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Given a connected graph G = ( E E )  with IV[ =-n and maximum degree A such that  G is 
neither a complete graph nor an odd cycle, Brooks' theorem states that G can be colored with A 
colors. We generalize this as follows: let G - v  be A-colored; then, v can be colored by considering 
the vertices in an O(log A n) radius around v and by recoloring an O(log A n) length "augmenting 
path" inside it. Using this, we show that A-coloring G is reducible in O(log3n/logA) time to 
(A-t-1)-vertex coloring G in a distributed model of computation. This leads to fast distributed 
algorithms and a linear-processor NC algorithm for A-coloring. 

1. Introduction 

A main concern in the design of efficient algorithms for distributed networks 
is locality. A message-passing distributed network can be thought of as a graph 
where vertices are processors communicating via the edges of the graph; the ab- 
sence of shared memory disallows the fast dissemination of information and hence, 
computation must be based on local data. The question of locality can be stated 
as follows: can each processor compute its part of the output by searching only a 
small neighborhood of itself? 

In a distributed network the following trivial strategy is always possible: the 
network elects a leader (say, the processor with maximum ID) which then collects all 
of the information, computes and sends the answers to the rest of the network. This 
takes time proportional to the diameter of the network (the diameter of a network 
is the maximum length of a shortest path between any pair of vertices) which can 
be O(n), where n is the number of nodes in the network. We are interested in 
"subdiametric" time protocols, in general, ones that run in time polylogarithmic 
in n. 
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In this paper  we are concerned with the vertex coloring problem in a distributed 
model of computation,  where a synchronous network G wants to compute a vertex 
coloring of its own topology. The relevance of this problem to distributed computing 
stems from the fact that  an independent set defines a set of processors that  can 
compute in parallel without interfering with their neighbors. Hence, a vertex 
coloring defines a schedule for the processors to compute in parallel. 

Given a graph G = (V,E) with IVi -- n, A will denote its maximum degree, 
i.e., the max imum number of neighbors of any vertex. A A-coloring of a graph is a 
vertex coloring that  uses at most A colors. In this paper  we prove a surprising result 
about  the "local" nature of A-colorings, which has several interesting algorithmic 
applications. 

Theorem. Let G be a connected graph such that A >_ 3, G is not a clique. Suppose 
G -  v is A-colored. Then, we can extend the A-coIoring to the whole of G by 
recoloring a path originating from v, which is of length at most O(log An) .  

This theorem can be used to compute a A-coloring of G inductively by adding 
vertices one by one and each time applying a "small radius search". Hence, this 
result is a generalization of a well-known theorem of Brooks [3] (see also the 
discussion in Bollob~s [2]), which states that  every connected graph of maximum 
degree A which is neither an odd cycle nor a complete graph, can be colored with A 
colors. Brooks'  proof does not appear  to have this locality property. The O(logA n) 
bound is tight up to a constant factor, in the sense that  there exists a family of 
graphs and partial  A-colorings of them, for which a search of radius ~(logA n) is 
required. 

The small radius search can be carried out effectively in our distributed model 
of computat ion and in NC, allowing us to derive several algorithmic results. The 
intuition behind our algorithms is the following. Suppose a graph O is A-colored 
except for a set of uncolored vertices P.  If the vertices in P are sufficiently far 
apart ,  we can extend the coloring to the whole of G by a simultaneous application 
of the small radius search to all vertices of P. The problem is to construct a set 
P with the desired property. We now give an overview of the various algorithmic 
consequences of the small radius search that  we establish in this paper. 

We call nice graphs the class of connected graphs which are neither paths, nor 
cycles, nor cliques. We focus on connected graphs because we are interested in 
studying algorithmic properties of reliable (i.e., no faults) distributed networks. 

Our "small radius search" theorem leads to a reduction from A-coloring to 
(A + 1)-coloring. This allows us to derive fast randomized distributed and NC 
algorithms for A-coloring because (A+l)-colorings can be computed fast. Our first 
result states that  nice graphs are precisely those graphs that  can be computed by 
fast randomized algorithms in our distributed model of computation.  

Theorem. Nice graphs can be A-colored in expected polylogarithmic time in the 
distributed model of computation; the running time is polylogarithmic with high 
probability. Moreover, there is no o(n) time randomized protocol to A-color paths, 
cycles and cliques. 

Notice the analogy with Brooks' theorem, which characterizes A-colorable 
graphs. This theorem can be viewed as a distributed analog of Brooks'  theorem. 
The ~(n)  lower-bound is derived as a corollary of a more general result proven in 
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Section 6 which states that  for any A_> 2, the problem of A-edge coloring bipartite 
graphs needs ~(diameter(G))  time distributively, even given an unlimited amount 
of randomness (whereas this can be done in NC: see Lev, Pippenger & Valiant [10]). 
For vertex coloring, this result implies that  paths and even cycles cannot be 2-vertex 
colored in o(n) time distributively, even given unlimited randomness. Clearly, 
cliques and odd cycles cannot be A-colored at all. 

Randomness can be removed from the previous theorem at a cost of an extra 
A-factor. 

Theorem. Nice graphs are precisely those graphs that can be A-vertex colored de- 
terministically in 0 (A log 3 n/  log A) time in the distributed model of computation. 

Notice that  when A is bounded by a polylogarithmic function of n, the running 
time becomes polylogarithmic in n. (Similarly, when A is bounded by a suitable 
sub-linear function such as, say, n~, for if< 1, the running time is sublinear). 

By using ideas from [12], the randomized reduction can be implemented and 
derandomized in NC with O(IV I + IEI) processors, yielding the first known linear 
processor NC algorithm for A-coloring. The existing NC algorithms for A-coloring 
all seem to need superlinear processors (Hajnal & Szemer4di [6], Karchmer & Naor 
[7], and Karloff [8]). With a PRAM paths and even cycles can be 2-colored quickly. 
We thus have this "PRAM" version of Brooks' theorem. 

Theorem. Nice graphs, paths and even cycles can be A-colored in the CREW 
PRAM model of computation in 0 (log 5 n log log n/log A) time, with linearly many 
processors. 

By making use of the notion of network decomposition (Awerbuch, Goldberg, 
Luby &= Plotkin [1], Panconesi & Srinivasan [13]) we obtain one final theorem which 
is another deterministic, distributed version of Brooks' theorem whose running time 
is independent of A. 

Theorem. Nice graphs are precisely those graphs that can be A-colored determin- 
istically in O(n O(e(n))) time in the distributed model of computation, where e(n) = 
1/ I 4- n. 

It is an important  open problem whether a A-coloring or a (A+l)-coloring can 
be computed deterministically in polylogarithmic time in the distributed model of 
computation. 

2. Definitions 

A distributed network is a graph G where each vertex is a processor with a 
distinct ID, and each edge is a bidirectional communication link. There is no shared 
memory. The network is synchronous and computation takes place in a sequence of 
rounds; during each round a processor sends messages to its neighbors, then collects 
all data  sent to it by its neighbors, and then performs some local computation. The 
complexity of a protocol is given by the number of rounds. Hence, if we want a 
protocol to terminate within t rounds, every vertex can communicate with only the 
vertices which are at a distance of at most t from it. We do not charge for local 
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computation; in other words, we want to study the complexity of a problem when 
communication is the bottleneck, imposed by this locality (i.e., the absence of a 
global shared memory). 

Given a graph G--(V,E) and a set SCV, G[S] denotes the subgraph induced 
by S, and G-S denotes GIV-S]. When S={v} for some vEV, we write G-v 
instead of G- {v}. 

With DIAM(G) we denote the diameter of G. A function t(.) is subdiametric 
(with respect to G) if t(IVI) = o(DIAM(G)).  

A vertex coloring will be denoted by X('); if S is a set of vertices, then x(S) is 
the set of colors used by the vertices of S. The maximum degree of G is denoted 
by A. When a vertex v is uncolored, we say that  v is pebbled. We denote the set 
of neighbors of a vertex v by N(v), and its degree by deg(v). If  v is pebbled and 
Ix(N(v)) I ~ A ,  then there is a spare color for v; if we color v with a spare color, the 
pebble at v is said to be removed. 

The following operations will be used often. Suppose u is pebbled and 
Ix(N(u)) I -- A; let v be any non-pebbled neighbor of u with, say, X(v) = c~. A 
step is the following recoloring operation: i) v becomes pebbled, ii) u is colored 
with c~, and iii) all other vertices stay the same (either colored as before or peb- 
bled). A very important  property of the step operation that  will be used throughout 
the paper  is that  if P is the set of pebbled vertices and a pebble makes a step from 
u to v, then this step operation transforms a legal A-coloring of G - P  into a le- 
gal A-coloring of G -  ( ( P -  {u}) U {v}). A walk is an arbi trary sequence of steps 
made by the same pebble (see Figure 1 ). Clearly, a walk transforms "legal" partial  
A-coloring into "legal" partial  A-coloring (i.e., if P and Q are the sets of pebbles 
before and after the walk, and if G -  P is A-colored, then G -  Q is A-colored). 

An (a,~)-ruling forest with respect to G and a subset V I C V is a forest of 
rooted trees F = {Ti}, where each tree is a subgraph of G, with the following 
properties: 

�9 For each i, the root of Ti, called the leader of Ti and denoted by l(Ti), is in V/; 
�9 each vertex in V I belongs to some tree; 
�9 the trees are disjoint i.e., each vertex in the forest belongs to a unique tree; 
�9 inter-root distance is at least c~, and 
�9 tree depth is at most fl (the depth of a rooted tree is the maximum distance 

between the root and any leaf). 
Notice that  trees of an (a,fl)-ruling forest can contain vertices not in V ~. 

This notion was introduced by Cole & Vishkin [4], and generalized by Awerbuch, 
Goldberg, Luby & Plotkin [1]. A (k, klogn)-ruling forest can be computed in 
O(klogn) t ime distributively [1]. 

An important  notion in distributed graph algorithms is that  of a network 
decomposition (also called cluster decomposition) introduced in [1]. Given a graph 
G -- i V, E)  and a parti t ion of V into a set of clusters C, define the cluster graph 
C C=(C,EC) ,  where E c = { ( C i , C j ) ]  i7 s  A 3 u e C i , v e C j  : (u,v) e E } .  A 
(d(n), e(n))-network decomposition of G is a set of clusters C and a vertex-coloring 
of GC with O(c(n)) colors, such that  each cluster has diameter O(d(n)). 

The best-known deterministic result for computing a network decomposition 
in a distributed system is contained in [13], where it is shown how to compute 
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O {~ pebbled vertex 

I 
Fig. 1. Steps and walks 

an (O(nO(e(n))),O(nO(E(n))))-decomposition in O(nO(e(n))) time, where e ( n ) =  

The next definition introduces formally the class of graphs that we will consider 
for A-coloring: 

Definition 1. A nice graph is a connected graph G which is not a complete graph, 
with A >_ 3. 
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3. Distributed Brooks' Theorem 

In this section, we show that  given a partially A-colored nice graph G with one 
pebbled vertex v0, we can extend the coloring to G by recoloring an "augmenting 
path" of length O(log An).  Brooks'  theorem follows as a corollary. For the sake of 
clarity, we first give a weaker result, an O(x/~) bound, and then give the stronger 
result. 

We first establish our result in the easy case of when a vertex of degree less 
than A is "near" the pebbled vertex. Let G = (V, E) be a graph of maximum degree 
A; a vertex v E V is called a sanctuary if deg(v) < A. 

Lemma 1. Let  G - vo be A-colored and vo be pebbled. I f  v E V is a sanctuary at 
distance ~ from vo, then the pebble can be removed by walking it for at most  
steps. 

Proof. Let P = v o , v l , . . .  , v ~ - v  be any simple pa th  between v0 and v, and consider 
the following procedure. Initially v0 is pebbled; if there is a spare color at v0 remove 
the pebble, otherwise make a step to vl. Once vl is pebbled, if there is a spare color 
at Vl remove the pebble, otherwise make a, step to v2, and so on. This procedure 
never creates an illegal coloring. Eventually, unless a spare color is found along the 
way, we reach v~--v which has a spare color because its degree is less than A. | 

Note tha t  the search for a sanctuary within a distance of ~ can be easily 
implemented in O(~logn) t ime both in the distributed model of computat ion and in 
the PRAM model using linearly many processors, provided that  the vertex degrees 
have been precomputed. Precomputing degrees takes O(logn) time. 

The rest of this section is devoted to establishing the existence of a short 
augmenting pa th  in the case when there is no sanctuary near the pebbled vertex. 
A graph with no sanctuary near the pebble must be "locally A-regular". The next 
definition makes this notion precise. 

Definition 2. Let G be a graph with one pebbled vertex v0. G is A-regular around 
v o within radius ~ if there is no sanctuary at a distance of at most ~ from v0. 

For sake of brevity, we will say that  a graph G is A-regular within radius ~ in- 
stead of "A-regular around vo within radius ~". The following definition introduces 
the basic structure that  allows us to extend the coloring from G - v o  to G, when G 
is locally A-regular within a radius which will be specified later. 

Definition 3. Let G - v 0  be A-colored and v0 be pebbled. A T-path is a pa th  P - -  
vo ,v l , . . .  ,Vp, where Vp has two neighbors x and y such that: (i) X(X)=X(Y) ,  and 
5i) x,yCp. 

The notion of T-pa th  is analogous to that  of augmenting pa th  which plays a 
vital role in the theory of matching and network flows. Our aim is to prove that  if 
there is no sanctuary within O(log A n) distance from the pebbled vertex then there 
is a T -pa th  of length O( lognn) ,  and to show how to find it. First, we show tha t  a 
T-pa th  allows us to extend the coloring to G. 

Lemma 2. Let G -  vo be A-colored and vo be pebbled. I f  there is a T-path P then 
G can be A-colored by walking the pebble along P. 

Proof. As in the proof of Lemma 1 we walk the pebble along P start ing from v0. 
Eventually, unless we find a spare color along the way, we reach vp, which has two 
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neighbors x and y with the same color, and whose colors are not changed by the 
walk of the pebble. | 

Given two paths  P1 -- v0, v l , . . . ,  vk and P2 = vk, vk+l , . . . ,  vl, their concatenation 
is the pa th  P1 "P2 = v0, v l , . . . ,  vk ,Vk+l , . . . ,v  I. The set of colors of the vertices in 
a pa th  P is denoted by x(P) .  When Ix(P)[ = 2 we call P bichromatic. If  P is 
bichromatic with colors a and/3, we say that  P is an (a, f~)-path. In what follows, 
the set of vertices of a pa th  P will be denoted by the same letter P.  The next 
definition is crucial. 

Definition 4. A stem is a simple pa th  P = v o , v l , . . .  ,Vp such that:  
i) v0 is pebbled, and 

ii) there exists i > 0 such that  vi , . . . ,  vp is bichromatic and has at least four vertices 
(i.e., p - i _ > 3 ) .  
The basic tool to prove our main theorem is a forthcoming lemma called the 

Spawning Lemma. Roughly speaking, the lemma states that  if we s tar t  a walk 
along a bichromatic pa th  Q originating from (the bichromatic part  of) a s tem S 
we cannot intersect S again or, if we do, we have found a T-path.  This proper ty  
will be used to s tar t  a tree growing process that ,  if no T-pa th  is found, visits new 
vertices at an exponential rate. Hence, pre t ty  soon we must encounter already 
visited vertices and find a T-path.  

The following convention will be handy. Given a pa th  P = vo,.. .  ,Vp and a 

vertex vi E P, v + denotes Vi+l and v~- denotes vi-1 (clearly these are not defined 
for, respectively, Vp and v0). 

Definition 5. Let P - - v o , . . . ; v p  be a s tem with bichromatic part  vi, . . . ,Vp. An 
g-branch is a pa th  Q = x o , . . .  ,x l  of length g such that: 

i) 
ii) Q is bichromatic and simple, 

iii) Q N P =  {xo}. 
Notice that  the origin of Q, the vertex x0, is "internal" to the bichromatic part ,  

namely it belongs to {Vi+l, . . . ,Vp-1}. The following lemma states that  a s tem S 
can either be used to generate a pa th  visiting "brand new" vertices or to find a 
T-path.  

Lemma 3. Let G be a nice graph and let P = v o , . . .  ,Vp be a stem with bichromatic 
part vi , . . . ,Vp. Let  Q = x o , . . .  ,x~ be a bichromatic path of length g such that xo 
{viq_l,... ,Vp_l}. Suppose that G is A-regular within radius [P[+IQ[. Then, either 
Q is an g-branch or there is a T-path of  length at most tPI+IQI. 

Proof. Without  loss of generality suppose that  X({Vi,. . . ,Vp}) -- {a,fl}, x(Q) = 
{a,V}, and X(Xo)=a.  Notice first that  if Q is not simple then there is a T-pa th  of 
the desired length (see Figure 2). 

I t  remains to prove tha t  either Q n P = { x o }  or there is T-path.  Suppose tha t  
Q N P ~  {xo}, and let w be the first vertex of P that  is met  when walking along Q 
coming from x0. I t  is important  to realize that  w ~ Xo, x0+ because X(w) E {a, V} 

and X ( X o ) = X ( x  +) =f t .  We distinguish two cases. 

Suppose first tha t  w E {vo, . . . ,  Vp-1 }. If  w E {v l , . . . ,  x O -  } (w, a colored vertex, 

cannot be v0) then there is a pa th  from v 0 to x0 that  does not include x 0 and x0 +, 
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I (~  pebbled vertex 

x 0  

q 

q 

qD 

D 

D 

Fig. 2. If Q is no t  s imple a T - p a t h  is found 

hence a T-path .  Similarly, if w C {x0 + + , . . . ,  Xp_l } there is a pa th  from vo to w tha t  
does not  include w -  or w +,  again a T -pa th  because X ( w - ) - - X ( w  +) = ~ .  (Recall 
t ha t  vl, . . .  ,Vp is bichromatic.)  

Suppose then tha t  w -- vp. Let A -~ v0,. . .  ,x0, and B -- xo,. . .  ,Vp _ w. Recall 
t ha t  B is an ( a , ~ ) - p a t h  and tha t  Q is an (a,-y)-path. Then,  it must  be tha t  X(Vp) = 
c~. Again,  we distinguish two cases (please refer to Figure 3). 

�9 If  N(vp)  n A = O  then A o B  or A � 9  is a T -pa th  of the desired length. To see 
this, suppose tha t  vp has another  (i.e., besides Vp-1) neighbor u colored ~; 
then A � 9  is a T -pa th  because u ( fAUQ. Similarly, if Vp has another  neighbor 
colored ~, then A o B  is a T-path .  If  Vp has neither, then it has two neighbors 
with the  same color not  belonging to Ao B  or AoQ, because ] Y ( v p ) - ( B U q ) l =  
A - 2 ,  and I x ( g ( v p ) -  (BUQ))I ~ A - 3 .  Hence there is a T -pa th  of the desired 
length. 

�9 If  N(vp)  N A ~ ~ then a T -pa th  of the desired length can be found as follows. 
Let z C N(vp) N A. First, z = xo is impossible because X(X0) = X(Vp) = c~. If  

z = x o then  v0,. . .  , x -  is a T-path,  because X(xo) = X(Vp) = a. Finally, if z c 

{v0,. �9 �9 x o -  }, there is a T - p a t h  from vo to xo, namely the pa th  vo, . . . ,  z, VpOQ R 
(this pa th  takes the  edge (z, vp) and then traverses Q "backwards").  This pa th  

does not  include x O or x0 + and hence is a T -pa th  of the desired length. | 

Given a s tem S with bichromatic  par t  vi , . . . ,  Vp a block is any subpa th  of four 
vertices B = bo, bl, b2, b3 such tha t  B C {vi , . . . ,  Vp}. A pa th  Q originating from either 
bl or b2 is said to originate from the block B. We can now prove the Spawning 
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A 

B .  

v~ t 
xo 

x 0  

x0 + 

w 

Q 

Fig. 3. Q meets  the  s tem S a t  the  las t  point  W=Vp 

Lemma which states that  given a stem S we can either "spawn off" an t-branch 
from any of its blocks or find a short T-path.  From now on, let a,/3 and -y be any 
three distinct colors. 

Lemma 4. [Spawning lemma] Le t  G be a nice graph with a pebbled  vertex vo such 
that  G - v o  is A-colored. Le t  S = vo, . . . , Vp be a stem of  length at mos t  ~, whose 
bichromatic par t  vi, . . . , Vp is colored with colors a and/3, and let B =bo,bl  ,b2,b3 be 
a block o f  S.  Suppose  that  G is A-regular within radius 3~, for some ~ >_ 5. Then,  
for any color ~/ ~ { ~, ~ }, ei ther there is an g-branch Q~ originating from B or there 
is a T-pa th  o f  length at mos t  3g. 

Proof. Without  loss of generality suppose x ( b l ) =  13 and x(b2)--oz. The structure of 
the proof  is first to t ry a walk along an (c~, 7)-path start ing from b2; if this turns out 
to be successful (an g-branch or a T-pa th  is found), then we are done. Otherwise, 
we s tar t  a wMk Mong a (/3, ~/)-path originating from bl = b 2. We wilt show that  if 
the first search fails the second one must be successful. Let Q--b2  =-xo, . . . ,Xq be 
the pa th  obtained by following an (a ,7 ) -pa th  starting from b2 for g edges or till it 
ends, whichever occurs earlier. Q must have non-zero length or otherwise vo, . . .  ,b2 
is a T -pa th  (b2 has no ~-neighbors). By Lemma 3, Q must be a IQI-branch, or there 
is a T -pa th  of length at most 2g. I f  Q has length g we are done. Otherwise, we 
show that  either v 0 , . . . , b 2 . Q  is a T-pa th  or there is an edge between bl = b ~  and 
Xq, the last vertex of Q. First, if there is an edge from v0, the pebbled vertex, to Xq 
we have a T-pa th  vo , xq ,Xq_ l , . . .  , x  0 of the desired length. Hence, N ( x q ) - Q  must 
contain two vertices a and b with the same color. I f  they do not belong to the path  
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v0,. . .  ,bl,b2 eQ then we have found a T-pa th  of the desired length. However, only 
bl can be a neighbor of Xq. Indeed, a and b cannot lie on Q because Q is simple, 
and if, say, a E {v0,.. . ,b0} there is a pa th  from v0 to b2 which does not include 
b 2 = b l  and b+2=b3, hence a T-pa th  is found (the pa th  is vo,.. .  ,a, xq, . . .  , x 0 - b 2 ) .  

Hence, if Q is unsuccessful, there must be an edge (bl,xp). We then s tar t  a 
(13,'y)-path Ql =Y0,. . .  ,yT start ing with Y0 =h i  and Yl =Xq and continuing for ~ steps 
or until it ends, whichever occurs earlier. Notice that  Q~ has the same properties of 
Q. If  Q / h a s  length t then we are done, otherwise either we find a T-pa th  or there 
is an edge between b0 = b~- and Yr. But now this edge allows to walk from v0 to b2 

via the pa th  vo, . . . ,  bo, Yr, . . . ,  Yl �9 Xq,. . . ,  xo = b2, which does not include b~ = b 1 or 
b2 + = b3 and hence is a T-pa th  of length at most 3~ (see Figure ~ ). | 

b21 Q 
b3 

(~  pebbled vertex 

Fig. 4. If b o t h  Q and QI are not t -branches  there  is a T - p a t h  from v 0 to b 2 

The above lemma is independent of the particular ~/chosen as long as V ~ {~, ~}, 
so tha t  a total  of A - 2  new bichromatic paths can be generated (or "spawned off"), 
some from vi~_ 1 and some from vi+ 2. 

Corollary 1. Let G - v o  be A-colored, vo be pebbled, and let G be/X-regular within 
radius 3e, for some ~_> 5. Then, given a stem S of length at most ~ and a block B C 
S, we can spawn o f f / X - 2  t-branches from B, or else there is a T-path of length at 
most  3g. 
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Lemma 4 shows how to inductively generate new stems from old ones. The 
next l emma shows how to find an initial stem; it is the basis of an induction proof 
showing the existence of a short T-path.  

Lemma 5. Let G be a nice graph such that G -  vo is A-colored and vo is pebbled. 
Suppose that G is A-regular within radius 3~, for some ~ ~ 5. Then, either G has a 
stem of length at least four or it has a T-path of length at most four. 

Proof. Since G is not a clique, v0 has two neighbors x and y such that  (x, y) r E; 
let X(x) = a and X(Y) = ft. Starting from v0 we perform a walk along an (a,f l)-  
pa th  P according to the following procedure: let vi be the current pebbled vertex; 
if there is a free color at vi then remove the pebble, otherwise make a step to a 
vertex vi+ 1 not previously visited, such that  X(Vi+l) E {a,/~}. If  no T-pa th  is found 
this procedure must perform at least four steps, because no sanctuary can be found 
within 4 steps and the shortest (a, fl)-path between x and y must have at least 
three edges. | 

By combining Lemmas 4 and 5 we can obtain Brooks' Theorem as a corollary. 

Corollary 2. Every nice graph G can be A-colored. 

Proof. The proof is by induction on the number of vertices. The basis is trivial. The 
induction step is to assume, for some vertex v, that  G - v  is partially A-colored and 
tha t  v is pebbled. If G is not A-regular then there exists a sanctuary at distance 
at most  n -  1 from v and hence, by Lemma 1, we can extend the coloring to v. 
Suppose then tha t  G is A-regular. First we invoke Lemma 5 to get an initial stem, 
then we invoke Lemma 4 by setting l = n. Since branches of such length cannot 
exist, we must find a T-pa th  of length at most 3~ and can remove the pebble. | 

We now prove tha t  if G is a nice graph such that  G -  v0 is A-colored and v0 
is pebbled, the pebble can be removed by a walk of length at most O ( v ~ ) .  Let 
t =  3v/-n. If  there is a sanctuary at a distance of at most 3t from v0, then we are 
done by Lemma 1; otherwise G is locally A-regular within radius 3t and we show 
tha t  a T-pa th  of at most O(yrn) length must exist. Lemma 5 ensures that  we can 
find a first s tem P of length four. Given P,  with one application of Lemma 4, 
we can spawn off an l-branch pl .  This gives a new stem S of length at most 
IP'I + IPI = t + 4 .  Then, we subdivide P '  into contiguous blocks (adjacent blocks 
share a vertex), and apply Lemma 4 in each block, thus generating a sequence of 
bichromatic paths Q1, Q2, . . . ,  Q v ~ '  each of length t. Notice that  if any two distinct 

Qi and Qj intersect there is a T-pa th  of length at most 3e+4 (see Figure 5). Also, 
if IQiNS I > 1, for any i, we have found a T-pa th  of length at most 2 t+4 .  However, 
since g/3 paths of length t each are generated, some intersection must occur, thus 
yielding a T-pa th  of length at most 3t § 4. 

The basic idea of this proof is to generate a tree of diameter o(vrn)  start ing 
from an initial s tem and to spawn off l-branches by repeatedly applying Lemma 4. 
When a new t-branch Qi is spawned off, we either get a T-pa th  if Qi intersects 
the existing tree or we visit ~ brand new vertices. Clearly, after O ( v ~ )  spawning 
operations, no new vertices can be visited, and the l-branch must intersect the 
existing tree. 
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Qi 

@j 

Fig. 5. If Qi and Qj intersect a T-pa th  is found 

A more intricate use of the same technique shows that we can generate a tree 
of depth O(logAn ) with the same properties, hence showing the existenqe of an 
O(log A n) length T-path. 

Theorem 1. Let G be a nice graph such that G-vo is A-colored and vo is pebbled, 
and suppose that G is A-regular within radius ~ + 14, where ~= 7[log2A_ 4 n] + 11. 
Then, G has a T-path of length at most ~+14. 

Proof. We generate a sequence of trees {Tk: h =0,1,  2,...} all rooted at v0; T~+I is 
generated from Tk by simultaneous applications of Corollary 1. 

First, we invoke Lemma 5 and produce a stem S of length four. Then, we 
invoke Lemma 4 to generate a 7-branch P = w0,...,wT. There is a path from vo, 
the pebbled vertex, to w7 made of vertices in SUP; this is the first tree To. Notice 
that  To is a stem with bichromatic part w0,... ,wT. 

We subdivide Wl,. . . ,  w7 into two contiguous blocks B1 = wl , . . . ,  w4 and B2 = 
w4,. . . ,  WT. From Corollary 1, each Bi can be used to generate A - 2  new bichromatic 
paths of length 7. Each of these is subdivided again into two blocks and each block 
is used to spawn off A - 2  new paths of length 7, and so on. In this way, we generate 
a sequence of trees Tk rooted at v0. Tk+l is obtained from Tk by simultaneously 
spawning off the new length 7 paths from all the unused blocks B in Tk. This 
process is based on the following invariant: any path from the root v0 to any leaf 
w is a stem with bichromatic part of length at least 7. Hence two adjacent blocks 
can be individuated and Corollary 1 applied. We want to show that when Tk+l 
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is generated from T~ either a short T-path is found or Tk+ 1 is indeed a tree (Le., 
"brand new" vertices are visited). 

Suppose, by induction, that  at stage k no T-path has been found (i.e., T k is a 
tree) and that  T k has depth at most g. Let B1 and B2 be any two unused blocks 
of Tk. If there is any path from x E B1 to y E B2 then we have found a T-path. 
Hence, any two intersecting 7-branches originating from B1 and B2 yield a T-path 
of length at most g + 14. Similarly, any 7-branch originating from an unused block 
B cannot intersect the old tree T k. To see this, recall that an g-branch cannot 
intersect its own stem by Lemma 3. If the 7-branch intersects a different stem of Tk 
a T-path  of length at most g+7 is found (this situation is depicted in Figure 6), It 

Q . . . .  

old t r e e _ _  

~ pebbled vertex 

l ib B 
)... ]1 \ 

\ 
x. 

\ 

I , Q 
I 
I 

! % 

Fig. 6. I f  a n e w ] y  s p a w n e d  off  7 - b r a n c h  Q m e e t s  t h e  o ld  t r e e  T k a T - p a t h  is f o u n d  

remains to show that  when 7-branches originating from the same block meet a T- 
path is found. Let B:bo,...,b3 be an unused block and let ~(bl)=a and ~(b2)= 
~, Recall that  there are exact[y A -  2 7-branches Qv that  are spawn off from B~ 
one for each "yr Each Q~ is either an (a,V)-path or a (fl,'y)-path, Hence, 
any Qvi originating from b 1 cannot intersect any Qvj originating from b 2 because 
x(Q*r~) N x ( Q ~ j ) =  0, If Qv~ and Q'ry originate from the same vertex, say bt, they 
can meet only in a vertex x colored a. Since Q~ and Q'rj have length seven (an 
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(D pebbled v 

Fig. 7. If Q~'i and Q~,j intersect a T-path  is found 

odd number) x must have two neighbors with the same color on one path, say Q ~ ,  
thus yielding a T-pa th  of length at most g +  14 (please refer to Figure 7). 

We now analyze the growth rate of the trees Tk. If we collapse each pair of 
adjacent used blocks in Tk into one vertex, we obtain a tree where every collapsed 
vertex has degree at least 2 A -  4 but for the unused blocks and the initial stem, 
and whose depth is reduced by at most a factor of 7. Hence, by stage e + l  we must 
have found a T-pa th  of length at most ~+14. | 

Note tha t  for A > 3, 71og2A_4n+ 11 = @(log An).  Theorem 1 and Lemma 1 
ensure tha t  a short augmenting path  can always be found. There is either a 
sanctuary at a distance of at most g+14=71og2A_4n+25  from the pebble, or a T- 
pa th  of at most  that  length. I t  can be verified that  both  Lemma 1 and Theorem 1 
can be implemented in O(log A n) t ime in the distributed model of computation,  
and with linearly many processors in the PRAM model. 

Finally, an ~t(log A n) radius search is necessary in generM, to remove a pebble. 
Consider a rooted tree T in which every non-leaf node has degree A, with a part ial  
A-coloring of T such that  there is a pebble at the root, and such that  for any non- 
leaf node v, the colors of v's children are all distinct. The color of at least one leaf 
of T must be changed to give the root a legal color, since at least one child of v 
must be recolored, to recolor any non-leaf node v. 
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4. Algorithms for A-coloring 

In this section, we show how the small radius search can be applied to the 
design of efficient distributed and parallel algorithms for computing A-colorings. 
The algorithms are based on a reduction from A-coloring to (A+l) -color ing  which 
can be implemented distributively by an algorithm running in 0 (log 3 n~ log A) t ime 
with high probabili ty or by an O(Alog3n/logA) t ime deterministic algorithm. 
These yield, respectively, randomized and deterministic distributed algorithms for 
A-coloring with the same complexity bounds. 

4.1. The Randomized Reduction 

We now describe a randomized distributed algorithm for A-coloring tha t  runs 
in O(log 3 n / t o g A )  expected time. The idea is to first compute a ( A +  1)-coloring, 
which can be thought of as a partial  A-coloring, and then to remove a color class. 

An outline of the algorithm is as foilows. Let G = (V, E)  be the network. First, 
compute a (A+l)-color ing with colors 1 ,2 , . . . ,  A, (A+I )  and pebble all vertices with 
color (A + 1). In what follows it is convenient to think of the pebbled vertices as 
colored with the "empty" color, a situation denoted by X(v)=-l- 1. Then, compute 
a (k, klogn)-ruling forest ~ with respect to G and the set P of pebbled vertices, 
where k = clog n/log A is more than twice the search radius required by Theorem 1; 
this can be achieved by an appropriate choice of c. Recall that  the root of each 
tree in the forest is pebbled, and that  each pebbled vertex belongs to a unique tree 
in the forest. If  we are able to remove all non-root pebbles, then we can apply the 
small radius search of Theorem 1 in parallel on the roots, and by our choice of c, 
each root will either find its own T-pa th  or its own sanctuary, without interfering 
with the other roots, and will remove the pebble. 

The problem, then, is to remove all non-root pebbles. This can be achieved by 
making use of a randomized process described below, which uses a slight modifica- 
tion of an idea of Luby [12]. The idea behind the reduction is to make all pebbles 
walk to the root along the pa th  specified by the tree; the pebbles are either re- 
moved along the way if a spare color is found, or are eventually "absorbed" by the 
root, which is itself a pebble. Each walk, however, is a recoloring operation and we 
must ensure that  in doing several of them in parallel, we always have legal partial  
colorings of the graph. A symmetry-breaking problem arises when we have adjw 
cent pebbles; moving pebbles in parallel might result in an inconsistent coloriCg 
(see Figure 8). 

We now describe the randomized process which allows us to remove all non-root 
pebbles. Each vertex in G has a list Av of available colors: Av = {1, . . . ,  A}-x(N(v)), 
for all v. We denote the current color of v by X(v) and the new color ~fter one step 
by ?/l(v). In parallel, each pebbled vertex v does the following: 

1 Tha t  is, X(v) = •  if and only if v is pebbled. Notice tha t  • is a special coloring in that  

neighboring vertices can both  be colored with _1_. 
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pebble motion 

Fig. 8. Moving both pebbles in parallel yields an inconsistent coloring 

Randomized Reduction. 
If no neighbor of v is pebbled, then the pebble is removed if Av is 

nonempty, and the pebble makes a step to v's parent if Av is empty. If v 
has some pebbled neighbor, we say that  v is asleep. With probabili ty 1/2, 
v remains asleep and does nothing, i.e., X ' ( V ) :  X(V)---.k. With probabili ty 
1/2 it wakes up, in which case v chooses a tentative color c~ uniformly at 
random from Av; if ~ is also chosen by some neighbor of v then Xl(v) : 
X(v) =_k, else X ' ( v )=~  and the pebble is removed. 
First, we show that  by executing the randomized reduction we never produce 

an inconsistent partial  coloring; second, we prove tha t  the expected running t ime to 
remove all non-root pebbles is polylogarithmic and in fact, that  it is polylogarithmic 
with high probability. 

Lemma 6. Let G be a nice graph such that G -  P is A-colored and P is a set 
of pebbled vertices. Let pI be the set of pebbled vertices after one step of the 
randomized reduction. Then, G - p I  is A-colored. 

Proof. The claim follows from inspecting the randomized reduction. If a pebble 
has no neighboring pebbles then it is removed if there is a spare color, or it makes 
a step, if there is no spare color. In both  cases the new partial  coloring is legal. 
For the case when there are neighboring pebbles let v denote the pebbled vertex. 
A tentative color is assigned as the new color to v only if the same tentative color 
was not chosen by any neighboring pebble. The correctness then follows from the 
observation tha t  non-pebbled neighbors can be pebbled but cannot change their 
color. | 

The next lemma shows that  all non-root pebbles are removed within 
O(log 3 n~ log A) t ime with high probability: the failure probability is inverse poly- 
nomial in n. With essentially the same proof it is possible to show that  the running 
time is O ( f ( n ) l o g 2 n / l o g A )  with probability at least 1 - 2  :~(f(n))  ( f (n )  is any 
arbi trary function which goes to infinity as n grows). 

Lenuna 7. Let G be a nice graph with n vertices, P be a set of pebbled vertices 
and G - P  be A-colored. Suppose 2~ is a (k, k logn)-ruling forest with respect to G 
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and P ,  where k is any positive integer. Then, if  we run the randomized reduction, 
every non-root pebble is removed within O( k log2 n) time with probability at least 
1 - 1/q(n), for any polynomial q(.) such that, for a11 n, q(n) >_ 1. 

(Comment:  the constant implicit in the O(klog2n) term depends on q(.).) 
Proof. We want to set up the necessary machinery to invoke a theorem by Karp tha t  
will give us the claim [9]. First, we argue intuitively that  if v E P has some pebbled 
neighbor, then it is removed with probabili ty at least 1/4; a formal proof can be 
easily derived and can be found in [12]. Let B = N(v)  N P be the set of pebbled 
neighbors of v, and let W C_ B be the set of pebbled neighbors of v in B that  wake 
up. Since every pebbled vertex wakes up with probability 1/2, the expected size of 
W is E[IWI] = [BI/2. Every u E W chooses a tentative color uniformly at random 
'from its list Au. In the worst possible scenario, all vertices of W will choose a color 
which is also in Av. But since [Av[ ~_ [B[ =2E[[W[],  the probabili ty that  v chooses 
a tentative color not chosen by any u E W is at least 1/2. The claim follows from 
the fact tha t  v wakes up with probabili ty 1/2. 

We can summarize the algorithm by saying that  when v is pebbled, the pebble 
makes a step to the parent  of v if there are no neighboring pebbles and there is 
no spare color, it is removed if there are no neighboring pebbles and there is a 
spare color, and it is removed with probabili ty at least 1/4 if there are neighboring 
pebbles. For the sake of the analysis, we think of the algorithm as follows: if v 
has no neighboring pebbles and there is no spare color, the pebble makes a step 
with probabil i ty p = 1/4, otherwise it is removed with probabili ty p---- 1/4. Given 

pebbles, we want to study the random variable T(~), which denotes the t ime by 
which every pebble has either made a step or been removed. Clearly, an upper 
bound for T(.) with the modified algorithm is also an upper bound for T(.) with 
the old one. 

Let h(~) be the random variable denoting the number of pebbles tha t  after one 
step are neither removed nor have made a step. Then E[h(e)] _~ ( 1 - p ) e  (if two 
or more pebbles step on the same vertex all but one can be removed). Moreover, 
T(1) = 1 and T(~) satisfies the following recurrence 

T(e) = 1 + T(h(e)). 

Let b = ( 1  _ p ) - i  = 4 / 3  and u ( n ) =  [logbn j +1;  u(n) is the minimal integer solution 
to the recurrence 

U(n) = 1 + U(E[h(n)]) = 1 + U((1 - p)n) 

which intuitively governs the expectation of T(n). By Theorem 3 of Karp  [9], it 
follows tha t  for any d >  1, 

Pr(T(n) > u(n) + d) ~ pd-1. 

This probabil i ty is inverse polynomial when d = O(logn). Also note that  this 
upper  bound on the probabili ty applies to any configuration of the pebbles. Hence, 
T(n)klogn is an upper  bound on the time by which every pebble reaches the root, 
at which t ime is certainly removed. The total  t ime taken is hence O(k log 2 n), with 
high probability. | 
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We summarize the whole algorithm now. 
�9 Compute a (A + 1)-coloring of G with colors 1 ,2 , . . . ,A,  (A + 1). This takes 

O(logn) with high probability using a randomized algorithm of Luby [9, 12]. 
�9 Pebble all the vertices with color ( A + I ) ,  and let P be the set of pebbled 

vertices. Compute a (k, klogn)-ruling forest 5 with respect to G and P, where 
k = clog A n for a suitable constant c (c is chosen so that  k > 2(7 [log2A_ 4 n7+25 ) 
insuring that  the small radius searches of Step 4 do not overlap). This takes 
O (k log n) = O(log 2 n~ log A) time using an algorithm of Awerbuch, Goldberg, 
Luby ~= Plotkin [1]. 

�9 Run the randomized reduction. At the end all non-root pebbles are removed. 
This takes O(log 3 n~ log A) time with high probability. 

�9 Apply the small radius search on the roots in parallel. Each pebble will either 
find its T-path or its sanctuary, and will be removed. This takes O(log n~ log A) 
time. 
The overall complexity is dominated by Step 3. The correctness of the algo- 

ri thm follows from Lemma 6, which proves the correctness of Step 3, and by the 
correctness of the small radius search, which ensures that  Step 4 is correct. This 
yields the following theorem. 

Theorem 2. Nice graphs can be A-colored in the distributed model in 
O(log 3n / logA)  expected time. Moreover, the running time is O(log 3n / logA)  
with high probability. 

4.2. Deterministic Distributed A-coloring 

In this section, we give a distributed, deterministic algorithm for A-coloring 
with complexity O(Alog3n/ logA).  We stress that  when A is bounded by a 
potylogarithmic (sub-linear) function of n, the complexity is polylogarithmic (sub- 
linear). 

In the previous algorithm, randomness was used in two places; to compute 
a (A + l)-coloring and for the randomized reduction. The basic device used to 
remove randomness is an O(A log n) time distributed algorithm for (A+l)-coloring, 
due to Goldberg, Plotkin & Shannon [5] which, roughly speaking, substitutes the 
randomized procedure of Lt~by. 

, To remove all non-root pebbles we use the fact that  the graph induced by P, 
the set of pebbled vertices at any given time, is itself (A+l)-colorable in O(Alogn) 
time. The coloring is used to schedule the motion of the pebbles, using the fact that  
pebbles in a color class can safely take decisions simultaneously. (A color class is an 
independent set.) We first give the algorithm to remove all non-root pebbles - -  the 
deterministic reduction, and then prove its correctness. As in the previous section, 
prior: to invoking the reduction we compute a (k, klogn)-ruling forest, where k = 
clogn/logA for an appropriate value of c. 

Deterministic Reduction. 
Repeat k logn times (the maximum tree depth): 

1. Let G[P] be the subgraph induced by the set of pebbles P.  Compute a (A+I)-  
coloring of G[P] and let C1,.., CA+I be the color classes. 
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2. Sequentially, for i =  1 , 2 , . . . , A + 1  do the following: in parallel, each non-root 
pebbled vertex v �9 Ci checks if [x(N(v))[< A If so, a spare color is chosen and 
the pebble is removed. 

3. Let Q be the set of remaining non-root pebbles; in parallel, for each pebbled 
vertex v �9 Q, if [x(N(v))[ < A then color v with a spare color and remove the 
pebble, else the pebble makes a step to v's parent. 

In order to prove the correctness of this algorithm it is enough to show that 
each of the k logn many iterations transforms a legal partial coloring into a new 
legal partial  coloring. Notice that  the coloring of Step 1 is used only to schedule the 
operations of the pebbles and should not be confused with the partial coloring of G. 
Step 2 gives a legal partial coloring because each color class Ci is an independent 
set; if v �9 Ci none of its neighbors will change its color, and v can safely color itself 
if a spare color is available. To prove the correctness of Step 3 we first prove that  
Q is an independent set. Suppose not, and let u and v be two adjacent pebbles in 
Q. Without  loss of generality suppose that  u �9 Ci and v �9 Ci+k, where k > 0. But 
since u had an uncolored neighbor when it was processed, namely v, it could have 
colored itself then. Hence Q is an independent set. A pebbled vertex v in Step 3 
either performs a step or colors itself; since Q is an independent set, for all u �9 
N(v), either u does not change its color or it becomes pebbled (i.e. some pebble 
made a step to u). In either case the color assigned to v is legal. 

We now argue that  all non-root pebbles are removed by the' end of the algo- 
rithm. Consider any pebbled vertex v; for each of the klogn = O(log2n/logA) 
iterations, either the pebble is removed or it makes a step towards the root, 
which decreases the distance of the pebble from the root by one. Each iteration 
takes O(Alogn)  steps (which is the complexity of Step 1), which gives a total of 
O(~Xlog 3 n / log  A) time to remove all non-root pebbles. The whole algorithm is 
summarized as follows. 

1. Deterministically compute a (A + 1)-coloring with colors 1,2, . . . ,  A, (A + 1) in 
O(Alogn)  time by using an algorithm of Goldberg, Plotkin & Shannon [5]. 
Pebble all vertices with color (A + 1). 

2. Compute a (k,klogn)-ruling forest with respect to G and the set of pebbles, 
where k=O(logn/ logA) .  This takes O(klogn) time [1]. 

3. Compute the deterministic reduction to remove all non-root pebbles. This 
takes O(Aklog2n) = O ( A l o g  3 n / l ogA)  time. 

4. Apply the small radius search to all pebbled roots in parallel. Every pebble 
will either find its own T-path or its own sanctuary, and will be removed. This 
takes O(log A n) time. 

The complexity of this algorithm is dominated by that  of the deterministic 
reduction. Hence, 

Theorem 3. Nice graphs can be A-colored deterministically in the distributed model 
of computation in O( A log 3 n / log  A) time. 
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5. Further Applications of the Small Neighborhood Search 

In this section, we discuss briefly some other applications of the small radius 
search. First, we show how the randomized algorithm of Section 4.1 can be deran- 
domized in NC with linearly many processors. Second, we discuss a deterministic 
O(nO(~(n))) time algorithm for A-coloring in the distributed model, where e (n)=  
1/lov - . 

5.1. A linear processor NC algorithm 

The randomized algorithm for A-coloring can be implemented and derandom- 
ized in the CREW PRAM model using linearly many processors by making use of 
the standard techniques discussed in [12]. To our knowledge, this is the first lin- 
ear processor NC algorithm for A-coloring; the existing algorithms seem to require 
superlinear processors [6, 7, 8]. 

The distributed randomized algorithm of Section 4.1 has four steps. We now 
describe how each of them can be implemented in the PRAM model. 

Step 1 is the (A+l)-coloring algorithm of Luby and can be derandomized with 
linearly many processors [12]. 

To implement Step 2, computing a ruling forest, and Step 4, performing the 
small radius search, it is sufficient to simulate the message passing distributed 
model in NC. This can be easily done by introducing a processor for each edge 
and by noticing that  the computations performed at each node only require O(1) 
time (per step of the distributed algorithm). Simulation of the message passing 
mechanism requires O(logn) time because O(logn) is an upper bound on the 
message size (recall that  we have introduced a processor for each edge). Hence, 
each round of the distributed algorithm can be simulated in the PRAM model in 
O(logn) time. Essentially, both Steps 2 and 4 are BFS searches of O(log 2 n/logA) 
and O(logn/logA) depth respectively. Combining these with the time needed for 
simulating a round gives a complexity of O(log 3 n~ logA) for both Steps 2 and 4. 

To implement the randomized reduction we consider the following modification 
of Step 3. Let G - P  be A-colored and P be a set of pebbles. We run (the 
derandomized NC version of) Luby's (A+l)-coloring algorithm on G, which induces 
a (A + 1)-coloring of the pebbles with colors 1 , . . . ,A,  (A + 1). Let C(A+D be the 
pebbles that  got color (A + 1); all pebbles in P -  C(A+] ) have a legal color and 
C(z~+l) is an independent set and hence, all pebbles i n  C(A+I) can make a step to 
the root. 

Notice that  here, unlike the distributed implementation, we first run the col- 
oring algorithm and then all pebbles in C(A+I ) make a s tep.  This requires a kind 
of synchronization and global knowledge that  is easily available in NC but not in 
the distributed model. 

Each run of the (A+l)-coloring algorithm requires O(log 3 nloglogn) time [12] 
and we can have at most O(log2n/logA) runs before all non-root pebbles in the 
ruling forest (whose trees have depth O(log2n/logA)) are removed. Paths and 
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even cycles can be easily colored in NC in O(logn) time; hence, we can state the 
following theorem. 

Theorem 4. Nice graphs can be A-colored in the CREW PRAM model of compu- 
tation with linearly many processors in O(logb nloglogn/log A ) time. 

5.2. A Sublinear Time Deterministic Distributed Algorithm 

Problems like MIS and (A + 1)-coloring can be solved in O(d(n). c(n)) time 
distributively, given a (d(n), c(n))-decomposition of G. The generic algorithm for 
such problems, given a network decomposition, will iterate through the color classes, 
clusters of color I being "processed" first in parallel, clusters of color 2 being 
processed next, and so on. Inside each cluster the following trivial algorithm can 
be used: the maximum ID vertex within the cluster is elected as leader, which 
then collects information about all vertices in the cluster, solves the problem by 
itself, and then distributes the solution to all vertices in the cluster. The bounds 
on the cluster diameter and the number of colors used, yield the bound on the time 
complexity of this generic algorithm. 

It is known how to compute an (O(ne(n)),O(nC(n)))-decomposition distribu- 
tively in O(n O(e(n))) time where e (n )=  1 / ~  [13]. Such a decomposition can be 
used to give a deterministic and distributed implementation of Step 1 and Step 3 
of our A-coloring algorithm. 

Step 1, computing a (A + 1)-coloring, can be implemented with the generic 
algorithm outlined above: cycle through the color classes, and when processing 
color class c, extend the partial (A + 1)-coloring to all clusters of color c. The 
extension to the coloring in each cluster of color c can be computed by the leader 
of the cluster by means of global communication inside the cluster, with the time 
complexity being proportional to the diameter of the cluster. Since both the number 
of colors and cluster diameter are o(nO(c(n))), the total cost of this implementation 
is O(n~ 

A naive implementation of the reduction of Step 3 is as follows. Let t(n) = 
O(log 2 n~ log A) be the maximum tree depth of the ruling forest, d(n)= O(nO(~(n))) 
be an upper bound on the diameter of each cluster of the network decomposition, 
and let c(n)=O(n ~ be the number of colors used in the network decomposi- 
tion. Then, for i = 1,2, . . . ,  t(n) and for c= 1,2,..., c(n) do the following: each leader 

'in clusters of color c schedules the motion of the pebbles inside the cluster until 
they are either removed or step outside the boundary of the cluster. Inside each 
cluster the trivial algorithm outlined above is used. This takes O(t(n)c(n)d(n))= 
O(n O(~(n))) time, where e(n)= 1/ Ix/T~n. 

The main observation is that each time a cluster is activated, each pebble in the 
cluster is either removed or makes at least one step. So, it is sufficient to activate 
each cluster t(n) times to remove all non-root pebbles. 

The correctness of the implementations of Step 1 and Step 3 follows from the 
fact that  a node in a cluster C cannot be adjacent to a node in a cluster C t whose 
color is the same as that  of C. Step 4 of the algorithm can be implemented with 
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a BFS of depth O(logn/ logA) at most. The following theorem summarizes the 
whole discussion. 

Theorem 5. Nice graphs can be A-colored deterministically in O(nO(e(n) )) time in 
the distributed model of computation, where e ( n ) - - 1 / l ~ n .  

6. Lower Bounds for some Distributed Coloring Problems 

In this section, we prove an f~(DIAM(G)) lower bound for edge coloring bipar- 
tite graphs optimally (i. e. with A colors) in the distributed model of computation,  
and then show that  the same lower bound applies even when the processors are 
allowed randomness. When A = 2, the proofs for vertex and edge coloring are 
the same. Linial has proved lower-bounds for computing various types of vertex 
colorings distributively, using different techniques [11]. 

6.1. Deterministic Coloring of Paths 

We first analyze the simpler case of coloring paths and then we will deal with 
general bipart i te  graphs. For paths and even cycles a lower bound proof for vertex 
coloring readily translates into one for edge coloring, and viceversa. We will describe 
our lower-bounds in terms of vertex coloring. 

Theorem 6. Let t(n) = o(n). There is no distributed protocol which 2-colors all 
connected graphs of maximum degree-2 in O(t(n) ) time. 

Proof. We consider the case where G is a path; the proof is similar if G is an 
even cycle. The motivation for this result is that  two-coloring a pa th  amounts to 
computing the pari ty of a given vertex. 

Let s(i,t) be the state at t ime t of (the processor corresponding to) vertex 
with ID i. From the definition of our computat ion model, it follows tha t  for any 
path-coloring protocol, 

s(i, t) = f( t ,  i, iL, iR, s(i, t - - i ) ,  s(iL, t -- i) ,  s(iR, t -- 1)), 

for some function f( . ) ,  and where iL and iR are the ID's of the neighbors of i. 
Also, s ( i , 0 ) - -g ( ID( i ) )  for some function g(.). The above equation implies tha t  if 
d(i,j)  is the distance between two vertices i and j ,  any information start ing from 
i needs d(i,j)  steps to reach j .  This observation is the basis for the proof. Let 
t = t(n) be the worst-case complexity of a protocol ~ for two-coloring paths, and 
assume tha t  t(n) = o(n). Consider a pa th  A : Vl,.., v2t,.., vi-t , . . ,  vi,..vi+t,..Vn-1, vn; 
notice tha t  vi is surrounded by a neighborhood of radius t and it is at least 3t + 1 
far away from vl. Consider now the pa th  where vn is inserted somewhere between 
v2t and vi-t;  this changes the pari ty of the path, i.e. the coloring of Vl and vi in A 
must be different from that  in B, when the protocol ~ is used. But  from the state 
transit ion function it follows that  

SA(i,k)=sB(i,k) SA(Vl,k)=sS( l,k), 
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where the subscripts A and B denote the paths A and B. In other words, for any 
sublinear t(n),  the states of vi and v I in A and B will be exactly the same and 
hence they will receive the same colors in both  cases, contradicting the presumed 
correctness of ~ .  | 

6.2. Optimal  Edge Coloring of Bipart i te  Graphs 

In this subsection, we prove the same lower bound of f l (DIAM(G))  for edge 
coloring generM bipart i te  graphs optimally, i.e., with A colors. The idea of the 
proof is the same as before; if a protocol is constrained to finish within t steps, then 
a vertex cannot "tell the difference" between two situations where the topology of 
the network is the same in a neighborhood of radius t, but different outside this 
neighborhood. 

Theorem 7. For any A > 2, there is no subdiametric time deterministic protocol 
for A-edge coloring bipartite graphs with maximum degree A, in the distributed 
model. 

Proof. The proof is by contradiction. Our graph G will be made by linking together 
in a chain-like manner  certain subgraphs.  Each subgraph is defined as follows. 
Consider a complete bipart i te graph KA_I ,A_  1 and let bl , . . ,bA_ 1 be the vertices 
on one side of the bipart i t ion and Cl,..,CA_ I the other side. Connect all of the bi's 
to a vertex a and all of the ci's to another vertex d. Finally, connect d to another 
vertex e. Such a graph will be called a A-widget. A 5-widget is shown in Figure 9. 

b4 c4 

Fig. 9. A 5-widget 

The widget is such tha t  it forces a color on edge (d, e), as follows. A A-widget is 
a bipart i te  graph of max imum degree A and hence can be A-edge colored. Without ,  
loss of generality, suppose we use colors 1, . . , A - 1  for the edges incident on vertex 
a. Hence, among the remaining edges incident on any bi exactly one of them must 
use color A. This means tha t  each ci has exactly one edge (ci,bj) colored A. In 
turn, this implies tha t  none of the edges incident on vertex d can use color A and 
this forces us to use color A on edge (d,e). 

We build a bipart i te  graph by connecting A-widgets in a chain-like manner  so 
tha t  the e vertex of one widget coincides with the a vertex of the next (please refer 
to Figure 10). 
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Fig. 10. A chain of widgets 

To prove our claim, let Wi be the i -  th widget and le t  ai ,b i j  , c i j , d  i be its 
vertices. The main observation is that  if x(di,ai+i)= A then x(dk ,ak+l)=A for 
all k, and the same argument of Theorem 6 can he repeated. Suppose there is a 
protocol 5 D to A-edge color biparti te networks with n vertices and with maximum 
degree A, with subdiametric worst-case t ime t=t(n,  A). Consider a chain A with at 
least 3 t+3 A-widgets. Without  loss of generality, assume that  all edges (di, ai+l )  of 
the i-th widget are colored with color A. We now modify the chain A by removing 
arty vertex v from the last widget Wat+3 and inserting it between dt and at+l ;  this 
creates the two new edges (dr,v) and (v,at+l). Let this be chain B. Clearly, the 
insertion of v implies that  color A cannot be used on both edges incident on v; this 
implies tha t  the coloring of the two subehains at the left and right side of v must be 
different. However, if we consider widgets W1 and W2t+2, they will behave exactly 
the same as they did in chain A since they are at distance greater than t from v 
and from War+a, and this will cause a conflict of colors somewhere in the chain. | 

6.3. Randomized Coloring 

We now prove that  the same f t (DIAM(G))  lower bound applies when the 
processors are allowed to use random bits. At each step of the protocol, each 
processor can flip a fair coin independently any number of times; this is equivalent 
to assuming that  each processor is given all of its random bits at the beginning of 
the protocol. There are two types of randomized protocols: Monte Car lo  and Las 
Vegas. The  definition of acceptance for a Monte Carlo protocol is tha t  the protocol 
should find a A-edge coloring in any degree A bipart i te graph with probabil i ty at 
least p, with p > 1/2. On the other hand, a Las Vegas protocol always computes 
the correct answer, but  its running t ime is a random variable. 

Theorem 8. There is no Monte Carlo distributed protocol that  finds a two-coloring 
of a path with n vertices in worst-case time o(n). 

Proof. We use the same strategy as for the previous proof. Assume that  there is a 
protocol 5~ which violates the assumptions of the theorem; given a pa th  A where :P 
is supposed to work, construct a new path  B by changing the pari ty of two vertices. 
If we take these two vertices far enough they will behave in the same way in both  
chains, and the resulting coloring in B will be invalid. 

Let A be a pa th  of length n such that  4In and n/4 > 2t (where t = o(n) is 
the worst-case t ime complexity of :P), and let us subdivide it into 4 parts of equal 
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length: 

A1 A2 A3 A4 

A = Vl...vn/4 v(n/4)+l...V2n/4 V(2n/4)q_l...V3n/4 V(3n/4)q_l...Vn. 

Let the parts be A1,A2,A3,  and A4. Let b be the number of random bits 
assigned to each processor. Given the random assignments to the processors (b bits 
to each of the n processors) we form a string of length bn by concatenating the 
assignments; we call this a string assignment. Since the protocol works on A with 
probability at least 1/2, there must be at least 2 bn-1 string assignments that  find 
a right coloring; let S be this set of string assignments. Consider H1--A1 UA3 and 
H2 = A2 U A4. Let $1 = {hi o a3 E {0, 1} bn/2 I ~X, y E {0,1} bn/4 3s e S s-= al o x o a 3 oy} 

and let nl  = I Sll. Similarly, let $2 = {a2 o a4 E {0,1} bn/2 t 3x, y E {0,1 }bn/4 3s C S s ~- 
xoa2oyoa4}  and n 2 =  ]$2[. Without  loss of generality, suppose nl  >_n2; since [S I <_ 
[[;1 X $2 ], n l  n2 ~_ 2 bn- 1. It follows that  

bn--1  
n1_>2 2 

Let us now construct a new path B by removing Vn, the last vertex of A4, and 
inserting it in the middle of A2. We now claim that  the probability that  in B the 
vertices in H1 compute exactly the same colors for themselves as they compute in 
A is at least l /v/2.  This would give us the claim. Notice that  since Vn is at distance 
greater than t from the vertices in HI ,  the vertices in H1 will compute an invalid 
coloring when given any sequence of random strings from $1, for any assignment 
of random strings to H2. This happens with probability 

b n  2 b n - - 1  
2 w  2 2 1 

n l - ~  >- 2bn -- V/-~' 

which is greater than 1/2. | 

Theorem 9. There is no Las Vegas distributed protocol that finds a two-coloring of 
a path  with n vertices in expected t ime o(n). 

Proof. Assume that  there is such a protocol 50 with expected running time at most 
T(n)  = o(n). Given a path, run 50 on it for 2. T(n)  steps; by Markov's inequality, 
a valid two-coloring would have been found with probability at least 1/2 in time 
2. T ( n ) =  o(n), violating Theorem 8. | 

Corollary 3. There is neither a Monte Carlo nor a Las Vegas distributed proto- 
col that  computes A-edge colorings of  bipartite graphs of  max imum degree A in 
subdiametric time. 

Proof. The same arguments as in Theorems 8 and 9 go through if we use the chain 
of widgets of Theorem 7 instead of a path. | 

Acknowledgments. Our sincere thanks go to Prof. David Shmoys, for his generous 
advice, support and suggestions. Many thanks to Radhakrishnan Jagadeesan and 
Suresh Chari who formalized the lower bound approach for us. We also thank 
Prof. Gianfranco Bilardi, Prasad Jayanti, David Pearson, Desh Ranjan and Pankaj 
Rohatgi for valuable discussions, and Prof. C. R. Muthukrishnan for his kind help 
during the summer of 1991. 



280 A. PANCONESI, A. SRINIVASAN: THE LOCAL NATURE OF A-COLORING 

References 

[11 B. AWERBUCH, A. V. GOLDBERG, M. LUBY, and S. A. PLOTKIN: Network de- 
composition locality in distributed computation, in: Proceedings of the IEEE 
Symposium on Foundations of Computer Science, (1989), 364-369. 

[2] B. BOLLOB~.S: Graph Theory, Springer Verlag, New York, 1979. 
[3] R. L. BROOKS: On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 

37 (1941), 194-197. 
[4] R. COLE, and U. VISHKIN: Deterministic coin tossing with applications to optimal 

parallel list ranking, Information and Control 70 (1986), 32-53. 
[5] A. V. GOLDBEP~G, S. A. PLOTKIN, and O. E. SHANNON: Parallel symmetry-breaking 

in sparse graphs, SIAM J. Disc. Math. 1 (1989), 434-446. 
[61 P. HAJNAL, and E. SZEMERs Brooks coloring in parallel, SIAM J. Disc. Math. 

3 (1990), 74-80. 
[7] M. KRACHMER~ and J. NAOR: A faster parallel algorithm to color a graph with A 

colors, Journal of Algorithms 9 (1988), 83-91. 
[8] H. J. KARLOFF: An NC-algorithm for Brooks' theorem, Theoretical Computer Sci- 

ence 68(1) (1989), 80-103. 
[9] R. M. KARP: Probabilistic recurrence relations, in: Proceedings of the A C M  Sympo- 

sium on Theory of Computing (1991), 190-197. 
[10] G. F. LEV, N. PIPPENGER, and L. G. VALIANT: A fast parallel algorithm for routing 

in permutation networks, IEEE Transactions on Computers 30 (1981), 93-100. 
[11] N. LINIAL: Locality in distributed graph algorithms, SIAM J. Comput. 21(1) (1992), 

193-201. 
[12] M. LuBY: Removing randomness in parallel computation without a processor 

penalty, Journal of Computer and System Sciences, 47 (1993), 250-286. 
[13] A. PANCONESI, and A. SRINIVASAN: Improved distributed algorithm for coloring 

and network decomposition problems, in: Proceedings of the A C M  Symposium 
on Theory of Computing (1992), 581-592. 

Alessandro Panconesi  

Freie Universitiit Berlin 
Fachbereich fiir Mathematik und Informatik 
Institut fiir InfoT'rnatik 
Takustr. 9 
D-1~195 Berlin, Germany 

Aravind Srinivasan 

DIMA CS Center 
Rutgevs University 
PO Box 1179 
Piscataway, NJ 08855-1179, USA 


