i)  + VN(+ t ;  i ) ] %  + [/~(i) + N(+ t ;  i) - VN(+ t ;  i )+ t ]  + Fet  

zt GdPt + vt 
(16) 

Hence, the extended Kalman filtering (EKF) update equations [1] become 

4~ = 4 , , , - 1  + z , ( z t  - G + ~ , , _ I ) ,  

+t, t -1  = N ( + t - 1 ;  i) + : ( i ) ,  

~t  = P t , , - I G ' ( G P t , t - I G :  + qJt) -1 (q/t = E(v tv t ' ) ) ,  

Pt,t = (I  - E t G)P t , t - 1 ,  

Pt , t - I  = (D( i )  + V N ( + t - 1 ;  i ) ) P t - l , t - l ( D ( i )  + VN(c~t-1; i)) ~ 

+ F f 2 t - 1 F I  (g2t = E ( e t e / ) ) .  (17) 

Here, ~)t,t--] is an a priori estimation of qbt, ~ t  is an a posteriori estimation of 
~ t ,  Et is the optimal filtering gain, Pt , t - I  is the estimated covariance matrix 

of  (~t,t-1, and Pt is the estimated covariance matrix of  ~ t .  Denote Z( t )  = 

[zi . . . . .  zt]. The filtered output at state i and time t is 

~:t(x(t) = i, Z ( t ) )  = GdPt. (18) 

So, the optimum estimate of  Yt is 

M 
= E ( y t ] Z ( t ) )  = Z ~ t ( x t  = i, Z ( t ) ) P ( x ,  = i l Z ( t ) ) .  (19) 

i=1 

According to the Bayes rules, the weighting factor can be written as 

P(z t l x t  = i, Z ( t  - 1 ) )P(x t  = i [Z( t  - 1)) 
P ( x t  = i ]Z( t ) )  = , (20) 

P ( z t l Z ( t  - I)) 

where 

P(z t l x t  = i, Z ( t  - 1)) = g ( z t ,  + t , t - l ,  G P t , t - I G '  + qJt), (21) 
M 

= i l Z ( t  -- 1)) ---- ~ _ d j i P ( x t - 1  = j l Z ( t  - 1)), (22) P(x t  
j=t  

and P ( z t i Z ( t  - 1)) is a constant that is irrelevant to state i. 
Substituting (21) and (22) into equation (20), P(x t  = i [Z( t ) )  can be estimated 

recursively except for a constant P (zt[Z (t - 1)). To ensure that 

M 
P ( x t  = i l Z ( t ) )  = 1, (23) 

i=1 

we can rescale P ( x t  = i [Z( t ) )  as 

{ ' (x t  = i [Z( t ) )  = P ( x t  = i l Z ( t ) )  P ( x t  = i [Z( t ) ) .  (24) 
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Once ~t(xt = i, Z( t ) )  (18) and/3(xt = i iZ( t ) )  (24) are obtained separately, 
we can obtain the optimal filtering estimate {,~t} through equation (19). 

The smoothing problem (fixed-lag or fixed-point.~moothing) based on the same 
state-space model (16) for each state i [9] is similar to the filtering problem 
just discussed. Taking the same Bayesian inference procedure as (18)-(24), the 
optimal smoothing to the noisy signal can also be obtained. The details are omitted 
here to save space. 

Remark  2. The proposed EKF algorithm is essentially signal independent be- 
cause it can automatically and adaptively represent and track arbitrary nonsta- 
tionary and nonlinear processes. Thus, it can provide good performance when 
applied to various noisy signals such as noisy images, noisy speech, noisy elec- 
trocardiograms (ECGs), and noisy seismic signals for enhancement. In this sense, 
the proposed filtering algorithm can be used as a unified and widely suited signal 
enhancement method. 

4. Long correlation time series nonlinear prediction based 
on SVH-ARMA model and dyadic wavelet t ransform 

In this section, a scalar time series is decomposed into several scale sequences by 
using a dyadic wavelet transform (DWT) [13], and then a vector time series can be 
constructed by grouping along the scales. The SVH-ARMA model is used for this 
vector time series modeling and prediction. The final forecasting to the original 
scalar time series can also be obtained through the inverse wavelet transform. It is 
verified by simulations that the accuracy of the final prediction results using this 
method is superior than predicting the original time series directly. 

First. let us briefly introduce the theory of wavelet analysis [13]. Given a 
continuous function g, in L 2. if ~ satisfies an admissibility condition, ~ is named 
as a basic wavelet or mother wavelet. Denote ~s(t)  = 1 r 7 ~ ( s ) '  Then the wavelet 
transform of function f ( x )  at scale s and location u is defined as 

F W s f ( u )  = f *  gr~(u) - f ( X ) ~ s ( X  - u) dx.  (25) 
O<3 

We can discretize scales according to the power of 2; that is, we can set s = 2J. 
Then 

f7 W2s f ( u )  = f ,s ~2J (u)  = 2 -d f (x)ap I x - u \ dx  (26) 
t o  

is called the dyadic wavelet transform (DWT). Conversely, there exists a recon- 
structed wavelet X, and the inverse wavelet transform can be used for perfectly 
reconstructing f (x): 

f r o  X--N f (y) = W2j f * x2J {,x ) -- 23 W2 i f (u) x ( - - ~ -  ) du. (27) 
o~ 
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Mallat and Zhong have demonstrated the relationship between multiresolution 
analysis and wavelet transform [13]. If  a signal is decomposed at a finite number 
of scales, the signals in smaller scales represent high-frequency components, and 
the corresponding resolutions in the time domain are high, whereas the signals 
in bigger scales represent low-frequency components, and the resolutions in the 
frequency domain are high. 

Assume that the maximum scale of decomposition is J .  Given a scaling 
function q~, we can obtain a wavelet function ~ and a reconstruction function 
X- Define a smooth operator S as 

F X--U 
S2J f ( u ) =  f , ~b2J(u) = 2-J  ~ f(x)(a\--gT-- J ~  dx, (28) 

and a complementary operator W as in equation (26). The smoothed signal 
S2j f (u)  represents the signal's basic changing tendency at scale 2J, and W2J f (u)  
represents the detail elements at scale 2J. Some high-frequency elements of f (x)  
are lost in S2a f(u),  but they can be compensated by {W2j f(u)}j=1 ..... j. 

A DWT fast algorithm is presented in [13], which is used for the wavelet 
decomposition of scalar time series in this paper. The mother wavelet we use is 
the first-order derivative of the cubic spline function, and its coefficients are also 
given in [13]. 

4.1. Vector time series case 

For a one step ahead prediction, given a vector time series {Yt It = 1 . . . . .  T}, 
we need to predict the output yr at time T + 1. The already-known sequence 
{Yt it = 1 . . . . .  T} may be used for state and model parameter estimation. Then 
YT+I can be predicted based on these estimated parameters {2, 15,/2(i), C(i), 
g/rash(i)} and the "past" input vector TT+l = [YT . . . . .  YT-p+I, fiT . . . . .  eT-q+l] 
as follows: 

fir+I = DST, (29) 
L L 

i=1  i = 1  

L 

+ Z ( / ~ T + I  (i)h(~fT+l; WS n (i))). (30) 
i = 1  

Here, (29) represents the one step ahead prediction of Markov chain state distri- 
bution and (30) represents the one step ahead prediction of a future time series 
value based on the estimated SVH-ARMA model. Obviously, the one step ahead 
prediction value .VT+I (30) is the weighted average of L conditional forecasts 
associated with L possible states at time T + 1, where the weighting coefficients 
are the state distribution at time T + 1 predicted by (29). For a nonstationary 
process, the changing of regimes will result in the varying of the state distribution. 
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Thus. the final prediction value will be affected by the nonstationary varying of 
regimes of the process. Consequently, the predicted value looks more like the 
time series in the nearer regime than the ume series in the regime far away from 
it. In this sense, the prediction based on the SVH-ARMA model is self-tuning and 
adaptive to the varying of  the nonstationary processes. 

In the case of  the multiple (K > 1) ahead prediction. YT+I . . . . .  YT+K caP. be 
predicted in a recursive procedure. Once we obtain the one step prediction value 
~r we take it in the place of the true value of  YT+I and make the next one step 
prediction based on {Yl . . . . .  Yt, YT+I } to obtain YT+2. We then take it instead of 
the value of  YT+2 and make the next prediction . . . . .  until we attain the ~r 

R e m a r k  3. It has been reported that neither the linear prediction nor prediction 
with a compressive nonlinear function alone can produce long-range temporal 
correlation in the output of the model. However. a joint prediction with linear 
and compressive nonlinear functions could provide sufficient long-range predic- 
tion [7]. In our SVH-ARMA model, it includes two parts---the linear ARMA part 
and the nonlinear ARMA part. The nonlinear A R M A  part is realized by MLFI: 
neural networks. Consequently, if the operating function of  the output layer o! 
neural networks is set as a compressive function such as "logsig" or "tansig" etc.. 
the constructed SVH-ARMA model can be used for long-range prediction. 

4.2. Scalar time series case 

The wavelet scale space is composed of wavelet transform coefficients ~ 2 J f  
( j  = 1 . . . . .  J)  and smooth coefficients S2J f ,  written as {W2i f (t), S2J f ( t ) lJ  = 
1 . . . . .  J ;  t -- 1 . . . . .  T }. Obviously, we can convert a scalar time series to a Vector 
time series in wavelet scale space and then make multiresotution analysis and 
modeling for this vector process. 

To fulfill the prediction of a scalar time series O(t) in the wavelet scales Space, 
we transform it by the undecimated DWT to J scales and then group along the 
scales to obtain a series of vector-valued signals, 

d . . . . .  S U 0 (t)]'. (31) 

Each Yt is a column vector of size (J  + 1) x 1. Here, {W~O(t)} is the discrete 

sampling of  {W2jO} at integer instants, and {S~O(t)} is the discrete sampling of  
{S2J 0 } at integer instants. 

When the vector time series {Yt} is obtained, it can be modeled by an SVH- 
ARMA model. The sequence {ytlt = 1 . . . . .  T} can be taken for the SVH-ARMA 
model parameter estimation and then one step ahead prediction with (29) and (30) 
can be made. For multiple step ahead prediction, we can predict YT+t . . . . .  YT+K, 
K > 1, based on YT . . . . .  Yr+K-1 step by step. By applying the inverse wavelet 
transform to the vector prediction values Yr . . . . .  ~'T+K; the multiple Step ahead 
prediction of the scalar time series {0(t)}, i.e., O(r)  . . . . .  O(T + K) can be ob- 
tained. Because {Yt} represents the multiscale characteristics of  the scalar process 
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{0(t)}, predicting {Yt] instead of predicting {0(t)} directly would attain a more 
accurate prediction. 

R e m a r k  4. The prediction by the SVH-ARMA model is optimal in one step ahead 
prediction but not optimal in multiple step ahead prediction. To further increase 
the prediction accuracy, we may combine the SVH-ARMA model with another 
neural network for the final K step prediction. To each {ytlt = max(p ,  q) + 
1 . . . . .  T - K}, we can obtain K step predicted values {Yt+l . . . . .  Yt+K} by 
the SVH-ARMA model. Then we take {Yt+l . . . . .  Yt+K} as the input and 
{Yt+l . . . . .  Yt+K} (max(p,  q) + 1 < t < T - K)  as the target output to train 
a new MLFF neural network (named the K step prediction neural network). Once 
the training of the MLFF neural network converges, it can be used for the final 
K step prediction to O(T) . . . . .  O(T + K). We just need to input Yr . . . . .  YT+K 
(obtained by prediction with the SVH-ARMA model) to the K step prediction 
neural network, and then the output of  the neural networks will produce the more 
accurate K step prediction. 

5. S i m u l a t i o n  results 

5.1. Performance of model representation and model 
validation 

In this simulation, we take a two-dimensional (2D) vector time series as an 
example to demonstrate the representation ability of  our SVH-ARMA model. 

Produce a 2D vector linear ARMA(2, 2) process {y) = [ytL(1)ytL(2)] ', t = 
1 . . . . .  T} as 

2 2 
yt c = -)_2 + + e,, (32) 

k= l  k= l  

where 

AI = L-O.23 0.74 ' A2 = [ 91 
B I =  0.61 - - 1 . 3 4 j '  B 2 =  0 

and the covariance matrix of  the zero-mean vector driving noise sequence {et = 
[et(1) et(2)] ' ,  t = 1 . . . . .  r} is 

c ~  0"01 00.01]'  (34) 

where coy represents a covariance matrix. 
Produce a 2D dynamic vector nonlinear process {yN = [yN(1 ) yN (2)]', t = 
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1 . . . . .  T} according to the recursive equation 

L~NI(2) J = 4  ~N(2) 0 ~_ -- ~t~'(2) J ,  (35) 
y~ = .V~ + et 

and the initial values are .~N (1) = 0.3 and .~N (2) = 0.6, respectively. 
Then a process having both linear and nonlinear components can be constructed 

as 

Y * = 0 Y ~ + ( 1 - 0 )  YNt , (36) 

where 0 < I t s  a constant factor that balances the ratio of the amplitude between 
the linear component and the nonlinear component. 

One realization of  the vector time series (the length of the data is T = 200) { 36) 
is shown in Figure 1. Prediction error signals by the SVH-ARMA model are also 
shown in the same figure corresponding to each trace. As can be seen. the model 
predictive outputs coincide with the true signal very well. For this example, we 
choose the SVH-ARMA model orders for identification as follows: the linear 
ARMA part order p = 2. q = 2. the nonlinear ARMA part order pn = 5. 
qn = 2, with a three-layer MLFF neural networks, the size of neural networks 
being (Pn -r- qn } • 2. Pn x 2. and 2 for the input layer, hidden layer, and output 
layer, respectively, and the state number L --- 1. The prediction error signal {et} 
can be obtained when the SVH-ARMA is set up (i.e., the model parameters have 
been estimated based on the training sequence) as 

L L L 

fit = ~'t - E @ t ( i ) ~ t ( i ) )  + E ( Y ' t ( i ) C ( i ) ) T :  + E @ t ( i ) h ( T : ;  WSn(i))). (37~ 
i=l i=1 i=1 

Model validation can be implemented by using the autocorrelation function 
(ACF) or cross-correlation function (XCF) of the prediction error signals, which 
are shown in Figure 2. Here. the ACF or XCF is defined as follows: 

x- 'T-k eie i 
~)e,e i ( k )  - -  /-2-,1=1 l l+k i = 1.2: k = 1 . . . . .  30 (38) 

T - k  

~..T - k  i ~ J  

/=1 elrl+k i, j = 1, 2; i 7k j ,  k = 1, 30. (39) 
~eiej(k) = T - k  ' " ' "  

Figure 2 shows that each trace of  prediction error signal is uncorrelated, and 
trace 1 and 2 are also uncorrelated. Figures 1 and 2 verify that our model 
representation is efficient and sufficient [ 17]. 

In order to compare the representation ability of the linear ARMA model, the 
nonlinear ARMA model, and the SVH-ARMA model, we apply the three methods 
to the processes {yL }, {yN }, or {Yt } above separately. Their relative predictive error 
ratios (RPERs) are shown in Table 1. The RPER of a process s is defined as 

RPER = ~ - 1  ~ r - 1  rt(i)2 (40) 
~ 2  I ~T=I  st(i) 2" 
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Figure l .  A bivariable time series and the hybrid ARMA model prediction error signal. 

Here, {l't } is the prediction error signal obtained by applying one of  the three 
models above to a process {st} (one of  the {y~}, {yN}, and {Yt}). Obviously, the 
smaller the RPER that is obtained by a model, the higher representing ability 
the model possesses. In this simulation, the SVH-ARMA model order is p = 2, 
q = 2, Pn = 5,  qn = 2, with the same neural network structure as above, the 
linear ARMA model order is p = 2, q = 2, which is the same as the linear ARMA 
part of  the SVH-ARMA model, the nonlinear ARMA model order is Pn = 5, 

qn = 2, which is the same as the nonlinear ARMA part of the SVH-ARMA 
model, and the state number is L = 1. For each type of  process and each model, 
a total of  100 random signal traces are run, and the average RPER is obtained and 
listed in Table 1. It is clearly shown in Table 1 that the linear ARMA model can 
model the linear process well (assuming with correct order) but poorly represents 
the nonlinear process; on the other hand, the nonlinear ARMA model can model 
the nonlinear process well but poorly represents the linear process. It appears that 
the SVH-ARMA model can model all the processes very well. Obviously, if the 
same prediction error bounds as SVH-ARMA model need to be reached when 
using a nonlinear model to represent a linear process, the only way is to increase 
the model order significantly. 

Further simulations have also been conducted which show that to obtain the 
same prediction error bounds to the hybrid process {y~} above, the nonlinear 
ARMA model needs at least a two times higher order than the SVH-ARMA 
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Table 1. Comparison of  the representation ability of  three models 

Average  R P E R  values  

Model Linear ARMA Nonlinear AR model SHV-ARMA 
Time series model using neural network model 

Bivariable 0.0275 0.165 
linear process yC 
Bivariable 0.315 0.0070 
nonlinear process y,V 

Bivariable 0.341 0,135 
linear/nonlinear 
process y 

0:0752 

0.0033 

0.0235 
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model. On the other hand, no matter how high an order the linear ARMA model 
takes, it cannot reach the same error bounds possible by using the SVH-ARMA 
model. 

5.2. Noisy image enhancement by EKF 

We apply our algorithm in Section 3 to enhance a noisy image [6]. This image is 
corrupted by both "salt-and-pepper" non-Gaussian pulse-like noise and Gaussian 
white noise. The original image can be organized as a one-dimensional (1D) 
scalar sequence along a predetermined path (for example, horizontal, vertical, or 
diagonal). To filter the scalar image sequence in the wavelet scales space domain, 
the DWT is used to transform the original image to J scales and then group along 
the scales to obtain a series of vector-valued signals {Yt}. It is well known that 
Wiener filters can eliminate Gaussian white noise but are not effective for speckle 
noise, and median filters can remove pulse-like noise but are not optimal for 
white noise [6]. However, if an image is contaminated by different types of noises 
simultaneously, both Wiener filtering and median filtering fail to provide good 
image enhancement. The proposed model inherently can represent an arbitrary 
nonstationary and nonlinear process, and thus the proposed filtering algorithm 
can adaptively "recognize" various noises from the image sequence and eliminate 
all the noises effectively. In the processing of the noisy image by the proposed 
algorithm, the vector sequence represents the multiscale information (especially 
edges) of the original image in the wavelet scale space domain. State-dependent 
training and vector-valued linear and nonlinear ARMA modeling ensure that the 
model can correctly approximate and track the edge features of the original image. 
The adaptive EKF and Bayesian pattern (state) combination ensures optimal 
filtering of white noises that are not necessarily Gaussian. So our method can 
smooth an image while retaining most of its edge features at the same time. 

In the simulation, we set the number of decomposition scales of DWT to be 
J = 4, the number of states in the SVH-AR model to be L = 4, the order of 
the linear AR part to be p = 3, and the order of the nonlinear AR part to be 
pn = 4 with a three-layer MLFF neural network. (The size of the neural network 
is (pn + 1) x (J  + 1), Pn x (J + 1), and J q- 1 for the input layer, hidden layer, and 
output layer, respectively.) In Figure 3, the results of a denoised image are shown. 
The noise is relatively large compared to the original image (signal-to-noise power 
ratio: SNR = -0 .116 dB). The Wiener filtering eliminates the Gaussian white 
noise very well but cannot tackle the pulse-like (speckle) noise effectively. The 
median filtering eliminates the speckle noise. However, it also smears many edge 
features of the original image. The proposed algorithm suppresses most of the 
white noise and the speckle noise while retaining the clear edge features. The 
filtering gain (Gn) of the SNR through our algorithm is about 10.2 dB, which is 
higher than that for both the Wiener filtering (7.92 dB) and the median filtering 
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(a) (b) (c) 

(d) (e) (f) 

Figure 3. The results of image denoising. (a) Original image, (b) noisy image (SNR : 0. i ~.6 dB), 
(c) route of filtering, (d) Wiener filtering (Gn = 7.92 dB), (e) median filtering (Gn = 8.75 dB), 
(f) proposed filtering (Gn = 10.25 dB). 

(8.75 dB I. Moreover. the visual quality of our reconstructed image is superior to 
that obtained by the Wiener and median filtering methods, 

Applying our SVH-AR model to other noisy images (contaminated by both 
Gaussian white noise and speckle-like noise) for denoising, the filtering gains are 
always about 2-3 dB higher than for Wiener filtering and median filtering for the 
same input SNR. This verifies that the proposed algorithm is robust and efficient. 
Conversely, the performance of Wiener filtering and median filtering is signal 
dependent and is very sensitive to the type of contaminating noises. 

We point out that the image enhancement algorithms in the literature commonly 
are signal and case dependent (for example, [12], [21]), They are applied to spe- 
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cific images and/or noise types to attain good results. Different from conventional 
methods, the proposed algorithm is essentially signal independent. For a given 
noisy image, if some a priori knowledge about the original image and the noises 
is utilized, we believe that the proposed method could attain better results than 
most of the existing methods by incorporating this a priori information at the cost 
of a few more computations. 

5.3. Stock return data prediction (vector case) 

Stock return prediction plays an important role in economics. Many stock ana- 
lysts and technical traders have attempted to convert their supposed forecasting 
prowess into trading profits in the stock markets. Recent studies have found 
evidence for nonstationary and nonlinear characteristics in stock returns series [3], 
[11], [16]. Commonly, every item of a stock sequence has its own varying 
tendency. At the same time, different stock time series affect each other, and there 
exist some potential relationships among them. Hence, it makes sense to group the 
multiple relevant stock sequences into a vector time series. Some major events 
during certain periods in history such as World War II and economic inflations 
would notably affect the stock changing tendency. Considering these factors, the 
stock time series can be modeled as a regime (state)-dependent vector hybrid 
linear and nonlinear ARMA (SVH-ARMA) model. As will be shown, accurate 
one step and multiple step ahead predictions can then be obtained based on this 
model even with a low model order. This will also verify the strong representing 
ability of our SVH-ARMA model. 

We will consider the prediction of the United States stocks total returns (1871- 
1996). Three stock sequences will be used for illustration of the prediction. The 
first sequence is the composite stocks, the second is the industrials stocks, and the 
third is the transports stocks. We combine them all as a three-dimensional vector 
Yt and use the first 3 x 108 data points (1871-1978) as training sequences. The 
orders of the linear ARMA part are chosen as p = 4, q = 2, the orders of the 
nonlinear ARMA part are chosen as Pn = 4, qn = 2, with a three-layer neural 
network (size: (Pn + qn) x 3, Pn x 3, and 3), and the total state number is L = 3. 

Stock return time series are obviously exponentially changing and thus are 
nonstationary. A common method to change an exponential time series to a 
stationary time series is to take a log operation and then make the first-order 
difference [2]. This approach will be adopted in this simulation. Both the one 
step and multiple step ahead predictions using the SVH-ARMA model are based 
on this transformed time series. However, even after the log difference transform, 
the resultant sequence is still nonstationary. This can be seen clearly from the 
abnormal changes of stock values during the years 1925-1935 (see Figure 4 a l -  
cl). Thus the state-dependent modeling is necessary. Once a prediction of the 
transformed time series is obtained, the inverse transforms (cumsum and expo- 
nential) can be applied to get a prediction of the original stock time series. The 
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Figure 4. Three traces stock return data time series multiple step ahead prediction (20 stop). Pan- 
els (al), (bl), (cl) show the whole traces of stock return sequences (including the training sequence 
and multiple step ahead prediction sequence, which is separated by the vertical black line in time axis 
1978). Panels (a2), (b2), (c2) show the multiple step ahead preduction traces of stock return sequences 
(from 1979 to 1998). 

last 3 x 20 data points (1979-1998)  are used for testing the accuracy of  one step 
ahead prediction and multiple step ahead prediction. 

Figure 4 presents the final results o f  multiple step ahead prediction (20 step) of  
three stock return time series (plotted in the log of  the original stock sequences). 
It can be seen that each log sequence of  the original stocks approximately changes 
as a linear tendency with small irregular fluctuations due to the nonlinearity and 
nonstationary properties of  the original stock time series. Clearly, our mu!tiple 
step ahead prediction using the S V H - A R M A  model  can track well  the changing 
tendency after the year 1979. The nonstationary varying of  stock sequences during 
the years 1925-1935 has a nearly negligible effect on the multiple step ahead 
prediction since the year 1979. This verifies the power of  nonstationary modeling. 

Figure 5 al--ct  show the results of  one step ahead prediction of  the log 
difference sequence of  the original stocks. The one step ahead prediction of  
the original stocks (plotted in the log of  original stock sequences) are shown 
in Figure 5 a2-c2.  It is seen that our model can give quite good one step ahead 
predictions of  the original stock sequences. 
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Figure 5. Three traces stock return data time series one step ahead prediction. Panels (al), (bl), (cl) 
show the one step ahead prediction of log difference of stock return sequence. Panels (a2), (b2), (c2) 
show the one step ahead prediction of true stock return sequence. 

5.4. Sunspots data prediction (scalar case) 

Sunspots data is a commonly used benchmark for scalar time series prediction 
because of  its interesting mixture of  regularity and irregularity [14], [18]. It is 
considered as a nonstationary, medium noise and medium nonlinear time series 
[ 17, pp. 409--417]. Sunspots data display obvious cyclic phenomena in the time 
domain but the amplitude is time varying, which may be modeled well by our 
nonstationary SVH-ARMA model. In this example, we study the one step and 
multiple step ahead prediction ability of  the SVH-ARMA model when applied to 
sunspots data, and compare with both a linear ARMA model [2] and a neural 
networks AR model [15]. It will be shown that our SVH-ARMA model can 
provide more accurate and confident prediction for long-range correlation data. 

As demonstrated in Section 4.2, the DWT can be used here to transform the 
training data to multiscale data sequences and then group along scales to produce 
a vector sequence {Yt }. Modeling {Yt} by an SVH-ARMA model, we can make 
vector one step and multiple step ahead predictions in the wavelet scale space 
domain. Applying the inverse DWT transform to these prediction values, the 
scalar prediction results of  the original sunspots data can be obtained. 

The time intervals between maxima of  sunspots time series range from 7 
to 15 years, and this is a guideline for SVH-ARMA model order selection. In 
this simulation, the number of  the DWT decomposition scale is set as J = 2. The 
model orders are selected as follows: the linear A R M A  part is p = 3, q = 1, 
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Figure 6. Sunspots one step ahead prediction. 

the nonlinear ARMA part is Pn = 10, qn = 1, with a three-layer neural network 
(size: (Pn + qn) x (J + 1), Pn X (J  + 1), and J + 1), and the state number is 
L = 3. The first 210 data points (years 1700-1909) are used for model training, 
and the last 78 data points (years 1910-1987) are used for prediction and testing. 
Figure 6 shows the results of one step ahead prediction. It verifies that the chosen 
model can attain quite good one step ahead prediction. 

Figure 7c shows the multiple step (30 steps) ahead prediction by the SVH- 
ARMA model. The first 20 predicted sample values are quite close to the true 
sample values. However, the prediction cannot track the nonstationary changing 
of the time-varying amplitudes after about 20 samples. We believe that  this 
problem is due to the unpredictability of the given data in certain nonstationary 
periods rather than the new method because our simulation results are much better 
than those obtained by conventional prediction methods. For instance, Figures 7a 
and b show the results of multiple step ahead prediction of the sunspots data by a 
linear ARMA model (order p = 3, q = 1) and a three-layer MLFF neural network 
as a nonlinear AR model (order Pn = 10, size of neural network: (Pn + 1) x ( j  ~1), 
Pn x (J  + 1), and J + 1), respectively. It can be seen that the linear ARMA model 
makes a poor multiple step ahead prediction because it decays to a mean value 
very rapidly. Although the neural network AR model can predict the long-term 
limit cycle tendency, it cannot obtain accurate amplitude forecasting even for the 
first 20 predicted samples. 

Figure 8 shows the three scale sequences obtained by decomposing the original 
sunspots data to J = 2 scales using the DWT. The comparison of prediction for 
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Figure 7. Sunspots multiple step ahead prediction by SHV-ARMA model (30 step). 

confirmation as well as the one step ahead prediction with the true data in the 
wavelet scale space domain are shown. The model can attain good one step ahead 
prediction in every scale. However, from large scales to smaller ones, the high- 
frequency components of the scale sequences increase, and thus the accuracy of 
both modeling and prediction degenerates slightly. 

6. Conclusion 

In this paper, some applications of the SVH-ARMA model [22] have been pre- 
sented. It has been verified by simulations that the SVH-ARMA model has strong 
representation ability for a general process with a low model order. The SVH- 
ARMA model is suitable for nonstationary noisy signal filtering and smoothing. 
For this, an equivalent Markov chain state-dependent state-space model has been 
derived, and the Bayesian rule has been employed for a posteriori state probability 
estimation. The extended Kalman filtering algorithm is then developed, and it 
can track and optimally filter both the linear and nonlinear components of an 
original noisy process. The SVH-ARMA model has been shown to possess 
good one step and multiple step ahead prediction ability due to the integration 
of the linear and nonlinear components. Especially, it can attain more accurate 
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Figure 8. Three scales wavelet decomposition sequence of sunspots data and prediction in scaJe space. 

tong-range prediction than either the linear model or the nonlinear mode! a!one. 
Moreover, dyadic wavelet transform has been used to transform a scalar time 
series to a vector time series, and the problem of the scalar time series prediction is 
converted to the one of a vector time series prediction in the wavelet domain. More 
applications of the SVH-ARMA model in signal processing, image processing, 
controls, and economics, etc., are expected, and will be investigated in the future. 
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