
Math. Systems Theory 29, 191-226 (1996) Mathematical
Systems

Theory
�9 1996 Springer-Verlag

New York Inc.

Two-Way Automata and Length-Preserving Homomorphisms*

J.-C. Birget

Department of Computer Science and Engineering, University of Nebraska,
Lincoln, NE 68588-0115, USA
birget @cse.unl.edu

Abstract. Closure under length-preserving homomorphisms is interesting because
of its similarity to nondeterminism. We give a characterization of NP in terms of
length-preserving homomorphisms and present related complexity results. However,
we mostly study the case of two-way finite automata: Let l.p.hom[n state 2DFA]
denote the class of languages that are length-preserving homomorphic images of
languages recognized by n-state 2DFAs. We give a machine characterization of
this class. We show that any language accepted by an n-state two-way alternating
finite automaton (2AFA), or by a 1-pebble 2NFA, belongs to 1.p.hom[O(n 2) state
2DFA]. Moreover, there are languages in 1.p.hom[n state 2DFA] whose smallest
accepting 2NFA has at least c n states (for some constant c > 1). So for two-way
finite automata, the closure under length-preserving homomorphisms is much more
powerful than nondeterminism. We disprove two conjectures (of Meyer and Fischer,
and of Chrobak) about the state-complexity of unary languages. Finally, we show
that the equivalence problems for 2AFAs (resp. 1-pebble 2NFAs) are in PSPACE, and
that the equivalence problem for 1-pebble 2AFAs is in ExPSPACE (thus answering
a question of Jiang and Ravikumar); it was known that these problems are hard
in these two classes. We also give a new proof that alternating 1-pebble machines
recognize only regular languages (which was first proved by G o r a l ~ et al.).

* This research was supported in part by N.S.E Grant DMS 8702019.

192 J.-C. Birget

1. Introduction

This paper was initially motivated by two issues:

(1) The similarities (and differences) between nondeterminism and length-preserving
homomorphisms.

(2) The Open Problem (see below) of Sakoda and Sipser, and similar open problems.

We do not solve the Sakoda-Sipser conjecture; but we do obtain many results about
length-preserving homomorphisms and we use this approach in order to solve other
problems (e.g, to show that the equivalence problem for two-way alternating finite
automata is in PSPACE). In Section 2 we also give some complexity results involv-
ing length-preserving homomorphisms. Further results on the state-complexity of finite
automata, proved in similar ways, appear in [B4].

Notation. 1DFA (resp. 2DFA) means one-way (resp. two-way) deterministic finite
automaton; 1NFA (resp. 2NFA) means one-way (resp. two-way) nondeterministic finite
automaton (see [HU] for definitions); 1AFA (resp. 2AFA) means one-way (resp. two-
way) alternating finite automaton (see [CKS], [CS], [Ko], [LLS], and [BL]).

Open Problem ([SS] and Seiferas). If a language L is recognized by a 2NFA, or a
1NFA, with n states, how many states does a 2DFA need (in the worst case) to recog-
nize L?

In [SS] it is conjectured that the required number of states of the 2DFA is larger
than any polynomial in n.

Sipser [Sil] proved that a sweeping 2DFA (i.e., a 2DFA which can only make
reversals at the ends of its input tape) needs 2 n states to recognize certain languages
which are accepted by an n-state 1NFA. On the other hand, Chrobak [Ch] proved that
each unary n-state 1NFA can be simulated by a 2DFA with O(n 2) states. The Sakoda-
Sipser conjecture is probably very hard. In this paper we study and solve the following
problem which is implied by (is easier than) the conjecture.

Problem (Length-Preserving Homomorphisms). If the language L (_ E*) can be
written as h(Lo), where h is a length-preserving homomorphism from A* to E*, and
L0 ___ A* is recognized by an n-state 2DFA, then how many states does a 2DFA need to
recognize L?

We prove a worst-case lower bound of c n (for some constant c > 1).
We mention a few other open problems about the state-complexity of various finite

automata; some of these problems are probably harder than the Sakoda-Sipser conjecture
(in the sense that an affirmative answer to the question implies the Sakoda-Sipser con-
jecture). We encounter some of these questions in this paper, but for different finite-state
devices.

Halting Two-Way Automata. If a language L is recognized by a 2NFA with n states,
how many states does a 2NFA with the additional property that all its computations halt,

Two-Way Automata and Length-Preserving Homomorphisms 193

need to recognize L? Is the increase in the number of states larger than any polynomial
in n?

Note that all computations of a 2NFA halt iff, for every input and every position
on that input, no state is ever repeated at the same position. In the deterministic case
Sipser [Si2] solved the corresponding problem (negatively): every 2DFA with n states
is equivalent to a 2DFA which always halts, and which has < cl �9 n 2 states (and also
< c2 �9 I E I �9 n states), where cl and c2 are constants, and ~ is the input alphabet. He also
mentions the above problem.

Complementation. If a language L is recognized by a 2NFA (or a 1NFA) with n states,
how many states does a 2NFA need to recognize T (the complement of L)? Again, does
a superpolynomial lower bound exist?

Sakoda and Sipser [SS] solved this problem (affirmatively) in the "INFA ~ 1NFA"
case (and afor t ior i for "2NFA --+ 1NFA"): for every n there is a language Ln which is
recognized by an n-state 1NFA, but such that any 1NFA accepting Ln needs > 2 n states;
another proof of this result is given in [B5].

1-Pebble 2DFA. If a language L is recognized by a 2NFA (or a 1NFA) with n states,
how many states does a 1-pebble 2DFA need to recognize L? Does a superpolynomial
lower bound exist?

A 1-pebble 2DFA is a 2DFA which has one pebble which it can leave on the input
tape, and retrieve, and put down elsewhere, etc. Blum and Hewitt [BH] proved that 1-
pebble 2DFAs can only recognize regular languages; see also Exercise 3.19 on p. 73 of
[HU]. In Section 5 we show that a 1-pebble 2DFA can have exponentially fewer states
than any equivalent 2NFA, for some languages. In Section 6 we give a new proof that
1-pebble 2AFAs (alternating 1-pebble machines) recognize only regular languages (this
result was first proved in[GGK] by very different methods).

2. Length-Preserving Homomorphisms

Homomorphisms are a familiar notion in formal language theory, especially regarding
regular languages (see [HU]). By definition, a homomorphism h: A* ~ Z* (where
A and E are finite alphabets) is a function satisfying h(e) = e (where e is the empty
word), and h(u �9 v) = h(u) �9 h (v) , for all u, v ~ A*. A homomorphism h is length-
preserving iff Ih(u)l = lul, for all u e A*. From now on we write 1.p.hom. for "length-
preserving homomorphism." An 1.p.hom. h is determined by its restriction hla: A --~
(restriction to the subset A of the domain A*); l.p.hom.'s are also called "letter-to-letter
homomorphisms." For a class C of languages, we denote by 1.p.hom(C) the closure of
C under l.p.hom.'s; that is,

1.p.hom(C) = {~o(L)/L E C and q~ is an 1.p.hom. whose domain alphabet

is the alphabet of L}.

194 J.-C. Birget

One motivation for studying l.p.hom.'s (and, in particular, the 1.p.hom.-closure of a
class of languages defined by machines) is the similarity with nondeterminism: both
nondeterminism and 1.p.hom.-closure involve the existential quantifier.

Note that when we speak of a class of languages we never fix a particular alphabet;
all finite alphabets are allowed. This is necessary to make the 1.p.hom.-closure a nontrivial
operation. We may assume however that all our alphabets are finite subsets of a fixed
countable set; this assumption never constrains us, and it avoids possible set-theoretic
difficulties.

For one-way devices, nondeterminism and l.p.hom.-closure of determinism are often
equivalent. For example:

(1) 1.p.hom(DCFL) = CFL.
(2) 1.p.hom[n state 1DFA] = [n state 1NFA].

Notation. (D)CFL is the class of(deterministic) context-free languages; In state 1DFA]
(resp. [n state 1NFA]) is the class of all languages recognized by some n-state 1DFA
(resp. 1NFA); again, the alphabet is not fixed.

For two-way machines however there is usually no close relation between nonde-
terminism and 1.p.hom.-closure of determinism. A few facts are known:

(1) It is easy to see that if S(n) >_ n (for all n), then 1.p.hom(DSPACE(S)) =
DSPACE(S) and 1.p.hom(NSPACE(S)) = NSPACE(S).

(2) However, Ibarra and Ravikumar [IR] proved that, for every function S e
o(log) (7 f2 (loglog), DSPACE(S) 5~ 1.p.hom(DSPACE(S)). More strongly, they
proved that the class Us DSPACE(S), where S ranges over all of o(log) N
f2 (loglog), is not closed under l.p.hom.'s.

(3) The Graph Accessibility Problem is in 1.p.hom(DSPACE(log)) (due to [IR]).
(4) CFL c_ 1.p.hom(DSPACE(log)) [Sp].
(5) It can easily be proved that if T(n) > n (for all n), then 1.p.hom(NTIME(T)) =

NTIME(T).
(6) The class NTIME(O (n)) (nondeterministic linear time) is equal to the closure,

under 1.p.hom's, of finite intersections of context-free languages [BG].

Moreover, since CFL is in AC 1 JR1], and AC 1 is closed under intersection, this
implies NTIME(O(n)) c 1.p.hom(ACl). In Theorem 2.3 we improve the latter to
NTIME(O(n)) ___ 1.p.hom(NC1).

When we talk about these circuit-based parallel-complexity classes we always mean
logspace-uniform AC l, AC o, N C 1, etc., as defined in the chapter by D. Johnson, pp. 138-
143, in [vL]; see also [W], [Co], and [R2]; stronger uniformity conditions would also
work, but uniformity is not the main issue here. The reader should consult the references
above (as well as the chapter by Boppana and Sipser in [vL]) for the definition of AC k
and NC k (k > 0); we just give a summarized definition here: A function f belongs to
AC k iff there is a family (Cn: n > 0) of combinational circuits such that Cn contains
a polynomially bounded number of gates and has depth O ((log n)k), and Cn computes
f (w) for any word w of length n. The family (C,: n > 0) is log-space uniform iff a
function which outputs Cn can be computed in deterministic log-space (when n is given

Two-Way Automata and Length-Preserving Homomorphisms 195

as an input in unary, i.e., as a string of length n). The class NC k is defined in a similar
way to AC k; the only difference is that for NC k all the gates in the circuits are restricted
to having bounded fan-in.

We have the following new results:

T h e o r e m 2.1. The CNF-Satisfiability problem can be written as h(L0), where h is an
1.p.hom. and Lo is in AC ~ Thus, the class 1.p.hom(AC ~ (_c 1.p.hom(DSPACE(log)) c
NP) contains some NP-complete problems.

Proof. It is straightforward to check (see also (5) above) that NP is closed under
l.p.hom.'s, and, hence, contains l.p.hom(DSPAfE(log)) and 1.p.hom(AC~ We show that
the Satisfiability problem for CNFs (conjunctive normal forms, see [HU] and the refer-
ences to Cook's work therein) is an 1.p.hom. image of a language in uniform AC ~ We
represent the boolean variables of CNFs by nonempty words over a two-letter alphabet
{a, b}; the other symbols that occur are v (or), A (and), --, (not), and ((,)) (parenthe-
sis symbols). This representation of CNFs is simple and natural; representations could
also be devised that are more compact or use a smaller alphabet. A word w over this
seven-letter alphabet represents a satisfiable CNF if and only if w is an 1.p.hom. image
of a syntactically well-formed CNF w r which is marked by a truth-value assignment that
evaluates to 1 (= TRUE); the truth-value assignments to the boolean variables will be
written under the leftmost letter of each boolean variable. The 1.p.hom. just erases the
truth-value assignment. The alphabet has now the additional four letters a, a, b, and b.

0 1 0 1
For example, the satisfiable CNF w = (aa v --,ab v --,b)) A (- 'aa v b)) A (bb v --,aa))

is the image of the marked CNF w' = ((~ a v --, al b v --, b))0 A ((", ~ a V b))0 A ((bl b v --, aa))

which evaluates to 1 for the marked assignment (here the boolean variables and their
truth-value assignments are aa := 0, ab := 1, b := 0, bb := 1).

Let L0 _c {a, b, v , A, --,, ((,)), a, a, b, b}* be the language of CNFs, each marked
0 1 0 1

by a truth-value assignment that evaluates to 1. We want to show that L0 is in AC ~
First, a counter-free finite automaton can check that an expression over the eleven-letter
alphabet is a CNF and that the truth-value assignment evaluates to 1. (Counter-free finite
automata can be simulated by AC ~ circuits, see [BT] and [BCST].) The only hard thing
to check is that the truth-value assignment is consistent (i.e., the same boolean variable
is assigned the same truth-value wherever it occurs in the CNF). To check this, all pairs
c Wl, d w2 (where c, d ~ {a, b}, x, y ~ {0, 1 }, and wl, We E {a, b}*) of variables marked
x y

by truth values that appear in the CNF are picked; all these pairs are handled in parallel.
The two members of such a pair are compared as follows:' if CWl = dw2 and x 5~ y,
then the truth-value assignment is inconsistent; if this does not happen for any pair, the
truth-value assignment of the CNF is consistent. So, the problem reduces to checking
the equality of strings; this can be done in AC ~ (straightforward exercise, see also [Sa]
and [W]). []

T h e o r e m 2.2 (A Characterization of NP). A language L is in NP iff there is a polynomia
length padding of L which belongs to 1.p.hom(NC1).

196 J.-C. Birget

Definition. The p(.)-length padding of L is the language {wSP(Iwl)/w E L}; here p(.)
is a polynomial, and $ is a letter that does not belong to the alphabet of L.

Proof If a polynomial-length padding of L is in l.p.hom(NC 1) (or, more generally, in
NP), then L is clearly in NP. Conversely, if L is in NP, then L can be reduced to the CNF-
Satisfiability problem via a many-to-one NCl-computable reduction (Cook's theorem,
see [HU]); the argument in [HU], showing that the reduction is in log-space, also shows
that the reduction is in NC 1. Let f be the reduction function used: For every word w,
f (w) is a boolean formula (represented as a string as in the proof of Theorem 2.1) which
is satisfiable iff w belongs to L; moreover, f (w) is computable in NC l, and we can
assume that I((f(w)))l = p(Iwl), for some polynomial p(.). Consider now the language

Ll = {wB/w c L and B is any marked boolean formula

(as in the proof of Theorem 2.1) obtained from f (w)
by marking it with a truth-value assignment that evaluates to 1 }.

We assume that the alphabet of L, and the alphabet used for representing marked boolean
formulas, are disjoint.

The p(.)-length padding of L is then an l.p.hom, image of Ll. Moreover, LI is in
AC~ Given a string z, we first factor z as wB by looking for the first occurrence of the
left-parenthesis symbol "((" (if "((" does not occur we reject); we do this by factoring
z as wB in all possible ways (there are Izl + 1 possibilities) in parallel, and retaining
only the factorization where B starts with "((" and w is over the alphabet of L; this is an
AC~ Second, we check that B belongs to L0, as in the proof of Theorem 2.1;
this problem is in AC ~ as we saw. If we have not rejected z so far, B is the marked form
of a satisfiable boolean formula ft. Finally, we can compute f (w) in NC 1 and check that
fl and f (w) are the same. []

We would like to thank one of the anonymous referees for suggesting a result similar
to Theorem 2.2, as an extension of Theorem 2.1. Also, if CNF-Satisfiability can be proved
to be NP-complete for many-to-one reductions that are more restrictive than NC l (but
no less restrictive than AC~ then Theorem 2.2 is automatically strengthened.

The following theorem generalizes (4) above, since NC 1 _ DSPACE(1Og) and
CFL _ NTIME(O(n)); compare also with (5). Theorem 2.2 could also be derived
from Theorem 2.3, since the T(-)-padding of any language in NTIME(T) belongs to
NTIME(O (n)).

Theorem 2.3. NTIME(O(n)) _ 1.p.hom(NC1).

Proof. Let L ___ E* be accepted by a k-tape nondeterministic Turing machine M in
time c �9 n (where c is a constant). The machine M has the form (Q, ~ , F, A, q0, F),
where F is the work-tape alphabet (including a blank symbol), q0 is the start state,
F is the set of accept states, and A c Q • F k • Q • F k x {-1, +1} k is the tran-
sition relation. We call any element of A a transition; so, a transition has the form

Two-Way Automata and Length-Preserving Homomorphisms 197

(q, al ak, q ' , b l bk, i l ik); we also write

(q, al ak) --~ (q', bl bk, il ik),

and we call (q, a l ak) the left side of the transition, and (q', b l bk, i l ik)
the right side; we call a i (resp. bi) the i th tape-coordinate of (q, al ai ak)

(resp. (q' , bl bi bk, j l jk)).
We write every word w = al - -- an 6 L as an 1.p.hom. image of a word obtained

by writing down w and uniformly interleaving w with a sequence of c �9 n transitions
(provided that this sequence of transitions describes an accepting computation for w).
More precisely, we introduce the alphabet E x A c, which is finite and consists of elements
of the form (a, 8i~ .. �9 8it). We consider the 1.p.hom. h: (E x Ac) * --+ E* which just
erases the second coordinate; so h((a, 8il " '" 8it)) = a. We define the following language
L' such that L = h(Lr):

L ' = {(al, 81 " " 8c)(a2, 8c+1 " " 82c) �9 - �9 (an, 8cn-c+l "'" 8cn) C (~ X AC)*/

n > O, al �9 �9 an ~ L, and 81 �9 �9 �9 8c8c+1 �9 �9 �9 82c" 8 +1 " " " 8cn describes

an accepting computation of M on input al �9 �9 �9 an }.

We want to show that L ' is in N C 1 , i.e., we want a n N C 1 algorithm which, given w
(with I wl = n) and a sequence 8 1 �9 ' ' 8cn of transitions, decides whether this sequence
of transitions describes a well-formed accepting computation of M on input w. The
following observation is important: For any given time t (0 < t < cn), the position Pi (t)
of the head on the ith tape (1 < i < k) can be computed by a n N C 1 algorithm. This can
be done by simply summing the direction-of-movement coordinate over the sequence
81 .. �9 8t (and it is known that the sum of a linear number of bounded-size integers can
be computed in NC1; see [Sa] and [W]). Moreover, since t is linearly bounded, we can
compute all the positions Pi (t) (f o r all t) in parallel, in N C 1 . Thanks to this observation,
we can talk about the positions of the heads during the hypothetical computation.

We have the following criterion.

The sequence 81 "'" 8cn o f transitions o f M on input w describes an accepting com-
putation iff all the following consistency conditions hold:

States-- the state on the left side o f the f irst transition 81 is the start state q0, and

the state on the right side o f the last transition 8cn belongs to the set o f accept
states F; moreover, f o r each t (1 < t < cn), the state on the right side o f St is
the same as the state on the left side o f St+l.

Input-- for all i, when the head on the ith tape visits a position p f o r the f irst time
(suppose this happens at time z) it sees the pth input letter ap (i f i = 1 and
p < n) or the blank symbol; more precisely, the left side o f transition 8r has ap,
respectively the blank, as the ith tape-coordinate.

Read-write consistency--for all i, i f the head on the ith tape visits a position p at
times tr and r (> t7) (without visiting p inbetween), then the head reads at time
z what it wrote at time ~; more precisely, the right side o f S~ and the left side o f
83 have the same ith tape-coordinate.

198 J.-C. Birget

This criterion readily leads to the desired NC l algorithm. The condition about the
states can be checked by a finite automaton, and hence by an NC 1 circuit.

The two conditions about the input and read-write consistency are combined. For
all t (1 < t < cn) in parallel, we compute the positions pl (t) pk(t) of the k heads
at time t (using the earlier observation that this can be done in NC~).

We check for all t ' < t (in parallel) whether Pi (t') ~ Pi (t); if so, the position Pi (t)
has never been visited before on the ith tape, so we check that the ith tape-coordinate of
the left side of St is ap (with p = Pi (t)), respectively the blank symbol (input condition).
This is done for each i. The operation of comparing (<, <, r two integers can be done
in NC z (see [Sa] and [W]).

On the other hand, if Pi (t ') -= Pi (t) for some t' (< t), then we are not in a situation
where the input condition needs to be checked at time t. For this time t we compute the
next time t" when position Pi (t) is visited again; this is done by considering all r (> t)
in parallel and taking t" to be the smallest r such that pi('c) = pi(t); this "minimum"
operation can be done in NC l (since even the sorting problem can be solved in NC1;
again, see [Sa] and [W]). Now we check that on the right side of 3t and on the left side of
3t,,, the ith tape-coordinates are the same (read-write consistency). If no t" exists, then
the condition is vacuous and does not need to be checked.

Finally, the results of these O (n 2) parallel checks are combined into a boolean "and"
(which, again, can be done in NCI). This completes the proof that the language L' is
in NC 1 . []

For S(n) E o(n) little seems to be known about how 1.p.hom(DSPACES), DSPACES,
and NSPACES are related. In this paper we consider the case where S is a constant and
show that here 1.p.hom. is exponentially more powerful than nondeterminism, and at
least as powerful as alternation (up to squaring the number of states). In [B4] we show
that l.p.hom, is also exponentially more powerful than altemation.

If instead of 1.p.hom.'s all homomorphisms are taken, then the following is obtained
(see [Sp]): the homomorphism closure of DSPACE(Iog) is the class of all recursively enu-
merable languages. (Indeed, in log-space the validity of any Turing machine calculation
can be checked; to obtain the language accepted by the Turing machine, the noninput
configurations of the computations are erased, by applying a homomorphism.)

Remark. A standard wrong argument for "proving" that

l.p.hom[n state 2DFA] c_C_ [O(n) state 2NFA]

(which is also a wrong assertion, see Theorem 4.3) needs to be addressed. Suppose
L = h(Lo), Lo ~ [n state 2DFA]. In the wrong argument a 2NFA A would, each time it
reads a letter a on its tape, guess a letter b c h -1 (a) and feed b to the 2DFA recognizing
L0. This works correctly for one-way devices, but to be correct for two-way automata,
A would have to guess the same b ~ h -x (a) each time it revisits a at a given position on
the tape.

Two-Way Automata and Length-Preserving Homomorphisms 199

3. A Machine Model Related to l.p.hom[n state 2DFA]

Here [n state 2DFA] denotes the class of all languages (over all possible finite alphabets)
that are recognized by n-state 2DFAs.

A machine model that is closely related to the class l.p.hom[n state 2DFA] is the
nondeterministic single-tape n-state Turing machine, with the two additional restrictions:

(1)

(2)

The read-write head cannot leave the input portion of the tape, which is sur-
rounded by end markers "(" (at the left) and ")" (at the fight).
For every word that is accepted an accepting computation exists during which
every position of the tape is visited at most k times (for some constant k which
is independent of the input). We say in that case that "there are < k visits per
position."

We assume that the machine moves right or halts when it reads "(", and that it moves
left or halts when it reads ") " In a starting configuration, the state is the start state and the
head is on the leftmost letter of the input (just right of "(." In an accepting configuration
the state is an accept state and the head is on ")" (so, we use the same acceptance rule as
for two-way finite automata).

We call such machines Hennie machines, after Hennie [He] who proved (among
other results):

(1) If a language L is recognized by a Hennie machine, then L is regular.
(2) Every one-tape deterministic Turing machine with linear-time complexity and

which never leaves the input portion of the tape, is actually a deterministic
Hennie machine (for emphasis: such a Turing machine is not only equivalent to
a Hennie machine, it is a Hennie machine; it can visit each tape position only a
bounded number of times during accepting computations).

(3) Any deterministic (resp. nondeterministic) one-tape linear-time Turing machine
is equivalent to a deterministic (resp. nondeterministic) one-tape linear-time
Turing machine which never leaves the input portion of the tape.

It is remarkable that the above result (2) of Hennie does not extend to nondeterministic
linear time: indeed, nondeterministic one-tape linear-time Turing machines exist which
accept NP-complete languages [M], and, thus, such Turing machines are not equiva-
lent to nondeterministic Hennie machines (which only accept regular languages). So,
one-tape linear-time Turing machines have a striking property: When these machines
are extended from determinism to nondeterminism, the languages accepted pass from
regular to a subclass of NP which includes NP-complete languages.

We often use the following observation: If in a Hennie machine there are < k visits
per position (during a certain computation), then, obviously, no state can occur more
than k times at the same position. A slightly weaker converse also holds: If in an n-state
Hennie machine no state occurs more than k~ times at the same position, then there are
< nkl visits at the same position (indeed, suppose there were more than nkl visits at a
position; then, since there are only n states, some state would have to occur more than
kl times at that position, by the Pigeon-Hole Principle).

200 J.-C. Birget

Theorem 3.1.

(a) I f L ~ 1.p.hom[n state 2DFA], then L is recognized by a nondeterministic n-

state Hennie machine, in which no state occurs more than once at the same tape
position during any accepting computation.

(b) Suppose L is recognized by an n-state Hennie machine such that f o r every word
accepted an accepting computation exists during which no state occurs more

than kl times at the same position o f the tape (where kl is a constant); then L
belongs to 1.p.hom[n �9 kl state 2DFA].

Corol lary 3.2 (Machine Characterization of 1.p.hom[n state 2DFA]). The following thr
conditions are equivalent f o r any language L:

(1) L belongs to 1.p.hom[n state 2DFA].
(2) L is recognized by a nondeterministic n-state Hennie machine such that, in

every accepting computat ion, no state occurs more than once at the same
tape position.

(3) L is recognized by a nondeterministic n-state Hennie machine such that, for
every accepted word an accepting computa t ion exists in which no state occurs
more than once at the same position.

Proof o f Theorem 3.1. (a) Suppose L = h(Lo) ~ E*, where L0 c A* is recognized
by an n-state 2DFA, E and A are finite alphabets, and h: ~* --~ A* is an 1.p.hom. We
may assume that E n A = ~ (if necessary, we make a new copy of A; this does not
change L, nor the number of states needed to accept L0 by a 2DFA).

A nondeterministic Hennie machine accepting L (_ Z*) simulates the 2DFA of
L0 in the following way: The Hennie machine has the same state set as the 2DFA, and
its work alphabet is E U A. When the Hennie machine reads a letter cr 6 E in state
q, it guesses a letter 8 6 h - l (a) and prints 3 (overwriting or), and then simulates how
the 2DFA would move on 3 in state q; all this constitutes one nondeterministic Hennie
machine step, When the Hennie machine reads a letter 6 ~ A (printed earlier), it just
simulates the 2DFA. This uses the fact that E A A = ~. No new states are introduced.
(Recall also that, by definition, we only require that the Hennie machine makes a bounded
number of visits per position on at least one accepting computation for each accepted
word; some accepting computations might make more visits; rejecting computations can
do any number of visits. So we need not assume that our 2DFA for L0 halts on all inputs.)

(b) Suppose L ___ I]* is recognized by a nondeterministic Hennie machine H with
n states, and for every word in L an accepting computation exists during which no state
occurs more than k~ times at the same position. Let k = n �9 kl; by the observation made
before Theorem 3.1, H makes < k visits per position (during the computations under
consideration).

We write L = h(Lc), where Lc is the "k-track computation language" of H (de-
scribed also in [B3]): Lc consists of all accepting computations of H~ encoded into k
parallel rows, each as long as the input. See Figure 1 for an example. Then L~ is recog-
nized by a 2DFA A which takes such a k-track picture as an input and checks whether
the computation described by the picture is valid and accepting. The state set of A is
Q • { 1 kl } (where Q is the state set of H); A remembers the state in which H

Two-Way Automata and Length-Preserving Homomorphisms 201

1

2

3

4

5

al, ql a2, q2 a3, q3 a4, ~ as, ~

b2' q15 b3' qlo b4' q9 bs' qs

3 t - i - - - -

2 ~ 6 5 2CL~ t C4'q1"~241 : ~

d3' (:[14
2 k d4' qB . . . ~ 3

e3, q17 en' .ql8
3L_ j 3

a6, q6 a7, q2i as, q22 a9, q27

3r-% 3r
b6,q 7 bT, q24 bs, q23
.,~..] 1 3~ ' - . ~ I

Fig. 1.
head.

r

The k-track picture (here k = 5) of a computation of H, and the corresponding movement of the

would be, and also a number i (1 < i < kl) chosen so that the state together with i will
enable A to know which track it is on (since k = n - kl, no more than kl choices for i
are required). Each time H makes a reversal the k-track picture shows the continuation
of the computation on another track. The idea is similar to the hint in Exercise 3.19 on
p. 73 of [HU] (where 1-pebble automata are discussed).

The alphabet A of Lc and A is the cartesian product

(E x Q x D) x (F x Q x D U { e }) k-l,

where F is the work alphabet of H, and

iV-J~ j, i .~j, iL~ J, i t~J /l < i <k, I _<j <k}.

A letter of A is thus a k-track column (each cell of which contains an element of 17 x Q • D
or the empty word e).

202 J.-C. Birget

We define the 1.p.hom. h: A* ~ E* by mapping every element of A to its E-
coordinate of the first cell. []

Corol la ry 3.3. 1.p.hom[n state 2DFA] = 1.p.hom[n state 2NFA].

Proof. Theorem 3.1(b) applies here; an n-state 2NFA is a special case of a nondeter-
ministic Hennie machine with kl = 1. []

Corol la ry 3.4. 1.p.hom[n state 2DFA] = l.d.hom[n state 2DFA].
Here 1.d.hom stands for "length-decreasing homomorphism," i.e., homomorphisms

h satisfying Ih(x)l _< Ixl (equivalently, every letter is mapped to a letter or to the empty
string).

Proof. By Theorem 3.1 it is sufficient to show: If L = h(Lo) c E* (where L0 c A*
is recognized by a 2DFA with n states, and h: A* --+ E* is an 1.d.hom.), then L is
recognized by a nondeterministic Hennie machine H with n states in which no state
occurs more than once at the same position. We can assume again that E f3 A = ~. On
input al .. �9 ak 6 E*, H works as follows: Each time H reads a letter ai it guesses a
string xi ~ A* such that h (x i) = ai, and prints [xi], overwriting ai ([Xi] is the quadruple
of global state-transition functions, or Shepherdson tables, with respect to the 2DFA of
L0; see the Background paragraph at the end of the proof of Theorem 4.1(c) of this
paper, or [B 1], [B3], and the Appendix of [B4]). Next H goes to the state determined
by the current state and [xi]. When H reads an [xj] (printed earlier) it just applies the
appropriate global transition function of [X j] to the current state. []

In the previous theorems, large alphabets appear; the following fact puts an upper
bound on the required size of alphabets.

Fac t 3.5 (Alphabet Sizes). I f L c E* belongs to 1.p.hom[n state 2DFA], then L =
h (Lo) for some Lo ~ In state 2DFA], where the alphabet o f Lo has size <]EI . n n.

Proof. The proof of this is similar to the proof of Corollary 3.4: if L0 is originally
over an arbitrarily large alphabet A and L = h(L0), we replace A by the alphabet
{(h(3), [3])/3 6 A}; again, [3] is the quadruple of global state-transitions, as above; h
is replaced by the 1.p.hom. 0 defined by (h(3), [3]) ~ h(3). []

As a consequence, there are only finitely many languages over a given alphabet
E that belong to 1.p.hom[n state 2DFA] for a fixed n; and there are only finitely many
languages over a given alphabet E that are accepted by n-state k-visiting nondeterministic
Hennie machines, for fixed n and k (but irrespectively of the size of the work alphabet);
for the latter one uses Theorem 3.1(b).

The Hennie machines associated with 1.p.hom[n state 2DFA] (by Theorem 3.1), and
the ones we will encounter in Section 4 (in relation with n-state 1-pebble machines or
alternating finite automata), all have a number of visits per position which is polynomially
bounded by the number of states of the Hennie machine. The rest of this section is a

Two-Way Automata and Length-Preserving Homomorphisms 203

digression which shows that in general, however, the number of visits per position of a
deterministic Hennie machine need not be recursively bounded by the number of states
of the machine.

Theorem 3.6. There is a family o f languages Ln ~ {a}* (n ~ N), where L~ is recog-
nized by a deterministic Hennie machine with n states, but:

(1) Every 2AFA recognizing L~ has a number o f states > E(n - cl), where E (.) is
the Busy Beaver function and cl is a constant.

(2) Every nondeterministic Hennie machine with s states and <<_ k visits per position,
which recognizes Ln, satisfies s . k > E(n - c2),for some constant c2.

(It is well known that the Busy Beaver function E(.) is eventually larger than any
recursive function; see, e.g., [DDQ].)

Proof. Let Bn be an n-state Busy Beaver; Bn is a deterministic Turing machine with
one two-sided infinite tape, with work alphabet {0, 1 }. When Bn is started on a blank
tape it eventually halts, with Z(n) 1 's on the tape (there may be O's as well). Let t(n) be
the length of the 0-1 string on the tape when Bn halts; so t(n) >_ E (n).

Let Ln = {a t(n-c)} c {a}* (Ln consists of a single word); c is a constant to be
determined later.

We first prove that Ln is recognized by a deterministic Hennie machine H with n
states. On input a m, H simulates Bn-c, treating a and the two endmarkers of H like
the blank symbol. If Bn-c wants to write on the right endmarker, H halts and rejects. If
Bn-c runs out of space on the left (i.e., it wants to write on the left endmarker of H),
then H will shift the whole 0-1 string one space to the right (to do this H needs a fixed
number of states); if in this process H would need to write on the fight endmarker, it
halts and rejects. Finally, when Bn-c halts (and if H has not rejected the input yet), the
tape content is of the form x a m-t(n-c), where x is a 0-1 string of length t(n - c). Now
H will accept iff at this point the tape actually contains no a ' s (i.e., iff m = t(n - c)).
Then H has n states, if the constant c is appropriately chosen.

Proof of parts (1) and (2) of the theorem:
Since a minimum-state 1NFA accepting {a t(n-c)} has t(n - c) + 1 states (proof by

Pumping Lemma), any 2AFA with s states must satisfy 2 s2" > t(n - c) > E (n - c) (see
[LLS] or [B4]). Since E(-) grows extremely fast, this implies that s > E(n - cl), for
a large enough constant cl. Similarly, any Hennie machine with s states and < k visits
per position is equivalent to a 1NFA with (sk) sk states (by Theorem 3.1(b), and by the
fact that any 2DFA with r states is equivalent to a 1NFA with _< r r states, see [HU] and
[B4]). Thus (sk) s~ > E(n - c). Since E(.) grows so fast, we obtain sk > E(n - c2),
for a constant c2. []

4. The Power of l.p.hom[n state 2DFA]

We have seen already (Corollary 3.3) that [n state 2NFA] is contained in
1.p.hom[n state 2DFA]. The next theorem says that, up to squaring the number of states,

204 J.-C. Birget

1.p.hom[n state 2DFA] is at least as powerful as alternating two-way finite automata
(2AFA), or nondeterministic 1-pebble two-way automata (1-pebble 2NFA). The 2AFAs
that we use here are allowed to have any boolean functions (with the states as boolean
variables) attached to their state transitions (see [Ko] for 1AFAs; our model of 2AFAs
is more general than ILLS], where only 3- and V-configurations are admitted and where
the head can move only when the configuration is deterministic).

Theorem 4.1.

(a) Every n-state 2AFA can be simulated by a deterministic Hennie machine with
O (n) states, with no state occurring more than O (n) times at the same position.
Thus (by Theorem 3. l(b)), for some constant c:

[n state 2AFA] _ 1.p.hom[e �9 n 2 state 2DFA].

(b) Every language recognized by an n-state 1AFA or, more generally, by a halting
n-state 2AFA (i.e., which eventually halts on every computation path), belongs
to l.p.hom[e, n state 2DFA], for some constant c.

(c) Every n-state 1-pebble 2DFA (resp. I-pebble 2NFA) can be simulated by a
deterministic (resp. nondeterministic) Hennie machine with 0 (n 2) states, such
that every accepted word has an accepting computation in which no state occurs
more than once at the same position. Thus (by Theorem 3.1(b)) the language
recognized belongs to l.p.hom[c - n 2 state 2DFA], for some constant c.

For nondeterministic 1-pebble machines we also have: every n-state l -pebble
2NFA can be simulated by a deterministic Hennie machine with 0 (n 2) states,
in which O(n) states occur at most O(n) times at the same position, and each
of the remaining 0 (n 2) states occurs just once at the same position.

The following theorem is about alternating 1-pebble machines; in particular, it im-
plies that such devices recognize only regular languages (which was first proved by
Goral6~ et al. [GGK] in a very different way).

(d) Every n-state 1-pebble 2AFA can be simulated by a deterministic Hennie ma-
chine with O(n2 n) states; O(n) o f these states occur at most O(n) times at the
same position, and the remaining O(n2 n) states occur just once at the same
position. Thus (by Theorem 3.1 (b)):

[n state I-pebble 2AFA] ___ l.p.hom[e �9 n2 n state 2DFA],

for some constant c.

(The proofs of Theorems 4.1 (a)-(d) are given at the end of this section.)
Combining Theorem 4. l(d) with Corollary 4.4 of [B4] we obtain:

[n state 1-pebble 2AFA] c [2 enzn state INFA] for some constant c.

This is similar to a result of [GGK]: [n state 1-pebble 2AFA] c [[E[�9 d(n) 3n+1 + d(n)
state 1NFA], when a fixed alphabet E is used. Here d(n) (< 22") is the size of the
free distributive (0, 1)-lattice on n variables. The definition of alternation in [GGK] is

Two-Way Automata and Length-Preserving Homomorphisms 205

more restrictive than the one used here (they only allow 3 and u on the states, instead of
arbitrary boolean functions), and their bound depends on the alphabet size.

Questions analogous to the open problems in Section 1 can be asked about Hennie
machines. The problem about halting (for deterministic or nondeterministic Hennie
machines) can be easily solved (affirmatively), since a nondeterministic Hennie machine
could write a number (_< k, and equal to 1 at the first visit) at every position and increment
it each time it visits the position (and halt when the number becomes > k). This also
solves (affirmatively) the complementation problem for deterministic Hennie machines.
Some of the other problems are solved in [B4]. In summary we have:

Fact 4.2.

(1) Every nondeterministic (resp. deterministic) Hennie machine with n states and
< k visits per position, is equivalent to a nondeterministic (resp. determinis-
tic) Hennie machine with n states and < k visits per position, in which every
computation eventually halts. The same is true when "< k visits per position"
is replaced everywher e by "with every state occurring < k times at the same
position."

(2) I f a language L is recognized by a deterministic Hennie machine H1 with n
states and < k visits per position, then L (the complemen t of L) is recognized
by a deterministic Hennie machine H2 with < n + t states and < k + 1 visits
per position. Similarly: I f L is recognized by a deterministic Hennie machine
H1 with n states and with every state occurring < k times at the same position,
then L is recognized by a deterministic Hennie machine H2 with < n + 1 states
and with every state occurring < k + 1 times at the same position.

In (2), the reason why n and k might have to be increase to n + 1 and k + 1 is that
we want H2 to end up at the right end of the tape in an accepting computation.

The next theorem gives exponential lower bounds for the recognition of certain
languages in l.p.hom[n state 2DFA] by 2NFAs.

T h e o r e m 4.3. There is a unary language L in l.p.hom[n state 2DFA] such that any
2NFA recognizing L needs > c n states; here c is a constant > 1.414 (= ~ - e).

Proof Outline (see Section 5 for more details). We show in Section 5 that the one-word
language {a 2" } can be recognized by a deterministic Hennie machine with 2n + e states
(where e is a constant), with no state occurring more than once at the same position; and
we prove that a 2NFA needs more than 2 n states to recognize {a 2" }. Now let L = {a 21"-eV2 },
which belongs to 1.p.hom[n state 2DFA]; then a 2NFA or a 1-pebble 2DFA recognizing
L needs > c" states, where c = ~ - e (where e is a positive real number, which
becomes arbitrarily small when n becomes large). []

Meyer and Fischer [MF] introduced the language {a 2" } and they strongly conjectured
that a 1-pebble 2DFA needs _> 2 n states to recognize it; this is false, however: we show
in Section 5 that a 1-pebble 2DFA needs only O (n2/log n) states to recognize {a 2~ } (and
the same holds for FI2-1AFAs).

206 J.-C. Birget

Proof of Theorem 4.1 (a) and (b). We first construct a complete language An for n-
state 2AFAs. The alphabet of the language An is the set of all tripartite directed graphs
of 3n vertices, with n vertices in each of the three partitions; we view the three partitions
as three parallel vertical columns of n vertices each; the only edges are directed edges
that go from the right column and from the left column to the middle column; each
vertex in the middle column is labeled by a boolean function (and is viewed as a gate
implementing this boolean function). We call the letters of this alphabet circuit-slices. A
word is a sequence of slices. However, when we draw a word we let neighboring letters
overlap half-way; i.e., we superpose neighboring halves of neighboring letters. This does
not lead to any loss of information, because edges in a letter (circuit-slice) always point
to the middle column only. In this picture the word appears as a circuit; we call this the
circuit representation of the word. Note that the circuit representation of a word of length
k has k + 2 columns. See Figure 2(a) for an example.

The complete language An for n-state 2AFAs consists of all the words whose circuit
representation has the following property: When the n vertices in the rightmost column
of the circuit all carry a truth value 1, and all other sources (vertices without in-edges) in
the circuit carry a truth value 0, then this truth value assignment "forces a 1" to appear
on the top vertex in the leftmost column of the circuit. See Figure 2(b) for an example.

Definition of ''forcing a 1." A truth value 1 is forced at a vertex i (in the leftmost
column of the circuit) iff, in every truth-value assignment which is consistent (with the
gates of the circuit and with the 1 's at the right end and the O's at the other sources), 1
appears at node i.

The complete language for n-state 2AFAs is analogous to the complete languages
for n-state 2NFAs or 1NFAs of Sakoda and Sipser [SS] (where all the nodes can be
viewed as OR-gates). Note that here we direct the edges in the way one would expect in
a circuit (the input wires to a gate point to that gate, and the output wires point out); but
the movement of the 2AFA head is actually opposite to the direction of these edges (see
[SS], where the opposite convention is more natural).

In this paper we use the following definition of reduction (due to [SS]) which is
particularly suited for regular languages and state-complexity.

Definition of "reduction:' Let L1 _ E* and L2 c A*, where ~ and A are alphabets;
L1 reduces to L2 iff an 1.p.hom. ~p: E* ~ A* exists, and two words x, y ~ A* exist
such that, for all w e E*, w ~ L1 r x �9 ~0(w) �9 y ~ L2.

Thanks to the next lemma we only need to consider the complete laguage An in
order to prove Theorem 4.1 (a) and (b).

Lemma 4.4.

(1) The language L c_ E* is accepted by an n-state 2AFA iff L reduces to An (the
complete language for n-state 2AFAs).

two-Way Automata and Length-Preserving Homomorphisnas 207

(a)

? ~ ? ?
' 1

? 1

0 0 1 1 right
left end
end

(b)

Fig, 2, ~a) TWo circuit-slice~, arid the circuit obtainecl by letling the two slices overlap half-way; herr
f l , f2 fs, denote boolean funetion~. (b) A word (of [ength 4) of circuit-slices (with neighboring columm
letters overlapping). The truth values in bold are directly given; the other values are forced; the "7" indicate~
that the truth value on that vertex is not forced.

208

(2) I f LI reduces to L2, and L2
1.p.hom[n + 4 state 2DFA].

J.-C. Birget

is in 1.p.hom[n state 2DFA], then Ll is in

Proof (1) Suppose L is recognized by a 2AFA (Q, E, 8, q0, F); the state-transition
function is 8: Q x E ~ "set of boolean functions over the set of boolean variables
Q • { - 1, + 1 }." Here Q • { - 1 } represents the states reachable by left-movement from
state q on input a; and Q • {+ 1 } represents the states reachable by right-movement on
q and a. It is easier to think first of a 2NFA (which is a special case of a 2AFA in which
all states carry the OR function, applied to a subset of Q • { -1 , +1}); then 3(q, a) is the
OR of a subset of the set of variables Q • { - 1, + 1 }; equivalently, 8 (q, a) is viewed as a
subset of Q • { - 1, + 1 } (then Q • { - 1 } N 6 (q, a) represents the set of states reachable
from q and a by a left-move, and Q x {+1} n 8(q, a) does the same for right-moves).
In the case of general 2AFAs, we have arbitrary boolean functions attached to the states,
and 8 (q, a) is such a function over a subset of the set of variables Q x { - 1, + 1 }. Note
also that in a general 2AFA, a different boolean function can be attached to the same
state for different input letters; so it is more correct to say that boolean functions (over a
subset of the set of variables Q • { - 1, + 1 }) are attached to the transitions. The 2AFA
has n states, so we can assume Q = {1 n}, with q0 = 1. We also have endmarkers,
as usual.

To reduce L to An we use the following 1.p.hom. ~0 and the following two words x
and y: ~o: a 6 E ~ ~0(a) = "circuit-slice of a."

The "circuit slice of a" is defined as follows: Each one of the three columns of the
circuit-slice of a has n vertices; moreover, for each vertex i in the middle column of the
slice (1 < i < n), we have:

The vertex i is labeled by the boolean function attached to the state i, with respect
to the input letter a.

If a state p appears as (p, - 1) in the boolean expression for 3(i, a), then an edge
points from p (in the left column) to i (in the middle column).

If a state q appears as (q, + l) in the boolean expression for 8(i, a), then an edge
points from q (in the right column) to i (in the middle column); no other edges
exist in the circuit-slice of a.

The word x is simply the circuit-slice of the left endmarker "(" (which is defined in
the same way as the circuit-slice of a letter a 6 E).

The word y is obtained from the circuit-slice of the fight endmarker ")" by modifying
its boolean functions as follows: All edges from the fight column that are incident to
accept states (6 F) are set to a boolean value 1, and the other edges from the right
column are set to 0 (this modification replaces the boolean functions on ")" by constant
functions); all edges incident with the right column of the modified circuit-slice are then
removed.

It follows immediately from the definitions that the 2AFA accepts a word w iff
x �9 ~0(w) �9 y 6 An.

Proof of the converse. First, it is straightforward to check that An is accepted by
an n-state 2AFA. Next, assume that Lj __c E* reduces to L2 __c A* (i.e., an 1.p.hom.
~o: E* --+ A* exists, and two words x, y 6 A* exist such that, for all w ~ E*, w

Two-Way Automata and Length-Preserving Homomorphisms 209

L1 r x .tO (w). y ~ L2); and assume L2 is accepted by an n-state 2AFA A2. We construct
a 2AFA A1 accepting Ll . The state set of Al is the same as the state set of A2; the two
machines also have the same start state q0, and the endmarkers (and). On a tape (w)
(with w ~ E*) the machine Al does the following: Al behaves on a letter a E E in the
same way as A2 behaves on the letter tO(a) ~ A. When AI reads (, it makes a transition
to the same boolean function as the one that A2 produces as a result of processing the
word (x. Similarly, when A1 reads), it makes a transition to the same boolean function
as the one that A2 produces as a result of processing the word y). In this way, Al accept
w iff A2 accepts x �9 tO(w) �9 y.

(2) Assume L1 c__ E* reduces to L2 c__ A* (i.e., an l.p.hom, to: E* ---> A* exists,
and two words x, y E A* exist such that, for all w ~ E*, w E L1 r x - ~0(w) �9 y ~ L2).
Assume L2 is accepted by an n-state nondeterministic Hennie machine//2, which visits
every position of the tape at most once in the same state (recall Theorem 3.1); let F2 be
the total tape alphabet of H2. We may assume that E r3 I'2 --- o .

We construct a nondeterministic Hennie machine HI accepting L1, with n -t-4 states,
which visits every position of the tape at most once in the same state; Lemma 4.4(2)
then follows, by Theorem 3.1. The state set of HI is the same as the state set o f / / 2 ,
except that a new start state qn, and another three new states, qn+l, qn+2, qn+3, are
added. The two machines have endmarkers "(" and , ') " The tape alphabet of H1 is
FI ---- E U 1`2 U {w x 1`2 U 1`2 x {yw

In summary, HI first replaces its input w ---- a la2 ' ' ' am- la ,n ~ E* by the word
(w to(al))to(a2) �9 �9 �9 tO(am-1)(tO(a,,), y w 1`~'; then Hi simulates H2 on this new word,
except for a little adjustment regarding (w ~0(al)) and (q)(am), y w the symbol w is
introduced to distinguish between left and fight. It is important to note that no state of
//2 has any transition defined on a letter in E (since E fq 1'2 = O) nor on any of the
other new letters, so we can introduce such transitions into HI without disturbing the
simulation of / /2 .

In more detail, on tape (al, a 2 . . - am-lam) the machine H1 does the following: It
starts in state qn on the letter al, replaces al by (w to(al)), moves fight, and goes to
state qn+l. It keeps moving fight in state qn+l while changing the tape into

((w tO(al))tO(a2).-" tO(am-I)tO(am)).

When) is encountered,/-/2 moves left on) and goes to state qn+2. In this state it changes
tO(am) to (tO(am), yw moves left and goes to state qn+3. In this state Hi moves left (with-
out changing the tape) until it reads (w ~0(al)). Thereupon it goes to the old start state q0
of H2 and starts the simulation of H2 on tape ((w tO(a1))tO(a2) �9 �9 �9 tO(am-I)(tO(am), yw
For this simulation,//2 is modified as follows: When (w tO(al)) is read in some state
q, H1 goes to the same state(s) that/-/2 reaches when it processes the word (xtO(al)
(starting in state q with the head on the letter tO(al)) . S u p p o s e that in this process/ /2
replaces the word (xtO(al) by (x'b (with Ix'bl = IxtO(a01), and leaves on the fight (or
never leaves this portion of tape); then H1 replaces the letter (w tO(al)) by the letter
(w b) and moves fight (respectively, halts without making a transition). In a similar
way, H1 simulates H2 on other letters of the form (w c) (with Ix"l = Ixl, x" ~ r~,
c E 1`2), near the left end of the tape. On the fight end of the tape on letters of the form
(d, y"w (with lY"I = IYl, Y" ~ r~, d ~ I'2) the simulation is also similar, with left and

210 J.-C. Birget

right interchanged; here, if H2 never leaves the tape portion dy"), but halts on) in an
accept state, then HI also moves to) and goes into the same accept state. This way, H1
accept w iff H2 accepts x �9 ~o(w) �9 y. []

We first prove Theorem 4.1 (b).
Halting 2AFAs, and in particular 1AFAs, correspond to circuits (in the complete

language An) that are acyclic.
Every such circuit can be written as an 1.p.hom. image of a circuit with truth values

already drawn on all the gates. The 1.p.hom. just consists in dropping the truth values
(thus returning the circuit itself). An O (n)-state 2DFA can check that:

(1) At the right end of the circuit all the vertices have a truth-value 1 and that the
top vertex at the left end has a 1.

(2) The truth-value assignment on all the gates is consistent 1 with the circuit (i.e.,
a gate has a 1 in the assignment iff a 1 is returned when the boolean function
of the gate is applied to the boolean values assigned to the vertice, that point to
the gate).

(3) The nodes with in-degree 0 have a boolean value 0.
(4) For any two neighboring letters (circuit-slices) a and b of the circuit word,

the middle column of a and the left column of b have identical truth-value
assignments; and also, the right column of a and the middle column of b have
the same truth-value assignment.

To check these properties the 2DFA needs only O(n) states: Property (1) is easy
to check (with a constant number of states). Properties (2) and (3) are just restrictions
on the letters that may appear in accepted words, so no new states are needed to check
them. To check property (4), a 2DFA makes 2n sweeps over the circuit-word with its
truth-value assignment (alternating left-to-right and right-to-left sweeps, n times). In the
ith (1 < i < n) left-to-right sweep, the 2DFA checks that in row i of the circuit, the
middle column of a and the left column of b have the same truth value (this is done for
all neighboring letters a, b); and in the ith (1 < i < n) right-to-left sweep the 2DFA
checks that in row i of the circuit, the right column of a and the middle column of b have
the same truth value. Each sweep uses a constant number of states, so O(n) states are
used in total.

We now prove Theorem 4.1 (a).
When the circuit contains cycles, properties (1), (3), and (4) above need no changes;

but, regarding property (2), it is no longer enough to check whether the truth values on
the gates are consistent with the circuit; we want the 1 's at the right end to force a 1 to
appear at the top vertex at the left end (not just to be consistent with it). In the cyclic case,
consistency does not imply forcing (for example, recall the RS-latch, which is bistable;
it has two consistent truth-value assignments when the input is R = 0, S = 0; no output
value is forced in that case).

To check whether a 1 is forced at the top vertex in the leftmost column, a deter-
ministic Hennie machine does depth-first search in the circuit. The search process is

I "Consistent" is the term used in Logic; in Circuit Theory the term "stable" is used instead.

Two-Way Automata and Length-Preserving Homomorphisms 211

greatly simplified by the next lemma, which implies that we may assume that all the
boolean functions in our circuit words are monotone. (By definition, a boolean function
is monotone iff it can be represented by a boolean expression using AND and OR only,
without negation.)

Lemma 4.5 (Monotonicity). Every general n-state 2AFA is equivalent to a 2AFA with
2n states, whose boolean functions are all monotone.

Proof. We use a standard idea for the elimination of negations (which has also been used
for alternating Turing machines, see p. 90of [Ko] and p. 120 of [CKS]). Suppose in the
original 2AFA (with state set Q, I Q I = n) the boolean function fl (q I q,,, p 1 Pn)
is attached to (q, cr) 6 Q x {-1, +1}. The new 2AFA will have state set {+, -} x Q;
we attach the following monotone boolean functions to ((+, q), ~r) (resp. ((- , q), ~)):

To ((+, q), ~r) we attach

/3'((+, ql), (- , qO (+, q.), (- , q.), (+, Pl), (- , Pl) (+, P.), (- , Pn)),

which is obtained from/3 by writing/3 in disjunctive normal form and then replacing each
negated variable ~ by (- , v). and each nonnegated variable v by (+, v). To ((- , q), or)
we attach/3" (over the same 4n variables as/3'), obtained from/3 (the negation of/3, put
into disjuntive normal form) in the same way as/3' is obtained from/3. []

The deterministic Hennie machine carries out a depth-first search in the circuit as
follows: Initially, the only vertices of the circuit that carry a truth value are the vertices in
the rightmost column (which carry a 1) and the other sources (vertices without in-edges,
which carry a 0). All other vertices Carry a value "?". The search starts at the top vertex
in the leftmost column of the circuit word.

At an arbitrary instant during the search, suppose a vertex v with value "?" has been
reached; consider the values (6 {0, 1, ?}) of the vertices that point to v via the in-edges
of v.

Case 1: Finding and Backtracking. If these values determine the truth value (~ {0, 1})
on v (by application of the boolean function attached to v), then this truth value is written
on v (e.g., if v is an AND gate and some in-edge of v carries a 0, then 0 will be written on
v). Now the search continues by backtracking along a colored edge (see Case 2 for the
coloring actions) pointing away from v; at this moment we also erase all the in-edges of
v. Note that during backtracking, the edges are traversed in the direction in which they
point.

Case 2: Forward Search. If the values applied to v by its in-edges do not determine
a truth value (E {0, 1}) on v, then an in-edge of v carrying the value "?" is chosen and
colored and the corresponding incident vertex v' is examined next. So, in the forward
search, edges are traversed in the reverse of the direction in which they point. The only
nonstraightforward part is the handling of cycles: Suppose that during depth-first search
a directed cycle is detected (the Hennie machine detects this when, along its search path,
it sees a colored edge pointing out of the vertex v' that is examined next in the forward

212 J.-C. Birget

search). Then the machine continues the search along an in-edge of v other than the
one(s) that would close a directed cycle. If all in-edges of v would close cycles, then the
truth value 0 is written on v. Indeed, in a monotonic circuit, the existence of such cycles
implies that the truth value at vertex v is not forced, and hence it cannot help force the
truth value of other gates. In a monotonic circuit, this is equivalent (regarding the forcing
of truth values on other vertices) to giving a 0 to this gate.

This Hennie machine needs only O (n) states (to remember which vertex it is visiting
within an n-vertex column). Each vertex is visited only O(n) times (since each vertex
has degree O(n)). This proves 4. l(a). []

Proof of Theorem 4.1(c). Blum and Hewitt [BH] give a proof (due to Albert Meyer)
that the language recognized by an n-state 1-pebble 2NFA is regular, by constructing
an equivalent deterministic Hennie machine with O (2 n2) states. By slightly modifying
their proof we obtain a nondeterministic (resp. deterministic) Hennie machine with 4n 2 +
n + O (1) states, which is equivalent to the given nondeterministic (resp. deterministic)
n-state 1-pebble machine; we proceed as follows:

The Hennie machine first makes two passes over the input tape. In the first pass (from
left to right), it uses the 2NFA (or 2DFA) which is obtained from the 1-pebble machine
when no pebble is used; the equivalent 1DFA of the 2NFA (or 2DFA) as constructed by
Shepherdson [Sh] is considered, and the Shepherdson tables are written on a second track
of the tape. If u 6 E* is a prefix of the input, we denote the corresponding Shepherdson
table by [(u S] (see [B1], or the Background and Notation section at the end of this
proof). In the second pass (from right to left), the reverse is done: for every suffix v of
the input, the table [~v)] (also defined in [B 1] and below) is written on a third track of
the tape.

So far the procedure (as in [BH]) is deterministic, and requires _< 2 n2 states (but this
number will be reduced shortly): in the first pass there are 2 n2 possible tables of the form
[(uS]; a table [(uS] is remembered in the state while the table [(uaS] of the neighboring
cell (with input letter a) is being printed. The second pass is handled similarly.

However, we can modify the procedure so that [(ua S] can be generated from [(uS]
without remembering all of [(u S] in the state. First [(uS] (which is a set of pairs of
states) is copied over to the neighboring cell on the right one pair of states at a time, in
lexical order; e.g., this takes < 2n 2 + O(1) states for the Hennie machine. (A different
"color" is used to print this new copy of [(uS].) Second, once [(uS] and a are together
in this cell, [(ua~-] can be directly printed. None of these < 2n 2 + O(1) states occurs
more than once at the same position. The second pass is handled similarly, and another
< 2n 2 + O(1) states are introduced.

We now directly simulate a 2NFA N2 (or a 2DFA), whose head permanently carries
the pebble; N2 has n states. (We do not need the remaining three passes of [BH] then.)
When the 1-pebble machine drops the pebble at a certain position, the two Shepherdson
tables on the tape of the Hennie machine (at that position) contain the information needed
to know in which state the l-pebble machine is when it comes back to this position. (See
the hint of Exercise 3.19, p. 73 of [HU].) It takes < n states to simulate this 2NFA or
2DFA. No state occurs twice at the same position during an accepting computation. Note
that now the Hennie machine becomes nondeterministic if the original I-pebble machine
was nondeterministic.

Two-Way Automata and Length-Preserving Homomorphisms 213

Proof of the second paragraph of Theorem 4.1(c): In order to simulate a 1-pebble
2NFA (nondeterministic) by a deterministic Hennie machine we use the same first two
(deterministic) passes as above (and the Shepherdson tables [(uS] , [7_v)] are printed
on the tape); this uses < 4n 2 + O(1) states, and no state occurs twice at the same
tape position. Next, instead of directly simulating the 2NFA N2 above, we simulate
the deterministic Hennie machine which is equivalent to N2 (i.e., we use the proof of
Theorem 4. l(a) in the special case of a 2NFA). This deterministic Hennie machine has
O(n) states, with no state occurring more than O(n) times at the same tape position.
Thus, overall the n-state 1-pebble 2NFA is simulated by a deterministic Hennie machine
with O(n 2) states; O(n) of these states occur at most O(n) times at the same position,
and the remaining O (n 2) states occur just once at the same position.

Background and Notation for the Proof of 4. l(c)

Definition. The Shepherdson tables (or global state transitions) of a 2NFA N on a
word u 6 (E U {(,)})+ are the following four relations on the state set Q (see [B1],
where however a slightly different kind of 2NFA was used).

The relation [--+ u --+] _ Q x Q is defined as follows: (ql, q2) 6 [---~ u --+] iffthere
is a computation of N starting at the left end of u in state ql, and during this computation
the reading head of N stays on u, and eventually leaves u on the right end in state q2.

The relation [~u] c Q x Q is defined as follows: (ql, q2) E [Su] iff there is a
computation of N starting at the left end of u in state ql, and during this computation
the reading head of N stays on u, and eventually leaves u on the left end in state q2.

The relation [uS] _ Q x Q is defined like [~_u], exchanging left and right;
[+-- u +-] c Q x Q is defined like [-+ u ---~], exchanging left and right.

We have the following fact (see [B 1]), from which it follows that [u~] (resp. [Z v])
and a 6 ~ determine [uaS] (resp. [~_av]).

Fact. If u, v E (E U {(,)})+, then we have for the concatenation uv:

[~ uv --*l = [~ u --*]([Zvl[uSl)*[--* v --.1,

~ - - -) . ~ + - , ~ <_._ < - - -] , [Zuvl [Z u l U [~ u l([+_vl[u__,l) L_v][u

4--" --)- :r 4 - - ._.._~] ~
[u v S] = [v S l u [*- v]([u_,][,_vl) [u~][--* v

[*-- uv *--] = [*-- v . - l ([u S l [Z v]) * [, - u ,--].

Notation: Juxtaposition of relations denotes composition of relations (defined in the usual
way). The star *, applied to a relation, denotes reflexive-transitive closure. []

Let [u] = ([--+ u --+], [~_u], [uS] , [+-- u +--])(aquadruple of Shepherdson tables).
By the above fact, the knowledge of [u] and [v] determines [uv]; thus we can define a
product of quadruples by [u][v] = [uv]; this product is associative.

214 J.-C. Birget

Proof of Theorem 4.1(d). The proof is very similar to the proof of Theorem 4.1 (c).
However, since we now deal with an n-state 1-pebble 2AFA A, the more,complicated
Shepherdson tables [(w --+], [~,-- w)] are used; they associate a boolean function on n
boolean variables with each state of A. (For more details on the Shepherdson tables of a
2AFA see Background and Notation, below; these tables are also used implicitly in [LLS]
for a more special kind of 2AFAs.) There are 22~ possible boolean-valued functions on n
boolean variables; so there will be at most (22") n = 2 n2" different Shepherdson tables for
a given n-state 2AFA (of the form (q)[(u --+] or (q)[+-- v)], as defined in the Background
and Notation at the end of this proof), and thus at most 2 n2" �9 2 n2~ = 22he" pairs of such
tables. The deterministic Hennie machine needs at most O(n2 ~) states (with no state
occurring twice at the same position) in order to copy one such table from one tape-cell
to a neighboring tape-cell (this is done just as in the proof of Theorem 4. l(c), but now
O(n 2) is replaced by o(n2n)) .

On this tape (with the pair of Shepherdson tables written down at every position)
we can simulate the n-state 1-pebble 2AFA by a 2AFA A2 with n states, whose head
permanently carries the pebble. When the 1-pebble 2AFA drops the pebble at a certain
position, the Shepherdson tables that are written on the tape (at that position) tell A2
which boolean function of states the l-pebble 2AFA will be in when its head comes back
to this position.

Next, we simulate the new 2AFA A2 by a deterministic Hennie machine (as described
in the proof of Theorem 4.1(a); this machine has O(n) states with no state occurring
more than O(n) times at the same tape position.

Thus, overall the n-state 1-pebble 2AFA is simulated by a deterministic Hennie
machine with O(n2 n) states; O(n) of these O(n2 ~) states occur at most O(n) times at
the same position, and the remaining O (n2 n) states occur just once at the same position.

Background and Notation for the Proof of 4.1 (d). The Shepherdson tables [w ~] and
[+-- w] of w E (E U {(,)})+ with respect to a 2AFA A (with state set Q and alphabet E)
are functions from Q into the set of all boolean-valued functions over the set of boolean
variables Q x { - 1, + 1 }.

The function [w ---~] is defined as follows: First we consider the circuit of w, as
introduced in the proof of Lemma 4.4(1). Then for q ~ Q we define (q)[w --+] to be the
boolean-valued function (over the the set of boolean variables Q x { -1 , + 1 }) which is
computed by the circuit if the vertex q in the middle column of the rightmost circuit-slice
is chosen as the output port. There are 2n input ports in this circuit: the n vertices in
the left column of the leftmost slice (these vertices are labeled by the set of boolean
variables Q x {+l}, corresponding to a fight-movement of the 2AFA); and the n vertices
in the fight column of the rightmost slice (these vertices are labeled by the set of boolean
variables Q • {-1}).

In a similar way we define (q)[w --+]. Here the output port is vertex q in the middle
column of the leftmost circuit-slice. It can easily be seen [w ---~] (resp. [+-- w]) and
a c Z determine [wa --+] (resp. [+-- aw]).

It can also be observed that (q)[(u --+] really only depends on the set of n boolean
variables Q x {+1}, as the 2AFA cannot make left-moves on (; and (q)[+-- w)] is only
a function of the set of n variables Q x { - 1 }. []

Two-Way Automata and Length-Preserving Homomorphisms 215

5. The Language {a m} (f o r F i x e d m > 1)

It turned out that one-word languages over a one-letter alphabet are sufficient to prove
Theorem 4.3; here we give a more detailed proof of Theorem 4.3. In addition, we give
other results about such languages, and in particular we disprove a conjecture of Meyer
and Fischer, and a conjecture of Chrobak. The study of {a m } is a study of the number m,
so it is not surprising that number theory is useful here.

Fac t 5.1. The unary one-word language {a m } is recognized by a deterministic Hennie
machine H with < 2/log z mJ + O(1) states, with no state occurring more than once at
the same tape position.

Proof. For the exposition, we first consider the case m = 2 n. The machine H uses an
alphabet {a, b}. For {a 2" } it first counts rood 2 and replaces every second a by b (until the
right endmarker) is reached). Next H goes left while replacing every oddly placed b by
an a (and leaving the other b ' s alone), until the left endmarker (is reached; this requires
a second mod-2-counter. Now, going right again, it again replaces every oddly placed
b by a (and leaves the other b's), using a third mod-2 counter. So, H performs n - 1
sweeps. Altogether it uses n different mod-2 counters (plus another state to move left all
the way to the right at the end, i f n is even). So 2n + O(1) states are used, and no state
occurs twice at the same position. Finally, we accept if after these n (or n + 1) sweeps
we end up with a tape containing one b at the right (just before))and a elsewhere.

To accept {a m } for arbitrary m > 1, essentially the same construction is used:
There are [log 2 mJ + 1 mod-2 counters; the kth counter checks the kth bit in the binary
representation of m; when the head begins the next pass (after the kth pass) it marks
("erases") all the letters until a b is found; it leaves this b and the remaining letters
alone, and continues moving. In each pass only the nonmarked ("nonerased") letters are
read. []

Fact 5.2. Any 2NFA recognizing {a m } (for any ftxed m > 1) requires more than m
states.

Proof We consider a 2NFA (as defined in [HU]), with state set Q. By contradiction,
assume I QI < m; by adapting the Pumping Lemma for Regular Languages (see [HU])
we show that some other word a M (with M > m) is then also accepted by the 2NFA.

For the input a m we consider some (fixed) accepting computation of the 2NFA.
A left-to-right traversal is a subsegment of this computation, in which the head starts

at the left endmarker (and reaches the right endmarker), and no endmarker is visited
inbetween. Similarly, one defines right-to-left traversal. An accepting computation must
contain at least one traversal.

A left-to-left nontraversal is a maximal subsegment of the above computation, in
which the head starts and ends at the left endmarker (, and during which the right
endmarker) is never visited. A right-to-right nontraversal is similarly defined.

An accepting computation can be factored uniquely into a sequence of traversals
and nontraversals.

216 J.-C. Birget

We now apply a"pumping" argument to the traversals. In every left-to-right traversal
w e consider the first time that each position on a m is visited during this traversal; this
corresponds to m state-transitions, in each of which a is read from left to right; m + 1
states occur during these m transitions, and so some state q must appear twice (since
[QI < m). Also, since we look only atfirst visits in the traversal, the second occurrence
of q must be at a position strictly to the right of the first occurrence of q.

Similarly, in every right-to-left traversal, a state p occurs twice, with the second
occurrence of p strictly to the left of the first occurrence.

Suppose there are k traversals. In the ith traversal let di (1 < i < k) be the distance
between the two occurrences of the repeated state considered above.

k d Let M -- m + I-Ii=l i. w e claim that the 2NFA accepts a M.
Indeed, the 2NFA has an accepting computation of a M, constructed from the above

accepting computation of a m, a s follows: The nontraversals of a M are those of am.
The traversals of a M are obtained from those of a m by "pumping" between the chosen
repeated states (the pumping is possible because I-Iid i is a multiple of each di); thus the
beginning and ending states of each traversal are the same in a M and am. []

The argument in this theorem is similar to the proof of Theorem 2.1 in [LSH]. Fact 5.2
was also given by Ibarra and Sahni [IS], but their 2NFAs do not have endmarkers on the
tape and, thus, are weaker.

In the above "pumping" argument it is crucial that the input is over a one-letter alpha-
bet, because we "pump" subwords that are at different positions for different traversals.
Suppose the alphabet contains two letters a, b (or more). Then a singleton-language {w},
with I wl = m, could possibly be recognized by a 2DFA with far fewer states than m. For
example, {(ab) m/2} (for m even) is recognized by a 2DFA with m / 2 + O (1) states, (The
2DFA first goes right and checks if the input belongs to (ab)*, using a mod-2 counter;
then it comes back to the left; all this uses O(1) states. Next it counts the number of
a ' s using m/2 states.) More generally, the singleton language {(ab~-l) m/k} (where k
divides m) is recognized by a 2DFA with m~ k + k + O (1) states. (The minimum number
of states obtained this way is 24'-m + O(1), when k = ~ + O(1), assuming m is a
square.)

The proof of Fact 5.1 (that {a m } is recognized by a deterministic Hennie machine with
2. [log 2 m / + O (1) states) also provides us with a word w (over an alphabet with I.log 2 m/
letters) such that Iwl = m , but {w} is recognized by a 2DFA with 2[.log 2 m/ + O(1)
states.

Corollary of Fact 5.2. For every n > 0 there is a language (for example, {an-J})
which is recognized by a 2NFA with n states but with no less than n states. The same
holds true for 2DFAs (and, as is well known, for 1NFAs and 1DFAs). In other words,
there is no gap in the state-complexity hierarchy for these types o f automata.

Faet 5.3. The language {a m } (for any fixed m > 1) is recognized by a 1 -pebble 2DFA,
and also by a u (i.e., o f type FI2), with < (ln m)2/ln In m + O(1) states (where
"ln " is the natural logarithm).

Two-Way Automata and Length-Preserving Homomorphisms 217

Fact 5.3 disproves a "strong conjecture" of Meyer and Fischer [MF, p. 190], accord-
ing to which a 1-pebble 2DFA would have needed > 2 n states to recognize {a 2" }. The
fact also disproves a conjecture of Chrobak (Final Remarks in [Ch]), according to which
unary 1AFAs and unary 2DFAs would have been polynomially equivalent regarding
state-complexity.

In [Lel] Leiss proved (using a construction of [BL]):

I f a language L is recognized by a I DFA with n states, then L rev is recognized by a 1AFA
with < t-log 2 n] states; in particular, for any unary language L: if L has an n-state 1DFA,
then L has a 1AFA with < I-log 2 n] states.

("L rev'' is the reverse, or mirror image, of L; see [L2] for a proof of the necessity for the
reverse.)

Thus Leiss' result is stronger than Fact 5.3, for general 1AFAs. The 1AFA of Fact 5.3
has the advantage of being of type H2 (whereas the 1AFAs of [L1] and [BL] not only
use an unbounded number of alternations, but arbitrary boolean functions have to be
attached to the transitions in addition to the usual AND, OR, NOT). Fact 5.3 and Leiss'
results are surprising because it was thought that a pumping argument (like for 2NFAs
in Fact 5.2) should work for 1-pebble 2DFAs and for 1AFAs (especially for type 1-12);
but it cannot.

Proof of Fact 5.3.

(1)
(2)

(3)

The following classical facts from number theory are used:

The Chinese Remainder Theorem (see, e.g., p. 117 of [A]).
The Prime Number Theorem [A, pp. 74, 79-80], in the following two equivalent
forms:

Pk = k In k(1 + e(k)) for some function e(.) with limk__,~ e(k) = 0;

n

- I P k ---- some e(-) limn--,oo e(n) = e n l n n (l + e (n)) for with 0.
k = l

Here Pk is the kth prime number.
n l 21nn(l+e(n)) , From the Prime Number Theorem it follows that ~--~k=l pk = ~n

with e(n) ~ O.

Definition. For any integer m > 0, we let N(m) be the smallest integer n such that
n

m _< l--Ik=l pk.

By the above, N(m) = (In m/ln In m)(1 + e(m)), where e(rn) ~ O. Also

N (m)

Z Pk ---- �89 2 In N(m)(1 -k- e(m))
k = l

1 (ln rn) 2
- - (1 + et (m)) where

- - 2 lnlnm
El (m) -~ O.

218 J.-C. Birget

For each k (1 < k < N(m)), let rk be the unique integer such that m ~ rk(mod Pk)
and 0 < rk < Pk. By the Chinese Remainder Theorem and by the definition of N(m),
m will be the (unique) smallest nonzero solution of the system of congruences {x
rk m o d p k / k = 1 N(m)}.

We construct a 1-pebble 2DFA (and a 1AFA) whose number of states will be

N(m) (lnm)2
2 Z Pk + O(1) -- l n l n ~

k=l

(1 + e(m)).

These automata, on input a x, first check that x is a solution to the system of congruences
and, second, check that no smaller number (5 0) is a solution.

Construction of the 1-pebble 2DFA for {a m }. On input a x the machine does the fol-
lowing computation:

In the first phase the pebble stays on the left endmarker, and the head makes N(m)
passes over the input a x; in the kth pass it counts mod Pk to check if x -- rk mod Pk. If
during one pass the congruence is not verified, the machine halts and rejects. At the end
of the first phase the head goes left, to the left endmarker.

Next (second phase), the pebble is moved right one step; the input between the
pebble and the right endmarker will now be counted mod Pk (for k := 1 to N(m)) until
the number does not satisfy some congruence. If the number of a ' s (between the pebble
and the right endmarker) satisfies all the congruences, then the machine halts and rejects.
If some congruence is encountered that is not satisfied, then the head moves left to the
pebble, moves it one step to the right, and starts phase 2 again.

This goes on until the pebble reaches the right endmarker, at which point the machine
~"~N(m) accepts the input. Overall, 2 z_,g=l pk + O (1) states are used (the same mod-pk counters

are reused in all the iterations of phase 2).

Construction o fa 1AFAfor {am}. For one-way devices (and for 1AFAs in particular)
no endmarkers are used on the tape; however, for an input to be accepted it is necessary
that it be entirely read (for some accepting computation).

Our 1AFA starts at the left of the input a x in a Y-state; there are N(m) + 1 branches
out of this state. The first N(m) branches lead to the parallel (deterministic) execution
of mod-pk-counters (1 < k < N(m)). The second branch leads to another V-state; from
this u one checks, at every position (from position 2 onward), that the length of the
remaining word is not a solution to our system of congruences (i.e., that a congruence
that is not satisfied exists); this uses a 3-state which branches into another set of mod-p~
counters (1 < k < N(m)). The total number of states is 2 Y ~) p~ + 3. The resulting
1AFA is of type FI2 (i.e., V3). []

The details are best understood on an example. See Figure 3, which gives the state
diagram for a 1AFA recognizing the language {a les} (= {a27}); since 2 . 3 �9 5 < 128 <
2- 3 . 5 . 7 we have N(128) = 4; thus 128 is the unique minimum solution of the system
of congruences {x -- 0 rood 2, x --- 2 mod 3, x - 3 mod 5, x - 2 mod 7}. The 1AFA for
{a 128 } has 2 . (2 + 3 + 5 + 7) + 3 -- 37 states.

Two-Way Automata and Length-Preserving Homomorphisms 219

Fig. 3. A 37-state u recognizing {a 128 }. The start state is pointed to by a bold arrow, the accept states
are shaded. The label a on all the edges has been omitted.

6. The Equivalence Problem for Certain Finite-State Devices

This section uses the results of Sections 3 and 4 to solve three problems of Jiang and
Ravikumar [JR]:

(1) Is the equivalence problem for n-state 2AFAs in PSPACE?
(2) Is the equivalence problem for n-state 1-pebble 2NFAs in PSPACE?
(3) Is the equivalence problem for n-state 1-pebble 2AFAs in ExPSPACE?

We show that the answers are all "yes."
The equivalence problem for 2AFAs is the following: given two 2AFAs, decide

whether the two 2AFAs recognize the same language. Here the input alphabet of the
2AFAs is not fixed, but is part of the input of the problem. The equivalence problem for

220 J.-C. Birget

the other kinds of machines are stated in a similar way. In these problems we assume that
an n-state 2AFA with input alphabet E (and similarly for 1-pebble 2NFAs or 1-pebble
2AFAs) is described by its n-by-IEI state-transition table. If each of the n states (and
I~1 letters) is expressed as a string of length [log 2 nJ + 1 (resp. [log 2 l•lJ + 1), then
the input size for each of the above three problems is > cnlEI log n log lE l, for some
constant c > 1.

The equivalence problem for 1NFAs is PSPACE-complete (see [AHU]), so the first
two problems are PSPACE-hard; in [JR] it is proved that the third problem is ExPSPACE-
hard. Thus, we can now conclude that these problems are complete in these classes.

To prove that these problems are in PSPACE (or in ExPSPACE) we reduce them (in
three steps) to problems which are known to belong to PSPACE. We use many-to-one
polynomial-space reductions for the first two problems, and many-to-one exponential-
space reductions for the third problem. It is well known that the composition of two many-
to-one polynomial-space (resp. exponential-space) reductions yields again a many-to-
one polynomial-space (resp. exponential-space) reduction. Moreover, if a language L
reduces to a language M by a many-to-one polynomial-space reduction, and if M is in
PSPACE, then L is also in PSPACE (see [HU]); similarly, if a language L reduces to a
language M by a many-to-one exponential-space reduction, and if M is in PSPACE or in
ExPSPACE, then L is in ExPSPACE.

Theorem 6.1. The equivalence problem for 2AFAs is in PSPACE.

Proof. Three successive many-to-one polynomial-space reductions are given in Claims
A-C; in Claim D the last problem is shown to be in PSPACE.

Claim A. The equivalence problem for n-state 2AFAs reduces to the equivalence prob-
lem for O(n)-state deterministic Hennie machines, in which no state occurs more than
0 (n) times at the same position, and which always halt.

Proof of Claim A. By Theorem 4.1 (a), for every n-state 2AFA A we can construct an
equivalent O (n)-state deterministic Hennie machine H in which no state occurs more
than O(n) times at the same position, and (by Fact 4.2) we can assume that this machine
always halts. This reduces the equivalence problem for 2AFAs to the equivalence problem
for Hennie machines of the above type. We have to check that the construction of H,
gi*en A, can be done using polynomial work-space.

In the first step of the proof of Theorem 4.1 (a), A is replaced by a monotone 2AFA
with 2n states; this step can be done in linear time. We assume now that A is monotone.

Let E be the alphabet of A, which is thus also the input alphabet of H. The work
alphabet of H consists of the circuit-slices corresponding to I] (so I EI such slices
are used), in which some edges may be colored or erased. Since a circuit-slice has
< n 2 edges, this leads to < c n possible modified slices, for some constant c > 2; thus
the work alphabet of H has size < I E Ic n2. Each letter of H can thus be represented
in space O(n 2 + log IE I). We can compute the (exponentially large) transition table of
H, using only polynomial work-space, as follows: We consider all pairs (state, letter)
of H, in lexical order; for each such pair, we can compute the next state and the letter
printed and the head-direction, in polynomial time (as in the proof of Theorem 4.1 (a)).

Two-Way Automata and Length-Preserving Homomorphisms 221

We then output the state, letter, next state, letter printed, and direction. Since we reuse
the work-space to do this calculation for each pair, only polynomial work-space is used
(although the time is exponential).

Finally, the construction in Fact 4.2, which makes the Hennie machine halt, takes
only polynomial time (in particular, the work alphabet of the Hennie machine only grows
polynomially in size). []

Claim B. The equivalence problem for m-state deterministic Hennie machines in which
no state occurs more than kl times at the same position and which always halt, reduces
to the emptiness problem for Hennie machines of this same type (with m and kl now
replaced by cm and ckl for some constant c > 1). (In the emptiness problem, the question
is whether the language accepted by the given machine is empty.)

Proof of Claim B. Given two such Hennie machines H1 and/-/2, a new Hennie machine
H of the same type (except that m and kl are now replaced by cm and ckl), recognizing the
symmetric difference of the two languages accepted by Hi and Hz, can be constructed.
Hi and H2 (which always halt) are simply executed one after the other; also, by the
halting property, the new machine H can check whether Hi and HE accept or reject the
input. []

Claim C. The emptiness problem for m-state deterministic Hennie machines in which
no state occurs more than kl times at the same position and which always halt, reduces
to the emptiness problem for mkl-state 2DFAs.

Proof of Claim C. By Theorem 3.1(b), given a Hennie machine H of the above type,
we can construct an l.p.hom, h and a 2DFA D2 (with mkl states) such that L/4 = h(LD);
here LH and Lo are the languages accepted by H and D2, respectively. Thus, LH is
empty iff Lo is empty.

We must still show that the construction of D2, given H, only takes polynomial
work-space. Let I" be the total alphabet of H. Then the alphabet of D2 has size <
(IF[. m �9 mkl) ~, where k = mkl (see the proof of Theorem 3.1(b)); each letter can be
represented using space Cmkl (log I FI + log mkl). We compute the transition table of D2,
using only polynomial work-space, as follows: We consider all pairs (state, letter) ofDz,
in lexical order; for each such pair, we can compute the next state and the head-direction,
in polynomial time (as in the proof of Theorem 3. l(b)); we then output the state, letter,
next state, and direction. Since we reuse the work-space to do this calculation for each
pair, only polynomial work-space is used (although the time is exponential). []

Claim D [Hu]. The emptiness problem for 2DFAs is in PSPACE.

Proof of Claim D. To make the paper more self-contained we give a proof here. It
is sufficient to show that the nonemptiness problem for 2DFAs is decided by a non-
deterministic polynomial-space algorithm (since PSPACE is closed under complement
and does not change when nondeterminism is used, by Savitch's theorem).

222 J.-C. Birget

Let L _ E* be the languag e accepted by a 2DFA D = (Q, E, qo, 8, F) with n
states. Then L is nonempty iff w ~ E* exists such that w is accepted by D. Moreover,
w is accepted by D iff (q0)[--> (w) --+] ~ F (where [---> (w) ---->] is the one of the
Shepherdson tables defined at the end of the proof of Theorem 4.1 (c)). Let [u] denote the
quadruple of the four Shepherdson tables of u (see the end of the proof of Theorem 4.1 (c)).
To check nondeterministically whether L is empty, we guess (in polynomial space) a
quadruple [{w)] and then check (in polynomial time) if (q0)[---> (w) ---~] ~ F. To
guess [(w)] we proceed as follows: We compute [(] from the transition table of D (in
polynomial time), then we successively guess more letters; suppose [(al . . . a;] has been
obtained and remembered so far; we guess a letter ai+l and we compute [(al . . . a i ai+|] -----

[(a l ""ai][ai+l] (according to the fact at the end of the proof of Theorem 4.1 (c)), and
then erase [(al �9 . . ai] and ai+l. For each letter guessed we reuse the same polynomial
space (although the number of letters guessed is not necessarily polynomial). Finally,
we guess that the guessing of [(w] is complete; we then compute [(w)] = [(w])]. []

This completes the proof that the equivalence problem for 2AFAs is in PSPACE. []

Theorem 6.2. The equivalence problem for 1-pebble 2NFAs is in PSPACE.

Proof. We reduce the problem (in three reductions) to a problem which is in PSPACE.
Only the first step (Claim A') is different from the proof of Theorem 6.1; the rest is
identical.

Claim A'. The equivalence problem for n-state 1-pebble 2NFAs reduces to the equiv-
alence problem for O(n2)-state deterministic Hennie machines in which O(n) states
occur 0 (n) times at the same position (whereas each of the remaining O(n 2) states
occurs at most once at the same position), and which always halt.

Proof of Claim A'. By Theorem 4.1(c), for every n-state 1-pebble 2NFA P we can
construct an equivalent O(n2)-state deterministic Hennie machine H in which O(n)
states occur O (n) times at the same position (whereas the remaining O (n 2) states occur at
most once at the same position). By Fact 4.2 we can assume that this machine always halts.
This reduces the equivalence problem for 1-pebble 2NFAs to the equivalence problem
for Hennie machines of the above type. We still have to check that the construction of
H, given P, can be done using polynomial work-space.

Let E be the alphabet of P, which is thus also the input alphabet of H. The work
alphabet of H consists of:

(1) The alphabet A of the 2DFA N2. These are letters of E that come together with
pairs of Shepherdson tables, and incompletely constructed pairs of Shepherdson
tables (see the first two passes in the proof of Theorem 4.1(c)). There are IAI _
IEIb n2 such letters, where b is a constant > 2.

(2) The circuit-slices (with coloring and erasing of some edges) associated with
the alphabet A of N2 (when N2 is being simulated by a deterministic Hennie
machine according to Theorem 4.1(a)). There are < la id n2 = I~:lc n2 such
slices, where d and c are constants > 2.

Two-Way Automata and Length-Preserving Homomorphisms 223

Thus the work alphabet of H has size < [EIc "2. Each letter of H can thus be
represented in space O (n2 +log I E I). We can compute the (exponentially large) transition
table of H, using only polynomial work-space, as follows: We consider all pairs (state,
letter) of H, in lexical order; for each such pair, we can compute the next state and the letter
printed and the head-direction, in polynomial time (as in the proof of Theorems 4.1 (a)
and (c)). We then output the state, letter, next state, letter printed, and direction. Since we
reuse the work-space to do this calculation for each pair, only polynomial work-space is
used (although the time is exponential).

Finally, the construction in Fact 4.2, which makes the Hennie machine halt, takes
only polynomial time (in particular, the work alphabet of the Hennie machine only grows
polynomially in size). []

The remainder of the proof is identical to the proof of Theorem 6.1. []

Theorem 6.3. The equivalence problem for 1-pebble 2AFAs is in EXPSPACE.

Proof. We reduce the problem (in three reductions) to a problem which is in ExPSPACE.
Only the first step (Claim A") is different from the proof of Theorems 6.1 and 6.2; the
rest is identical.

Claim A". The equivalence problem for n-state 1-pebble 2AFAs reduces (via a many-
to-one exponential-space reduction) to the equivalence problem for 0 (n2 n)-state deter-
ministic Hennie machines in which O(n) states occur O(n) times at the same position
(whereas each of the remaining 0 (n2 n) states occurs at most once at the same position),
and which always halt.

Proof of Claim A ". By Theorem 4.1(d), for every n-state 1-pebble 2AFA P we can
construct an equivalent O(n2n)-state deterministic Hennie machine H in which O(n)
states occur O (n) times at the same position (whereas the remaining O (n2 n) states occur
at most once at the same position). By Fact 4.2 we can assume that this machine always
halts. This reduces the equivalence problem for 1-pebble 2AFAs to the equivalence
problem for Hennie machines of the above type. We have to check that the construction
of H, given P, can be done using exponential work-space.

Let E be the alphabet of P, which is thus also the input alphabet of H. The work
alphabet of H consists of:

(1) The alphabet A of the 2AFA A2. These are letters of E that come together
with pairs of Shepherdson tables (with respect to 2AFAs), and incompletely
constructed pairs of Shepherdson tables (see the first two passes in the proof
of Theorem 4.1(d)). There are tA[< [Elb n2" such letters, for some constant
b > 2 .

(2) The circuit-slices (with coloring and erasing of some edges) associated with
the alphabet A of N2 (when N2 is being simulated by a deterministic Hennie
machine according to Theorem 4.1(a)). There are < [Atd n2 = [EIc n2" such
slices, where d and c are constants > 2.

224 J.-C. Birget

Thus the work alphabet of H has size < I~ [c n2", Each letter of H can thus be
represented in space O (n 2 n + log IE]). We can compute the (doubly exponentially
large) transition table of H, using only exponential work-space, as follows: We consider
all pairs (state, letter) of H, in lexical order; for each such pair, we can compute the next
state and the letter printed and the head-direction, in polynomial time (as in the proof
of Theorems 4.1 (a) and (d)). We then output the state, letter, next state, letter printed,
and direction. Since we reuse the work-space to do this calculation for each pair, only
exponential work-space is used (although the time is doubly exponential).

Finally, the construction in Fact 4.2, which makes the Hennie machine halt, takes
only polynomial time (in particular, the work alphabet of the Hennie machine only grows
polynomially in size in this step). []

Claims B-D of the proof of Theorem 6.1 are now used without any change. So our
problem reduces to a PSPACE-complete problem via exponential-space reductions and
thus can be solved in exponential space. []

Acknowledgments

In addition to the motivation of the Sakoda-Sipser conjecture, this paper was inspired by a discussion about
Exercise 3.19 of [HU] that I had with Douglas Albert in Berkeley many years ago. I would also like to thank
the anonymous referees for their useful reports; in particular, the characterization of NP (Theorem 2.2) was
suggested by one of the referees as an extension of Theorem 2.1.

References

[A]
[AHU]

[Bl]

[B2]

[B3]

[B41

[B5]

[B6]
[BG]

[BH]

[BCST]

T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.
J.-C. Birget, Concatenation of inputs in a two-way automaton, Theoretical Computer Science 63
(1989), 141-156.
J.-C. Birget, Basic techniques for two-way finite automata, in: J. E. Pin (ed.), Formal Properties of
Finite Automata and Applications, Lecture Notes in Computer Science, Vol. 386, Springer-Verlag,
Berlin, 1989, pp. 56-64.
J.-C. Birget, Positional simulation of two-way automata: proof of a conjecture of R. Kannan, and
generalizations, Journal of Computer and System Sciences 45 (1992), 154-179 (special issue on
STOC 89).
J.-C. Birget, State-complexity of finite-state devices, state-compressibility and incompressibility,
Mathematical Systems Theory 26 (1993), 237-269.
J.-C. Birget, Partial orders on words, minimal elements in regular languages, and state complexity,
Theoretical Computer Science, 119 (1993), 267-291.
J.-C. Birget, The minimum automaton for certain languages, in preparation.
R. Book and S. Greibach, Quasi-realtime languages, Mathematical Systems Theory 4 (1970), 97-
111.
M. Blum and C. Hewitt, Automata on a 2-dimensional tape, Proceedings of the 8th IEEE Symposium
on Switching and Automata Theory, 1965, pp. 155-160.
D. A. M. Barrington, K. Compton, H. Straubing, and D. Th6rien, Regular languages in NC I , Journal
of Computer and System Sciences, to appear.

['wo-Way Automata and Length-Preserving Homomorphisms 225

[BL]

[BT]

[Ch]

[CKS]

[Co]

[CS]

[DDQ]

[GGK]

[He]

[Hu]

[HU}

[IR]

[IS]

[JR]

[Ka]

[Ko]

[El]

[L2]

[LLS]

[LSH]

[M]

[MF]

[MP]

[RI]

[R21

[Sa]
[Sh]

J. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential
networks, Theoretical Computer Science 10 (1980), 19-35.
D. A. M. Barrington and D. Th6rien, Finite monoids and the fine structure of NC I , Journal of the
Association for Computing Machinery 35 (1988), 941-952.
M. Chrobak, Finite automata and unary languages, Theoretical Computer Science 47 (1986), 149-
158.
A. Chandra, D. Kozen, and L. Stockmeyer, Alternation, Journal of the Association for Computing
Machinery 28 (i981), 114-133.
S. Cook, A taxonomy of problems with fast parallel algorithms, Information and Control 64 (1985),
2-22.
A. Chandra and L. Stockmeyer, Alternation, Proceedings of the 17th IEEE Annual Symposium on
Foundations of Computer Science, 1976, pp. 98-108.
P. Denning, J. Dennis, and J. Qualitz, Machines, Languages, and Computation, Prentice-Hall,
Englewood Cliffs, NJ, 1978.
P. Gora l~ , A. Goral~fkov~, and V. Koubek, Alternation with a pebble, Information Processing
Letters 38 (1991), 7-13.
E C. Hennie, One-tape off-line Turing machine computations, Information and Control 8 (1965),
553-578.
H. B. Hunt III, On the time and tape complexity of languages, I, Proceedings of the 5th Annual
ACM Symposium on Theory of Computing, 1973, pp. 10-19.
J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-
Wesley, Reading, MA, 1979.
O. Ibarra and B. Ravikumar: Sublogarithmic-space Turing machines, nonuniform space complexity,
and closure properties, Mathematical Systems Theory 21 (1988), 1-17.
O. Ibarra and S. Sahni, Hierarchies of Turing machines with restricted tape alphabet size, Journal
of Computer and System Sciences 11 (1975), 56-67.
T. Jiang and B. Ravikumar, A Note on the Space Complexity of Some Decision Problems for Finite
Automata, Information Processing Letters 40 (1991), 25-31.
R. Kannan, Alternation and the power of non-determinism, Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, 1983, pp. 344-346.
D. Kozen, On parallelism in Turing machines, Proceedings of the 17th IEEE Annual Symposium on
Foundations of Computer Science, 1976, pp. 89-97.
E. Leiss, Succinct representation of regular languages by boolean automata, Theoretical Computer
Science 13 (1981), 323-330.
E. Leiss, Succinct representation of regular languages by boolean automata, II, Theoretical Computer
Science 38 (1985), 133-136.
R. Ladner, R. Lipton, and L. Stockmeyer, Alternating pushdown automata, Proceedings of the 19th
IEEE Symposium on Foundations of Computer Science, 1978, pp. 92-106, and SlAM Journal of
Computing, 13(1) (1984), 135-155.
P. M. Lewis, R. Steams, and J. Hartmanis, Memory bounds for recognition of context-free and
context-sensitive languages, Proceedings of the 6th IEEE Symposium on Switching Circuit Theory
and Logical Design, 1965, pp. 191-202.
P. Michel, An NP-complete language accepted in linear time by a one-tape Turing machine, Theo-
retical Computer Science 85 (1991), 205-212.
A. R. Meyer and M. J. Fischer, Economy of description by automata, grammars, and formal systems,
Proceedings of the 21st IEEE Symposium on Switching and Automata Theory, 1971, pp. 188-191.
D. E. Muller and F. P. Preparata, Bounds to complexities of networks for sorting and switching,
Journal of the Association for Computing Machinery 22 (1975), 97-111.
W. L. Ruzzo, Tree-size bounded alternation, Journal of Computer and System Sciences 21 (1980),
218-235.
W. L. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sciences 22 (1981),
365-383.
John E. Savage, The Complexity of Computing, Wiley, New York, 1976, reprint by Krieger, 1987.
J. C. Shepherdson, The reduction of two-way automata to one-way automata, IBM Journal of Re-
search and Development (1959), 198-200; also in E. E Moore (ed.), Sequential Machines: Selected
Papers, Addison-Wesley, Reading, MA, 1964.

226 J.-C. Birget

[Si 1] M. Sipser, Lowerbounds on the size of sweeping machines, Proceedings of the 11 thACMSymposium
on Theory of Computing, 1979, pp. 360-364; expanded in Journal of Computer and System Sciences
21 (1980), 195-202.

[Si2] M. Sipser, Halting space-bounded computations, Theoretical Computer Science 10 (1980), 335-338.
(See also Proc. 1EEE FOCS, 1978.)

[Sp] E N. Springsteel, "On the pre-AFL of [log n] space, and related families of languages, Theoretical
Computer Science 2 (1976), 295-304.

[SS] W. Sakoda and M. Sipser, Non-determinism and the size of two-way automata, Proceedings of the
lOth ACM Symposium on Theory of Computing, 1978, pp. 275-286.

[vL] J..van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. A, MIT Press, Cambridge,
MA, and Elsevier, Amsterdam, 1990.

[W] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Science,
Wiley, New York, 1987.

Received December 24, 1990, and in revised form August 15, 1990, and in final form January 20, 1994.

