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Abstract. Closure under length-preserving homomorphisms is interesting because 
of its similarity to nondeterminism. We give a characterization of NP in terms of 
length-preserving homomorphisms and present related complexity results. However, 
we mostly study the case of two-way finite automata: Let l.p.hom[n state 2DFA] 
denote the class of languages that are length-preserving homomorphic images of 
languages recognized by n-state 2DFAs. We give a machine characterization of 
this class. We show that any language accepted by an n-state two-way alternating 
finite automaton (2AFA), or by a 1-pebble 2NFA, belongs to 1.p.hom[O(n 2) state 
2DFA]. Moreover, there are languages in 1.p.hom[n state 2DFA] whose smallest 
accepting 2NFA has at least c n states (for some constant c > 1). So for two-way 
finite automata, the closure under length-preserving homomorphisms is much more 
powerful than nondeterminism. We disprove two conjectures (of Meyer and Fischer, 
and of Chrobak) about the state-complexity of unary languages. Finally, we show 
that the equivalence problems for 2AFAs (resp. 1-pebble 2NFAs) are in PSPACE, and 
that the equivalence problem for 1-pebble 2AFAs is in ExPSPACE (thus answering 
a question of Jiang and Ravikumar); it was known that these problems are hard 
in these two classes. We also give a new proof that alternating 1-pebble machines 
recognize only regular languages (which was first proved by G o r a l ~  et al.). 

* This research was supported in part by N.S.E Grant DMS 8702019. 



192 J.-C. Birget 

1. Introduction 

This paper was initially motivated by two issues: 

(1) The similarities (and differences) between nondeterminism and length-preserving 
homomorphisms. 

(2) The Open Problem (see below) of Sakoda and Sipser, and similar open problems. 

We do not solve the Sakoda-Sipser conjecture; but we do obtain many results about 
length-preserving homomorphisms and we use this approach in order to solve other 
problems (e.g, to show that the equivalence problem for two-way alternating finite 
automata is in PSPACE). In Section 2 we also give some complexity results involv- 
ing length-preserving homomorphisms. Further results on the state-complexity of finite 
automata, proved in similar ways, appear in [B4]. 

Notation. 1DFA (resp. 2DFA) means one-way (resp. two-way) deterministic finite 
automaton; 1NFA (resp. 2NFA) means one-way (resp. two-way) nondeterministic finite 
automaton (see [HU] for definitions); 1AFA (resp. 2AFA) means one-way (resp. two- 
way) alternating finite automaton (see [CKS], [CS], [Ko], [LLS], and [BL]). 

Open Problem ([SS] and Seiferas). If  a language L is recognized by a 2NFA, or a 
1NFA, with n states, how many states does a 2DFA need (in the worst case) to recog- 
nize L? 

In [SS] it is conjectured that the required number of states of the 2DFA is larger 
than any polynomial in n. 

Sipser [Sil] proved that a sweeping 2DFA (i.e., a 2DFA which can only make 
reversals at the ends of its input tape) needs 2 n states to recognize certain languages 
which are accepted by an n-state 1NFA. On the other hand, Chrobak [Ch] proved that 
each unary n-state 1NFA can be simulated by a 2DFA with O(n 2) states. The Sakoda- 
Sipser conjecture is probably very hard. In this paper we study and solve the following 
problem which is implied by (is easier than) the conjecture. 

Problem (Length-Preserving Homomorphisms). If the language L (_  E*) can be 
written as h(Lo), where h is a length-preserving homomorphism from A* to E*, and 
L0 ___ A* is recognized by an n-state 2DFA, then how many states does a 2DFA need to 
recognize L? 

We prove a worst-case lower bound of c n (for some constant c > 1). 
We mention a few other open problems about the state-complexity of various finite 

automata; some of these problems are probably harder than the Sakoda-Sipser conjecture 
(in the sense that an affirmative answer to the question implies the Sakoda-Sipser con- 
jecture). We encounter some of these questions in this paper, but for different finite-state 
devices. 

Halting Two-Way Automata. If a language L is recognized by a 2NFA with n states, 
how many states does a 2NFA with the additional property that all its computations halt, 
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need to recognize L? Is the increase in the number of states larger than any polynomial 
in n? 

Note that all computations of a 2NFA halt iff, for every input and every position 
on that input, no state is ever repeated at the same position. In the deterministic case 
Sipser [Si2] solved the corresponding problem (negatively): every 2DFA with n states 
is equivalent to a 2DFA which always halts, and which has < cl �9 n 2 states (and also 
< c2 �9 I E I �9 n states), where cl and c2 are constants, and ~ is the input alphabet. He also 
mentions the above problem. 

Complementation. If a language L is recognized by a 2NFA (or a 1NFA) with n states, 
how many states does a 2NFA need to recognize T (the complement of L)? Again, does 
a superpolynomial lower bound exist? 

Sakoda and Sipser [SS] solved this problem (affirmatively) in the "INFA ~ 1NFA" 
case (and afor t ior i  for "2NFA --+ 1NFA"): for every n there is a language Ln which is 
recognized by an n-state 1NFA, but such that any 1NFA accepting Ln needs > 2 n states; 
another proof of this result is given in [B5]. 

1-Pebble 2DFA. If a language L is recognized by a 2NFA (or a 1NFA) with n states, 
how many states does a 1-pebble 2DFA need to recognize L? Does a superpolynomial 
lower bound exist? 

A 1-pebble 2DFA is a 2DFA which has one pebble which it can leave on the input 
tape, and retrieve, and put down elsewhere, etc. Blum and Hewitt [BH] proved that 1- 
pebble 2DFAs can only recognize regular languages; see also Exercise 3.19 on p. 73 of 
[HU]. In Section 5 we show that a 1-pebble 2DFA can have exponentially fewer states 
than any equivalent 2NFA, for some languages. In Section 6 we give a new proof that 
1-pebble 2AFAs (alternating 1-pebble machines) recognize only regular languages (this 
result was first proved in[GGK] by very different methods). 

2. Length-Preserving Homomorphisms 

Homomorphisms are a familiar notion in formal language theory, especially regarding 
regular languages (see [HU]). By definition, a homomorphism h: A* ~ Z* (where 
A and E are finite alphabets) is a function satisfying h(e) = e (where e is the empty 
word), and h(u  �9 v) = h(u)  �9 h (v ) ,  for all u, v ~ A*. A homomorphism h is length- 
preserving iff Ih(u)l = lul, for all u e A*. From now on we write 1.p.hom. for "length- 
preserving homomorphism." An 1.p.hom. h is determined by its restriction hla: A --~ 
(restriction to the subset A of the domain A*); l.p.hom.'s are also called "letter-to-letter 
homomorphisms." For a class C of languages, we denote by 1.p.hom(C) the closure of 
C under l.p.hom.'s; that is, 

1.p.hom(C) = {~o(L)/L E C and q~ is an 1.p.hom. whose domain alphabet 

is the alphabet of L}. 
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One motivation for studying l.p.hom.'s (and, in particular, the 1.p.hom.-closure of a 
class of languages defined by machines) is the similarity with nondeterminism: both 
nondeterminism and 1.p.hom.-closure involve the existential quantifier. 

Note that when we speak of a class of languages we never fix a particular alphabet; 
all finite alphabets are allowed. This is necessary to make the 1.p.hom.-closure a nontrivial 
operation. We may assume however that all our alphabets are finite subsets of a fixed 
countable set; this assumption never constrains us, and it avoids possible set-theoretic 
difficulties. 

For one-way devices, nondeterminism and l.p.hom.-closure of determinism are often 
equivalent. For example: 

(1) 1.p.hom(DCFL) = CFL. 
(2) 1.p.hom[n state 1DFA] = [n state 1NFA]. 

Notation. (D)CFL is the class of(deterministic) context-free languages; In state 1DFA] 
(resp. [n state 1NFA]) is the class of all languages recognized by some n-state 1DFA 
(resp. 1NFA); again, the alphabet is not fixed. 

For two-way machines however there is usually no close relation between nonde- 
terminism and 1.p.hom.-closure of determinism. A few facts are known: 

(1) It is easy to see that if S(n) >_ n (for all n), then 1.p.hom(DSPACE(S)) = 
DSPACE(S) and 1.p.hom(NSPACE(S)) = NSPACE(S). 

(2) However, Ibarra and Ravikumar [IR] proved that, for every function S e 
o(log) (7 f2 (loglog), DSPACE(S) 5~ 1.p.hom(DSPACE(S)). More strongly, they 
proved that the class Us DSPACE(S), where S ranges over all of o(log) N 
f2 (loglog), is not closed under l.p.hom.'s. 

(3) The Graph Accessibility Problem is in 1.p.hom(DSPACE(log)) (due to [IR]). 
(4) CFL c_ 1.p.hom(DSPACE(log)) [Sp]. 
(5) It can easily be proved that if T(n)  > n (for all n), then 1.p.hom(NTIME(T)) = 

NTIME(T). 
(6) The class NTIME(O (n)) (nondeterministic linear time) is equal to the closure, 

under 1.p.hom's, of finite intersections of context-free languages [BG]. 

Moreover, since CFL is in AC 1 JR1], and AC 1 is closed under intersection, this 
implies NTIME(O(n)) c 1.p.hom(ACl). In Theorem 2.3 we improve the latter to 
NTIME(O(n)) ___ 1.p.hom(NC1). 

When we talk about these circuit-based parallel-complexity classes we always mean 
logspace-uniform AC l, AC o, N C  1, etc., as defined in the chapter by D. Johnson, pp. 138- 
143, in [vL]; see also [W], [Co], and [R2]; stronger uniformity conditions would also 
work, but uniformity is not the main issue here. The reader should consult the references 
above (as well as the chapter by Boppana and Sipser in [vL]) for the definition of AC k 
and NC k (k > 0); we just give a summarized definition here: A function f belongs to 
AC k iff there is a family (Cn: n > 0) of combinational circuits such that Cn contains 
a polynomially bounded number of gates and has depth O ((log n)k), and Cn computes 
f ( w )  for any word w of length n. The family (C,: n > 0) is log-space uniform iff a 
function which outputs Cn can be computed in deterministic log-space (when n is given 
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as an input in unary, i.e., as a string of length n). The class NC k is defined in a similar 
way to AC k; the only difference is that for NC k all the gates in the circuits are restricted 
to having bounded fan-in. 

We have the following new results: 

T h e o r e m  2.1. The CNF-Satisfiability problem can be written as h(L0), where h is an 
1.p.hom. and Lo is in AC ~ Thus, the class 1.p.hom(AC ~ (_c 1.p.hom(DSPACE(log)) c 
NP) contains some NP-complete problems. 

Proof. It is straightforward to check (see also (5) above) that NP is closed under 
l.p.hom.'s, and, hence, contains l.p.hom(DSPAfE(log)) and 1.p.hom(AC~ We show that 
the Satisfiability problem for CNFs (conjunctive normal forms, see [HU] and the refer- 
ences to Cook's  work therein) is an 1.p.hom. image of a language in uniform AC ~ We 
represent the boolean variables of  CNFs by nonempty words over a two-letter alphabet 
{a, b}; the other symbols that occur are v (or), A (and), --, (not), and ((,)) (parenthe- 
sis symbols). This representation of CNFs is simple and natural; representations could 
also be devised that are more compact or use a smaller alphabet. A word w over this 
seven-letter alphabet represents a satisfiable CNF if and only if w is an 1.p.hom. image 
of a syntactically well-formed CNF w r which is marked by a truth-value assignment that 
evaluates to 1 ( =  TRUE); the truth-value assignments to the boolean variables will be 
written under the leftmost letter of each boolean variable. The 1.p.hom. just erases the 
truth-value assignment. The alphabet has now the additional four letters a, a, b, and b. 

0 1 0 1 
For example, the satisfiable CNF w = (aa v --,ab v --,b)) A ( - 'aa  v b)) A (bb v --,aa)) 

is the image of the marked CNF w' = ((~ a v --, al b v --, b))0 A ((", ~ a V b))0 A ((bl b v --, aa))  

which evaluates to 1 for the marked assignment (here the boolean variables and their 
truth-value assignments are aa :=  0, ab := 1, b := 0, bb := 1). 

Let L0 _c {a, b, v ,  A, --,, ((,)), a,  a,  b, b}* be the language of CNFs, each marked 
0 1 0 1 

by a truth-value assignment that evaluates to 1. We want to show that L0 is in AC ~ 
First, a counter-free finite automaton can check that an expression over the eleven-letter 
alphabet is a CNF and that the truth-value assignment evaluates to 1. (Counter-free finite 
automata can be simulated by AC ~ circuits, see [BT] and [BCST].) The only hard thing 
to check is that the truth-value assignment is consistent (i.e., the same boolean variable 
is assigned the same truth-value wherever it occurs in the CNF). To check this, all pairs 
c Wl, d w2 (where c, d ~ {a, b}, x, y ~ {0, 1 }, and wl, We E {a, b}*) of  variables marked 
x y 

by truth values that appear in the CNF are picked; all these pairs are handled in parallel. 
The two members of such a pair are compared as follows:' if CWl = dw2 and x 5~ y, 
then the truth-value assignment is inconsistent; if this does not happen for any pair, the 
truth-value assignment of  the CNF is consistent. So, the problem reduces to checking 
the equality of  strings; this can be done in AC ~ (straightforward exercise, see also [Sa] 
and [W]). [] 

T h e o r e m  2.2 (A Characterization of NP). A language L is in NP iff there is a polynomia 
length padding of  L which belongs to 1.p.hom(NC1). 
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Definition. The p(.)-length padding of L is the language {wSP(Iwl)/w E L}; here p(.) 
is a polynomial, and $ is a letter that does not belong to the alphabet of L. 

Proof If a polynomial-length padding of L is in l.p.hom(NC 1) (or, more generally, in 
NP), then L is clearly in NP. Conversely, if L is in NP, then L can be reduced to the CNF- 
Satisfiability problem via a many-to-one NCl-computable reduction (Cook's theorem, 
see [HU]); the argument in [HU], showing that the reduction is in log-space, also shows 
that the reduction is in NC 1. Let f be the reduction function used: For every word w, 
f (w) is a boolean formula (represented as a string as in the proof of Theorem 2.1) which 
is satisfiable iff w belongs to L; moreover, f ( w )  is computable in NC l, and we can 
assume that I((f(w)))l = p(Iwl), for some polynomial p(.). Consider now the language 

Ll = {wB/w c L and B is any marked boolean formula 

(as in the proof of Theorem 2.1) obtained from f ( w )  
by marking it with a truth-value assignment that evaluates to 1 }. 

We assume that the alphabet of L, and the alphabet used for representing marked boolean 
formulas, are disjoint. 

The p(.)-length padding of  L is then an l.p.hom, image of Ll. Moreover, LI is in 
AC~ Given a string z, we first factor z as wB by looking for the first occurrence of the 
left-parenthesis symbol "((" (if "((" does not occur we reject); we do this by factoring 
z as wB in all possible ways (there are Izl + 1 possibilities) in parallel, and retaining 
only the factorization where B starts with "((" and w is over the alphabet of L; this is an 
AC~ Second, we check that B belongs to L0, as in the proof of Theorem 2.1; 
this problem is in AC ~ as we saw. If  we have not rejected z so far, B is the marked form 
of a satisfiable boolean formula ft. Finally, we can compute f ( w )  in NC 1 and check that 
fl and f ( w )  are the same. [] 

We would like to thank one of the anonymous referees for suggesting a result similar 
to Theorem 2.2, as an extension of Theorem 2.1. Also, if CNF-Satisfiability can be proved 
to be NP-complete for many-to-one reductions that are more restrictive than NC l (but 
no less restrictive than AC~ then Theorem 2.2 is automatically strengthened. 

The following theorem generalizes (4) above, since NC 1 _ DSPACE(1Og) and 
CFL _ NTIME(O(n)); compare also with (5). Theorem 2.2 could also be derived 
from Theorem 2.3, since the T(-)-padding of any language in NTIME(T) belongs to 
NTIME(O (n)). 

Theorem 2.3. NTIME(O(n)) _ 1.p.hom(NC1). 

Proof. Let L ___ E* be accepted by a k-tape nondeterministic Turing machine M in 
time c �9 n (where c is a constant). The machine M has the form (Q, ~ ,  F, A, q0, F), 
where F is the work-tape alphabet (including a blank symbol), q0 is the start state, 
F is the set of accept states, and A c Q • F k • Q • F k x {-1,  +1} k is the tran- 
sition relation. We call any element of A a transition; so, a transition has the form 
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(q, al . . . . .  ak, q ' ,  b l  . . . . .  bk, i l  . . . . .  ik); we also write 

(q, al  . . . . .  ak) --~ (q',  bl . . . . .  bk, il . . . . .  ik), 

and we call (q, a l  . . . . .  ak) the left side of  the transition, and (q',  b l  . . . . .  bk, i l  . . . . .  ik) 
the right side; we call a i (resp. bi) the i th tape-coordinate of (q, al  . . . . .  ai . . . . .  ak) 

(resp. (q' ,  bl . . . . .  bi . . . . .  bk, j l  . . . . .  jk) ). 
We write every word w = al  - -- an 6 L as an 1.p.hom. image of a word obtained 

by writing down w and uniformly interleaving w with a sequence of c �9 n transitions 
(provided that this sequence of  transitions describes an accepting computation for w). 
More precisely, we introduce the alphabet E x A c, which is finite and consists of  elements 
of  the form (a, 8i~ ..  �9 8it). We consider the 1.p.hom. h: (E  x Ac) * --+ E* which just  
erases the second coordinate; so h((a,  8il " '"  8it)) = a. We define the following language 
L'  such that L = h(Lr):  

L '  = {(al, 81 " "  8c)(a2, 8c+1 " "  82c) �9 - �9 (an, 8cn-c+l "'" 8cn) C ( ~  X AC)*/ 

n > O, al �9 �9 an ~ L,  and 81 �9 �9 �9 8c8c+1 �9 �9 �9 82c" . . . . .  8 . . . .  +1 " "  " 8cn describes 

an accepting computation of M on input al  �9 �9 �9 an }. 

We want to show that L '  is in N C  1 , i.e., we want a n  N C  1 algorithm which, given w 
(with I wl = n) and a sequence 8 1  �9 ' '  8cn of transitions, decides whether this sequence 
of  transitions describes a well-formed accepting computation of  M on input w. The 
following observation is important: For any given time t (0 < t < cn), the position Pi (t) 
of the head on the ith tape (1 < i < k) can be computed by a n  N C  1 algorithm. This can 
be done by simply summing the direction-of-movement coordinate over the sequence 
81 ..  �9 8t (and it is known that the sum of  a linear number of  bounded-size integers can 
be computed in NC1; see [Sa] and [W]). Moreover, since t is linearly bounded, we can 
compute all the positions Pi (t) ( f o r  all t) in parallel, in N C  1 . Thanks to this observation, 
we can talk about the positions of the heads during the hypothetical computation. 

We have the following criterion. 

The sequence 81 "'" 8cn o f  transitions o f  M on input w describes an accepting com- 
putation iff  all the following consistency conditions hold: 

States-- the state on the left side o f  the f irst  transition 81 is the start state q0, and 

the state on the right side o f  the last transition 8cn belongs to the set o f  accept 
states F; moreover, f o r  each t (1 < t < cn), the state on the right side o f  St is 
the same as the state on the left side o f  St+l. 

Input-- for  all i, when the head on the ith tape visits a position p f o r  the f irst  time 
(suppose this happens at time z)  it sees the pth input letter ap ( i f  i = 1 and 
p < n) or the blank symbol; more precisely, the left side o f  transition 8r has ap, 
respectively the blank, as the ith tape-coordinate. 

Read-write consistency--for all i, i f  the head on the ith tape visits a position p at 
times tr and r (>  t7) (without visiting p inbetween), then the head reads at time 
z what it wrote at time ~; more precisely, the right side o f  S~ and the left side o f  
83 have the same ith tape-coordinate. 
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This criterion readily leads to the desired NC l algorithm. The condition about the 
states can be checked by a finite automaton, and hence by an NC 1 circuit. 

The two conditions about the input and read-write consistency are combined. For 
all t (1 < t < cn) in parallel, we compute the positions pl (t) . . . . .  pk(t) of the k heads 
at time t (using the earlier observation that this can be done in NC~). 

We check for all t '  < t (in parallel) whether Pi (t') ~ Pi (t); if so, the position Pi (t) 
has never been visited before on the ith tape, so we check that the ith tape-coordinate of 
the left side of St is ap (with p = Pi (t)), respectively the blank symbol (input condition). 
This is done for each i. The operation of comparing (<, <, r  two integers can be done 
in NC z (see [Sa] and [W]). 

On the other hand, if Pi ( t ' )  -= Pi ( t )  for some t' (< t), then we are not in a situation 
where the input condition needs to be checked at time t. For this time t we compute the 
next time t" when position Pi (t) is visited again; this is done by considering all r (> t) 
in parallel and taking t" to be the smallest r such that pi('c) = pi(t); this "minimum" 
operation can be done in NC l (since even the sorting problem can be solved in NC1; 
again, see [Sa] and [W]). Now we check that on the right side of 3t and on the left side of 
3t,,, the ith tape-coordinates are the same (read-write consistency). If no t" exists, then 
the condition is vacuous and does not need to be checked. 

Finally, the results of these O (n 2) parallel checks are combined into a boolean "and" 
(which, again, can be done in NCI). This completes the proof that the language L' is 
in NC 1 . [] 

For S(n) E o(n) little seems to be known about how 1.p.hom(DSPACES), DSPACES, 
and NSPACES are related. In this paper we consider the case where S is a constant and 
show that here 1.p.hom. is exponentially more powerful than nondeterminism, and at 
least as powerful as alternation (up to squaring the number of states). In [B4] we show 
that l.p.hom, is also exponentially more powerful than altemation. 

If instead of 1.p.hom.'s all homomorphisms are taken, then the following is obtained 
(see [Sp]): the homomorphism closure of DSPACE(Iog) is the class of all recursively enu- 
merable languages. (Indeed, in log-space the validity of any Turing machine calculation 
can be checked; to obtain the language accepted by the Turing machine, the noninput 
configurations of the computations are erased, by applying a homomorphism.) 

Remark.  A standard wrong argument for "proving" that 

l.p.hom[n state 2DFA] c_C_ [O(n) state 2NFA] 

(which is also a wrong assertion, see Theorem 4.3) needs to be addressed. Suppose 
L = h(Lo), Lo ~ [n state 2DFA]. In the wrong argument a 2NFA A would, each time it 
reads a letter a on its tape, guess a letter b c h -1 (a) and feed b to the 2DFA recognizing 
L0. This works correctly for one-way devices, but to be correct for two-way automata, 
A would have to guess the same b ~ h -x (a) each time it revisits a at a given position on 
the tape. 
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3. A Machine Model Related to l.p.hom[n state 2DFA] 

Here [n state 2DFA] denotes the class of all languages (over all possible finite alphabets) 
that are recognized by n-state 2DFAs. 

A machine model that is closely related to the class l.p.hom[n state 2DFA] is the 
nondeterministic single-tape n-state Turing machine, with the two additional restrictions: 

(1) 

(2) 

The read-write head cannot leave the input portion of the tape, which is sur- 
rounded by end markers "(" (at the left) and ")" (at the fight). 
For every word that is accepted an accepting computation exists during which 
every position of the tape is visited at most k times (for some constant k which 
is independent of the input). We say in that case that "there are < k visits per 
position." 

We assume that the machine moves right or halts when it reads "(", and that it moves 
left or halts when it reads " ) "  In a starting configuration, the state is the start state and the 
head is on the leftmost letter of the input (just right of "(." In an accepting configuration 
the state is an accept state and the head is on ")" (so, we use the same acceptance rule as 
for two-way finite automata). 

We call such machines Hennie machines, after Hennie [He] who proved (among 
other results): 

(1) If  a language L is recognized by a Hennie machine, then L is regular. 
(2) Every one-tape deterministic Turing machine with linear-time complexity and 

which never leaves the input portion of the tape, is actually a deterministic 
Hennie machine (for emphasis: such a Turing machine is not only equivalent to 
a Hennie machine, it is a Hennie machine; it can visit each tape position only a 
bounded number of times during accepting computations). 

(3) Any deterministic (resp. nondeterministic) one-tape linear-time Turing machine 
is equivalent to a deterministic (resp. nondeterministic) one-tape linear-time 
Turing machine which never leaves the input portion of the tape. 

It is remarkable that the above result (2) of Hennie does not extend to nondeterministic 
linear time: indeed, nondeterministic one-tape linear-time Turing machines exist which 
accept NP-complete languages [M], and, thus, such Turing machines are not equiva- 
lent to nondeterministic Hennie machines (which only accept regular languages). So, 
one-tape linear-time Turing machines have a striking property: When these machines 
are extended from determinism to nondeterminism, the languages accepted pass from 
regular to a subclass of NP which includes NP-complete languages. 

We often use the following observation: If  in a Hennie machine there are < k visits 
per position (during a certain computation), then, obviously, no state can occur more 
than k times at the same position. A slightly weaker converse also holds: If in an n-state 
Hennie machine no state occurs more than k~ times at the same position, then there are 
< nkl visits at the same position (indeed, suppose there were more than nkl visits at a 
position; then, since there are only n states, some state would have to occur more than 
kl times at that position, by the Pigeon-Hole Principle). 
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Theorem 3.1. 

(a) I f  L ~ 1.p.hom[n state 2DFA], then L is recognized by a nondeterministic n- 

state Hennie machine, in which no state occurs more than once at the same tape 
position during any accepting computation. 

(b) Suppose L is recognized by an n-state Hennie machine such that f o r  every word 
accepted an accepting computation exists during which no state occurs more 

than kl times at the same position o f  the tape (where kl is a constant); then L 
belongs to 1.p.hom[n �9 kl state 2DFA]. 

Corol lary  3.2 (Machine Characterization of 1.p.hom[n state 2DFA]). The following thr 
conditions are equivalent f o r  any language L: 

(1) L belongs to 1.p.hom[n state 2DFA]. 
(2) L is recognized by a nondeterministic n-state Hennie machine such that, in 

every accepting computat ion,  no state occurs more than once at the same 
tape position. 

(3) L is recognized by a nondeterministic n-state Hennie machine such that, for 
every accepted word  an accepting computa t ion  exists in which no state occurs 
more than once at the same position. 

Proof  o f  Theorem 3.1. (a) Suppose L = h(Lo) ~ E*, where L0 c A* is recognized 
by an n-state 2DFA, E and A are finite alphabets, and h: ~* --~ A* is an 1.p.hom. We 
may assume that E n A = ~ (if necessary, we make a new copy of A; this does not 
change L, nor the number of  states needed to accept L0 by a 2DFA). 

A nondeterministic Hennie machine accepting L (_  Z*) simulates the 2DFA of 
L0 in the following way: The Hennie machine has the same state set as the 2DFA, and 
its work alphabet is E U A. When the Hennie machine reads a letter cr 6 E in state 
q, it guesses a letter 8 6 h - l  (a)  and prints 3 (overwriting or), and then simulates how 
the 2DFA would move on 3 in state q; all this constitutes one nondeterministic Hennie 
machine step, When the Hennie machine reads a letter 6 ~ A (printed earlier), it just 
simulates the 2DFA. This uses the fact that E A A = ~.  No new states are introduced. 
(Recall also that, by definition, we only require that the Hennie machine makes a bounded 
number of visits per position on at least one accepting computation for each accepted 
word; some accepting computations might make more visits; rejecting computations can 
do any number of visits. So we need not assume that our 2DFA for L0 halts on all inputs.) 

(b) Suppose L ___ I]* is recognized by a nondeterministic Hennie machine H with 
n states, and for every word in L an accepting computation exists during which no state 
occurs more than k~ times at the same position. Let k = n �9 kl; by the observation made 
before Theorem 3.1, H makes < k visits per position (during the computations under 
consideration). 

We write L = h(Lc),  where Lc is the "k-track computation language" of  H (de- 
scribed also in [B3]): Lc consists of all accepting computations of  H~ encoded into k 
parallel rows, each as long as the input. See Figure 1 for an example. Then L~ is recog- 
nized by a 2DFA A which takes such a k-track picture as an input and checks whether 
the computation described by the picture is valid and accepting. The state set of  A is 
Q • { 1 . . . . .  kl } (where Q is the state set of H); A remembers the state in which H 
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head. 

r 

The k-track picture (here k = 5) of a computation of H, and the corresponding movement of the 

would be, and also a number i (1 < i < kl) chosen so that the state together with i will 
enable A to know which track it is on (since k = n - kl, no more than kl choices for i 
are required). Each time H makes a reversal the k-track picture shows the continuation 
of the computation on another track. The idea is similar to the hint in Exercise 3.19 on 
p. 73 of [HU] (where 1-pebble automata are discussed). 

The alphabet A of Lc and A is the cartesian product 

(E x Q x D )  x ( F x  Q x D U { e } )  k-l, 

where F is the work alphabet of H, and 

iV-J~ j, i .~j, iL~ J, i t~J /l < i <k, I _<j <k}. 

A letter of A is thus a k-track column (each cell of which contains an element of 17 x Q • D 
or the empty word e). 
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We define the 1.p.hom. h: A* ~ E* by mapping every element of A to its E-  
coordinate of  the first cell. [] 

Corol la ry  3.3. 1.p.hom[n state 2DFA] = 1.p.hom[n state 2NFA]. 

Proof. Theorem 3.1(b) applies here; an n-state 2NFA is a special case of  a nondeter- 
ministic Hennie machine with kl = 1. [] 

Corol la ry  3.4. 1.p.hom[n state 2DFA] = l.d.hom[n state 2DFA]. 
Here 1.d.hom stands for  "length-decreasing homomorphism," i.e., homomorphisms 

h satisfying Ih(x)l _< Ixl (equivalently, every letter is mapped to a letter or to the empty 
string). 

Proof. By Theorem 3.1 it is sufficient to show: If L = h(Lo) c E* (where L0 c A* 
is recognized by a 2DFA with n states, and h: A* --+ E* is an 1.d.hom.), then L is 
recognized by a nondeterministic Hennie machine H with n states in which no state 
occurs more than once at the same position. We can assume again that E f3 A = ~.  On 
input al .. �9 ak 6 E*, H works as follows: Each time H reads a letter ai it guesses a 
string xi ~ A* such that h ( x i )  = ai, and prints [xi], overwriting ai ([Xi] is the quadruple 
of  global state-transition functions, or Shepherdson tables, with respect to the 2DFA of 
L0; see the Background paragraph at the end of the proof of Theorem 4.1(c) of  this 
paper, or [B 1], [B3], and the Appendix of [B4]). Next H goes to the state determined 
by the current state and [xi]. When H reads an [xj] (printed earlier) it just applies the 
appropriate global transition function of [X j] to the current state. [] 

In the previous theorems, large alphabets appear; the following fact puts an upper 
bound on the required size of  alphabets. 

Fac t  3.5 (Alphabet Sizes). I f  L c E* belongs to 1.p.hom[n state 2DFA], then L = 
h (Lo) for  some Lo ~ In state 2DFA], where the alphabet o f  Lo has size < ]EI .  n n. 

Proof. The proof of  this is similar to the proof of Corollary 3.4: if L0 is originally 
over an arbitrarily large alphabet A and L = h(L0), we replace A by the alphabet 
{(h(3), [3])/3 6 A}; again, [3] is the quadruple of global state-transitions, as above; h 
is replaced by the 1.p.hom. 0 defined by (h(3), [3]) ~ h(3). [] 

As a consequence, there are only finitely many languages over a given alphabet 
E that belong to 1.p.hom[n state 2DFA] for a fixed n; and there are only finitely many 
languages over a given alphabet E that are accepted by n-state k-visiting nondeterministic 
Hennie machines, for fixed n and k (but irrespectively of the size of  the work alphabet); 
for the latter one uses Theorem 3.1(b). 

The Hennie machines associated with 1.p.hom[n state 2DFA] (by Theorem 3.1), and 
the ones we will encounter in Section 4 (in relation with n-state 1-pebble machines or 
alternating finite automata), all have a number of visits per position which is polynomially 
bounded by the number of states of the Hennie machine. The rest of this section is a 
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digression which shows that in general, however, the number of visits per position of a 
deterministic Hennie machine need not be recursively bounded by the number of  states 
of  the machine. 

Theorem 3.6. There is a family o f  languages Ln ~ {a}* (n ~ N), where L~ is recog- 
nized by a deterministic Hennie machine with n states, but: 

(1) Every 2AFA recognizing L~ has a number o f  states > E(n  - cl),  where E (.) is 
the Busy Beaver function and cl is a constant. 

(2) Every nondeterministic Hennie machine with s states and <<_ k visits per position, 
which recognizes Ln, satisfies s .  k > E(n  - c2),for some constant c2. 

(It is well known that the Busy Beaver function E(.)  is eventually larger than any 
recursive function; see, e.g., [DDQ].) 

Proof. Let Bn be an n-state Busy Beaver; Bn is a deterministic Turing machine with 
one two-sided infinite tape, with work alphabet {0, 1 }. When Bn is started on a blank 
tape it eventually halts, with Z(n)  1 's on the tape (there may be O's as well). Let t(n) be 
the length of the 0-1 string on the tape when Bn halts; so t(n) >_ E (n). 

Let Ln = {a t(n-c)} c {a}* (Ln consists of a single word); c is a constant to be 
determined later. 

We first prove that Ln is recognized by a deterministic Hennie machine H with n 
states. On input a m, H simulates Bn-c, treating a and the two endmarkers of  H like 
the blank symbol. If  Bn-c wants to write on the right endmarker, H halts and rejects. If  
Bn-c runs out of space on the left (i.e., it wants to write on the left endmarker of H),  
then H will shift the whole 0-1 string one space to the right (to do this H needs a fixed 
number of  states); if in this process H would need to write on the fight endmarker, it 
halts and rejects. Finally, when Bn-c halts (and if H has not rejected the input yet), the 
tape content is of  the form x a  m-t(n-c), where x is a 0-1 string of length t(n - c). Now 
H will accept iff at this point the tape actually contains no a ' s  (i.e., iff m = t(n - c)). 
Then H has n states, if the constant c is appropriately chosen. 

Proof of  parts (1) and (2) of the theorem: 
Since a minimum-state 1NFA accepting {a t(n-c)} has t(n - c) + 1 states (proof by 

Pumping Lemma),  any 2AFA with s states must satisfy 2 s2" > t(n - c) > E (n - c) (see 
[LLS] or [B4]). Since E(-) grows extremely fast, this implies that s > E(n  - cl), for 
a large enough constant cl. Similarly, any Hennie machine with s states and < k visits 
per position is equivalent to a 1NFA with (sk) sk states (by Theorem 3.1(b), and by the 
fact that any 2DFA with r states is equivalent to a 1NFA with _< r r states, see [HU] and 
[B4] ). Thus (sk) s~ > E(n - c). Since E(.)  grows so fast, we obtain sk > E(n  - c2), 
for a constant c2. [] 

4. The Power of l.p.hom[n state 2DFA] 

We have seen already (Corollary 3.3) that [n state 2NFA] is contained in 
1.p.hom[n state 2DFA]. The next theorem says that, up to squaring the number of states, 
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1.p.hom[n state 2DFA] is at least as powerful as alternating two-way finite automata 
(2AFA), or nondeterministic 1-pebble two-way automata (1-pebble 2NFA). The 2AFAs 
that we use here are allowed to have any boolean functions (with the states as boolean 
variables) attached to their state transitions (see [Ko] for 1AFAs; our model of 2AFAs 
is more general than ILLS], where only 3- and V-configurations are admitted and where 
the head can move only when the configuration is deterministic). 

Theorem 4.1. 

(a) Every n-state 2AFA can be simulated by a deterministic Hennie machine with 
O (n ) states, with no state occurring more than O (n ) times at the same position. 
Thus (by Theorem 3. l(b)), for  some constant c: 

[n state 2AFA] _ 1.p.hom[e �9 n 2 state 2DFA]. 

(b) Every language recognized by an n-state 1AFA or, more generally, by a halting 
n-state 2AFA (i.e., which eventually halts on every computation path), belongs 
to l.p.hom[e, n state 2DFA], for  some constant c. 

(c) Every n-state 1-pebble 2DFA (resp. I-pebble 2NFA) can be simulated by a 
deterministic (resp. nondeterministic) Hennie machine with 0 (n 2) states, such 
that every accepted word has an accepting computation in which no state occurs 
more than once at the same position. Thus (by Theorem 3.1(b)) the language 
recognized belongs to l.p.hom[c - n 2 state 2DFA], for  some constant c. 

For nondeterministic 1-pebble machines we also have: every n-state l -pebble  
2NFA can be simulated by a deterministic Hennie machine with 0 (n 2) states, 
in which O(n) states occur at most O(n) times at the same position, and each 
of  the remaining 0 (n 2) states occurs just  once at the same position. 

The following theorem is about alternating 1-pebble machines; in particular, it im- 
plies that such devices recognize only regular languages (which was first proved by 
Goral6~ et al. [GGK] in a very different way). 

(d) Every n-state 1-pebble 2AFA can be simulated by a deterministic Hennie ma- 
chine with O(n2 n) states; O(n) o f  these states occur at most O(n) times at the 
same position, and the remaining O(n2 n) states occur just  once at the same 
position. Thus (by Theorem 3.1 (b)): 

[n state I-pebble 2AFA] ___ l.p.hom[e �9 n2 n state 2DFA], 

for  some constant c. 

(The proofs of Theorems 4.1 (a)-(d) are given at the end of this section.) 
Combining Theorem 4. l(d) with Corollary 4.4 of [B4] we obtain: 

[n state 1-pebble 2AFA] c [2 enzn state INFA] for some constant c. 

This is similar to a result of [GGK]: [n state 1-pebble 2AFA] c [[E[ �9 d(n) 3n+1 + d(n) 
state 1NFA], when a fixed alphabet E is used. Here d(n)  (< 22") is the size of the 
free distributive (0, 1)-lattice on n variables. The definition of alternation in [GGK] is 
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more restrictive than the one used here (they only allow 3 and u on the states, instead of 
arbitrary boolean functions), and their bound depends on the alphabet size. 

Questions analogous to the open problems in Section 1 can be asked about Hennie 
machines. The problem about halting (for deterministic or nondeterministic Hennie 
machines) can be easily solved (affirmatively), since a nondeterministic Hennie machine 
could write a number (_< k, and equal to 1 at the first visit) at every position and increment 
it each time it visits the position (and halt when the number becomes > k). This also 
solves (affirmatively) the complementation problem for deterministic Hennie machines. 
Some of the other problems are solved in [B4]. In summary we have: 

Fact 4.2. 

(1) Every nondeterministic (resp. deterministic) Hennie machine with n states and 
< k visits per position, is equivalent to a nondeterministic (resp. determinis- 
tic) Hennie machine with n states and < k visits per  position, in which every 
computation eventually halts. The same is true when "< k visits per position" 
is replaced everywher e by "with every state occurring < k times at the same 
position." 

(2) I f  a language L is recognized by a deterministic Hennie machine H1 with n 
states and < k visits per  position, then L (the complemen t  of  L) is recognized 
by a deterministic Hennie machine H2 with < n + t states and < k + 1 visits 
per  position. Similarly: I f  L is recognized by a deterministic Hennie machine 
H1 with n states and with every state occurring < k times at the same position, 
then L is recognized by a deterministic Hennie machine H2 with < n + 1 states 
and with every state occurring < k + 1 times at the same position. 

In (2), the reason why n and k might have to be increase to n + 1 and k + 1 is that 
we want H2 to end up at the right end of the tape in an accepting computation. 

The next theorem gives exponential lower bounds for the recognition of certain 
languages in l.p.hom[n state 2DFA] by 2NFAs. 

T h e o r e m  4.3. There is a unary language L in l.p.hom[n state 2DFA] such that any 
2NFA recognizing L needs > c n states; here c is a constant > 1.414 (=  ~ - e). 

Proof Outline (see Section 5 for more details). We show in Section 5 that the one-word 
language {a 2" } can be recognized by a deterministic Hennie machine with 2n + e states 
(where e is a constant), with no state occurring more than once at the same position; and 
we prove that a 2NFA needs more than 2 n states to recognize {a 2" }. Now let L = {a 21"-eV2 }, 
which belongs to 1.p.hom[n state 2DFA]; then a 2NFA or a 1-pebble 2DFA recognizing 
L needs > c" states, where c = ~ - e (where e is a positive real number, which 
becomes arbitrarily small when n becomes large). [] 

Meyer and Fischer [MF] introduced the language {a 2" } and they strongly conjectured 
that a 1-pebble 2DFA needs _> 2 n states to recognize it; this is false, however: we show 
in Section 5 that a 1-pebble 2DFA needs only O (n2/log n) states to recognize {a 2~ } (and 
the same holds for FI2-1AFAs). 
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Proof of Theorem 4.1 (a) and (b). We first construct a complete language An for n- 
state 2AFAs. The alphabet of the language An is the set of all tripartite directed graphs 
of 3n vertices, with n vertices in each of the three partitions; we view the three partitions 
as three parallel vertical columns of n vertices each; the only edges are directed edges 
that go from the right column and from the left column to the middle column; each 
vertex in the middle column is labeled by a boolean function (and is viewed as a gate 
implementing this boolean function). We call the letters of this alphabet circuit-slices. A 
word is a sequence of slices. However, when we draw a word we let neighboring letters 
overlap half-way; i.e., we superpose neighboring halves of neighboring letters. This does 
not lead to any loss of information, because edges in a letter (circuit-slice) always point 
to the middle column only. In this picture the word appears as a circuit; we call this the 
circuit representation of the word. Note that the circuit representation of a word of length 
k has k + 2 columns. See Figure 2(a) for an example. 

The complete language An for n-state 2AFAs consists of all the words whose circuit 
representation has the following property: When the n vertices in the rightmost column 
of the circuit all carry a truth value 1, and all other sources (vertices without in-edges) in 
the circuit carry a truth value 0, then this truth value assignment "forces a 1" to appear 
on the top vertex in the leftmost column of the circuit. See Figure 2(b) for an example. 

Definition of ''forcing a 1." A truth value 1 is forced at a vertex i (in the leftmost 
column of the circuit) iff, in every truth-value assignment which is consistent (with the 
gates of the circuit and with the 1 's at the right end and the O's at the other sources), 1 
appears at node i. 

The complete language for n-state 2AFAs is analogous to the complete languages 
for n-state 2NFAs or 1NFAs of Sakoda and Sipser [SS] (where all the nodes can be 
viewed as OR-gates). Note that here we direct the edges in the way one would expect in 
a circuit (the input wires to a gate point to that gate, and the output wires point out); but 
the movement of the 2AFA head is actually opposite to the direction of these edges (see 
[SS], where the opposite convention is more natural). 

In this paper we use the following definition of reduction (due to [SS]) which is 
particularly suited for regular languages and state-complexity. 

Definition of "reduction:' Let L1 _ E* and L2 c A*, where ~ and A are alphabets; 
L1 reduces to L2 iff an 1.p.hom. ~p: E* ~ A* exists, and two words x, y ~ A* exist 
such that, for all w e E*, w ~ L1 r x �9 ~0(w) �9 y ~ L2. 

Thanks to the next lemma we only need to consider the complete laguage An in 
order to prove Theorem 4.1 (a) and (b). 

Lemma 4.4. 

(1) The language L c_ E* is accepted by an n-state 2AFA iff L reduces to An (the 
complete language for n-state 2AFAs). 
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Fig, 2, ~a) TWo circuit-slice~, arid the circuit obtainecl by letling the two slices overlap half-way; herr 
f l ,  f2 . . . . .  fs, denote boolean funetion~. (b) A word (of [ength 4) of circuit-slices (with neighboring columm 
letters overlapping). The truth values in bold are directly given; the other values are forced; the "7" indicate~ 
that the truth value on that vertex is not forced. 
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(2) I f  LI reduces to L2, and L2 
1.p.hom[n + 4 state 2DFA]. 

J.-C. Birget 

is in 1.p.hom[n state 2DFA], then Ll is in 

Proof (1) Suppose L is recognized by a 2AFA (Q, E, 8, q0, F);  the state-transition 
function is 8: Q x E ~ "set of  boolean functions over the set of  boolean variables 
Q • { -  1, + 1 }." Here Q • { -  1 } represents the states reachable by left-movement from 
state q on input a; and Q • {+ 1 } represents the states reachable by right-movement on 
q and a. It is easier to think first of  a 2NFA (which is a special case of  a 2AFA in which 
all states carry the OR function, applied to a subset of  Q • { -1 ,  +1}); then 3(q, a) is the 
OR of a subset of the set of  variables Q • { -  1, + 1 }; equivalently, 8 (q, a) is viewed as a 
subset of  Q • { -  1, + 1 } (then Q • { -  1 } N 6 (q, a) represents the set of  states reachable 
from q and a by a left-move, and Q x {+1} n 8(q, a) does the same for right-moves). 
In the case of  general 2AFAs, we have arbitrary boolean functions attached to the states, 
and 8 (q, a) is such a function over a subset of  the set of  variables Q x { -  1, + 1 }. Note 
also that in a general 2AFA, a different boolean function can be attached to the same 
state for different input letters; so it is more correct to say that boolean functions (over a 
subset of  the set of  variables Q • { -  1, + 1 }) are attached to the transitions. The 2AFA 
has n states, so we can assume Q = {1 . . . . .  n}, with q0 = 1. We also have endmarkers, 
as usual. 

To reduce L to An we use the following 1.p.hom. ~0 and the following two words x 
and y: ~o: a 6 E ~ ~0(a) = "circuit-slice of  a." 

The "circuit slice of  a"  is defined as follows: Each one of  the three columns of  the 
circuit-slice of  a has n vertices; moreover, for each vertex i in the middle column of the 
slice (1 < i < n), we have: 

The vertex i is labeled by the boolean function attached to the state i, with respect 
to the input letter a. 

If  a state p appears as (p, - 1 )  in the boolean expression for 3(i, a), then an edge 
points from p (in the left column) to i (in the middle column). 

If  a state q appears as (q, + l )  in the boolean expression for 8(i, a), then an edge 
points from q (in the right column) to i (in the middle column); no other edges 
exist in the circuit-slice of  a. 

The word x is simply the circuit-slice of the left endmarker "(" (which is defined in 
the same way as the circuit-slice of  a letter a 6 E). 

The word y is obtained from the circuit-slice of  the fight endmarker ")" by modifying 
its boolean functions as follows: All edges from the fight column that are incident to 
accept states (6 F)  are set to a boolean value 1, and the other edges from the right 
column are set to 0 (this modification replaces the boolean functions on ")" by constant 
functions); all edges incident with the right column of  the modified circuit-slice are then 
removed. 

It follows immediately from the definitions that the 2AFA accepts a word w iff 
x �9 ~0(w) �9 y 6 An. 

Proof of  the converse. First, it is straightforward to check that An is accepted by 
an n-state 2AFA. Next, assume that Lj __c E* reduces to L2 __c A* (i.e., an 1.p.hom. 
~o: E* --+ A* exists, and two words x, y 6 A* exist such that, for all w ~ E*, w 
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L1 r x .tO (w). y ~ L2); and assume L2 is accepted by an n-state 2AFA A2. We construct 
a 2AFA A1 accepting Ll .  The state set of  Al is the same as the state set of  A2; the two 
machines also have the same start state q0, and the endmarkers ( and ). On a tape (w) 
(with w ~ E*) the machine Al does the following: Al behaves on a letter a E E in the 
same way as A2 behaves on the letter tO(a) ~ A. When AI reads (, it makes a transition 
to the same boolean function as the one that A2 produces as a result of  processing the 
word (x. Similarly, when A1 reads ), it makes a transition to the same boolean function 
as the one that A2 produces as a result of  processing the word y). In this way, Al accept 
w iff A2 accepts x �9 tO(w) �9 y. 

(2) Assume L1 c__ E* reduces to L2 c__ A* (i.e., an l.p.hom, to: E* ---> A* exists, 
and two words x, y E A* exist such that, for all w ~ E*, w E L1 r x -  ~0(w) �9 y ~ L2). 
Assume L2 is accepted by an n-state nondeterministic Hennie machine//2,  which visits 
every position of  the tape at most once in the same state (recall Theorem 3.1); let F2 be 
the total tape alphabet of  H2. We may assume that E r3 I'2 --- o .  

We construct a nondeterministic Hennie machine HI accepting L1, with n -t-4 states, 
which visits every position of  the tape at most once in the same state; Lemma 4.4(2) 
then follows, by Theorem 3.1. The state set of  HI is the same as the state set o f / / 2 ,  
except that a new start state qn, and another three new states, qn+l, qn+2, qn+3, are 
added. The two machines have endmarkers "(" and , ' ) "  The tape alphabet of  H1 is 
FI ---- E U 1`2 U {w x 1`2 U 1`2 x {yw 

In summary, HI first replaces its input w ---- a la2 ' ' ' am- la ,n  ~ E* by the word 
(w to(al))to(a2) �9 �9 �9 tO(am-1)(tO(a,,), y w  1`~'; then Hi simulates H2 on this new word, 
except for a little adjustment regarding (w ~0(al)) and (q)(am), y w  the symbol w is 
introduced to distinguish between left and fight. It is important to note that no state of  
//2 has any transition defined on a letter in E (since E fq 1'2 = O) nor on any of  the 
other new letters, so we can introduce such transitions into HI without disturbing the 
simulation of / /2 .  

In more detail, on tape (al, a 2 . . -  am-lam) the machine H1 does the following: It 
starts in state qn on the letter al, replaces al by (w to(al)), moves fight, and goes to 
state qn+l. It keeps moving fight in state qn+l while changing the tape into 

((w tO(al))tO(a2).-" tO(am-I)tO(am)). 

When ) is encountered,/-/2 moves left on ) and goes to state qn+2. In this state it changes 
tO(am) to  (tO(am), yw moves left and goes to state qn+3. In this state Hi moves left (with- 
out changing the tape) until it reads (w ~0(al)). Thereupon it goes to the old start state q0 
of  H2 and starts the simulation of  H2 on tape ((w tO(a1 ))tO(a2) �9 �9 �9 tO(am-I )(tO(am), yw 
For this simulation,//2 is modified as follows: When (w tO(al)) is read in some state 
q, H1 goes to the same state(s) that/-/2 reaches when it processes the word (xtO(al) 
(starting in state q with the head on the letter tO(al)) .  S u p p o s e  that in this process/ /2  
replaces the word (xtO(al) by (x'b (with Ix'bl = IxtO(a01), and leaves on the fight (or 
never leaves this portion of  tape); then H1 replaces the letter (w tO(al)) by the letter 
(w b) and moves fight (respectively, halts without making a transition). In a similar 
way, H1 simulates H2 on other letters of  the form (w c) (with Ix"l = Ixl, x" ~ r~, 
c E 1`2), near the left end of  the tape. On the fight end of  the tape on letters of  the form 
(d, y"w (with lY"I = IYl, Y" ~ r~,  d ~ I'2) the simulation is also similar, with left and 
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right interchanged; here, if H2 never leaves the tape portion dy"),  but halts on ) in an 
accept state, then HI also moves to ) and goes into the same accept state. This way, H1 
accept w iff H2 accepts x �9 ~o(w) �9 y. [] 

We first prove Theorem 4.1 (b). 
Halting 2AFAs, and in particular 1AFAs, correspond to circuits (in the complete 

language An) that are acyclic. 
Every such circuit can be written as an 1.p.hom. image of  a circuit with truth values 

already drawn on all the gates. The 1.p.hom. just consists in dropping the truth values 
(thus returning the circuit itself). An O (n)-state 2DFA can check that: 

(1) At the right end of  the circuit all the vertices have a truth-value 1 and that the 
top vertex at the left end has a 1. 

(2) The truth-value assignment on all the gates is consistent 1 with the circuit (i.e., 
a gate has a 1 in the assignment iff a 1 is returned when the boolean function 
of  the gate is applied to the boolean values assigned to the vertice, that point to 
the gate). 

(3) The nodes with in-degree 0 have a boolean value 0. 
(4) For any two neighboring letters (circuit-slices) a and b of  the circuit word, 

the middle column of  a and the left column of b have identical truth-value 
assignments; and also, the right column of  a and the middle column of  b have 
the same truth-value assignment. 

To check these properties the 2DFA needs only O(n) states: Property (1) is easy 
to check (with a constant number of  states). Properties (2) and (3) are just restrictions 
on the letters that may appear in accepted words, so no new states are needed to check 
them. To check property (4), a 2DFA makes 2n sweeps over the circuit-word with its 
truth-value assignment (alternating left-to-right and right-to-left sweeps, n times). In the 
ith (1 < i < n) left-to-right sweep, the 2DFA checks that in row i of the circuit, the 
middle column of a and the left column of b have the same truth value (this is done for 
all neighboring letters a, b); and in the ith (1 < i < n) right-to-left sweep the 2DFA 
checks that in row i of the circuit, the right column of a and the middle column of  b have 
the same truth value. Each sweep uses a constant number of  states, so O(n) states are 
used in total. 

We now prove Theorem 4.1 (a). 
When the circuit contains cycles, properties (1), (3), and (4) above need no changes; 

but, regarding property (2), it is no longer enough to check whether the truth values on 
the gates are consistent with the circuit; we want the 1 's at the right end to force a 1 to 
appear at the top vertex at the left end (not just to be consistent with it). In the cyclic case, 
consistency does not imply forcing (for example, recall the RS-latch, which is bistable; 
it has two consistent truth-value assignments when the input is R = 0, S = 0; no output 
value is forced in that case). 

To check whether a 1 is forced at the top vertex in the leftmost column, a deter- 
ministic Hennie machine does depth-first search in the circuit. The search process is 

I "Consistent" is the term used in Logic; in Circuit Theory the term "stable" is used instead. 
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greatly simplified by the next lemma, which implies that we may assume that all the 
boolean functions in our circuit words are monotone. (By definition, a boolean function 
is monotone iff it can be represented by a boolean expression using AND and OR only, 
without negation.) 

Lemma  4.5 (Monotonicity). Every general n-state 2AFA is equivalent to a 2AFA with 
2n states, whose boolean functions are all monotone. 

Proof. We use a standard idea for the elimination of negations (which has also been used 
for alternating Turing machines, see p. 90of  [Ko] and p. 120 of [CKS]). Suppose in the 
original 2AFA (with state set Q, I Q I = n) the boolean function fl (q I . . . . .  q,,, p 1 . . . . .  Pn) 
is attached to (q, cr) 6 Q x {-1,  +1}. The new 2AFA will have state set {+, -}  x Q; 
we attach the following monotone boolean functions to ((+, q), ~r) (resp. ( ( - ,  q), ~)): 

To ((+, q), ~r) we attach 

/3'((+, ql), ( - ,  qO . . . . .  (+, q.), ( - ,  q.), (+, Pl), ( - ,  Pl) . . . . .  (+, P.), ( - ,  Pn)), 

which is obtained from/3 by writing/3 in disjunctive normal form and then replacing each 
negated variable ~ by ( - ,  v). and each nonnegated variable v by (+, v). To ( ( - ,  q), or) 
we attach/3" (over the same 4n variables as/3'), obtained from/3 (the negation of/3, put 
into disjuntive normal form) in the same way as/3' is obtained from/3. [] 

The deterministic Hennie machine carries out a depth-first search in the circuit as 
follows: Initially, the only vertices of the circuit that carry a truth value are the vertices in 
the rightmost column (which carry a 1) and the other sources (vertices without in-edges, 
which carry a 0). All other vertices Carry a value "?". The search starts at the top vertex 
in the leftmost column of the circuit word. 

At an arbitrary instant during the search, suppose a vertex v with value "?" has been 
reached; consider the values (6 {0, 1, ?}) of the vertices that point to v via the in-edges 
of v. 

Case 1: Finding and Backtracking. If these values determine the truth value (~ {0, 1}) 
on v (by application of the boolean function attached to v), then this truth value is written 
on v (e.g., if v is an AND gate and some in-edge of v carries a 0, then 0 will be written on 
v). Now the search continues by backtracking along a colored edge (see Case 2 for the 
coloring actions) pointing away from v; at this moment we also erase all the in-edges of 
v. Note that during backtracking, the edges are traversed in the direction in which they 
point. 

Case 2: Forward Search. If the values applied to v by its in-edges do not determine 
a truth value (E {0, 1}) on v, then an in-edge of v carrying the value "?" is chosen and 
colored and the corresponding incident vertex v' is examined next. So, in the forward 
search, edges are traversed in the reverse of the direction in which they point. The only 
nonstraightforward part is the handling of cycles: Suppose that during depth-first search 
a directed cycle is detected (the Hennie machine detects this when, along its search path, 
it sees a colored edge pointing out of the vertex v' that is examined next in the forward 
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search). Then the machine continues the search along an in-edge of v other than the 
one(s) that would close a directed cycle. If all in-edges of v would close cycles, then the 
truth value 0 is written on v. Indeed, in a monotonic circuit, the existence of such cycles 
implies that the truth value at vertex v is not forced, and hence it cannot help force the 
truth value of other gates. In a monotonic circuit, this is equivalent (regarding the forcing 
of truth values on other vertices) to giving a 0 to this gate. 

This Hennie machine needs only O (n) states (to remember which vertex it is visiting 
within an n-vertex column). Each vertex is visited only O(n) times (since each vertex 
has degree O(n)). This proves 4. l(a). [] 

Proof of  Theorem 4.1(c). Blum and Hewitt [BH] give a proof (due to Albert Meyer) 
that the language recognized by an n-state 1-pebble 2NFA is regular, by constructing 
an equivalent deterministic Hennie machine with O (2 n2) states. By slightly modifying 
their proof we obtain a nondeterministic (resp. deterministic) Hennie machine with 4n 2 + 
n + O (1) states, which is equivalent to the given nondeterministic (resp. deterministic) 
n-state 1-pebble machine; we proceed as follows: 

The Hennie machine first makes two passes over the input tape. In the first pass (from 
left to right), it uses the 2NFA (or 2DFA) which is obtained from the 1-pebble machine 
when no pebble is used; the equivalent 1DFA of the 2NFA (or 2DFA) as constructed by 
Shepherdson [Sh] is considered, and the Shepherdson tables are written on a second track 
of the tape. If u 6 E* is a prefix of the input, we denote the corresponding Shepherdson 
table by [(u S ]  (see [B1], or the Background and Notation section at the end of this 
proof). In the second pass (from right to left), the reverse is done: for every suffix v of 
the input, the table [~v)] (also defined in [B 1] and below) is written on a third track of 
the tape. 

So far the procedure (as in [BH]) is deterministic, and requires _< 2 n2 states (but this 
number will be reduced shortly): in the first pass there are 2 n2 possible tables of the form 
[(uS]; a table [(uS] is remembered in the state while the table [(uaS] of the neighboring 
cell (with input letter a) is being printed. The second pass is handled similarly. 

However, we can modify the procedure so that [(ua S ]  can be generated from [(uS] 
without remembering all of [(u S ]  in the state. First [(uS] (which is a set of pairs of 
states) is copied over to the neighboring cell on the right one pair of  states at a time, in 
lexical order; e.g., this takes < 2n 2 + O(1) states for the Hennie machine. (A different 
"color" is used to print this new copy of [(uS].) Second, once [(uS] and a are together 
in this cell, [(ua~-] can be directly printed. None of these < 2n 2 + O(1) states occurs 
more than once at the same position. The second pass is handled similarly, and another 
< 2n 2 + O(1) states are introduced. 

We now directly simulate a 2NFA N2 (or a 2DFA), whose head permanently carries 
the pebble; N2 has n states. (We do not need the remaining three passes of [BH] then.) 
When the 1-pebble machine drops the pebble at a certain position, the two Shepherdson 
tables on the tape of the Hennie machine (at that position) contain the information needed 
to know in which state the l-pebble machine is when it comes back to this position. (See 
the hint of Exercise 3.19, p. 73 of [HU].) It takes < n states to simulate this 2NFA or 
2DFA. No state occurs twice at the same position during an accepting computation. Note 
that now the Hennie machine becomes nondeterministic if the original I-pebble machine 
was nondeterministic. 
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Proof of  the second paragraph of Theorem 4.1(c): In order to simulate a 1-pebble 
2NFA (nondeterministic) by a deterministic Hennie machine we use the same first two 
(deterministic) passes as above (and the Shepherdson tables [ (uS] ,  [7_v)] are printed 
on the tape); this uses < 4n 2 + O(1) states, and no state occurs twice at the same 
tape position. Next, instead of directly simulating the 2NFA N2 above, we simulate 
the deterministic Hennie machine which is equivalent to N2 (i.e., we use the proof of  
Theorem 4. l(a) in the special case of  a 2NFA). This deterministic Hennie machine has 
O(n) states, with no state occurring more than O(n) times at the same tape position. 
Thus, overall the n-state 1-pebble 2NFA is simulated by a deterministic Hennie machine 
with O(n 2) states; O(n) of these states occur at most O(n) times at the same position, 
and the remaining O (n 2) states occur just once at the same position. 

Background and Notation for the Proof of 4. l(c) 

Definition. The Shepherdson tables (or global state transitions) of a 2NFA N on a 
word u 6 (E U {(, )})+ are the following four relations on the state set Q (see [B1], 
where however a slightly different kind of 2NFA was used). 

The relation [--+ u --+] _ Q x Q is defined as follows: (ql, q2) 6 [---~ u --+] iffthere 
is a computation of N starting at the left end of u in state ql, and during this computation 
the reading head of N stays on u, and eventually leaves u on the right end in state q2. 

The relation [~u]  c Q x Q is defined as follows: (ql, q2) E [Su]  iff there is a 
computation of N starting at the left end of u in state ql, and during this computation 
the reading head of N stays on u, and eventually leaves u on the left end in state q2. 

The relation [uS]  _ Q x Q is defined like [~_u], exchanging left and right; 
[+-- u +-] c Q x Q is defined like [-+ u ---~], exchanging left and right. 

We have the following fact (see [B 1 ]), from which it follows that [u~]  (resp. [Z  v]) 
and a 6 ~ determine [uaS] (resp. [~_av]). 

Fact.  If u, v E (E U {(, )})+, then we have for the concatenation uv: 

[ ~  uv --*l = [ ~  u --*]([Zvl[uSl)*[--* v --.1, 

_~_ - - - ) .  ~ + -  , ~ <_._ < - - - ] ,  [Zuvl [ Z u l U [ ~  u l([+_vl[u__,l) L_v][ u 

4--" --)- :r 4 - -  ._.._~ ] ~ 
[ u v S ]  = [ v S l  u [*-  v ]([u_,][,_vl) [u~][--* v 

[*-- uv  *--] = [*-- v . - l ( [ u S l [ Z v ] ) * [ , -  u ,--]. 

Notation: Juxtaposition of relations denotes composition of relations (defined in the usual 
way). The star *, applied to a relation, denotes reflexive-transitive closure. [] 

Let [u] = ([--+ u --+], [~_u], [uS] ,  [+-- u +--])(aquadruple of Shepherdson tables). 
By the above fact, the knowledge of [u] and [v] determines [uv]; thus we can define a 
product of  quadruples by [u][v] = [uv]; this product is associative. 
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Proof of Theorem 4.1(d). The proof is very similar to the proof of Theorem 4.1 (c). 
However, since we now deal with an n-state 1-pebble 2AFA A, the more,complicated 
Shepherdson tables [(w --+], [~,-- w)] are used; they associate a boolean function on n 
boolean variables with each state of  A. (For more details on the Shepherdson tables of  a 
2AFA see Background and Notation, below; these tables are also used implicitly in [LLS] 
for a more special kind of 2AFAs.) There are 22~ possible boolean-valued functions on n 
boolean variables; so there will be at most (22") n = 2 n2" different Shepherdson tables for 
a given n-state 2AFA (of the form (q)[(u --+] or (q)[+-- v)], as defined in the Background 
and Notation at the end of this proof), and thus at most 2 n2" �9 2 n2~ = 22he" pairs of such 
tables. The deterministic Hennie machine needs at most O(n2 ~) states (with no state 
occurring twice at the same position) in order to copy one such table from one tape-cell 
to a neighboring tape-cell (this is done just as in the proof of  Theorem 4. l(c), but now 
O(n 2) is replaced by o(n2n)) .  

On this tape (with the pair of  Shepherdson tables written down at every position) 
we can simulate the n-state 1-pebble 2AFA by a 2AFA A2 with n states, whose head 
permanently carries the pebble. When the 1-pebble 2AFA drops the pebble at a certain 
position, the Shepherdson tables that are written on the tape (at that position) tell A2 
which boolean function of states the l-pebble 2AFA will be in when its head comes back 
to this position. 

Next, we simulate the new 2AFA A2 by a deterministic Hennie machine (as described 
in the proof of  Theorem 4.1(a); this machine has O(n) states with no state occurring 
more than O(n) times at the same tape position. 

Thus, overall the n-state 1-pebble 2AFA is simulated by a deterministic Hennie 
machine with O(n2 n) states; O(n) of these O(n2 ~) states occur at most O(n) times at 
the same position, and the remaining O (n2 n) states occur just once at the same position. 

Background and Notation for the Proof of 4.1 (d). The Shepherdson tables [w ~ ] and 
[ +-- w] of  w E (E U {(, )})+ with respect to a 2AFA A (with state set Q and alphabet E)  
are functions from Q into the set of  all boolean-valued functions over the set of boolean 
variables Q x { -  1, + 1 }. 

The function [w ---~] is defined as follows: First we consider the circuit of w, as 
introduced in the proof of  Lemma 4.4(1). Then for q ~ Q we define (q)[w --+] to be the 
boolean-valued function (over the the set of  boolean variables Q x { -1 ,  + 1 }) which is 
computed by the circuit if the vertex q in the middle column of the rightmost circuit-slice 
is chosen as the output port. There are 2n input ports in this circuit: the n vertices in 
the left column of the leftmost slice (these vertices are labeled by the set of  boolean 
variables Q x {+l}, corresponding to a fight-movement of  the 2AFA); and the n vertices 
in the fight column of the rightmost slice (these vertices are labeled by the set of boolean 
variables Q • {-1}). 

In a similar way we define (q)[w --+]. Here the output port is vertex q in the middle 
column of the leftmost circuit-slice. It can easily be seen [w ---~] (resp. [+-- w]) and 
a c Z determine [wa --+] (resp. [+-- aw]). 

It can also be observed that (q)[(u --+] really only depends on the set of  n boolean 
variables Q x {+1}, as the 2AFA cannot make left-moves on (; and (q)[+-- w)] is only 
a function of the set of  n variables Q x { -  1 }. [] 
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5. The  Language  {a m} ( f o r F i x e d m  > 1) 

It turned out that one-word languages over a one-letter alphabet are sufficient to prove 
Theorem 4.3; here we give a more detailed proof of  Theorem 4.3. In addition, we give 
other results about such languages, and in particular we disprove a conjecture of  Meyer 
and Fischer, and a conjecture of  Chrobak. The study of {a m } is a study of the number m, 
so it is not surprising that number theory is useful here. 

Fac t  5.1. The unary one-word language {a m } is recognized by a deterministic Hennie 
machine H with < 2/log z mJ + O(1) states, with no state occurring more than once at 
the same tape position. 

Proof. For the exposition, we first consider the case m = 2 n. The machine H uses an 
alphabet {a, b}. For {a 2" } it first counts rood 2 and replaces every second a by b (until the 
right endmarker ) is reached). Next H goes left while replacing every oddly placed b by 
an a (and leaving the other b ' s  alone), until the left endmarker ( is reached; this requires 
a second mod-2-counter. Now, going right again, it again replaces every oddly placed 
b by a (and leaves the other b's), using a third mod-2 counter. So, H performs n - 1 
sweeps. Altogether it uses n different mod-2 counters (plus another state to move left all 
the way to the right at the end, i f n  is even). So 2n + O(1) states are used, and no state 
occurs twice at the same position. Finally, we accept if after these n (or n + 1) sweeps 
we end up with a tape containing one b at the right (just before ) )and a elsewhere. 

To accept {a m } for arbitrary m > 1, essentially the same construction is used: 
There are [log 2 mJ + 1 mod-2 counters; the kth counter checks the kth bit in the binary 
representation of m; when the head begins the next pass (after the kth pass) it marks 
("erases") all the letters until a b is found; it leaves this b and the remaining letters 
alone, and continues moving. In each pass only the nonmarked ("nonerased") letters are 
read. [] 

Fact 5.2. Any 2NFA recognizing {a m } (for any ftxed m > 1) requires more than m 
states. 

Proof  We consider a 2NFA (as defined in [HU]), with state set Q. By contradiction, 
assume I QI < m; by adapting the Pumping Lemma for Regular Languages (see [HU]) 
we show that some other word a M (with M > m) is then also accepted by the 2NFA. 

For the input a m we consider some (fixed) accepting computation of the 2NFA. 
A left-to-right traversal is a subsegment of  this computation, in which the head starts 

at the left endmarker ( and reaches the right endmarker ), and no endmarker is visited 
inbetween. Similarly, one defines right-to-left traversal. An accepting computation must 
contain at least one traversal. 

A left-to-left nontraversal is a maximal subsegment of  the above computation, in 
which the head starts and ends at the left endmarker (, and during which the right 
endmarker ) is never visited. A right-to-right nontraversal is similarly defined. 

An accepting computation can be factored uniquely into a sequence of traversals 
and nontraversals. 
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We now apply a"pumping"  argument to the traversals. In every left-to-right traversal 
w e  consider the first time that each position on a m is visited during this traversal; this 
corresponds to m state-transitions, in each of which a is read from left to right; m + 1 
states occur during these m transitions, and so some state q must appear twice (since 
[QI < m). Also, since we look only atfirst visits in the traversal, the second occurrence 
of q must be at a position strictly to the right of the first occurrence of q. 

Similarly, in every right-to-left traversal, a state p occurs twice, with the second 
occurrence of p strictly to the left of  the first occurrence. 

Suppose there are k traversals. In the ith traversal let di (1 < i < k) be the distance 
between the two occurrences of the repeated state considered above. 

k d Let M -- m + I-Ii=l i. w e  claim that the 2NFA accepts a M. 
Indeed, the 2NFA has an accepting computation of a M, constructed from the above 

accepting computation of a m, a s  follows: The nontraversals of a M are those of am. 
The traversals of a M are obtained from those of a m by "pumping" between the chosen 
repeated states (the pumping is possible because I-Iid i is a multiple of each di); thus the 
beginning and ending states of each traversal are the same in a M and am. [] 

The argument in this theorem is similar to the proof of  Theorem 2.1 in [LSH]. Fact 5.2 
was also given by Ibarra and Sahni [IS], but their 2NFAs do not have endmarkers on the 
tape and, thus, are weaker. 

In the above "pumping" argument it is crucial that the input is over a one-letter alpha- 
bet, because we "pump" subwords that are at different positions for different traversals. 
Suppose the alphabet contains two letters a, b (or more). Then a singleton-language {w}, 
with I wl = m, could possibly be recognized by a 2DFA with far fewer states than m. For 
example, {(ab) m/2} (for m even) is recognized by a 2DFA with m / 2  + O (1) states, (The 
2DFA first goes right and checks if the input belongs to (ab)*, using a mod-2 counter; 
then it comes back to the left; all this uses O(1) states. Next it counts the number of  
a ' s  using m/2  states.) More generally, the singleton language {(ab~-l) m/k} (where k 
divides m) is recognized by a 2DFA with m~ k + k + O (1) states. (The minimum number 
of states obtained this way is 24'-m + O(1), when k = ~ + O(1), assuming m is a 
square.) 

The proof of Fact 5.1 (that {a m } is recognized by a deterministic Hennie machine with 
2. [log 2 m / +  O (1) states) also provides us with a word w (over an alphabet with I.log 2 m/ 
letters) such that Iwl = m ,  but {w} is recognized by a 2DFA with 2[.log 2 m/ + O(1) 
states. 

Corollary of Fact 5.2. For every n > 0 there is a language (for example, {an-J}) 
which is recognized by a 2NFA with n states but with no less than n states. The same 
holds true for  2DFAs (and, as is well known, for  1NFAs and 1DFAs). In other words, 
there is no gap in the state-complexity hierarchy for  these types o f  automata. 

Faet  5.3. The language {a m } (for any fixed m > 1) is recognized by a 1 -pebble 2DFA, 
and also by a u (i.e., o f  type FI2), with < (ln m)2/ln In m + O(1) states (where 
"ln " is the natural logarithm). 
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Fact 5.3 disproves a "strong conjecture" of Meyer and Fischer [MF, p. 190], accord- 
ing to which a 1-pebble 2DFA would have needed > 2 n states to recognize {a 2" }. The 
fact also disproves a conjecture of Chrobak (Final Remarks in [Ch]), according to which 
unary 1AFAs and unary 2DFAs would have been polynomially equivalent regarding 
state-complexity. 

In [Lel] Leiss proved (using a construction of [BL]): 

I f  a language L is recognized by a I DFA with n states, then L rev is recognized by a 1AFA 
with < t-log 2 n] states; in particular, for  any unary language L: if  L has an n-state 1DFA, 
then L has a 1AFA with < I-log 2 n] states. 

("L rev'' is the reverse, or mirror image, of L; see [L2] for a proof of the necessity for the 
reverse.) 

Thus Leiss' result is stronger than Fact 5.3, for general 1AFAs. The 1AFA of Fact 5.3 
has the advantage of being of type H2 (whereas the 1AFAs of [L1] and [BL] not only 
use an unbounded number of alternations, but arbitrary boolean functions have to be 
attached to the transitions in addition to the usual AND, OR, NOT). Fact 5.3 and Leiss' 
results are surprising because it was thought that a pumping argument (like for 2NFAs 
in Fact 5.2) should work for 1-pebble 2DFAs and for 1AFAs (especially for type 1-12); 
but it cannot. 

Proof of  Fact 5.3. 

(1) 
(2) 

(3) 

The following classical facts from number theory are used: 

The Chinese Remainder Theorem (see, e.g., p. 117 of [A]). 
The Prime Number Theorem [A, pp. 74, 79-80], in the following two equivalent 
forms: 

Pk = k In k(1 + e(k)) for some function e(.) with limk__,~ e(k) = 0; 

n 

- I P k  ---- some e(-) limn--,oo e(n) = e n l n n ( l + e ( n ) )  for with 0. 
k = l  

Here Pk is the kth prime number. 
n l 21nn(l+e(n)) ,  From the Prime Number Theorem it follows that ~--~k=l pk = ~n 

with e(n) ~ O. 

Definition. For any integer m > 0, we let N(m) be the smallest integer n such that 
n 

m _< l--Ik=l pk. 

By the above, N(m) = (In m/ln In m)(1 + e(m)), where e(rn) ~ O. Also 

N ( m )  

Z Pk ---- �89 2 In N(m)(1 -k- e(m)) 
k = l  

1 (ln rn) 2 
- -  (1 + et (m)) where 

- -  2 lnlnm 
El (m) -~ O. 
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For each k (1 < k < N(m)),  let rk be the unique integer such that m ~ rk(mod Pk) 
and 0 < rk < Pk. By the Chinese Remainder Theorem and by the definition of N(m),  
m will be the (unique) smallest nonzero solution of the system of congruences {x 
rk m o d p k / k  = 1 . . . . .  N(m)}. 

We construct a 1-pebble 2DFA (and a 1AFA) whose number of  states will be 

N(m) (lnm)2 
2 Z Pk + O(1) -- l n l n ~  

k=l 

(1 + e(m)). 

These automata, on input a x, first check that x is a solution to the system of congruences 
and, second, check that no smaller number ( 5  0) is a solution. 

Construction of the 1-pebble 2DFA for {a m }. On input a x the machine does the fol- 
lowing computation: 

In the first phase the pebble stays on the left endmarker, and the head makes N(m) 
passes over the input a x; in the kth pass it counts mod Pk to check if x -- rk mod Pk. If  
during one pass the congruence is not verified, the machine halts and rejects. At the end 
of  the first phase the head goes left, to the left endmarker. 

Next (second phase), the pebble is moved right one step; the input between the 
pebble and the right endmarker will now be counted mod Pk (for k :=  1 to N(m))  until 
the number does not satisfy some congruence. If the number of  a ' s  (between the pebble 
and the right endmarker) satisfies all the congruences, then the machine halts and rejects. 
If  some congruence is encountered that is not satisfied, then the head moves left to the 
pebble, moves it one step to the right, and starts phase 2 again. 

This goes on until the pebble reaches the right endmarker, at which point the machine 
~"~N(m) accepts the input. Overall, 2 z_,g=l pk + O (1) states are used (the same mod-pk counters 

are reused in all the iterations of  phase 2). 

Construction o fa  1AFAfor {am}. For one-way devices (and for 1AFAs in particular) 
no endmarkers are used on the tape; however, for an input to be accepted it is necessary 
that it be entirely read (for some accepting computation). 

Our 1AFA starts at the left of the input a x in a Y-state; there are N(m) + 1 branches 
out of  this state. The first N(m) branches lead to the parallel (deterministic) execution 
of  mod-pk-counters (1 < k < N(m)). The second branch leads to another V-state; from 
this u one checks, at every position (from position 2 onward), that the length of  the 
remaining word is not a solution to our system of congruences (i.e., that a congruence 
that is not satisfied exists); this uses a 3-state which branches into another set of mod-p~ 
counters (1 < k < N(m)).  The total number of states is 2 Y ~ )  p~ + 3. The resulting 
1AFA is of type FI2 (i.e., V3). [] 

The details are best understood on an example. See Figure 3, which gives the state 
diagram for a 1AFA recognizing the language {a les} (=  {a27}); since 2 . 3  �9 5 < 128 < 
2- 3 . 5 . 7  we have N(128) = 4; thus 128 is the unique minimum solution of the system 
of congruences {x -- 0 rood 2, x --- 2 mod 3, x - 3 mod 5, x - 2 mod 7}. The 1AFA for 
{a 128 } has 2 .  (2 + 3 + 5 + 7) + 3 -- 37 states. 



Two-Way Automata and Length-Preserving Homomorphisms 219 

Fig. 3. A 37-state u recognizing {a 128 }. The start state is pointed to by a bold arrow, the accept states 
are shaded. The label a on all the edges has been omitted. 

6. The Equivalence Problem for Certain Finite-State Devices 

This section uses the results of  Sections 3 and 4 to solve three problems of Jiang and 
Ravikumar [JR]: 

(1) Is the equivalence problem for n-state 2AFAs in PSPACE? 
(2) Is the equivalence problem for n-state 1-pebble 2NFAs in PSPACE? 
(3) Is the equivalence problem for n-state 1-pebble 2AFAs in ExPSPACE? 

We show that the answers are all "yes." 
The equivalence problem for 2AFAs is the following: given two 2AFAs, decide 

whether the two 2AFAs recognize the same language. Here the input alphabet of  the 
2AFAs is not fixed, but is part of  the input of  the problem. The  equivalence problem for 
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the other kinds of machines are stated in a similar way. In these problems we assume that 
an n-state 2AFA with input alphabet E (and similarly for 1-pebble 2NFAs or 1-pebble 
2AFAs) is described by its n-by-IEI state-transition table. If each of the n states (and 
I~1 letters) is expressed as a string of length [log 2 nJ + 1 (resp. [log 2 l•lJ + 1), then 
the input size for each of the above three problems is > cnlEI log n log lE l, for some 
constant c > 1. 

The equivalence problem for 1NFAs is PSPACE-complete (see [AHU]), so the first 
two problems are PSPACE-hard; in [JR] it is proved that the third problem is ExPSPACE- 
hard. Thus, we can now conclude that these problems are complete in these classes. 

To prove that these problems are in PSPACE (or in ExPSPACE) we reduce them (in 
three steps) to problems which are known to belong to PSPACE. We use many-to-one 
polynomial-space reductions for the first two problems, and many-to-one exponential- 
space reductions for the third problem. It is well known that the composition of two many- 
to-one polynomial-space (resp. exponential-space) reductions yields again a many-to- 
one polynomial-space (resp. exponential-space) reduction. Moreover, if a language L 
reduces to a language M by a many-to-one polynomial-space reduction, and if M is in 
PSPACE, then L is also in PSPACE (see [HU]); similarly, if a language L reduces to a 
language M by a many-to-one exponential-space reduction, and if M is in PSPACE or in 
ExPSPACE, then L is in ExPSPACE. 

Theorem 6.1. The equivalence problem for 2AFAs is in PSPACE. 

Proof. Three successive many-to-one polynomial-space reductions are given in Claims 
A-C; in Claim D the last problem is shown to be in PSPACE. 

Claim A. The equivalence problem for n-state 2AFAs reduces to the equivalence prob- 
lem for O(n)-state deterministic Hennie machines, in which no state occurs more than 
0 (n) times at the same position, and which always halt. 

Proof of Claim A. By Theorem 4.1 (a), for every n-state 2AFA A we can construct an 
equivalent O (n)-state deterministic Hennie machine H in which no state occurs more 
than O(n) times at the same position, and (by Fact 4.2) we can assume that this machine 
always halts. This reduces the equivalence problem for 2AFAs to the equivalence problem 
for Hennie machines of the above type. We have to check that the construction of H, 
gi*en A, can be done using polynomial work-space. 

In the first step of the proof of Theorem 4.1 (a), A is replaced by a monotone 2AFA 
with 2n states; this step can be done in linear time. We assume now that A is monotone. 

Let E be the alphabet of A, which is thus also the input alphabet of H. The work 
alphabet of H consists of the circuit-slices corresponding to I] (so I EI such slices 
are used), in which some edges may be colored or erased. Since a circuit-slice has 
< n 2 edges, this leads to < c n possible modified slices, for some constant c > 2; thus 
the work alphabet of H has size < I E Ic n2. Each letter of H can thus be represented 
in space O(n 2 + log IE I). We can compute the (exponentially large) transition table of 
H, using only polynomial work-space, as follows: We consider all pairs (state, letter) 
of H, in lexical order; for each such pair, we can compute the next state and the letter 
printed and the head-direction, in polynomial time (as in the proof of Theorem 4.1 (a)). 
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We then output the state, letter, next state, letter printed, and direction. Since we reuse 
the work-space to do this calculation for each pair, only polynomial work-space is used 
(although the time is exponential). 

Finally, the construction in Fact 4.2, which makes the Hennie machine halt, takes 
only polynomial time (in particular, the work alphabet of the Hennie machine only grows 
polynomially in size). [] 

Claim B. The equivalence problem for m-state deterministic Hennie machines in which 
no state occurs more than kl times at the same position and which always halt, reduces 
to the emptiness problem for Hennie machines of this same type (with m and kl now 
replaced by cm and ckl for some constant c > 1). (In the emptiness problem, the question 
is whether the language accepted by the given machine is empty.) 

Proof of Claim B. Given two such Hennie machines H1 and/-/2, a new Hennie machine 
H of the same type (except that m and kl are now replaced by cm and ckl), recognizing the 
symmetric difference of the two languages accepted by Hi and Hz, can be constructed. 
Hi and H2 (which always halt) are simply executed one after the other; also, by the 
halting property, the new machine H can check whether Hi and HE accept or reject the 
input. [] 

Claim C. The emptiness problem for m-state deterministic Hennie machines in which 
no state occurs more than kl times at the same position and which always halt, reduces 
to the emptiness problem for mkl-state 2DFAs. 

Proof of Claim C. By Theorem 3.1(b), given a Hennie machine H of the above type, 
we can construct an l.p.hom, h and a 2DFA D2 (with mkl states) such that L/4 = h(LD); 
here LH and Lo are the languages accepted by H and D2, respectively. Thus, LH is 
empty iff Lo is empty. 

We must still show that the construction of D2, given H, only takes polynomial 
work-space. Let I" be the total alphabet of H. Then the alphabet of D2 has size < 
(IF[. m �9 mkl) ~, where k = mkl (see the proof of Theorem 3.1(b)); each letter can be 
represented using space Cmkl (log I FI + log mkl). We compute the transition table of D2, 
using only polynomial work-space, as follows: We consider all pairs (state, letter) ofDz, 
in lexical order; for each such pair, we can compute the next state and the head-direction, 
in polynomial time (as in the proof of Theorem 3. l(b)); we then output the state, letter, 
next state, and direction. Since we reuse the work-space to do this calculation for each 
pair, only polynomial work-space is used (although the time is exponential). [] 

Claim D [Hu]. The emptiness problem for 2DFAs is in PSPACE. 

Proof of Claim D. To make the paper more self-contained we give a proof here. It 
is sufficient to show that the nonemptiness problem for 2DFAs is decided by a non- 
deterministic polynomial-space algorithm (since PSPACE is closed under complement 
and does not change when nondeterminism is used, by Savitch's theorem). 
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Let L _ E* be the languag e accepted by a 2DFA D = (Q, E, qo, 8, F) with n 
states. Then L is nonempty iff w ~ E* exists such that w is accepted by D. Moreover, 
w is accepted by D iff (q0)[--> (w) --+] ~ F (where [---> (w) ---->] is the one of the 
Shepherdson tables defined at the end of the proof of Theorem 4.1 (c)). Let [u] denote the 
quadruple of the four Shepherdson tables of u (see the end of the proof of Theorem 4.1 (c)). 
To check nondeterministically whether L is empty, we guess (in polynomial space) a 
quadruple [{w)] and then check (in polynomial time) if (q0)[---> (w) ---~] ~ F. To 
guess [(w)] we proceed as follows: We compute [(] from the transition table of D (in 
polynomial time), then we successively guess more letters; suppose [(al . . .  a;] has been 
obtained and remembered so far; we guess a letter ai+l and we compute [ (al . . .  a i ai+| ] ----- 

[ ( a l  ""ai][ai+l] (according to the fact at the end of the proof of Theorem 4.1 (c)), and 
then erase [(al �9 . .  ai] and ai+l. For each letter guessed we reuse the same polynomial 
space (although the number of letters guessed is not necessarily polynomial). Finally, 
we guess that the guessing of [(w] is complete; we then compute [(w)] = [(w])]. [] 

This completes the proof that the equivalence problem for 2AFAs is in PSPACE. [] 

Theorem 6.2. The equivalence problem for 1-pebble 2NFAs is in PSPACE. 

Proof. We reduce the problem (in three reductions) to a problem which is in PSPACE. 
Only the first step (Claim A') is different from the proof of Theorem 6.1; the rest is 
identical. 

Claim A'. The equivalence problem for n-state 1-pebble 2NFAs reduces to the equiv- 
alence problem for O(n2)-state deterministic Hennie machines in which O(n) states 
occur 0 (n) times at the same position (whereas each of  the remaining O(n 2) states 
occurs at most once at the same position), and which always halt. 

Proof of Claim A'. By Theorem 4.1(c), for every n-state 1-pebble 2NFA P we can 
construct an equivalent O(n2)-state deterministic Hennie machine H in which O(n) 
states occur O (n) times at the same position (whereas the remaining O (n 2) states occur at 
most once at the same position). By Fact 4.2 we can assume that this machine always halts. 
This reduces the equivalence problem for 1-pebble 2NFAs to the equivalence problem 
for Hennie machines of the above type. We still have to check that the construction of 
H, given P, can be done using polynomial work-space. 

Let E be the alphabet of P, which is thus also the input alphabet of H. The work 
alphabet of H consists of: 

(1) The alphabet A of the 2DFA N2. These are letters of E that come together with 
pairs of Shepherdson tables, and incompletely constructed pairs of Shepherdson 
tables (see the first two passes in the proof of Theorem 4.1(c)). There are IAI _ 
IEIb n2 such letters, where b is a constant > 2. 

(2) The circuit-slices (with coloring and erasing of some edges) associated with 
the alphabet A of N2 (when N2 is being simulated by a deterministic Hennie 
machine according to Theorem 4.1(a)). There are < la id  n2 = I~:lc n2 such 
slices, where d and c are constants > 2. 
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Thus the work alphabet of H has size < [EIc "2. Each letter of H can thus be 
represented in space O (n2 +log I E I). We can compute the (exponentially large) transition 
table of H, using only polynomial work-space, as follows: We consider all pairs (state, 
letter) of H, in lexical order; for each such pair, we can compute the next state and the letter 
printed and the head-direction, in polynomial time (as in the proof of Theorems 4.1 (a) 
and (c)). We then output the state, letter, next state, letter printed, and direction. Since we 
reuse the work-space to do this calculation for each pair, only polynomial work-space is 
used (although the time is exponential). 

Finally, the construction in Fact 4.2, which makes the Hennie machine halt, takes 
only polynomial time (in particular, the work alphabet of the Hennie machine only grows 
polynomially in size). [] 

The remainder of the proof is identical to the proof of Theorem 6.1. [] 

Theorem 6.3. The equivalence problem for 1-pebble 2AFAs is in EXPSPACE. 

Proof. We reduce the problem (in three reductions) to a problem which is in ExPSPACE. 
Only the first step (Claim A") is different from the proof of Theorems 6.1 and 6.2; the 
rest is identical. 

Claim A". The equivalence problem for n-state 1-pebble 2AFAs reduces (via a many- 
to-one exponential-space reduction) to the equivalence problem for 0 (n2 n)-state deter- 
ministic Hennie machines in which O(n) states occur O(n) times at the same position 
(whereas each of the remaining 0 (n2 n) states occurs at most once at the same position), 
and which always halt. 

Proof of Claim A ". By Theorem 4.1(d), for every n-state 1-pebble 2AFA P we can 
construct an equivalent O(n2n)-state deterministic Hennie machine H in which O(n) 
states occur O (n) times at the same position (whereas the remaining O (n2 n) states occur 
at most once at the same position). By Fact 4.2 we can assume that this machine always 
halts. This reduces the equivalence problem for 1-pebble 2AFAs to the equivalence 
problem for Hennie machines of the above type. We have to check that the construction 
of H, given P, can be done using exponential work-space. 

Let E be the alphabet of P, which is thus also the input alphabet of H. The work 
alphabet of H consists of: 

(1) The alphabet A of the 2AFA A2. These are letters of E that come together 
with pairs of Shepherdson tables (with respect to 2AFAs), and incompletely 
constructed pairs of Shepherdson tables (see the first two passes in the proof 
of Theorem 4.1(d)). There are tA[ < [Elb n2" such letters, for some constant 
b > 2 .  

(2) The circuit-slices (with coloring and erasing of some edges) associated with 
the alphabet A of N2 (when N2 is being simulated by a deterministic Hennie 
machine according to Theorem 4.1(a)). There are < [Atd n2 = [EIc n2" such 
slices, where d and c are constants > 2. 
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Thus the work alphabet of H has size < I~ [c n2", Each letter of H can thus be 
represented in space O ( n 2  n + log IE]). We can compute the (doubly exponentially 
large) transition table of H, using only exponential work-space, as follows: We consider 
all pairs (state, letter) of H, in lexical order; for each such pair, we can compute the next 
state and the letter printed and the head-direction, in polynomial time (as in the proof 
of Theorems 4.1 (a) and (d)). We then output the state, letter, next state, letter printed, 
and direction. Since we reuse the work-space to do this calculation for each pair, only 
exponential work-space is used (although the time is doubly exponential). 

Finally, the construction in Fact 4.2, which makes the Hennie machine halt, takes 
only polynomial time (in particular, the work alphabet of the Hennie machine only grows 
polynomially in size in this step). [] 

Claims B-D of the proof of Theorem 6.1 are now used without any change. So our 
problem reduces to a PSPACE-complete problem via exponential-space reductions and 
thus can be solved in exponential space. [] 
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