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Abstract .  There are several sorts of  Kolmogorov complexity, better to say several 
Kolmogorov complexities: decision complexity, simple complexity, prefix complex- 
ity, monotonic complexity, a priori complexity. The last three can and the first two 
cannot be used for defining randomness of an infinite binary sequence. All those five 
versions of  Kolmogorov complexity were considered, from a unified point of view, 
in a paper by the first author which appeared in Watanabe's  book [23]. Upper and 
lower bounds for those complexities and also for their differences were announced 
in that paper without proofs. (Some of  those bounds are mentioned in Section 4.4.5 
of [16].) The purpose of  this paper (which can be read independently of [23]) is to 
give proofs for the bounds from [23]. 

The terminology used in this paper is somehow nonstandard: we call "Kol- 
mogorov entropy" what is usually called "Kolmogorov complexity." This is a 
Moscow tradition suggested by Kolmogorov himself. By this tradition the term 
"complexi ty" relates to any mode of description and "entropy" is the complexity 
related to an optimal mode (i.e., to a mode that, roughly speaking, gives the shortest 
descriptions). 
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1. Introduction 

This paper collects various definitions of  algorithmic complexity (entropy) and infor- 
mation about their relations. All those definitions and facts were given in [23] without 
proofs; here the proofs are given. Many of these proofs are well known; nevertheless, 
all the proofs are collected here for the reader's convenience and adapted to the uniform 
terminology. 

The paper is organized as follows. We start (Section 2) with the classification of four 
entropies (two possibilities for objects combined with two possibilities for descriptions) 
which goes back to [21] and is explained in Sections 1.2 and 1.3 of  [23]. 

Then in Section 3 we look at a different classification of entropies which goes back 
to [15] and establish the connections between these two classifications mentioned in 
Section 1.6 of [23]. 

Finally, in Section 4 we establish some connections between different entropies 
mentioned in Sections 2.1 and 2.2 of  [23]. 

2. Objects and Descriptions 

Any of the four definitions of entropy given in this section follows the same pattern. First, 
an appropriate notion of "description mode," or "mode of description," is introduced. 
Each of the four definitions requires a specific class of description modes. Any description 
mode is a binary relation E on E (the set of all binary words). If (x, y) ~ E, then x is 
called a description of y. When a mode E is fixed, a complexity of a binary word y is 
defined as the length of its shortest description, i.e., 

KE(y) = min{lxl [ (x, y) 6 E}, 

where Ix l denotes the length of x. Different modes of description lead to different 
complexity functions KE; the basic Solomonoff-Kolmogorov theorem (valid for all 
four entropies of  this section) states that among all the functions related to the relevant 
class of modes there is a minimal one (up to an additive constant). In other words, in 
the class of modes there is an optimal description mode E such that, for any description 
mode F of the same class, 

KE(y) <_ KF(y) q- C 

for some constant C and for all words y. Finally, entropy is defined as Ke  for some 
optimal description mode E. 

Now we use this general scheme for four different cases. 

2.1. Simple Kolmogorov Entropy 

When defining simple Kolmogorov entropy, a mode of description ("simple description 
mode") is a binary relation E C E • E such that, for every x, Yl, Y2 in ~, 

(x, Yl) ~ E /x  (x, Y2) C E :=> Yl = Y2. 

In other terms, a mode of description is a (partial) function from ~, into ~,. Enumerable 
(i.e., recursively enumerable) modes of descriptions correspond to computable functions; 
we restrict ourselves to enumerable modes only. 
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When a mode E is fixed, the complexity of a binary word y is defined as the length 
of its shortest description, i.e., 

Ke(y) = min{lxl I (x, y) 6 E}. 

Different modes of description lead to different complexity functions Ke; the basic 
Solomonoff-Kolmogorov theorem states that among all these functions a minimal one 
(up to an additive constant) exists. In other words, there is an optimal description mode 
E such that, for any description mode F,  

KE(y) <_ KF(y) + C 

for some constant C and for all words y. 
To construct an optimal mode of description, assume that U(m, n) is a universal 

computable function (i.e., the family {Urn }, where Um (x) = U(m, x), contains all com- 
putable functions, including partial ones, from E to E). By 2 we denote the word z 
where each letter is repeated twice. An optimal mode of description may be constructed 
as follows: 

E = {(-fiOlq, r) iU(p,q)  = r}. 

Now we fix some optimal description mode E and call the corresponding complexity 
function Ke(y) simple Kolmogorov entropy. It is denoted KS(y) in what follows, and 
the description modes as defined in this section are called "KS-description modes" or 
"simple description modes." 

This definition of simple Kolmogorov entropy appears in Section 1.2 of  [23] where 
the name " (= ,  =)-entropy" or "N-entropy" is used. Essentially the same definition is 
given in Section 1.3 of [23]. Indeed, the ordering on the bunch 11~ is trivial (only equal 
objects are comparable), therefore conditions 1 and 2 [23, p. 89] are always satisfied. 
Condition 3 means that E is a graph of a function, and acceptable modes of descriptions 
are graphs of computable functions. Therefore, "bunch definition" of [23] coincides with 
the one given above (and with the original Kolmogorov definition from [ 12]). 

2.2. Decision Entropy 

For the case of  decision entropy a description mode ("decision description mode") is 
defined as a (recursively enumerable) set E C E x ~, satisfying the following require- 
ments: 

(a) If  (x, Yl) E E and (x, Y2) E E, then one of the words Yl and Y2 is a prefix of 
another one. 

(b) If  (x, y) E E, then {x, y') ~ E for all prefixes y' of y. 

It is easy to see that, for any fixed x, all y ' s  such that (x, y) ~ E are prefixes of  some 
(finite or computable infinite) binary string. So the mode of description may be naturally 
considered as a mapping e of  E into the set of all finite or computable infinite binary 
strings, and (x, y) ~ E means "y is an initial segment of e(x)." 

Then decision complexity with respect to a given mode E is defined as before, and 
again the optimal description mode E exists. The corresponding complexity function 
KE(y) is called decision entropy and is denoted by KD(y). 
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Again the Solomonoff-Kolmogorov theorem is valid for this case. The construction 
of the optimal description mode follows. Assume that U(p, q, n) (where p, q are binary 
words and n is a natural number) is a computable function with 0-1 values universal for 
the class of all computable functions E x N --+ {0, 1 }. Then the set 

{(/301q, r)l ri = U(p, q, i) for all i not exceeding Ir[} 

(by ri we denote the ith bit of r) is an optimal description mode. (This description mode 
follows the original construction of decision entropy, see [17] or [26].) 

The above-mentioned requirements (a) and (b) (given as in Section 1.3 of [23], for 
X = ItLY = 'IF) seem natural if we think of a description mode as a computable mapping 
in the sense of  the Scott-Ershov domain theory (see [21]). However, requirement (b) may 
in fact be omitted (as in Section 1.2 of  [23]). Then we get a broader class of  description 
modes and, theoretically speaking, may get a smaller entropy. However, for any binary 
relation E satisfying requirement (a) we may consider its extension E':  

E '  = {(x, Y)IY is a prefix of some y'  such that (x, y') 6 E}. 

It is easy to check that this extension is enumerable if E is, that E '  satisfies both require- 
ments (a) and (b), and that the corresponding complexity function does not exceed the 
complexity function corresponding to E. 

The decision entropy is called (=, ?,)-entropy, or N E-entropy in Section 1.2 of  [23]. 

2.3. Monotonic Entropy 

Here by the description mode ("monotonic description mode") we mean a (recursively 
enumerable) set E C 3 x F, satisfying the following requirements (see Section 1.3 of 
[23]): 

(a) If  (x, y) ~ E, then (x, y') c E for all prefixes y '  of y. 
(b) If  (x, y) 6 E, then (x', y) c E for all x '  having x as a prefix. 
(c) If  (x, y') 6 E and (x, y ' )  6 E, then one of the words y' ,  y" is aprefix of another 

one. 

Then the complexity (for a given mode) is defined in the usual way, as the length of the 
shortest description. 

The optimal description mode does exist; corresponding complexity is called mono- 
tonic entropy and is denoted by KM(y)  

Here to prove the existence of an optimal description mode is slightly more difficult 
than in the previous cases. The reason is that we should construct the "universal com- 
putable mapping" for the family of all "computable monotone mappings" from F~ into 
~. This is explained in the general case (for semantic domains, or f0-spaces) in [21]; a 
very detailed description of what happens for the case of monotonic entropy is given in 
Sections 3. i and 3.2 of  [24]. 

Again, the requirements for the description mode may be weakened. Namely, we 
may require only (as in Section 1.2 of [23]) that if 

(xl, yl) ~ E and (X2, Y2) E E 

and one of the words Xl, x2 is a prefix of another one, then one of the words yj and y2 
is a prefix of another one. 
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It is easy to check that this requirement is a consequence of requirements (a)-(c) 
above (we may replace Xl and x2 by the longest of them), but not vice versa. However, 
if E satisfies the latter requirement, then its extension E'  defined as 

E'  = {(x, y) ] there are x '  < x and y'  > y such that (x', y') ~ E} 

(here p < q means that a binary word p is a prefix of a binary word q) satisfies 
requirements (a)-(c). Using this extension, it is easy to check that both versions of 
monotonic entropy definition lead to functions which differ only by a bounded additive 
term. 

Monotonic entropy is called (y, y)-entropy, or U, E-entropy, in Section 1.2 of [23]. 

2.4. Prefix Entropy 

Here the requirements for the description mode ("prefix description mode") are as follows 
(see Section 1.3 of [23]): 

(a) If (x, y) ~ E, then (x r, y) ~ E for any x '  such that x is a prefix ofx ' .  
(b) If (x, yl) E E and (x, Y2) C E, then Yl = Y2. 

(As everywhere, E is supposed to be recursively enumerable.) They can be replaced by 
the weaker requirement (see Section 1.2 of [23]): if (xl, Yi) c E and (x2, Y2) E E and 
xl is a prefix of x2, then Yl = Y2- This requirement, though being weaker, leads to the 
same entropy. Indeed, if some E satisfies this requirement, then its extension 

E' = {(x, y) l(x ' ,  y) E E for some x '  being a prefix of E} 

satisfies both requirements (a) and (b) and gives the same complexity function. 
The existence of an optimal description mode may be proved by enumerating all 

description modes (in other terms, all "computable mappings" from ~E to 1~). Its existence 
follows from the general facts about semantic domains (see [21 ]) and can also be proved 
directly. We omit this proof because the existence of an optimal mode is a by-product of 
the coincidence of the definition given above and the encoding-free definition (see the 
next section). 

The complexity with respect to an optimal description mode in the sense of this 
section is called prefix entropy and is denoted by K P (x). 

2.5. Historical Remarks 

The different versions of entropy described above (as well as some other versions) were 
invented independently by different people. If we attribute those versions according to 
the first publication date, the list would be as follows: 

�9 Simple entropy KS:  1965, Kolmogorov [12, Section 3]; and (even earlier but in 
some nebulous form) 1964, Solomonoff [22]. 

�9 Decision entropy K D :  1969, Loveland [17]. 
�9 A priori entropy K A  (see below): 1973, Levin (see [26, no. 3.3] and [13]). 
�9 Monotonic entropy K M :  1973, Levin [13]. 
�9 Prefix entropy K P :  1974, Levin [14], see also [8]. 
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Some other historical remarks: 

�9 In 1966 Chaitin published his paper [2], where a complexity measure was defined 
in terms of Turing machine parameters. This definition, however, does not provide 
the optimal complexity measure, which appeared in a subsequent paper published 
in 1969 [3]. (According to [16], p. 86, those papers were submitted in October 
1965 and November 1965, respectively.) In a publication of 1975 Chaitin also 
reinvented the prefix entropy (see [4]). See also [5] and [6]. 

In [7] Chaitin writes: "I have been the main intellectual driving force behind 
both AIT~ and AIT2." As to AITI and AIT2, in [7] there is a declaration that 
Algorithmic Information Theory "appeared in two installments," and AIT1, AIT2 
stand for those installments. Here is the opinion of one of the leading experts 
in the field: "Chaitin has done more than others to popularize some aspects of 
a lgori thmic information theory. The benefits of  this activity are offset by his 
somewhat narrow interests ( . . . )  and the way he ascribes all major achievements 
to himself" [10]. 

�9 In 1964 Markov, Jr. [18], proposed a complexity measure similar to decision 
entropy. It was based on so-called "normal algorithms." However, his definition 
did not provide an optimal complexity measure. 

�9 Monotonic entropy was defined (in its present form) in Levin 's  paper [ 13] together 
with the characterization of randomness in terms of that entropy. At the same time 
Schnorr [ 19] independently provided a similar characterization, but his notion of 
entropy ("process complexity" according to Schnorr) was slightly different. Later 
Schnorr [20] discarded his notion and used the same notion of monotonic entropy 
as given in Levin's paper. 

The complete account of the history of different notions related to Kolmogoroy 
complexity may be found in the recently published monograph [ 16]. 

3. Encoding-Free Definitions 

3.1. Simple Kolmogorov Entropy 

The simple Kolmogorov entropy can be characterized as a minimal (up to a constant) 
enumerable from above function f :  E ~ N U {ec} satisfying the following condition 
(which, in an equivalent form, is called (CII~) in Section 1.5 of  [23]): 

�9 There is at most 2 n different y such that f ( y )  = n. 

(A function f :  E --> N U {~} is called enumerablefrom above if the set of  all pairs 
(x, n) such that n > f ( x )  is recursively enumerable.) 

R e m a r k .  If we replace 2 n by C �9 2 n (see condition (C') in Section 1.5 of [23]) we get 
the same (up to a constant) entropy: C .  2 n = 2 n+~~ c, therefore this factor C corresponds 
to an additive constant in the exponent. We may also replace " f ( y )  = n" by " f ( y )  < n"; 
if there is at most 2 n objects y such that f ( y )  = n, then the number of objects y such 
t h a t f ( y )  < n d o e s n o t e x c e e d l + 2 §  n < 2 . 2  ~. 
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To prove this characterization of simple Kolmogorov entropy (as defined in Sec- 
tion 2.1) we should prove that: 

�9 A simple Kolmogorov entropy function K S ( x )  satisfies this condition. 
�9 For any enumerable from above function f satisfying this condition a simple 

description mode E can be constructed such that the complexity function corre- 
sponding to E exceeds f by not more than a constant. 

The first claim is trivial: different objects have different descriptions, and objectsy 
such that K S ( y )  = n have descriptions of length n. Therefore, the number of those y's  
does not exceed the total number of descriptions having length n, i.e., 2 ". 

The second claim is also simple. We reserve words of length n to be descriptions 
of objects y such that f ( y )  < n. The total number of these objects does not exceed 
1 + 2 + �9 .. + 2 ~-1 < 2 n, therefore we cannot exhaust all reserved words. The function 
f is by assumption enumerable from above. Thus, the set of all pairs (y, n) such that 
f (y) < n is enumerable. When a new pair (y, n) appears during the enumeration process, 
we allocate one of the unused words e of length n to be a description of y. The set E of 
all pairs (e, y) generated in this way is enumerable; E is a function graph (because each 
e may be allocated only once), therefore, E is a simple description mode. Evidently, the 
corresponding complexity function does not exceed f + 1. 

A by-product of this argument is the existence of a minimal (up to an additive 
constant) enumerable from above functio n satisfying our condition. 

3.2. Decision Entropy 

To get the characterization of decision entropy K D we should look for the minimal (up 
to a constant) function f :  E ~ N U {c~} which is enumerable from above and satisfies 
the following condition: 

�9 If  M is a finite set of incomparable words (there is no word in M which is a 
prefix of another word in M) and M C f - i  (n), then the cardinality of M does 
not exceed 2 n. 

(The equivalent condition is called (Cq1") in [23]). As in the previous section, to prove 
this characterization we should prove that: 

�9 A decision entropy function K D ( x )  satisfies this condition. 
�9 For any enumerable from above function f satisfying this condition, a decision 

description mode E can be constructed such that the complexity function corre- 
sponding to E exceeds f by not more than a constant. 

We start with the first claim. Assume that M is prefix-free (no word in M is a prefix 
of another one in M)se t  of words having decision entropy n. That means that all these 
words have descriptions of length n. All these descriptions must be different (otherwise 
the conditions for the description mode are violated). Thus, the number of descriptions 
(and the cardinality of M) does not exceed 2 ". 

Now consider the second claim. As well as in the previous section we reserve words 
of length n to be descriptions of objects y such that f ( y )  < n. Now the total number of 
objects y such that f (y) = n is not limited; however, any subset of pairwise incomparable 
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y's  such that f ( y )  = n has cardinality not greater that 2 n (two words are comparable 
if one of  them is a prefix of  another one). Therefore, any set of  pairwise incomparable 
objects with f-values less than n contains no more than 1 + 2 + .  �9 - + 2 n-I < 2 n objects. 
The function f is by assumption enumerable from above. Thus, the set of all pairs {y, n) 
such that f ( y )  < n is enumerable. Assume that a new pair (y, n) appears during the 
enumeration process. For each already allocated description e we look at the longest 
object z(e) in the set of all objects having e as a description. (All other objects in this 
set will be prefixes of  the longest one.) If any of these objects z(e) is comparable with 
y, then the corresponding e is declared to be a description of y. If not, we allocate a 
new description for y. (There is a free description because all z(e) together with y are 
incomparable and therefore the number of  used e's is less than 2 ".) The set of  all pairs 
(e, y) generated in this way is an enumerable decision description mode (i.e., satisfies 
the conditions of Section 2.2). Evidently, the corresponding complexity function does 
not exceed f 4- 1. 

3.3. A Priori Entropy 

In the case of monotonic entropy, situations differs: monotonic entropy has no exact 
characterization of  the same type as in Section 3.1 and 3.2. However, it is connected 
closely with another complexity measure, called a priori probability. We reproduce its 
original definition from Section 3 of [26], where it is called a "universal semicomputable 
measure." (This notion is discussed in details in Chapter V of [24].) 

A semimeasure (in this section!) is a function m defined on ~ with nonnegative real 
values sati.sfying the following conditions: 

�9 m(A) = 1 (here A denotes an empty word). 
�9 m(xO) + m(xl )  < m(x) for any word x. 

A semimeasure is called enumerablefrom below if the set of  all pairs {x, r) such that r 
is a rational number less than m(x) is enumerable. There is a maximal (up to a constant 
factor) enumerable from below semimeasure M(x) called a priori probability (see [24]). 
Its logarithm is called a priori entropy and is denoted by KA. 

Another definition of a priori entropy is given in Section 1.5 of  [23]. Namely, a 
priori entropy is defined there under the name of  E~'-entropy as a minimal enumerable 
from above function f :  ~ ~ N U {cx~} such that 

(]~T) Z 2-f(Y) < 1 for any finite prefix-free set M C U, 
yEM 

("prefix-free" means that no word in M is a prefix of another word in M). 
We explain shortly why these two definitions are equivalent. The main role is played 

by the following two facts: 

�9 If m (x) is a semimeasure, then f (k) = [minimal k such that 2-k < m (x) ] satisfies 
the condition (Nqi'). 

�9 If a function f satisfies the condition (E~2), then the function m(x) defined as 
max ~xsO 2-f(x), where maximum is taken over all finite prefix-free sets D such 
that x is a prefix of  each word in D, is a semimeasure. (Technically speaking, we 
should also change the value of m on A and assume that m(A) = 1.) 
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These facts establish an approximate (up to a factor of  2) correspondence between 
semimeasures and functions satisfying the condition ZqI" which preserves enumerability 
and allows us to prove the coincidence mentioned above. 

There is one more assertion concerning the definition of  a priori entropy using the 
(EqF) condition. It is called "Muchnik's theorem" on p. 93 of  [23]. It can be stated as 
follows. Assume that function r is defined on binary words and all qg(x) are real numbers 
between 0 and 1. We consider any binary word x as a vertex in a complete binary tree 
and qg(x) as its label. Assume that, for each C, we can find a finite set of  pairwise 
incomparable words with the sum of labels exceeding C. Then an infinite set of pairwise 
incomparable words with an infinite sum of labels exists. 

The scheme of  the proof is as follows. For each binary word x (each vertex of  the 
tree) consider all sets D of  pairwise incomparable words having x as a prefix. For each 
D compute the sum of all labels of vertices from D and take a supremum over all D's;  
this supremum (finite or infinite) depends on x. We call a vertex bad if that supremum 
is infinite. By assumption, the tree root is bad. We should find an infinite set of  pairwise 
incomparable words with an infinite sum of labels. Bad vertices form a subtree in the 
full binary tree; this subtree has no leaves (if x is bad, at least one of  the words x0 and 
x 1 is bad). Now we consider two cases: 

�9 There is a bad vertex x such that its bad descendants form a path (any two bad 
descendants of x are comparable). 

�9 For any bad vertex x there are two incomparable bad descendants of  x. 

In both cases it is possible to find the required infinite set of vertices with an infinite sum 
of labels. 

3.4. Prefix Entropy 

The prefix entropy with its encoding-free definition given in this section is probably the 
most technically interesting among all the four entropies. It is discussed in detail in [25]; 
however, an English translation of  this paper has not been published yet, so we try to 
give a self-contained description of  what happened in this case. 

We start with the another definition of  a semimeasure. The corresponding notion 
differs from the notion of  semimeasure used in the previous section. The underlying 
reason for this difference is that in the previous section binary words were considered 
as vertices of  a binary tree; now this structure is ignored and all the word are "placed on 
the same level," so U, is treated not as a tree but as a "bunch." 

In this section a semimeasure is a (total) function m defined on the set E of  all binary 
words with nonnegative real values such that ~ x  m(x) < 1. 

A semimeasure m is called enumerablefrom below if the set of  all pairs (x, r) such 
that r is a rational number less than m(x) is enumerable. 

Enumerable from below semimeasures correspond to probabilistic machines which 
have no input but have an output where a binary word may appear (after it appears, the 
machine terminates). Namely: 

�9 If  M is a probabilistic machine of  this type, the function P~t (Y) = the probability 
of  the event "machine M stops with output y"  is a semimeasure enumerable from 
below. 
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�9 For any semimeasure m enumerable from below a probabilistic machine M can 
be constructed such that re(x) = P~t(x) for all x. 

The first claim is almost evident. Indeed, the sum ~ x  P~t(x) is the probability of  the event 
"machine M stops" and therefore does not exceed 1. Function P~t is also enumerable 
from below: trying to emulate the computation process of  M for all possible random 
bits, we get more and more cases where the output is known and therefore may generate 
the lower bounds for P~t(x). 

Now we proceed to the second claim. We give only a sketch of a proof. Assume that 
a semimeasure re(x) enumerable from below is given and we are looking at the process 
of  enumeration of  all rational lower bounds for all m (x). Assume that mk (x) is a current 
lower bound for m(x) at the kth step. We may assume that for each k the value m~(x) 
differs from 0 only for finitely many x's,  that ink(x) increases when k increases and 
converges to m(x). Our probabilistic space is the set of all infinite 0-1 sequences. At 
step k we allocate the part of  it having measure mk(x) to the output x; this part increases 
when k and mk(x) increase. (End of  sketch.) 

There is an enumerable from below semimeasure M(x) which is maximal in the 
following sense: for any enumerable from below semimeasure m(x) there is a constant 
c such that m(x) <_ e �9 M(x) for all words x. 

This fact can be proved as follows: enumerate all probabilistic machines and con- 
struct a "universal" machine which chooses a natural number i at random (probabilities 
pi to choose i are assumed to be positive) and then simulates the ith machine. If mi is a 
semimeasure corresponding to the ith machine and M is a semimeasure corresponding 
to the universal machine, then M(x) >_ Pi �9 mi (x). Therefore, M is maximal. 

Semimeasures are connected with functions f :  7, ~ N t3 {c~} satisfying the fol- 
lowing condition: 

(]~]~) ~ 2 -f(x) < 1. 
X 

Namely: 

�9 If f is a function satisfying condition (E~) ,  then m (x) = 2 -f~x~ is a semimeasure. 
�9 I fm  is a semimeasure, then the function f ( x )  = minimal k such that 2 -k < m(x) 

satisfies condition ( ~ ) .  

Therefore we can go back and forth between semimeasures and functions satisfying 
condition (E]~) and for the round-trip we pay at most factor 2 (or additive constant 1). 
It is easy to see that enumerable from below semimeasures correspond to enumerable 
from above functions. Therefore, the existence of a maximal enumerable from below 
semimeasure M(x) implies the existence of  a minimal enumerable from above func- 
tion satisfying (E~)  and this function coincides with - l o g  2 M(x) up to an additive 
constant. 

It turns out that the minimal function from the preceding paragraph (or loga- 
rithm of the maximal semimeasure) coincides with prefix entropy. So prefix entropy 
may be defined as a minimal enumerable from above function f satisfying condition 
OZ~). 
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To prove this coincidence we should prove two assertions: 

�9 For any prefix description mode E the corresponding complexity function Comple 
satisfies condition (I]~) and is recursively enumerable from above. 

�9 I fa  recursively enumerable from above function f satisfies condition ( ~ ) ,  then a 
prefix description mode E exists such that the corresponding complexity function 
Comple exceeds f not more than by a constant. 

The first assertion is almost trivial. If  M = {ml . . . . .  mk} is a finite set of words and 
el . . . . .  ek are their descriptions, then ei are pairwise incomparable. Therefore, the cor- 
responding intervals in the Cantor space (of all infinite 0-1 sequences) do not overlap 
and the total measure ~ 2 -~i does not exceed 1. Therefore, condition (E~)  is fulfilled. 

The main role in the proof of the second assertion is played by the following con- 
struction. Consider the segment [0, 1] divided into two equal parts [0, �89 and [�89 1], 
each part is divided into two equal parts, etc. At level k we have 2 k parts of length 2 -k 
each. Assume that we get a sequence of natural numbers n l, n2 . . . .  and each number 
s of this sequence is considered as a request to allocate a segment of level s (one of 
the 2s segments of length 2 -s). The segments allocated by different requests should not 
overlap. 

Of course, this goal may be achieved only if ~]i 2-m < 1. It turns out that this 
condition is not only necessary but also sufficient. The simple allocation algorithm 
maintains the following invariant relation: all free space is represented as a union of 
nonoverlapping segments which belong to different levels (two segments of the same 
length should not appear in this union). The following allocation algorithm maintains 
this relation: if a segment of the required length is present in this union, allocate it; if 
not, take the smallest segment in the union whose length is sufficient and cut it into half 
§ quarter §  �9 until a segment of required length appears. 

This construction allows us to finish the proof of the second assertion. Assume that 
f is an enumerable from above function satisfying condition (E~).  Consider the set S of 
all pairs (x, k) such that k > f (x) .  The set S is enumerable. If we add up all 2 -k for all 
pairs (x, k) ~ S, the sum does not exceed 1. Indeed, when we group all pairs (x, k) ~ S 
with the same x we get 

2 -f(x)-I  + 2 -f(x)-2 § 2 -f(x)-3 + �9 . . < 2 -f(x), 

and the sum ~ x  2-f(x) does not exceed 1. 
Now each pair (x, k) 6 S will be considered as a request to allocate a segment of 

length 2 -k. These requests can be fulfilled (see the discussion above). Segments of level 
k may be indexed by k-bit 0-1 words in a natural way; allocating the segment with index 
e according to the request (x, k) 6 S, we declare e to be a description of the object x. 
The allocated segments do not overlap, therefore the descriptions of different objects are 
incomparable and the requirement of Section 2.4 (in its weakened form) is fulfilled. It 
is easy to see also that the minimal length of a description of an object x is f (x)  + 1; 
therefore, the complexity function exceeds f by not more than 1. 

This argument also implies that there is an optimal description mode (i.e., a descrip- 
tion mode corresponding to the minimal function f which in its tum corresponds to a 
maximal semimeasure). 
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4. 

4.1. 

Inequalities between Entropies 

Entropies Pentagon 

Four entropies form a diamond: 

V. A. Uspensky and A. Shen 

K P  

KS  

KD 

K M  

It is easy to see that restrictions for description modes become weaker when we go 
down along the sides of this parallelogram: each prefix description mode is a monotonic 
description mode and at the same time a simple description mode, etc. Weaker restrictions 
correspond to broader classes of description modes, so the entropy (defined as a minimum 
taken over all description modes) may only decrease. We shall see later that entropies 
do decrease when we go down. 

So we get a picture where vertices correspond to entropies and edges correspond to 
inequalities between entropies. The entropy K A (a priori entropy) may be added to this 
picture: 

simple entropy 

KS 

prefix entropy 
K P  

n~176 entropy 

a priori~ntMropy 

KA 

decision entropy 

K D  
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Indeed, 

�9 decision entropy does not exceed a priori entropy; 
�9 a priori entropy does not exceed monotonic entropy. 

We check that: 
First, decision entropy may be defined as a smallest function satisfying the condition 

of Section 3.2. That condition is weaker than the similar condition for a priori entropy 
in Section 3.3--therefore, decision entropy does not exceed a priori entropy. 

Second, we should prove that a priori entropy does not exceed monotonic entropy. 
This is explained in detail in [24], see Section 5.3; here we give only a short comment. 
Assume that we have an optimal monotonic description mode E. A semimeasure m(z) 
can be defined as follows. Consider the set Pz of all infinite sequences o9 = o90091 . . .  such 
that E contains a pair (x, y) such that x is a prefix of o9 and z is a prefix of y. Define m (z) 
as a uniform Bernoulli measure of the set Pz. It is easy to see that m is a semimeasure in 
the sense of Section 3.3 and that m(z) > 2 -KM~z~, where K M  is a complexity function 
corresponding to description mode E. 

In fact both inequalities mentioned above are strict: the difference between decision 
entropy and a priori entropy (as well as between a priori entropy and monotonic entropy) 
is unbounded, see below. 

4.2. Entropies and Lengths 

Any of the entropies KS(x) ,  K M(x ) ,  KA(x) ,  K D ( x )  does not exceed Ix] + C for 
some constant C. (Indeed, we may consider a description mode E = {(x, x) ix ~ ~}.) 
This upper bound cannot be improved significantly; we have KD(x )  > Ix] for infinitely 
many x's. ( K D  is the smallest of the four entropies mentioned, so it is also true for other 
entropies.) Indeed, consider all the words y of a given length n. They are incomparable, 
therefore their K D descriptions should be different. If  all these descriptions have length 
smaller than n, the total number of descriptions does not exceed 

1 + 2 + 4 + 8 + . . . + 2  n - 1 = 2  n - 1  < 2  n 

- - too  few to provide descriptions for all n-bit words. 
For prefix entropy the situation is more difficult. Consider the following divergent 

series (all logarithms are binary; we ignore the difficulties with log 0, 1/log 1, etc.): 

1 1 
Z l ' n  Z n l o g n '  Z n l o g n l o g l o g n ' " "  

At the same time the series 

1 1 1 

Z nl+ '  n(logn)l+ ' Z nlogn(loglogn)l+  ' 
converge. Let us see how these series provide upper and lower bounds for prefix K P (see 
inequalities (2) and (3) on p. 99 in [23]). Enumerate all binary words in the lexicographic 
order (empty, 0, 1, 00, 01, 10, 11, etc.) and identify each word with its number. The series 

1 
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converges. Therefore function n w-~ 1/n 1+~ is a semimeasure (in the sense of Section 3.4) 
when multiplied by some constant (to make the sum not exceed 1). Therefore, the 
prefix entropy of n (i.e., prefix entropy of binary word number n) does not exceed 
(1 + e ) logn  + O(1). So K P ( x )  does not exceed (1 + ~)lxl + O(1). The convergent 
series 

1 1 

n (log n) l+e' Z~  n log n (log log n)1+~ 
�9 �9 B 

provide the upper bounds 

K P ( x )  < Ixl + (1 -t- E) log Ixl, K P ( x )  < [xl + log Ix[ + (1 + e) loglog Ixl, 

etc. 
Now for the lower bounds. All of them are weak lower bounds, i.e., lower bounds 

valid for infinitely many arguments but not necessarily for all the arguments. Assume, 
for instance, that the (weak) lower bound 

K P ( y )  >_ [Yl + log [Yl for infinitely many y's 

is not valid. Then for all y (except a finite number of y's) we have 

K P ( y )  < lYl + log lYl 

and, therefore, 

2-KP(y) > 2-(lyl+loglyl). 

Summing over all y's, we see that the left-hand side series converge (see Section 3.4); 
therefore, the right-hand side series should converge also. However, recalling that a 
binary word y is identified with its number n (which is of the same order as 2 ly/) we 
recognize the series 

1 

log n 

in the right-hand side. 
Similar arguments can be used to prove stronger lower bounds: 

K P ( y )  > lY[ -I- log lYl -t- loglog lYl, 

K P ( y )  > lyl + log lyl + loglog [yl -t- logloglog ly], 

etc. (valid for infinitely many y's). 
The upper bound for K P ( x )  can be explained also in a more explicit way. The 

description mode "each binary word is a description of itself" is valid for simple Kol- 
mogorov entropy (or monotonic entropy, or decision entropy) but is not valid for prefix 
entropy (i.e., KP) ,  because the description mode in this case should be prefix-free: the 
descriptions of different objects should not be prefixes of each other. We can obtain a 
prefix-free description if we consider the word 

binary representation of Ix 101x 
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as a description ofx.  Here ~ denotes the word z where each letter is repeated twice. This 
encoding is prefix-free, because the position of the 01-group is determined uniquely, and 
therefore we may reconstruct the length of x. This encoding leads to an upper bound 

K P ( x )  < Ixl + 2log Ixl + O(1) 

and we can repeat the trick: the encoding 

b.r. of Ib.r. of Ixl I O1 (b.r. of Ixl)x 

(b.r. stands for "binary representation") leads to an upper bound 

K P ( x )  < Ixl ~- log Ixl + 2 loglog Ixl + O(1). 

This trick can be iterated�9 

4.3. Differences Between Entropies 

The similar (though a little more subtle) considerations allow us to establish bounds for 
differences of entropies (stated in Section 2.2 of [23])�9 

4�9 K P  - KD:  UpperBound. Wes tar tw i th thebound  K P ( y ) -  K D ( y ) . A s s u m e  

that ~ q~ in one of the convergent series mentioned above�9 We should prove that 

K P ( y )  < K D ( y )  + log lYl + (- logqlyl)  + O(1) 

or, in other words (recall the encoding-free definition of K P in Section 3.4), that the 
series 

1 
2-K  D(y) " -~1" qlYl 

converges. We classify all y according to two integer parameters: its length n and its 
KD-entropy k. It is easy to see that the number of y ' s  of length n and entropy k does 
not exceed 2 k; each of them contributes 

2_ k 1 
�9 - " q n  

n 

to the sum; so all n-k elements contribute at most 

1 
_ .  q n  

n 

(for any k). Now we sum over n and k; summing over k we consider only k not exceeding 
n + O(1) (because K D ( y )  < lYl + O(1)), therefore, summing overk means multiplying 
by n + O (1) and the sum does not exceed O (1). qn. It remains to recall that ~ qn < ~ .  

4.3.2�9 K P - KD:  Lower Bound�9 The corresponding lower bound states that if ~ qn 
is one of the divergent series mentioned above, then 

K e ( y )  > K D ( y )  + logly] + ( -  logqlyl) + O(1). 

for infinitely many n. 
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To prove it, it is enough to prove that the series 

~--~ 2_KD(y ) . 1 
lY-"[ " qlyl 

diverges. Consider the decision description mode where x is a description of all words 
x 10. . .  0. Consider the set A~,k of all words of length n having this form for some x 
of length k (assuming that k < n). All words from A,,k have decision complexity not 
exceeding k; the total number of words in An,k is 2 k. They contribute to the sum at least 

2k 2 -  k 1 qn 
. . . .  qn ---- - - ;  

n n 

summing over k first, we get the sum ~ q, = +oo. 

4.3.3. K S  - K A ,  K S  - K M :  Upper  Bounds .  Now we consider another difference 
(see paragraph (2)on p. 100 of [23]) and prove that 

K S ( y )  - K A ( y )  < log [Yl + O(1) 

(all logarithms are binary logarithms). In other words, we should prove that 

K S ( y )  < K A ( y )  + log lY[ + O(1). 

According to the encoding-free definition of K S  (Section 3.1) it is enough to show that 
the set 

Y = { y l K A ( y )  + l o g [ y [  < n} 

contains 0 (2  n) elements: #Y = O(2"). The set Y is prefix-closed (all prefixes of an 
element of Y belong to Y too); in other words, Y is a subtree of the complete binary 
tree. We consider the set Y' of all leaves of this subtree, i.e., all maximal elements of Y 
(having no continuations in Y). Each element of Y is a prefix of some maximal element, 
and it is easy to see that 

< ~ [Yl #Y 
yeY' 

(each element y has lYl prefixes). For any element y e Y' we have 

or  

o r  

K A ( y )  + log tYl < n, 

K A ( y )  < n - log [yh 

2-KA(y  ) > lYl. 
2 n 

All elements y e Y' are incomparable, therefore 

Z 2 KA(y) < O(1) 
y~Y' 
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and, consequently, 

lYl 
< o (1 )  

y~Y' 

and we get the upper bound for ~ tYl that we need. 

4.3.4. K S  - K A ,  K S  - K M :  L o w e r  Bounds .  To obtain the matching (weak) lower 
bound, consider the sequence 0 n (n zeros). We have 

K A ( O  n) = O(1),  KM(O n) = O(1), and K S ( O  n) = K S ( n )  + O(1) 

(we identify n and the nth binary word as before). It remains to prove that K S ( n )  > log 2 n 
for infinitely many n which could be done by an easy counting argument (see above). 

4.3.5. K A  - K S ,  K M  - K S ,  K P  - K S :  U p p e r B o u n d s .  Next differences (see para- 
graph (3) on p. 100 of [23]) are K M ( y )  - K S ( y )  and K A ( y )  - K S ( y ) .  The upper bounds 
follow from the following upper bound for K P ( y )  - K S ( y )  (mentioned on p. 101 of 
[23]): assume that ~ qn is any of the convergent series considered above; then 

K P ( y )  < K S ( y )  + ( -  logqlyl). 

According to the encoding-free definition of  K P  (Section 3.4), we should prove that 

~"~ 2sgS(y)qlyl < oo. 

We consider all terms with K S ( y )  = k; the number of  such terms is about 2 k, each term 
is 2-kqlyl. We may replace qlyl by qk because qi is monotone and because k = K S ( y )  

does not exceed IYl (up to a constant, as usual). Then we get the sum Y~ qk which is 
finite by our assumption. 

4.3.6. K A - K S ,  K M - K S ,  K P - K S :  L o w e r  Bounds .  To get the complementary 
lower bound for K A ( y )  - K S ( y )  we start with the bound for K P ( y )  - K S ( y )  (it is 
easier, because K A  < K P) .  Assume that ~ qi is any of the divergent series mentioned 
above. We prove that 

K P ( y )  - K S ( y )  > - logqly I 

for infinitely many y. Indeed, K S ( y )  < lYl (we ignore O(1) terms) and, as we have seen 
before, 

K P ( y )  > lYl + logqlyl 

for infinitely many y. Now we show how to transform a lower bound for K P - K S into a 
lower bound for K A - K S. For any binary word x consider the binary word t (x) = ~01. 
All words t ( x )  are incomparable. It is easy to show that K M ( t ( x ) )  = K A ( t ( x ) )  = 

K P ( t ( x ) )  (up to O(1) terms). Indeed, these words t ( x )  form a "bunch embedded into 
a tree" (see Section 3.4). It is also easy to see that K S ( t ( x ) )  = K S ( x ) .  Now the lower 
bound for K P  - K S  can be rewritten as 

K A ( t ( y ) )  - K S ( t ( y ) )  > - logqlt(y)l 

and it remains to mention that t (y) is only twice as long as x so it does not matter whether 
we have qlt(y)l o r  qy under the logarithm. 
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4.3.7. K M  - K D ,  K A  - K D :  Upper Bounds. Now we prove the upper bound for 
K M (y) - K D(y)  (and therefore for K A (y) - K D(y)  ). When defining K D(y)  we used 
an optimal description mode G which may be considered as a "computable mapping" 
of type N ~ E in the sense of the Scott-Ershov domain theory (here E is a tree, i.e., a 
domain where binary words are ordered by a relation "to be a prefix," and N is a bunch, 
i.e., a domain where all binary words lie on the same level). Now an optimal prefix 
description mode F (corresponding to the prefix entropy K P) may also be considered 
as a "computable mapping" of type ,~ --+ N. So we get a diagram 

with two description modes. Their composition H is a mapping of type E --+ E and is 
a monotone description mode, or, if you do not like references to domain theory, just 
consider a set 

H = {(x, z) 1 3y((x, y) c F and (y, z) 6 G}. 

Therefore, the KM-entropy of some y 6 E does not exceed the KP-entropy of the 
shortest G-description z of an object y: 

K M ( y )  < K e ( z )  + O(1) and Izl = K D ( y ) .  

Now the inequality for the prefix entropy, e.g., 

K P ( z )  < Izl + log Iz[-t- (1 + e) loglog Iz] + O(1), 

can be applied to get 

K M ( y )  < Izl + log Izl + (1 + e)logloglzl  + O(I)  

= K D ( y )  + log K D ( y )  + (1 + e)log log K D ( y )  + O(1) 

< K D ( y )  + logly[ + (1 + e) loglog ly[ + O(1) 

(the last step uses that K D (y) does not exceed [Y I). More elaborate inequalities for prefix 
entropy may be used in the same way, and we get 

K M ( y )  < K D ( y )  + log lYl + loglog ]yl + (1 + e) logloglog ]yl + O(1), 

K M ( y )  < K D ( y )  + log lY[ + log log [Yl + log log log lYl 

+ (1 + e) loglogloglog lYl + O(1), 

etc. 

Remark.  Replacing in the diagram above, the rightmost space E by N we get the upper 
bound for the difference K P ( y )  - K S ( y )  that we have already proved. 

4.3.8. K M - K D, K A - K D: Lower Bounds. The lower bound for K A - K D (and 
therefore for K M -  K D) can be obtained from the lower bound for K P - K S mentioned 
above. Indeed, 

K P ( y )  - K S ( y )  = K A ( t ( y ) )  - K D ( t ( y ) )  + O(1) 
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(here t is an embedding of the bunch into a tree explained above). In this way we obtain 
(weak) lower bounds like 

K A ( y )  > K D ( y )  + log lY], 

K A ( y )  > K D ( y )  + log lYl + loglog lyh 

etc. 

4.3.9. K S -  K D: Upper Bound. Assume that a decision description mode F is used to 
define K D .  Construct a simple description mode G as follows: if x is an F-description 
of y, then 

binary representation of l Y [01x 

is a G-description of y. Therefore, 

K S ( y )  < K D ( y )  + 2log lyl + O(1). 

Iterating the trick (using the binary representation of the length of the binary represen- 
tation of y, etc.) we get stronger inequalities of that sort: 

K S ( y )  < K D ( y )  + log lYl + 21oglog lYl + O(1), 

K S ( y )  < K D ( y )  + log lYl + log log lYl + 21ogloglog lYl + O(1), 

etc. 

4.3.10. K S  - K D: Lower Bound. We prove that 

K S ( y )  > K D ( y )  4- log lyl + loglog lyl 

for infinitely many y's (the proof of the lower bound with more logarithms is similar). 
As usual, assume that it is not valid, i.e., that 

K S ( y )  < K D ( y )  + log lYl + log log lYl 

for almost all y. We take y's of the form x 10 j-1 and get 

K S ( x l O  j - l )  < Ixl + log(Ixl + j )  + log log(Ix[ -t- j ) .  

Now we should count all pairs (x, j)  where the right-hand side does not exceed some 
n and see that the number of such pairs is not o(2n). (This would be a contradiction, 
because different pairs correspond to different words.) We restrict ourselves to x and j 
such that 

2 ~ 
Ixl < n and n < j < -~.  

In this case we may replace log(Ix] + j )  by log j (ignoring an additive constant) and 
obtain a sum 

2"/n  2 2" /n  2 

#{xl logj  + l o g l o g j  + Ixl < n} ~ Z 2n- l~176176 "-~ 2nf 2~ d j  J; 
j=n j=n , ~ j log 

the integral tends to infinity when n --+ ec. 
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4.3.11. K P - K A ,  K P - K M :  UpperBounds. Assumetha tqn isoneof theconvergent  
series considered above. We prove that 

K P ( y )  <_ K A ( y )  + ( -  log2qiyl). 

According to the encoding-free definition of K P (Section 3.4), it is enough to prove that 

2-KA(y)+I~ qbq ~ qlYl2-KA(y) 

is finite. Indeed, if we consider the sum over all y ' s  of  a given length n, we get qn �9 O (1) 
(these y 's  are incomparable), and the series ~ qn is convergent. 

The upper bound for K P  - K M  follows from the upper bound for K P  - K A  
because K M  is bigger that K A .  

4.3.12. K P - K A ,  K P - K M : L o w e r B o u n d s .  T h e ( w e a k ) l o w e r b o u n d f o r K P - K A  
is a consequence of the lower bound for K P  - K M  which in its turn is a consequence 
of the lower bound for K P ( y )  - lY[ because K M ( y )  < lyl + O(1). The lower bound 
for K P ( y )  - [y[ is established in Section 4.2. 

4.3.13. K M - KA: Upper and Lower Bounds. This difference is of  special interest. 
The very fact that these entropies differ by more than a bounded additive term is dis- 
appointing. This fact was discovered by G~ics [9]. (The Hungarian surname "G~ics" is 
pronounced approximately as English "garch.") In his paper he considered sequences of 
natural numbers instead of binary words, and the bounds become much weaker if we 
restrict ourselves to binary words. As he writes: "Therefore for binary strings, the lower 
bound obtainable from the proof of  Theorem 1.1 is only the inverse of  some version 
of Ackermann's  function" [9, p. 75]. As is known, Ackermann's  function is a function 
with natural arguments and values growing faster than any primitive recursive function. 
Its inverse f - 1  (defined as f - l ( a )  = min{z: f ( z )  > a}), therefore grows extremely 
slowly. G~isz's proof is rather technical. Here is a quotation from [11]: 

Formulat ion.  For any function ~p( ) let us define h( j ,  t, ~o) by the following 
recursion: 

h(0, t, qg) = t, 

h ( j  + 1, t, ~0) = qg(h(j, t, ~o)). 

Thus, h( j ,  t, ~o) is essentially the j - fo ld  iteration of ~0. Now we define 

tk(i, r)  = [2r(2 -k-2 log/  + 8)], 

f~(0,  r)  = r, 

f~  (i -4- 1, r) = h(tk (i, r) ,  ['log tk(i, r ) ] ,  Ls fk  (i, s) ). 

Let 

L(k)  = 2 2k+7, F(k)  = L(k)  log f k ( L ( k ) ,  3). 

Then, for large enough n, there is a binary string x of  length < n with 

K M ( x )  - K A ( x )  > F - l ( n ) / 2 .  
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(In the last line notation is changed because G~ics uses another notation: his K m  is our 
K M, his K M is our K A.) 

As to upper bounds, the authors know nothing except the trivial consequences of  
bounds for K M -  K D or K P - K A. The gap between upper and lower bounds, therefore, 
is rather big, and it may be interesting to find tighter bounds. 
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