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Iterated skew polynomial rings of Krull dimension two 

By 

DAVID A. JORDAN 

Introduction. Smith [4] proved that the universal enveloping algebra U (sl (2, C) )o f  the 
Lie algebra sl (2, if;) has Krull dimension two. This algebra, the algebras similar to  it 
studied by Smith in [5] and the quantum enveloping algebra Uq (s/(2, C))belong to the 
class of iterated skew polynomial  rings R = A [y; ~] [x; e -  1, ~] over a commutat ive ring 
A which we studied in [1] and [2]. Smith's proof  that  Kdim U(s i (2 ,  (12)) is two makes 
strong use of the fact that, over U (sl (2, (12)), all finite-dimensional modules are semisimple. 
In [2, Theorem 3.7] we extended Smith's result to certain of the iterated skew polynomiai  
rings R but were unable to avoid including this condition on the finite-dimensional 
modules as one of the hypotheses, However  not all the algebras of [5] have this property. 
The purpose of this note is to remove this hypothesis and thereby to extend Smith's result 
to all the algebras of [5] and their quantum analogues described in [1, 2.4]. Our  approach 
is much as in [2] but we refine the proof  in such a way that it applies more generally. 

Notation. Here we give details of and notat ion for the iterated skew polynomial  rings 
R referred to above. More  comple te  details, including justification for the Statements 
made, may be found in [1, Section 1]. 

Let A be a commutat ive domain. In this paper  we assume thar A is a finite!y generated 
algebra over an algebraically closed field k. Let c~ be a k-automorphism of A and let u ~ A 
be such that c~ (u) + u. Form the skew polynomial  ring A [y; ~] and extend c~ to A [y; e] 
by setting c~(y)= y. There is an ~- l -der iva t ion  c5 of A [ y ;  ~] such that  6 ( A ) =  0 and 
8 (y) = u - ~ (u), The ring R is the iterated skew pobmomiat  ring A [y; c~] [x; e -  1; O]. Thus 
R consists of polynomials in y and x over A subject to the relations x y  - y x  = U - e ( u )  

and, V a e A ,  y a  = ~  (a )y  and x a  = c ~ - ! ( a ) x .  The sets { yi}i~l and {xi}i__> 1 a re r igh t  and 
left Ore sets in R and we denote the localizations by Ry and Rx respectively: By z we 
denote the element x y  - u = y x  - c~(u) which is central in R. The localization R~ ~ S [z], 
the ordinary polynomial  ring over the skew Laurent polynomial  ring S = A [y, y -1 ;  e] 
and R~ ~ A [x, x -  1; e -  ~] [z] ~ R r 

For  the case where R = U(s/(2, C)), the elements x and y are commonly  written as e 
and f respectively, A = t12[h], c~(h) = h + 2, u = - � 8 8  - !) 2 and z = �88 + t), where 
is the Casimir element. For  other examples, including Uq(sl(2, t12)), see [~]~ 

If X is a right R-module  then, for c = x or y, the R~-module X | R~ will b e  denoted 
X~ and if X is torsion with respect to {c i}i~ ~ then we say that X is c- tors ion .  If X is both 
y-torsion and x-torsion we say that X is x y - t o r s i o n .  
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If the only ideals of A invariant  under e are A and 0 then A is said to be c~-simple. 
M. Holland,  unpublished, has shown that, for A as above, if Kdim A = 1 and A is 
a-simple for some ~ then A ~ k [t] or A ~ k [t, t -  1], whence A is a principal  ideal domain.  

Lemma 1. Suppose that A is a-simple and a principal ideal domain. For every maximal 

ideal M of  A and every 2 ~ k, the R-module R / (M R + (z + 2)R) has f inite length. 

P r o o f .  L e t J = M R + ( z + 2 )  R. F o r i > 0 , 1 e t w  i = y i + J a n d l e t v  i = x  ~ + J . ( T h u s  
w o = v o = 1 + J.) The elements w i and  v i span RId over k. As A is an a-simple domain  
the maximal  ideals c, f (M), i e ;g, are distinct, otherwise a finite product  of them would be 
invariant  under c~. Each wl is annihi la ted by e - i ( M )  and each vi is annihi lated by a i (M). 
Consequently,  if F is any nonempty  finite subset of {v~, w~" i > 0} then there exist a ~ A 
and f ~  F such that  ea = 0 for all e ~ F \ { f }  and a is invertible modulo  anna f .  Hence 
every non-zero submodule  of R / J  must contain w i or vi for some i >  0. Fo r  i > 1, 
WiT = wi+l and wlx  = y i - l ( y x )  + J = wi l ( z  + e(u)) = wi_l(~(u)  - 2). Similarly, for 
i => 1, vix = vi+l and viy = vi_ 1 (u - 2). Therefore every non-zero submodule of R / J  is 

of the form ~2 wi k, where j > 1 and eJ (u) - 2 e M or is of the form Y~ v i k, where j > 1 
i>=j i>=j 

and ~1 - j  (u) - 2 e M, or is a sum of two submodules,  one of each of the preceding forms. 
Since only finitely many  of the principal  ideals e ~ (M), i e 2g, can contain u - )~, it follows 
that  R / J  has only finitely many submodules.  []  

Lemma 2. Suppose that A is a-simple and a principal ideal domain. Every f initely 
generated xy-torsion right R-module has f inite length. 

P r o o f. Suppose this to be false. Then there is a counterexample of the form X = R/J,  
where J is a right ideal of R, maximal  with respect to being xy- tors ion  of infinite length. 
F o r  every non-zero submodule  I / J  of R/J,  R / I  has finite length so I / J  has infinite length. 

Let d > l  be minimal  such that there exists 0 4 : w E X  with w x = O = w y  d. By 
[1, 1.9 (i)], x y  d - yd X = (U -- C~ d (U)) yd-  1. By the choice of d, w (u - c~ d (u)) = 0. There exist 

factors p, q of u - c~a (u), with p irreducible, such that  wqp = 0 but  wq 4: O. Let v = wq. 
Then annAv is the maximal  ideal M = pA, and vx  = 0 = vy  d. 

There exists 2 e k  such that  u -  2 s M .  Then v(z + 2) = v ( x y -  u + 2) = 0. Thus 
M R  + (z + )OR ~= annRv and, by Lemma 1, vR  ~- R/annRv has finite length. But we 
have seen above that  every non-zero submodule  of X has infinite length. As v 4 = 0, this 
is a contradict ion.  [ ]  

Theorem 3. Suppose that A is a-simple and a principal ideal domain. Le t  X be a f initely 
generated right R-module such that both Xy and Xx  have finite length. Then. X has f inite 
length. 

P r o o f. As in the proof  of [2, 3.7], it suffices to prove this in the case where Xy and' 
Xx are  each either zero or simple. The case where both  are zero is dealt  with by Lemma 2. 

Consider  the case where X x = 0 and Xy is simple. As Ry ~ S [z] has centre k [z] and as 
S is simple, every nonzero primitive ideal of Ry intersects k [z] in a maximal  ideal. 
Fur thermore  Ry is a constructible k-algebra in the sense of [3] and, as its centre is k [z], 
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it is, by [3, 9.4.21], not primitive. Hence there exists ,2 ~ k such that Xr(z  4- 2) = 0. As 
z + 2 is central, X ( z  + 2) is xy-torsion and so, by Lemma 2, has finite length. By [l, 1.11], 
R/(z + 2) R is a domain and by [2, 4.6] it has a unique minimal non-zero ideal I/(z + 21 R. 
The ideal 1/(z + )~) R is idempotent and. by [2, 4.6 (ii)], has finite codimension. Then X / X 1 ,  
being finitely generated over the finite-dimensional k-algebra R/I,  has finite length over 
R/I  and hence over R. If X I  = X ( z  + 2l then X has finite length so we can assume 
that X I  + X [z + 2). Let N be a submodule of X with X tz + ).) ~- N c X 1  and with 
X I / N  simple. Suppose that X I / N  is },-torsion, hence xy-torsion. By [1, 3oi0], 
y ,  x a e a n n R ~ X I / N )  for some d. Therefore annR/(~+z)R(XI/N) is nonzero and must 
contain I/(z ~ L) R. Thus X I 2 ~ N. As I/(z + 2) R is idempotent and X (z + 2~ ~ N. 
X I  = X (I 2 ,- (z + 2)R t ~ N, a contradiction, Hence X I  N is not  y-torsion. As Xy is 
simple, N must be y-torsion otherwise Ny = Xy and X / N  is y-torsion. Therefore N is 
xy-torsion and, by Lemma 2. has finite length. As X / X t ,  X I / N  and N have finite length, 
so too does X. The case where Xy = 0 and X~ is simple is similar. 

Now consider the case where Xr and X~ are both simple. As above, there exists 2 ~ k 
such that Xy iz - 2) = 0. Then X lz + 21 is y-torsion and (X (z t ~,))~ is 0 or simple. By the 
above X ( z +  2) has finite length. With I and N as above, so that X lz + 2) ~_ N c X I  and 
X I / N  is simple, X / X I  again has finite length. The possibility that X I / N  is xy-torsion 
leads, using the idempotence of I/~z + 2)R. to a contradiction as before. Any other 
possibility leads, using the simplicity of  Xr and X~, to the conclusion that Ny and N~ are 
each zero or simple with at least one of them zero. By previously considered cases, N and. 
hence, X have finite length. []  

Corollary 4. Suppose that A is s-simple and a principal ideal domain. Then Kdim R = 2. 

P r o o f. Using [3, 6.5.4 and 6.6.11] and applying [3, 6.1.17], with 6 = )~ - l, as in the 
proof of [2, 3.7], we have Kdim R < sup (Kdim Rr, Kdim R_~) = 2 _%<_ Kdim R. []  

The next result shows that Lemma 2 and Theorem 3 do not  extend ~o s-simple rings 
A of Krull dimension > 2. 

Proposition 5. Suppose that A is e-simple o f  Krutl dimension d > 2. I f  u - ~ (u) is not 
a unit then there is a f initely generated xy-torsion R-module o f  KrutI dimension > d - 1. 

P r o o f. L e t I  = (u - c~(u)) A. For  all ideals J of A containing I, ( xR  + y R  + J R )  c~ A 

= J. Hence Kdim R (R/(x R + y R + I R)) > Kdim a (A/I)  = d - 1. [] 

R e m  a r k .  Proposit ion 5 suggests that, in order to extend Corollary 4 t o  higher 
dimensions using this approach, one should show that if X is a finitely generated 
right R-module such that Xy and X ,  both have Krull dimension < d - !  then 
Kdim X < d - 1. 
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