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Summary. In the following we examine the notion of conserved quantities in problems of elastostatics and 
elastodynamics. We show that the well known formulation which leads to T+ V= Constant can be 
generalised yielding conservation properties to some new and at times unexpected quantities. These new 
conservation properties may at times be the only means for verifying results obtained by numerical 
techniques. 

1 Introduction 

The first law of thermodynamics, namely the principle of conservation of energy, is a fundamen- 
tal law governing all physical processes. In classical mechanics, where one is concerned 

essentially with the kinetic energy T and the potential energy V, the celebrated principle of 

conservation of energy, namely T +  V = Constant, assumes a much narrower interpretation. In 

this case the mathematical form of the work done becomes crucial for conservation of energy in 

a narrow sense. This mathematical form is related to the extremum properties of functions and is 
naturally dealt with under the subject of Calculus of Variations. From a variational perspective, 

conserved quantities are invariant under changes of some independent variables. An alternative 

interpretation is the inherent symmetry of the conserved quantities when evaluated for different 
values of the independent variable. Noether's theorem provides a framework for such invariant 

properties and is not limited to a specific physical law [1]. 

2 The simplest form 

We start from the simplest expression for the extremum of a functional as follows: 

X2 

6 5 L(x, y, yx) d:, = 0, (1) 

where Yx = dy/dx. The extremising function y(x) is governed by the Euler-Lagrange equation of 
this functional, namely 

0 (2) 
dx [gY~] 8y 
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Consider now the total derivative of the integrand L with respect to the independent variable x. 
We may compute this as 

dL 8L 8L 8L 
- + ~ -  Yx + 7 Y x x .  ( 3 )  

dx 8x cy cy~ 

From Eq. (2), ~yy Yx = ~ y~, and substituting this into Eq. (3) yields 

d--s L -  ~y~y~ - 8x" (4) 

Equations (2) and (4) provide alternative differential equations for the determination of the 
extremising function for the functional in Eq. (1) and in this case, of single independent variable 
and single extremising function, these alternative forms are equivalent. Each of these admits one 
order of integration under special conditions. Thus, if y does not appear in L, Eq. (2) can be 
integrated yielding 

dL 
- Constant. (5) 

dyx 

On the other hand if x is absent (explicitly) in L then Eq. (4) yields upon integration 

8L 
L - ~ -  Yx = Constant. (6) 

cyx 

To consider the more familiar case of dynamics, let us examine Hamilton's principle in terms of 
generalised displacements q~. In this case we have that 

t2 

S L(t, ql, cli) d t = O  i = 1 , 2  . . . .  n. (7) 
t l  

Apart from the change of the independent variable from x to t and increasing the number of 
extremising functions to n, the functional in Eq. (7) is similar to that in Eq. (1) and in this case we 
find a set of Euler-Lagrange equations as 

d IS qL. ] 8L 0 i 1 ,2 . . .n .  (8) 
dt 8qi 

Following essentially the procedure already outlined, we find that in this case the expression 
corresponding to Eq. (4) takes the following form: 

d t  4, = (9) 
i = 1  

It is worth noting that although the extremising functions satisfy Eqs. (8) and (9), these equations 
are not equivalent in terms of information content. Specifically, Eq. (8) provides n coupled 
equations for determination of n extremising functions, whereas Eq. (9) provides only a single 
equation. Nevertheless, the notion of conservation flows from these equations. Thus if one of the 
q's, say q j, is absent in L while its velocity is present (i.e. qj is an ignorable coordinate), then Eq. (8) 
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yields for the jth equation 

OL 
- -  = Constant .  (10) 

Recalling that  in dynamics L = T*(t,  ql, (li) - V(t, qO, where T* is the complementary kinetic 

energy, and 

d 
- -  r *  = Pj  ( 1 1 )  
d,~j 

is the generalised momentum,  we note that Eq. (10) expresses the conservation of momentum for 
the j  th generalised coordinate. On the order hand if t does not appear  explicitly in L, then Eq. (9) 
upon integration yields 

L -  ~ P~O~ = - H  = Constant ,  (12) 
i = l  

where H is the Hamil tonian of the system. It  is interesting to note that the conservation of the 
Hamil tonian does not require a linear relationship between the momenta  and velocities, that is 
Eq. (12) is valid for relativistic as well as Newtonian mechanics [2]. For  scleronomous systems the 
Hamil tonian takes the following familiar form [3]: 

- ( T *  - V) + (T + T*) = H ,  (13) 

and Eq. (12) becomes 

T + V = Constant .  (14) 

In this case the total energy is conserved. As further specialisation, we note that in Newtonian 
mechanics T(Pi) = T*(Oi), and in this case one finds that  (T* + V) is also conserved. 

3 Higher order funetionais 

Consider next the extremisation of the following functional: 

(5 ~ L(x,  y, Yx, Y:~) dx  :- O. 
x1 

The Euler-Lagrange equation for this functional takes the following form: 

8y dx  + ~x  ~ = O. 

We may  write this equation as 

dx  By '  

where we now define the modified momen tum P as 

8L dR 
P= 

8yx d x '  

(15) 

(16) 

(17) 

(18) 
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8L 
where we call R = as the hypermomentum. Evidently for this type of problem if y does 

not appear explicitly in the Lagrangian L, the conservation of the modified momentum implies 
that 

8L d E f _ ~ ]  = Constant" (19) 
8y~ dx 

To develop the conservation equation for the case when x is not explicitly present in L, we 
determine the total derivative of L with respect to x. Thus we write 

dL 8L 8L 8L 8L 
d x  - + + + y . . . .  (20)  

From Eq. (16) we have that 

dx dx Y~ = ~y y~' 
(21) 

substituting this in Eq. (20) and simplifying we find 

dx L - y ~  ~ dx ~ - Y ~ - -  - -  oy~xJ ~x' 

or in terms of earlier defined quantities 

d 8L 
dx [ -  L + y~fi + y~R] 8x (22) 

It is evident now that when x is not explicitly present in L the generalised Hamiltonian, namely 

12I = --L + Pyx + Ryes, (23) 

will be invariant in x. The above result can be readily generalised for the case of several 
extremising functions y~. In this case the Euler-Lagrange equations emerge as 

dR 
- i = 1, 2 . . .  n ,  (24)  

dx 8y~ 

and the modified Hamiltonian becomes 

I2I = - L  + ~" (P~Yix + R i y J .  (25)  
i = l  

3.1 Example 1." A prismatic beam 

Consider a prismatic beam of constant length I and with a constant lateral load q per unit length 
subjected to a compressive axial force/7. The governing equation and the boundary conditions 
for this problem can be found from 

l 

8 ~ (EIy~x/2 - qy - Fyx2/2) dx = O, (26) 
0 
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where EI is the flcxural rigidity of the beam and the three terms in the integrand express the strain 
energy of the beam in flexure, the potential energy of the distributed load and the potential energy 
of the compressive axial force F. In this case 

R = Elyx~, 

d 
/3 = - Fy~ - ~y [Ely~x] 

and the governing equation becomes 

E l y  . . . .  + F y ~  = q, 

(27) 

(28) 

(29) 

which is the well known equation of the beam. If q = 0, i.e. y is absent in L, we find that/3 is 
conserved, that is 

F y ,  + Elyxx~ = Constant (30) 

in the beam. Evidently this equation is correct as one can easily verify by differentiating through 
with respect to x and deriving the equilibrium equation for the beam under zero lateral load. In 
the functional in Eq. (26) x does not appear explicitly. Accordingly, in this case the generalised 
Hamiltonian as given in Eq. (23), must also be conserved. For this problem 

I21 = - E I y 2 ~ / 2  + qy + Fyx2/2 + yx(--Fy~ -- EIy~xx) + yx~(Ely~x). (31) 

On simplifying we find 

ElyZx/2 + qy - Fyx2/2 - Elyxx~y~ = Constant. 

To verify this relationship, which incidentally is independent of the boundary conditions, we 

differentiate through with respect to x to find 

y~(EIy~x~x + Fyx~ - q) = 0, (32) 

which will be readily recognised as the governing equilibrium equation for the beam. 

4 Several independent variables 

Consider next the following extremum problem: 

6 ~ L(x, y, w, w:~, wr) dxdy = O. 
I2 

The Euler-Lagrange equation in this case may be written as follows: 

a w  - - a w ,  

At this juncture it is worth underscoring the meaning of various differential operators. The 
operators O/~w, O/~wx, and ?/Ow r are partial derivatives, that is, for these operations all variables, 
save those with respect to which the differentiation is being performed, are held fixed. On the 
other hand the operators O/Ox and O/Oy are for all intents and purposes total derivatives except 
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that for the former y is held fixed and for the latter x is fixed. To maintain clarity in the meaning of 
these operators we enclose them in [] brackets whenever a total derivative, in the sense just 

mentioned, is meant. 
We now write the above Euler-Lagrange equation as 

[~] [ ; ]  ~L (34) P1 + P2 - aw' 

where P1 and P2 are defined as 

~L 3L 
P l -  c~w~ P2 = ygw--" (35) 

Evidently when w does not appear in L, the notion of "Conservation of Momentum" takes 
the form 

(36) 

It is interesting to see that in this case the "Conservation of Momentum" translates into the 
momentum vector [P1 P2] being divergence free. To examine the case when x and/or y are absent 
(explicitly) in L, we will follow the already familiar procedure. Thus we evaluate the derivatives of 
L as follows: 

L = + Tw + + 

[~_y] aL aL aL aL 
L =  ~ + }-s Wy + - -  wyy + ~Wy ~W x Wxr" 

(37) 

c3L 
Now isolating the terms ~ww wx in Eq. (33) and using it in the first of Eqs. (37) we can write the 

following equation: 

- L + gwx W~ + w~ c~x 

Similarly from the second of Eqs. (37) and Eq. (33) we can derive the following equation: 

aL (39) 
+ a y  

Equations (38) and (39) suggest a generalisation of the Hamiltonian function. To this end we write 
these equations as 

= 7 y j '  (40) 

where 

Hit  = --L + Pxwx H t 2  = Pxwy 

H21 = Pywx H22 = --L + Pywy. 
(41) 
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Here again we see that the absence ofx and/or y (explicitly) in L leads to the Hamiltonian vectors 

[H~I H211 and/or [H12 H221 being divergence free. 

4.1 Example 2." A rectangular membrane 

Consider the well known membrane problem governed by 

6 j" (F(wx 2 + wy2)/2 - qw) dxdy = 0, (42) 

where F is the membrane tension per unit length, q is the applied pressure and w denotes the small 

deflection of the membrane surface. In this case 

Pz = Fwx P2 = Fwy 

Hll  = F(w~ 2 - wyZ)/2 + qw Hi2 = Fw~wy (43) 

H21 = Fwyw~ H22 = / ' ( W y  2 - -  Wx2)/2 + qw. 

For this problem w is present in L and hence the momentum vector is not divergence free. 
However both x and y are absent and hence the Hamiltonian vectors are divergence free. That is 

[ [ ~ x ] [ ~ y ] l [ F ( w x 2 - - w , 2 ) / 2 + q w  Fw:,w, ] =  [0 0]. (44) 
[_Fww, F(wy 2 - w~2)/2 + qw 

Performing the indicated differentiations we find the following equations: 

+ w,,) + q} = o 
(45) 

wy{F(w~x + wyy) + q} -= O. 

The terms in the curly bracket will be recognised as the well known equilibrium equation for the 

membrane. 
Next let us examine the consequence of the momentum and Hamiltonian vectors being 

divergence free. From Green's theorem we have that 

S 

where [n~ ny] is the outward unit normal vector to the bounding curve S of the region Y2 as shown 
in Fig. 1. Using Green's theorem for a rectangular membrane, we can assert that whenever w is 
absent in L, the divergence free momentum vector implies that 

y2 x~ Yl x r  

S Pldy[ . . . .  + ~ P2(-dx)l,=,2 + ~ ( - P , )  ( -dy) ]  . . . .  + ~ ( -P2)dxl ,= , ,  = 0. (47) 
y l  X2 Y2 Xl 

Similar expressions can be written for the two Hamiltonian vectors whenever x and y do not arise 
explicitly in L. We may deduce two invariant forms by considering an infinitesimal change in x, 
say. That is, if we let 

x = x l  and x 2 = x + A x ,  
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X I Xz 

Fig. 1. Membrane's configuration space 

Eq. (47) may be written as follows 

--dxd [! P~dy] = -P21Y/' " (48) 

If P2 happens to have the same value at y = Yl and y = Y2, then 

Ya 

Pldy = Constant  (49) 
Yl 

along x. We see that  the result requires the satisfaction of some conditions along the boundary as 

well as within the domain.  To illustrate this result let us return to the membrane  problem. In this 

case the Hami l ton ian  vectors were divergence free. Thus we deduce for [ H l  l H21] the following 

result: 

dI!~(F(w~2 wr2)/2+qw)dy] Fwxw, l~2,. 
dx (50) 

Now, for a rectangular  membrane with all edges fixed, we note that  w~ vanishes along the y = yl  

and y = Y2 edges. It follows then that  

y 2  

5 ((F(w~ 2 -- wyZ))/2 + qw) dy = Constant  (51) 
y l  

along x. In  part icular  we can see that  along the edge x = xl ,  both  w and wy vanish whereas along 

the center line w~ = 0. Thus, we can deduce that  for this case 

Y~ i ~ wy 2) dy x (r/2) w~2dy[ . . . .  = (qw - ( c /a )  
y t  Y~ 

X l  -}- X2  " 

2 

(52) 

This relationship reflects the inherent symmetry of the deflected shape of a rectangular  

membrane  under a constant  pressure. It is also evident that  this result can be generalised for 

quadri lateral  membranes with parallel  curved edges. 
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To prove Eq. (51) let us differentiate through with respect to x. Then 

y2 

(w~(Fw~x + q) -- Fwywyx) dy = O. 
Yl 

But from the governing equilibrium equation we have that  

wx(Fwx:, + q) = -Fwxwyy. 

Substituting from Eq. (54) into (53) we find that 

y l  

y2 f d S F(wxwyy + WrWyx ) dy = O, or r ~y [wxwr] dy = O, 
Yl 

y2 

which upon integration yields 

145 

(53) 

(54) 

(55) 

Vw,~w~,[~2 = O. (56) 

Equation (56) is true by virtue of w being equal to zero along the straight edges y = yl and 

Y = Y2. 

5 Several independent variables and several extremising functions 

Consider the functional 

~ L(x, y, u, ux, uy, v, vx, vy) dxdy = 0, (57) 
f2 

where x and y are the independent variables and u = u(x, y) and v = v(x, y) the dependent. In this 
case we obtain the Euler-Lagrange equations as follows: 

eu 

8v - = O. 

(58) 

These equations suggest the following definitions for modified momentum vectors: 

8L 8L 
P I , =  ~ P ,2= 8u---y 

OL OL 
P21 = Ov-~ P22= ~v," 

(59) 

Then Eq. (58) may be expressed as 

Thus, when u and v are not present in L, the vectors [ P l l  PzlJ and/or  [P12 Pz2J become 
divergence free. As far as the Hamil tonian vectors are concerned, the governing equations remain 
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as given in Eq. (40). The only change is in the definition of the components for the Hamiltonian 
vectors. Thus, in this case we find 

H n  = - L  + Pllux + P~vx 

H21 = P12ux q- P22vx 

H12 = Plluy + P21vy 

H21 = --L + Pz2vy + P12uy. 
(61) 

6 Several independent variables and higher order funetionals 

Consider the functional 

6 ~ L(t, x, y, Yt, Yx, Ym Y~,, Y., Yx~) dtdx = O, 
fa 

(62) 

where t and x are the independent variables and y = y(t, x) the dependent. The Euler-Lagrange 
equation for this functional takes the following form: 

57 - + 0 7  

+ + 2  = 0 .  (63) 

If we now define the modified momenta as 

/ 5 ,  = - -  - ~ Y t  ~ Ril-- R12 

5 2 -  gy~ ~ R 2 1 -  R22, 

(64) 

where 

3L ~L 
R l 1 =  ~ R12=c~yt~ 

(65) 
OL OL 

R21 -= - -  R22 = - -  
6qYxt 3yx~ 

are the hypermomenta, the Euler-Lagrange equation (63) may be written as 

Thus, when y is absent in L, the modified momentum vector [t51 /52J becomes divergence free. 
Similarly, the absence of t and/or x in L leads to the Hamiltonian vectors [ H ~  H21J and/or 
[H12 H221 being divergence free. The governing equations for the Hamiltonian vectors remain 
as given in Eq. (40) where only the components of the Hamiltonian vectors need to be changed to 
the following definitions: 

Hll  = - L  +/51Yt + RI l y .  + R12y~ H12 =/51Y~ + Rlxy~t + RlzYxx 
(67) 

H21 -~-/szYt q- R21yu + Rz2Ytx H22 = --L +/52Yx -t- Rzlyxt + Rz2Yxx. 
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6.1 Example 3: An axially moving beam 

Consider the axially moving slender beam of Fig. 2, governed by [4] 

6 (yt z + 2[y,yx +/'2y 2) _ - 2  y:,~ + 2 -  [2 dtdx = 0, (68) 

o 

where ~A is the material density per unit length, EI is the flexural rigidity of the beam, and I is the 
instantaneous length of the beam - a given function of time. The three terms in the integrand 
express the transverse complementary kinetic energy, the potential energy, and the longitudinal 
complementary kinetic energy. In this case the hypermomenta (65) and modified momenta (64) 
are given by 

Rll = 0 R12 = 0 

R21 = 0 R22 = --EIy~x (69) 

fil = oA(y, + [y,~) 162 = QA/(yt + [y~) + E I y  . . . .  

and using the Euler-Lagrange equation (66) the governing equation becomes 

~A(yt, + 2[y,x + [2y:,:, + fy~) + EIy . . . .  = 0. (70) 

Since y is absent in L, the modified momentum is conserved and the corresponding vector [Pl P2J 
is divergence free, that is, 

Using Green's theorem for the axially moving beam with the region O, bounding curve S, and the 
outward unit normal vectors as shown in Fig. 3, we can state that the divergence flee modified 
momentum vector implies that 

l(tz) tj 

0 t2 

0 

+ 
t2 

J (-/61)(-dxllt=t~ + I (-/62) dtl~=0 = 0. 
t(t,) tl 

(72) 

Y 

i i)i!i/iii;ii i   ii ii:i?ii;i!i:i ii:!i:i:i   

Fig. 2. Axially moving beam 

x 
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i(t) _ 

! 

Fig. 3. Configuration space of axially moving beam 

Yt = Yx = 0 

Y~ = Yxxx = 0 at 

Eq. (74) becomes 

The term ( -  ~ )  appears in the calculation of the unit normal of the curved edge and in 
the Jacobian of the transformation from the straight line t to the curved line. 

Now, considering an infinitesimal change in t with 

t = t l  and t z = t + A t ,  (73) 

Eq. (72) may be written as follows: 

P l d x  =/~21x~o - (-l'/31 + i6a)]x=t(t). (74) 

Making use of Eqs. (69) and the boundary conditions of the axially moving beam, namely 

at x = 0 

x = l(t), (75) 

d5 QA{y  + iyx} : E1y xxlx o. (76) 

Noting that the term in the curly brackets corresponds to the transverse velocity of points along 
the beam, the above equation states that the rate of change of transverse momentum is equal to 
the shear force evaluated at the base of the axially moving beam. 

Time appears explicitly in L (within the given function of time 12(t)), hence the Hamiltonian 
vector LHtl H21] is not divergence free, that is, 

~ L~21J = - - o A i [ ( y t  + [y~) Y~ + {1, (77) 
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where the modified Hamiltonian vector components, from Eq. (67), become for the axially 
moving beam 

oA E1 2 0 A[2 
H l l  = T (yt2 -- l'2yx2) q- T Yxx -- ~ - -  

n ~  = QA(y, + Gt y~- 
He1 = QA[(yt + [y~) Yt + Ely~=yt  - Ely~xyt~ 

(78) 

oA E1 0 A [2. 
H22 = T (i2yx2 - yt2) - T y2x -[- E I y ~ = y .  - - ~  

Following the same procedure as that with the modified momentum vector, we can state that the 

modified Hamiltonian vector [ H l l  H2 d implies that 

d5 01 1 d x  = H21 Ix = 0 - ( -  [ H l l  ~- 021)lx = l(t) - I eAi[(Yt  q- iy.) yx + 1"1 dO.  
$2 

(79) 

We will now study the above expression in the context of different forms of the given function I(t). 
If the beam's length is constant, i.e. [(t) = iit) = 0, using Eq. (78) and the system boundary 
conditions (Eqs. (75)), the above expression becomes 

d 2 0A 
dt Yxx + ~ Yt 2 dx = 0 ,  

0 

(80) 

namely, a statement of conservation of energy. If, on the other hand, the beam is axially moving at 
a constant velocity, i.e. [(t) = v and i'(t) = 0, using Eq. (78) and the system boundary conditions, 
Eq. (79) becomes an invariant statement for the modified Hamiltonian component Ht,, namely 

dt H l l d x  = - [ {y, q- VYx} 2 -}- OAr2 . 
2 _[[x=l(t) 

(81) 

Finally, for the general case where neither/', nor i'are equal to zero, and using the expressions of 
Hamiltonian vectors, Eq. (79) becomes 

~ [ r"'~&ld~l = - i [ ~  {y, + [Yx}2 + oA[2]  x = t(,) - e ~ oA[[(yt + [Yx) Yx + l'] dr2. (82) 

Another invariant result is obtained by noting that x is absent in L, hence the modified 
Hamiltonian vector [H12 H2zJ is divergence free, that is, 

IE lI xl] 0 (83) 

Following the same procedure as that with the modified momentum vector, we can assert that 
the divergence-free modified Hamiltonian vector [H12 H=] implies that 

dt H12dx = H221~=o - ( - [ H 1 2  + H22)1~=~(,)- (84) 
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Making use of Eq. (78) and the system boundary conditions in Eqs. (75), the above expression 
becomes 

dt oA{y, + iy~} y~dx : - y  + ~ -  {Yt + �9 (85) 

Equation (85) states that the rate of change of the component of the transverse momentum in the 
longitudinal direction is equal to the difference of the potential energy per unit length at the base 
and the transverse complementary kinetic energy per unit length at the tip of the axially moving 
beam. The governing equation for the axially moving beam, Eq. (70), can also be obtained from 
any one of the three Eqs. (71), (77), and (83), by simply carrying out the differentiation and 
simplifying the resulting expression. 

The correctness of Eqs. (76), (80), (81), (82), and (85), can be verified by direct differentiation of 
their left hand sides. Since the differentiation of their left hand sides is with respect to time and the 
upper limit of the integral is also a function of time, we need to use the Leibniz rule to carry out 
the differentiation. For example, carrying out the differentiation of the left hand side of Eq. (85) 
we have 

d [  -z(O J d5 ~ QA{yt + lyx} y~dx = 
_ 0  

t(t) 

I r + iy~ + 2[y~t) y~ + (YtYxt)] dx + QAl?yt + {Yx) Y~I:,:t(o. 
0 

(s6) 

But from the governing equation (70) we have that 

oA(yt~ + iy~ + 2[ytx) = - E l y  . . . .  - ~A[Zyx:,, 

which when substituted in Eq. (86) yields 

d I~!)~A{yt + l'y~} y~dX] 
l(t) 

( - -Ely  . . . .  Y,~ - oA[2y~Yx + oaytYxt) dx 
o 

+ ~Al'(yt + lye) Y:,l~:z~t). 
Noting that 

(87) 

~A 1. 2 ~x 
o A [ Z Y x x Y x  = ~ -  (Yx 2) 

(88) 

and o~Ayty:,t- o~A d (yt2), (89) 
2 dx 

Eq. (88) can be simplified to 

d n(t) ] l(t) o~A ~)2 ~=ltt)" d~t ~ ! o~A{yt + [yx} yxdx = o ~ ( - -Ely  . . . .  y~)dx + ~ - ( Y t  + [Y (90) 

We now use integration by parts on the integral on the right hand side of the above 
expression to get 

l(t) z(t) t(t) 

( - E l y  . . . .  y~) dx = - dt (Ely . . . .  y~) dx + (Elyxx~y~) dx, (91) 

o o o 

or 

l(t) l(t) 

S ( - -Ely  . . . .  Yx) dx = --(Elyxxxxyx)]~ ~ + ~ (Elyx~xyx~) dx. 
0 o 

(92) 
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Using the boundary conditions (75), Eq. (92) becomes 

l(t) l(t) 

( - -EIy  . . . .  Yx) dx = I (EIy~xxy=) dx. 
0 o 

(93) 

Finally, noting that 

EI d 
EIy~xxyx:~ = - f  d-x (Y2~x)' (94) 

Eq. (92) further simplifies to 

l(t) E1 
f ( - E I y  . . . .  y~) dx = - - -  Y~x �9 
o 2 x=0 

(95) 

Substituting Eq. (95) into Eq. (90) we obtain 

d [t!)oA{yt + [yx } yxdx] oA [y~}Zx=z~t ) E1 YZx o 
d5 = 5 -  {Y'+  2 : 

(96) 

which is identical to Eq. (85). 
For non-conservative mechanical systems, such as the axially moving beam, in the absence of 

energy conservation principles, invariant expressions such as Eqs. (76), (81), and (85) are valuable 
results for verifying numerical time integration algorithms [5]. 

7 Concluding comments 

In the foregoing we have reviewed the celebrated statement on conservation of energy, in classical 
mechanics, within the framework of calculus of variations. From such a setting and by not 
making a particular distinction between time and space variables we have developed other 
conservation statements for different functionals and we have illustrated them by problems from 
elastodynamics. Such invariant forms are manifestations of inherent symmetries in the system 
being studied. They are therefore of intrinsic interest on physical grounds and they provide useful 
checks for soundness of numerical algorithms devised to solve the system equations [5]. 

The technique we have used to arrive at the new invariant forms can be readily generalised to 
higher order functionals. For instance it would be relatively straightforward to derive corre- 
sponding results for problems of plate and shell dynamics. 
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