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In this paper  we explore some implications of viewing graphs as geometric objects.  This 
approach offers a new perspect ive on a number  of graph-theoret ic  and algorithmic problems. 
There  are several ways to model  graphs geometrically and our main  concern here is with geometr ic  
representa t ions  tha t  respect  the  metric of the  (possibly weighted) graph. Given a graph G we 
map  its vertices to a normed space in an a t t emp t  to (i) keep down the  dimension of the  host  
space, and (ii) guarantee  a small distortion, i.e., make sure tha t  distances between vertices in G 
closely match  the  distances between their  geometric images. 

In this paper  we develop efficient algori thms for embedding  graphs low-dimensionally with 
a small  distort ion.  Fur ther  algori thmic applications include: 

�9 A simple, unified approach to a number  of problems on mul t icommodi ty  flows, including the  
Le igh ton-Rao  Theorem [37] and some of its extensions.  We solve an open question in this 
area, showing tha t  the  max-flow vs. rain-cut gap in the k-commodit ies  problem is O(logk).  
Our new determinis t ic  polynomial- t ime algori thm finds a (nearly tight) cut meet ing  this 
bound.  

�9 For graphs embeddable  in low-dimensional spaces with a small distort ion,  we can find low- 
d iameter  decomposi t ions  (in the  sense of [7] and [43]). The parameters  of the  decomposi t ion 
depend  only on the  dimension and the  distort ion and not on the  size of the  graph. 

�9 In graphs embedded  this way, small balanced separators can be found efficiently. 
Given faithful low-dimensional representat ions of stat ist ical  data,  it is possible to obtain 

meaningful  and efficient clustering. This is one of the  most  basic tasks in pat tern-recogni t ion.  
For the  (mostly heuristic) me thods  used in the  practice of pat tern-recognit ion,  see [20], especially 
chapter  6. 

Our studies of mul t i commodi ty  flows also imply tha t  every embedding  of (the metr ic  of) 
an n-ver tex ,  cons tant -degree  expander  into a Euclidean space (of any dimension) has dis tor t ion 
~( Iogn) .  This  result is t ight,  and closes a gap left open by Bourgain [12]. 

1. Introduction 

Many combinatorial  and algorithmic problems concern either directly or im- 
plicitly the distance, or metric on the vertices of a possibly weighted graph. I t  is, 
therefore, natural  to look for connections between such questions and classical geo- 
metric structures. The approach taken here is to model graph metrics by mapping 
the vertices to a real normed spaces in such a way that  the distance between any 
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two vertices is close to the distance between their geometric images. Embeddings 
are sought so as to minimize (i) the dimension of the host space, and (ii) the dis- 
tortion, i.e., the extent to which the combinatorial and geometric metrics disagree. 
Specifically, we ask: 

1. How small can the dimension and the distortion be for given graphs? Is it 
computationally feasible to find good embeddings? 

2. Which graph-algorithmic problems are easier for graphs with favorable (low- 
dimensional, small distortion) embeddings? What  are the combinatorial ira- 
plications of such embeddings? 

3. The above discussion extends to embeddings of general finite metric spaces. 
What  are the algorithmic and combinatorial implications in this more general 
context? 

Here are some of the answers provided in this paper: 
1. We develop a randomized polynomial-time algorithm that  embeds every finite 

metric space in a Euclidean space with minimum distortion. Bourgain [12] had 
shown that  every n-point metric can be embedded in an O(logn)-dimensional 
Euclidean space with a logarithmic distortion, and our algorithm finds embed- 
dings which are at least as good. Better embeddings are provided for particular 
families of graphs. 

2. The geometry of graphs offers an excellent framework for studying multicom- 
modity flow problems. In particular, our methods yield a very short and con- 
ceptual proof for several theorems that  relate the value of the multicommodity 
flow in a network to the minimum cut in it (e.g., the Leighton-Rao Theorem 
[37]). An open question in this area is solved by the very same argument. 

A low-diameter decomposition of a graph G is a (not necessarily proper) 
coloring of the vertices with few colors, so that  all monochromatic connected 
subgraphs have small diameters. In [43] the precise tradeoff between the 
number of colors and the diameter was found for general graphs. In particular, 
both parameters can be made logarithmic in the order of the graph, which is, 
in general, essentially tight. Here we establish a better tradeoff that  depends 
only on the dimension and the distortion at which the graph is embeddable, not 
on the number of vertices. For many algorithmic applications of low-diameter 
decompositions, see [7] and [16]. 

Graphs embeddable in a d-dimensional normed space with a small distor- 
1 - !  tion have balanced separators of only O(d.n d) vertices. If the embedding 

is given, such separators can be found in random polynomial time. For closely 
related work see [49]. 

3. Clustering of statistical data calls for grouping sample points in sets (clusters), 
so that  distances between members of the same cluster are significantly smaller 
than between points from distinct clusters. If data points reside in a high- 
dimensional Euclidean space, or even worse, if distances between points do 
not conform with any norm, then clustering is notoriously problematic. Our 
algorithms provide one of the few non-heuristic approaches to this fundamental 
problem in pattern-recognition. 
Many problems in this area remain open, some of which appear in Section 8. 
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A preliminary version of this paper appeared in [40]. The present detailed and 
considerably expanded version includes a number of new results (see especially 
Sections 4 and 8). In the version of this article submitted January 1994 we 
conjectured that  the present methods are applicable to the study of multicommodity 
flow problems. This plan materialized in July 1994 and lead to the revised version 
of September 1994. The following results were added in the final version of February 
1995: A deterministic version to one of the embeddings algorithms, as well as to the 
multicommodity flow algorithm; A new characterization of the least distortion for 
embeddings into Euclidean space (Corollary 3.5); A new covering theorem (Claims 
3 and 4 of Theorem 7.1). 

2. Related work and overview of results 

During the past few years a new area of research has been emerging, an area 
which may be aptly called the geometry of graphs. This is the study of graphs 
from a geometric perspective. A comprehensive survey of this fascinating area 
is well beyond our scope, so we restrict ourselves to a few brief remarks and 
examples. Geometric models of graphs can be classified as either (i) topological 
models, (ii) adjacency models, or (iii) metric models. The topological approach 
is mainly concerned with graph planarity and embeddability of graphs on other 2- 
dimensional manifolds (see [34] for a recent survey). It also deals with 3-dimensional 
embeddings of a graph, mostly in the context of knot theory. (See Welsh's book 
[611 for some of these developments.) 

Particularly fascinating is the way in which geometric/topological consider- 
ations come up in the theory of forbidden minors [56]. The double cycle cover 
conjecture (surveyed in [30]) says that in every bridgeless graph there is a collec- 
tion of cycles which cover every edge exactly twice. It is not hard to see that  this is 
equivalent to the statement that  for every graph G there is a 2-dimensional mani- 
fold on which G can be embedded so that  every edge is incident with two distinct 
cells (2-dimensional faces) of the embedding. 

In an adjacency model, the geometry respects only the relation of adja- 
cency/nonadjacency of vertices, but not necessarily the actual distance. A prime 
example for this approach is the Koebe-Andreev-Thurston Theorem (see [36], [3], 
[4], and [60]) that  every planar graph is the contact graph of openly disjoint planar 
discs. Higher-dimensional results in the same vein appear in [21], [22], [49], and [5]. 

Another noteworthy adjacency model calls for mapping the vertices of a graph 
to a Euclidean unit sphere where adjacent vertices are to be mapped to remote 
points on the sphere. This approach, initiated in [45], has recently found further 
interesting algorithmic applications (see [26] and [33]). 

Let X be a set of k vertices in a graph G. An embedding ~ of G in ]R k-1 is 
X-convex if the vertices of X are mapped to the vertices of a ( k -  1)-dimensional 
simplex and ~o(x)e conv{~o(y)ly is a neighbor of x} for every x ~gX. It is shown in 
[41] that  G is k-connected iff for every such X there is an X-convex ~o under which 
all points are in general position. This result can be put together with orthogonal 
embeddings (see [45]), an adjacency model where adjacent vertices are mapped to 
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perpendicular vectors. The combination of these two approaches is discussed in 
[46]. 

We now turn to problems where graph metrics have a role. A low-diameter 
decomposition of a graph (see [43], [7], [16]) is a (not necessarily proper) coloring of 
the vertices with < k colors, so that  every connected monochromatic subgraph has 
diameter < D. In [43] it is shown that an n-vertex graph has such a decomposition 
whenever k D > n and D k > n, the conditions being essentially tight. The first 
condition is necessary, e.g., in decomposing triangulations of Euclidean spaces. 
The second condition is necessary for expander graphs. The similarity between 
this dichotomy and that  of positive/negative curvature in geometry still awaits a 
satisfactory explanation. 

Low-dimensional models for finite metric spaces have previously been studied 
mostly by functional analysts (see [5], [9], [12], [19], [28], [31], [32], and [48]). Study 
of graph metrics has also led to the notion of spanners (see [2], [51], and [58]) and 
hop-sets [15]. LocM-global considerations, which are commonplace in geometry, 
arose for graphs as well (see [39] and the references therein, [42], and the recent 
[54]). 

All the referenced work notwithstanding, this short discussion leaves out large 
amounts of relevant work, for example, on embedding graphs in particular families 
of graphs such as g-dimensional lattices, cubes, squashed cubes etc. (see [27], [62]). 
Particularly relevant are notions of dimension that  emerge from such considerations, 
see, e.g., chapter 5 in [8]. The possibility of embedding graphs in spaces other than 
Euclidean and spheric geometry is very appeMing, and hardly anything has been 
done in this direction (but see [59]). We have also said nothing about modeling 
geometric objects with graphs, which is a related vast area. 

To initiate our technical discussion, recall that  a norm ]Ill associates 
a real number IIxN with every point x in real d-space, where (i) ]lxll>0, 
with equality only if x=0 ,  (ii)IIAxtl=l)~l Ilzll, for every x e R  d and every real 
A, and (iii) for every x , y e R  d, IIx+yll~_llxll+liyll. The metric associated 
with the norm II'll is d ( x , y ) = N x - y  H. Particularly important are lp norms: 
II(Xl , . . . ,Xn)l lp=(~lxi lP)  1/p. We denote N n equipped with Ip norm by 1B. Eu- 
clidean norm is, of course, 12. 

An isometry is a mapping p from a metric s space (X,d) to a metric space 
(Y,p) which preserves distances, i.e., p(~(x), ~(y)) = d(x, y) for all x, y e Z .  Given a 
connected graph G = (t7, E), we often denote by G also the metric space induced on 
V by distances in the graph. Isometrics are often too restricted and much flexibility 
is gained by allowing the embedding to distort the metric somewhat. This leads to 
the main definition in this article: 

Definition 2.1. Metric Dimension: For a finite metric space (X, d) and e > 1, define 
dimc(X) to be the least dimension of a real normed space (!I, ]l" 11), such that  there 
is an embedding ~ of X into Y where every two points Xl,X 2 E X  satisfy 

d(xl ,x2)  > II~fl(Xl)- ~(x2)ll >__ ! .  d(xl ,x2) .  
C 

1 T e c h n i c a l l y ,  w e  a re  d i s c u s s i n g  s e m i - m e t r i c s ,  as  we  a l low t w o  d i s t i n c t  p o i n t s  t o  h a v e  d i s t a n c e  

ze ro .  
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Such an embedding is said to have distortion < c. The (isometric) dimension of X 
is defined as d i m ( X ) = d i m l ( X ) .  | 

We recall (Lemma 5.1) that  d i m ( X ) <  n for every n-point metric space (X, d), 
whence this definition makes sense. 

We list some of the main findings on isometric and near-isometric embeddings. 
Unless stated otherwise, n is always the number of vertices in the graph G or the 
number of points in a finite metric space (X, d). The least distortion with which X 
may be embedded in lp (of any dimension) is denoted by cp(X). 

Finding good embeddings 
1. In Theorem 3.2 we show: 

There is a deterministic polynomial time algorithm that  embeds every n-point 
metric space (X,d) in a Euclidean space with distortion arbitrarily close to the 
optimum c2(X). By [12], c2(X)=O(logn). 

In random polynomial time X may be embedded in lO(logn) with distortion 
_<( l+s ) . c2 (X)  (for any r  

lO(logn) For every 1_<p_<2, X may be embedded in op with distortion O(c2(X)). 
Such an embedding may be found in random polynomial time. The same distortion 
can also be attained in deterministic polynomial time, but the dimension is O(n2). 

,O(log 2 n) 
In random polynomial time X may be also embedded in tp for every 

p >  2 with distortion O(logn). 
If X is the metric of a constant-degree expander graph, then cp(X)=f~(logn) 

for every 2 ~ p ~ 1. 

2. For every metric space (X, d) on n points there is a V > 0 such that the metric v'd 
can be embedded in a Hamming metric with an O(logn) distortion (Corollary 
3.8). The bound is tight. 

Structural  consequences 
1. The gap between the maximum flow and the minimum cut in a multicommodity 

flow problem is majorized by the least distortion with which a particular metric 
can be embedded in 11. This metric is defined via the Linear Programming dual 
of a program for the maximum flow. This is the basis for a unified and simple 
proof to a number of old and new results on multicommodity flows (Section 4). 

2. Low-dimensionM graphs have small separators: A d-dimensional graph G has 
1 1 

a set S of O(d. n -'d) vertices which separates the graph, so that  no component 

of G \ S  has more than ( 1 -  ~ 1 + o ( 1 ) )  n vertices (Theorem 6.1). 

3. The vertices of any d-dimensional graph can be (d +  1)-colored so that each 
monochromatic connected component has diameter < 2d 2 (compare with [43]). 
They can also be covered by "patches" so that each r-sphere (r - -  any positive 
integer) in the graph is contained in at least one patch, while no vertex is 
covered more than d + l  times. The diameter of each such patch is ~ (6d+2)dr 
(compare with [7]). Moreover, the patches may be ( d +  1)-colored so that  
equally colored patches are at distance _> 2. That  is, there exist low-diameter 



220 NATHAN LINIAL, ERAN LONDON, YURI RABINOVICH 

decompositions with parameters depending on the dimension alone (Theorem 
7.1). 

4. Low-dimensional graphs have large diameter, diam(G) >_ n ~  ) (Lemma 
5.6). 

Algorithmic consequences 
1. Near-tight cuts for multicommodity flow problems can be found in determin- 

istic polynomial time (Section 4). 
2. Given an isometric embedding of G in d dimensions, a balanced separator of 

1 _K 
size O(d.n d) can be found in random polynomial time (Theorem 6.1). 

3. Low-dimensional, small-distortion representation of statistical data offers a new 
approach to clustering which is a key problem in pattern-recognition (Section 
3.2). 

Isometric dimensions 
�9 All trees have dimension O(logn). The bound is tight (Theorem 5.3). 
�9 dim(Kn) = [log2n 7 (Proposition 5.4). (This result essentially goes back to 

[17] .)  
k k 

�9 E [log2n 7 >dim(Knl,...,nD___ E [log2  ]-1, where Knl . . . . .  is the complete 
i--1 i=1 
k-partite graph, and ni ~ 2 (Theorem 5.8). 

m �9 For cycles: dim(2m-Cycle) = rn, and m +  1_> d im((2m+ 1)-Cycle)_> 7 -  1. 

Consequently, dim(G) >__ ~ ( G )  1. However, dim~ (n-Cycle) = 2 (Propo- 

sition 5.10 and Remark 5.11). 
�9 dim(d~Cube)=d (Corollary 5.12). 

3. Low-distortion low-dimensional embeddings 

3.1 Good embeddings 

We start by quoting: 

Theorem 3.1. (Johnson-Lindenstrauss [31], see also [21]) Any set o fn  points in a 

Euclidean space can be mapped to ~t where t--o(l~176 with distortion ~ l + c  in 
the distances. Such a mapping may be found in random polynomial time. 

Proof. (Rough sketch) Although the original paper does not consider computational 
issues, the proof is algorithmic. Namely, it is shown that an orthogonal projection 
of the original space (which can be assumed to be n-dimensional) on a random t- 
dimensional subspace, almost surely produces the desired mapping. This is because 
the length of the image of a unit vector under a random projection is strongly 
concentrated around X/~. | 

Our general results on near-isometric embeddings are summarized in the fol- 
lowing theorem: 
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Theorem 3.2. 
1. (Bourgain [12], see also [32], [4S]). Every n-point metric space (X, d) can 

be embedded in an O(logn)-dimensional Euclidean space with an O(logn) 
distortion. 

2. There is a deterministic polynomial-time algorithm that for every r > 0 embeds 
(X, d) in a Euclidean space with distortion < c2 (X)+e. In random polynomial- 

lO(logn) time (X,d) may be embedded in ~2 with distortion O(e2(X)) (By Claim 
1, c2(x)--O(logn)). 

IO(l~ (for any 3. In random polynomiM-time (X,d) may be embedded in op 
1 <_p < 2), with distortion O(c2(X)) .  

'O(n2) (for any 4. In deterministic polynomial time (X, d) may be embedded in tp 
1 < p <  2), with distortion O(e2(X)) .  

"O(l~ (for any 5. In random polynomial-time (X,d)  may be embedded in tp 
p > 2), with distortion O(logn). 

6. Every embedding of an n-vertex constant-degree expander into an Ip space, 
2 >p > 1, of any dimension, has distortion f~(logn). 

Proof. Claim 1 appears mostly for future reference, but is seen to be an immediate 
corollary of Claims 3 and 5 and Theorem 3.1. 

To prove Claim 2, let the rows of the matrix M be the images of the points of 
X under a distortion-c embedding in some Euclidean space. Let further A = M M  t. 
Clearly, A is positive semidefinite, and for every i r  

~ d 2 j  < ai,i + aj,j - 2ai,j d?. < 

As in [45], [26], and [33] the ellipsoid algorithm can be invoked to find an 
e-approximation of c in polynomial time. 

The dimension is reduced to O(logn) by applying Theorem 3.1. 
To prove Claim 3, use Claim 2 and recall that for any m, l~ n may be embedded 

in l 2m, for every 1 < p < 2, with" constant distortion (see [52], chapter 6). This 
embedding may be found-in random polynomial-time. In fact, it is enough to map 
t~ n isometrically into a random m-dimensional snbspace of 12p m. 

It is not hard to see, and is well known (see [18]) that  any n points in Euclidean 

space can be isometrically embedded into l~ (n2).- In particular, for any finite metric 
space X, c l (X)~e2(X) .  

For the deterministic algorithm in Claim 4, start with the algorithm in Claim 
2. Once an optimal embedding into Euclidean space (of dimension at most n) is 

"O(m2) (see [10]): found, proceed with the following explicit embedding of l~  to lp 

Lemma 3.3. Let F C {-1 ,+1}  m be a 4-wise independent family of vectors, let 
X E ]~ m and l_<p<2. Then, 

1 

11 112 -< N I p _< V511xll2. 
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There are explicit constructions of such families F with O(m 2) vectors. | 

Therefore, having embedded X into n-dimensional Euclidean space, map this 
.O(n 2) 

space to lp via 

,O(n 2) 
x e e . 

By Lemma 3.3 this embedding adds only a constant distortion. 
We now turn to Claim 5. 
The overall structure of the algorithm follows the general scheme of Bourgain's 

proof: For each eardinality k < n which is a power of 2, randomly pick O(logn) 
sets A C V(G) of cardinality k. Map every vertex x to the vector (d(x,A)) (where 
d(x, A)= min{d(x,y)[y E A}) with one coordinate for each A selected. I t  is shown 

tO(log 2 n) 
that  this mapping to ~ has almost surely an O(logn) distortion. 

We now turn to the actual proof. Let B(x,p) -= {y E X]d(x,y) < p} and 
o 
B(x, p)= {y �9 X]d(x,y)< p} denote the closed and open balls of radius p centered 
at x. Consider two points x C y � 9  Let p0=0 ,  and let Pt be the least radius p for 
which both  IB(x,p)] > 2 t and IB(y,p)] >_ 2 t. We define Pt as long as Pt < ld(x,y),  

and let t be the largest such index. Also let P~+I = d ( ~ .  Observe that  B(y, pj) 
and B(x, Pi) are always disjoint. 

Notice tha t  
o 

A N B(x, pt) = ~ ~ d(x, A) > Pt, and A Q B(y, Pt-1) r O ~ d(y, A) <_ Pt-1. 
Therefore if both  conditions hold, then ]d(y, A) - d(x, A)] __ Pt - Pt-1. 

Let us assume that  [B(x, pt)] < 2  t (otherwise we argue for y). On the other hand 
]B (y, Pt- 1)1 >- 2t- 1. Therefore, a random set of size O ( ~ )  has a constant probabili ty 

o 
to both  intersect B(y, pt_l) and miss B(x,pt). 

We randomly select q = O(logn) sets of cardinality 2 l, the least nonnegative 
power of two that  is > n _ 2t--r~. Then, with high probability, for each pair x,y, at least 

o 
q of the sets chosen will intersect B(y, Pt-1) and miss B(x, Pt). 10 

Note that  the same applies to P ~ + I -  P~, since again we wish to miss a set of 

size < 2  ~+l, and to intersect a set of size > 2  ~. 
Therefore for almost every choice of AI,.. . ,Aq: 

q logn. (pt -- P t - 1 )  
E I d ( x ,  A i ) - d ( y ,  Ai)[ >_ 10 
i=1 

We do this now for every l =  1,2, . . . ,  [lognJ and obtain Q = O(log 2 n) sets for 
which: 

t+l logn d(x, y) 
Q logn . E ( p i  _ Pi-1) = 'P~+I > l o g n .  - -  E I d ( x ' A i ) - d ( y ' A i ) l  >- 10 10 - 40 

i ~ l  i = l  
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The reverse inequality is obtained by observing that  Id(x, Ai)-d(y,  Ai)]< d(x, y) 
for every Ai, whence: 

Q 

E ld(x' Ai) - d(y, Ai)] <_ C.  log2n �9 d(x, y). 
i=1 

Thus, the mapping which sends every vertex x to the vector 

embeds G in an O(log 2 n)-dimensional space endowed with t h e / l - n o r m  and has dis- 
tort ion O(logn).  In fact, for every p >  1, a proper normalization of this embedding 
satisfies the same s ta tement  with respect to the Ip norm. 

[d(x,Ai) The only modification is that  now x gets mapped to ~--~TV- ] i =  1,2,. . .  ,Q): 

Let 7(x,y) denote the lp distance between the image of x and the image of y, i.e., 
1__ 

But for every i, Id(x ,Ai ) -d(g ,  Ai)l <_d(x,y) whence ~-(x,g)<d(x,y). On the other 
hand: 

40- E Id( x, Ai) - d(y, Ai)l E td( x, Ai) - d(y, Ai)l 
d(x,y) < i=1 = O  l o g n . i = l  < 

- l o g  n Q - 

< O( logn .  ~-(x, y)), 

by the monotonicity of p-th moment  averages. 
The proof of Claim 6 is deferred to Proposition 4.2. | 

The following technical corollary will be needed in Section 4. 

C o r o l l a r y  3.4. 
1. Let (X, d) be a finite metric space and let Y C X.  There exists a randomized 

tO0og2 IYt) polynomial-time algoiqthm that finds an embedding ~ : X--* ~ , so that 
d(x,y) > [[~(x)-~(Y)I[  for every x, y E X ,  and if  x ,y  are both in Y,  then also 
ll (x) -  (y)fl >- ) " d ( x , y ) .  

2. Let (X,H) be a finite metric space and {(si,ti) [ i = 1 ,2 , . . . ,h}  e X • X. 
There exists a deterministic polynomial time algorithm that finds an embed- 

ding T:X--+I01 (n2), so that d(x,y) > I]~(x) - 7~(y)[I for every x ,y  e X ,  and 
11 (si)-  (ti)ll > e,ery i =  1,2, . . . ,  k. 

Proof. The proof of Claim 1 follows the proof of Claim 5 of Theorem 3.2: 
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Map x to (d(x, Ai)  l i = l , 2 , . . . , O ( l o g  2 IYI)), where the sets Ai are randomly 
chosen subsets of Y. 

The second part  of the Corollary follows the proof of Claim 2 in Theorem 3.2. 

Next, apply the embedding to ll(n2)- mentioned in proving Claim 4. I 

Claim 2 of Theorem 3.2 leads to a characterization of c2 ( X ) ,  the least distortion 
with which (X, d) may be embedded in a Euclidean space of any dimension. 

The acronym P S D  = P S D n  denotes the cone of real symmetric n x n positive 
semidefinite matrices. 

Corollary 3.5. A n  n-point  metr ic  space (X ,d )  m a y  be embedded  in a Euclidean 
space with  distortion < c i f f  for every ma t r i x  Q E P S D  which satisfies Q.  1 = 0 the 
s inequali ty  holds: 

2 + c  2 ~ q i , j ' d?"  < 0 .  qi,j " di,j ~,3 - 
qi,j ~0 qi,j "~0 

In particular, this inequali ty  holds for any metr ic  d and any Q E P S D  that  satisfies 
Q. 1 = 0  with  c = O ( l o g n ) .  

Proof. We retain the notation used in the proof of Claim 2. As observed in tha t  
proof, X has such an embedding iff there is matr ix  A E P S D n  with 

d 2. . < ai, i + aj,j - 2ai, j ~ c2d 2. . 

for all i and j .  The consistency of such a system of Conditions can be decided using 
convex programming duality. The analysis is facilitated since we know a complete 
(infinite) list of linear inequalities that  define the cone P S D ,  namely: 

Proposi t ion 3.6. A ma t r i x  P belongs to P S D n  iff  it satisfies .~Pi,j 'Yi,j  >-0 [or every 
z~3 

Y E P S D n .  

Proof. If Y has rank one, say Yi,j = ( v i , v j )  for some vector v, then 

~-~Pi,j  " ~-- v P v t .  Yi,j 

Therefore, the condition that  .~.Pi,j'Yi,j ~ 0 for every Y E P S D  implies that  
%3 

P E P S D .  On the other hand, if P E P S D ,  then for the same reason, ~.Pi , j  "Yi,j >- 0 
%3 

whenever Y has rank one. The generM case follows, since every Y E P S D  is a 
nonnegative combination of matrices of rank one. I 

We return to the proof of Corollary 3.5. By convex programming duality and 
the fact tha t  a nonnegative combination of P S D  matrices is again in P S D ,  it follows 
tha t  the conclusion of the Corollary is incorrect, i.e., no such matr ix  A exists, iff 
there is a matr ix  Q E P S D  such that  the inequality ~ .  a i,j .qi,j  >-- 0 contradicts some 

%3 
nonnegative combination of the inequalities 

Ji,j : c2d .2 . ~ + -- 2ai,j > d 2" �9 �9 ,3 ai, i aj,j - z,3" 



THE GEOMETRY OF GRAPHS AND SOME OF ITS ALGORITHMIC APPLICATIONS 225 

For the combination in question to be a contradiction, all terms ai, j have to be 
eliminated. In particular, inequality Ji,j must be multiplied by qi,j/2. More 
accurately, if qi,j >- O, the right inequality in Ji,j is taken, and otherwise we take 
the left par t  of Yi,j multiplied by -qi , j /2.  The term involving ai, i disappears only 

if its coefficient ~-~qi,j vanishes, i.e., only if Q. i"=0 holds. The Corollary follows. | 
J 

Remark  3.7. The case c -- 1, i.e., the characterization of metric spaces that  
isometrically embed in Euclidean space is classical (see [11]). | 

A Hamming space is a metric space which consists of {0,1} vectors of the same 
length, equipped with the Hamming metric. 

Corollary 3.8. For every n-point metric space (X, d) there is a Hamming space (Y, p) 
and a ~ > 0  such that  (X,d) can be embedded in (Y,~/.p) with distortion O(logn).  
The bound is tight. 

Proof. I t  suffices to find a constant-distortion embedding for every finite subset 
of l~ n into a Hamming  space. Nothing is changed by adding the same number to 
all values at some coordinate. Also recall that  multiplication b y  a fixed factor is 
allowed. Therefore, at the cost of an arbitrarily small distortion the entries of the 
i-th coordinate may be assumed to be integers, the smallest of which is 0. If the 
largest i-th coordinate is r, this coordinate is replaced by r new ones, where xi = s 
is replaced by s new coordinates of I followed by r -  s coordinates of 0. This latter 
step adds no distortion, being an isometry into a Hamming space. 
Again, the tightness result follows from Proposition 4.2. | 

3.2 Applications to clustering 

It  is a recurring situation in pattern-recognition, where one is given a large 
number of sample points, which are believed to fall into a small number of cate- 
gories. I t  is therefore desired to part i t ion the points into a fe~v clusters so that  
points in the same cluster tend to be much closer than points in distinct clus- 
ters. When sampling takes place in a low-dimensional Euclidean space, clustering 
is reasonably easy, but  when the dimension is high, or worse still, if the metric is 
non-Euclidean, reliable clustering is a notoriously difficult problem. See Duda and 
Hart  [20], in particular chapter 6, for a standard reference in this area. 

The algorithms we have just described offer a new approach to clustering. 
These algorithms are currently being practically tested [38] in a project to search 
for pat terns  among protein sequences. One pleasing aspect that  already emerges is 
this - -  the second algorithm in Theorem 3.2 assumes that  the distance between any 
pair of points in the space can be evaluated in a single t ime unit. In this particular 
application, the metric space consists of all presently known proteins. Molecu- 
lar biologists have developed a number of measures to estimate the (functional, 
structural,  evolutionary etc.) distance between protein sequences, and some widely 
available software packages (e.g., FASTA, BLAST) calculate them. At this writ- 
ing about  40,000 proteins of average length ca. 350 have already been sequenced. 
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For our purposes, a protein is a word in an alphabet  of 20 letters (amino-acids) 
and it takes about  a quarter  of a second to compute  a single distance according to 
any of the common  metrics, using s tandard  software on a typical  workstat ion.  A 
s t ra ightforward implementat ion of the algori thm is therefore infeasible. The diffi- 
cul ty stems from having to compute  d(x,A) for large A's. A closer observation of 
the proof  shows tha t  if we fail to  include the coordinates which correspond to large 
A's,  the effect is tha t  the distance between close pairs of points (protein sequences) 
is reduced in the mapping.  This is definitely a welcome effect in a clustering algo- 
r i thm, so what  seems to be a problem turns  out as a kind of a blessing. 

4. Multieommodity flows via low-distortion embeddings 

We briefly recall some definitions about  mul t icommodi ty  network flows. G is 
an undirected n-vertex graph, with a capacity Ce >_ 0 associated with every edge e. 
There  are k pairs of (source-sink) nodes (s#, t#) ,  and for each such pair a distinct 
commodity and a demand D~ >_ 0 are associated. For simplicity of nota t ion  we 
let Ci,j = 0 for all non-edges (i,j). As usual, flows have to satisfy conservation of 
mat ter ,  and the total  flow through  an edge must  not exceed the capaci ty  of the  
edge. Maximal  mul t i commodi ty  flow problems come in a number  of flavors, and 
we concentra te  on the following version: Find maxflow - -  the largest A for which 
it is possible to s imultaneously flow ADu between s~ and t~ for all #. 

A trivial  upper  bound  on ik is a t ta ined by considering cuts in G. For S C V 
let Cap(S) be the sum of the capacities of the edges connecting S and S. Also let 
Dem(S)  be the sum of the demands  between source-sink pairs separated by S (i.e., 

ISn{s~, t#}  I=1). Obviously, ~ <  Cap(S) for every S. 
- -  Dem(S) 

In the case of a single commodi ty  (k = 1), the max-flow min-cut  theorem is 
Cap(S) easily seen to say tha t  A equals the min imum of ~ over S C V. 

I t  came as a pleasant surprise when Leighton and Rao showed tha t  in some 
cases the gap between the max-flow and the min-cut  cannot  be too big. We 
show tha t  this gap is bounded  by the least distort ion with which a certain metric 
associated with the network can be embedded in ll. This fact yields a unified 
approach to Le igh ton-Rao ' s  [37], and the subsequent [35], [24], and [53]. The result 
for non-uni t  demands  is new. 

Theorem 4.1. 2 There is a deterministic polynomial-time algorithm which given 
a network G = (V, E, C) and the demands for k source-sink pairs, finds an S C V for 
which 

Cap(S-------2) <_ O(]og k).  maxflow. 
Dem(S) 

2 A randomized version of this Theorem appeared in the preliminary version of this paper and 
in the paper of Yonatan Aumann and Yuval Rabani [6]. We were recently informed by Naveen 
Garg [23] that he, too, managed to derandomize a variant of the algorithm that appears in our 
FOCS '94 paper. 
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Proof.  The opt imal  ), is the max imum of a certain linear program. By LF duality 
(e.g., [24]): 

E c ,j. &,j 
= min i#j 

k 
D# "ds,,t ,  

tt=l 
where the minimum is over all metrics d on G. We first apply Claim 2 of 
Corollary 3.4 to the minimizing metric with X = V(G). The vertices of G are 
thus mapped  to points {X l , . . . , xn  } in R m where Ilxi-xjll1<di,j for all i , j  and 
I]xs, - x t ,  ]]1 -> f~(ds,,t, ~log k) for # = 1, . . . ,  k. Therefore, 

E Ci,j" Ilxi - xjlll 
iCj < O(A. log k). 
k 

D •  . Ipxs ,  - at. [11 
#=1  

Since we are dealing with the l~ n metric we may conclude: 

E Ci , j"  I]xi - x j t l l  

k 
E D 'llxs.-xt. lll 

t t = l  
m 

E E Ci , j"  IXi,r - Xj,rl E Ci , j"  lxi,r -- Xj,r I 
r = l  iT~j i r  

= > rain 
m k -- l<r<m k 
2 2 D# "lxs,,r - xt,,rl Y~ D• ' lzs , , r  - xt,,rl 

r = l  # = 1  t t = l  

Let ~ be an index where the minimum is achieved. We claim that  no generality is 
lost in assuming that  all xi,~ are in {0,1}, whence 

Cap(S) 
k Dem(S) '  
E D.'lxs.,e - x t , , ~ . l  

,u,=l 

where S={i[xi ,  ~ = 1}. 
To justify the assumption xi,e E {0,1} for every i, we argue that  for any real 

aiylz~-zyl 
a i j=aj i  , bij=bji , l< i# j_  _<n the minimum of ~S~b~j~ Iz~-zj] (over real z's) can be 

iCj 

at tained with all zi E {0,1}. This is shown by a variational argument: If the z's take 
exactly two values, one value can be replaced by zero and the other by one without 
affecting the expression. Otherwise, let s > t > u be three values taken by z's. Fixing 
all other values, and letting t vary over the interval [u, s], the expression is the ratio 



228 NATHAN LINIAL, EB.AN LONDON, YURI RAB]~NOVICH 

of two linear functions in t. Therefore~ all z's which equal t can be changed to either 
s or u without increasing the expression. This procedure is applied repeatedly until 
only two values remain. 

The algorithm is a straight implementation of the proofs. First solve the linear 
k 

program I = min # y~ Ci,j �9 di,j under the condition ~ D~ "ds,,t, = 1, where d 
" i # j  ~ = 1 

is a metric on G~. Approximate the optimizing metric in /1 as in the second 

part  of Corollary 3.4. Consider the index ~ which minimizes i~j 

Finally optimize this expression using the above variational procedure to find a 
near-optimal cut. Note that  instead of this last step it suffices to consider only the 
cuts to an initial segment and a final segment of the one-dimensional embedding. | 

The proof shows that  the max-flow min-cut gap is accounted for by the distor- 
tion in approximating a certain metric by 11 norm. In those cases where distortion 
smaller than log k will do, bet ter  bounds follow for the multicornmodity flow prob- 
lem, For example - -  suppose the n-point metric space defined by the optimal  d is 
isometrically embeddable in N s for some small s. Then (as mentioned in the proof 
of Theorem 7.1) d may be approximated by l~ with distortion s, yielding a bet ter  
bound than in the general case. 

A cut metric on n points is defined by picking S C [n] and defining d(x, y) = 1 
if [SN {x,y}[ = 1, and as zero otherwise. A simple but useful fact is that  a metric 
on In] is realizable in 11 iff it is a nonnegative combination of cut metrics. This fact 
explains much of what happens in the proof of Theorem 4.1. 

Proposi t ion 4.2. Every embedding of an n-vertex constant-degree expander into an 
lp space, 2 > p > 1, of any dimension, has distortion f~(logn). The metric space of 
such a graph cannot be embedded with constant distortion in any normed space of 
dimension o(log 2 n). 

Proof. As observed in [37] the max-flow rain-cut gap is f~(logn) for the all-pairs, 
uni t-demand flow problem on a constant-degree expander, where all capacities are 

d~ j 

one. Consider the corresponding expression ~ 9 -  I~JleE for certain metrics d. 
E di,j 

When d is the expander 's  own metric ~5 1 = O(nl-]5-~). On the other hand, the 

minimum of �9 over one-dimensional metrics d is the expander 's  rain-cut, i.e., f~( l ) .  

Consequently min (I) over d in 11 is also f~(1). This gap implies that  every embedding 
of the expander 's  metric in Iz (of any dimension) has distortion fl(logn). 

The same conclusion holds also for embeddings into Ip for 2 >p_> 1, because in 
this range, every finite dimensional lp space can be embedded in 11 with a constant 
distortion ([52], chapter 6). 

Every d-dimensional norm may be approximated with distortion V~ by an 
affine image of the Euclidean norm (e.g., [52]). Therefore, an embedding of constant 



THE GEOMETRY OF GRAPHS AND SOME OF ITS ALGORITHMIC APPLICATIONS 229 

distortion into any o(log 2 n)-dimensional normed space translates into an o(logn)- 
distortion embedding into 12, which is impossible. | 

Two commodities 
Tha t  max-flow = min-cut for two commodities ([29] and [57]) can be shown as 

C i , j . d i , d  

follows: Let d be the metric for which A -  ~r k . Map every vertex x to 

/~=1 
the point (dx,sl,dz,s2) and let D be the loo metric among these points. If we 
replace d by D, the numerator  can only decrease, while the denominator stays 
unchanged, whence there is no loss in assuming d to be (a restriction of) the 12 
metric. I t  is not hard to see that  the linear mapping q- (Zl ,Z2)  ---- { z l q - z 2  zl-z2" ~ \ 2 ' 2 / 
satisfies I[~-(Zl, z2) - r (v31 ,  w2)H1 ~-- t1 (Z l ,  z2)  --  (Wl ,  W2)II cx~. An application of ,- thus 
allows us to assume that  the metric d is, in fact (a restriction of) ll. From here on, 
the proof  of Theorem 4.1 can be followed to derive our claim. 

5. Isometrics  

5.1 General results 

All logarithms are to base 2. G = (V, E)  is always a connected graph and n is 
the number of its vertices. Unless otherwise stated, embeddings are into ]~d.3 No 
distinction is made between a vertex x and its image under the embedding. If  G 
can be embedded in (X, I1" II) we also say that  X realizes G. 

The unit ball of a d-dimensional real normed space is: ~ = {x E N d with 
IIxll < 1}. This is a convex body which is centrally symmetric around the origin. 
Every centrally symmetric  convex body Q induces a norm, called the Minkowski 
norm: [Ix [[Q = inf{ A > 0 such that  ~ e Q}. Thus, normed spaces are denoted either 

as (]Rd,N. [[) or as (Nd,Q). The boundary of ]~ is O B = { x 6 N  d with [[x[[=l}. 

In an isometric embedding of G in N d the set { ~ t x # y e Y }  is contained 

in 0]~. I t  is not hard to see tha t  there is no loss of generality in assuming 
= c~ ~x,-Z-7~, I x # y E V}. Tha t  is, we may assume ~ is a centrally sym- 

- a G ~ x , y  ] 

metric convex polytope. A copy of B centered at x is denoted B(x). 
The following well-known lemma shows that  the notion of dimension is well- 

defined. 

Lemma 5.1. A metric space (X, d) with n points can be isometrically embedded 
n into loo. 

Proof. Let X = { x l , . . .  , i n }  with dij =d(x i ,x j ) .  Map xi to a point z i ER n whose k- 
i j z z j >lzj-zr th coordinate is 4=d k. Then jlz -zJll;o=maxk k -  k - 

On the other hand, for all k, z i - z  j k k = I d i k -  dJkl <- dij by the triangle inequality. | 

3 However, d may also denote  a metr ic ,  and  so will be  paid extra,  [13] page 223. 
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We show later some examples of graphs with isometric dimension ~. The 
highest isometric dimension among n-vertex graphs is currently unknown (but see 
[9] and [63]). 

The l ~  norm is universal in that,  as Lemma 5.1 shows, it realizes all graphs (in 
fact, all finite metric spaces). In some sense, it is the only universal norm, as the l ~  
norm defines a graph on Z d, which must be realized by any other universal norm. 
Therefore any universal norm must contain a copy of lcc. (Lest the reader suspects 
that  l: is universal as well, we remark that  K2,3 is not embeddable in this norm, 

viz. [18].) I t  is therefore of interest to also study dim(G) (and dime(G)), tile least 
k such tha t  G can be isometrically embedded in l ~  (with distortion c). Clearly 
dim(G) _> dim(G),  and this gap can be exponential (e.g., dim(d-Cube) -- d while 
dim(d-Cube) = 2d-1; see Corollary 5.12 and comments following Theorem 5.15). 
One simplification in studying isometric embeddings into l d is that  all vertices 
may be assumed to map to zd: Given any embedding, round all coordinates up 
and isometry is preserved. 

Geodetic paths in G and the face lattice of the unit sphere B are related via 

Proposi t ion 5.2. Let P = ( X l , . . . , X k )  be a geodetic path in G. In an isometric 
x j  --xi  embedding of G in (Rd,]~), all vectors ---j-s k >_ j > i >_ 1, lie on the same/:ace 

orB. | 

J is an isometric subgraph of G if distances within Y are the same as in 
the whole graph G. The dimension of such a subgraph provides a lower bound 
on dim(G). Examples of isometric subgraphs of G include cliques, induced sub- 
graphs of diameter 2, geodetic paths and irreducible cycles. In particular, since 
dim(Cn) > ~ -  1 (Proposition 5.10 and Remark 5.11), if G has finite girth, then 

dim(G) _> girth(G)4 - 1 .  

To get the reader initiated on methods for estimating isometric dimensions, we 
present a bound on the dimension of trees: 

Theorem 5.3. For every n-vertex tree T, dim(T)--O(logn).  Moreover, if  T has l 
leaves, then dim(T)=O(logl) .  The bounds are tight. 

/ c - logn  Proof. The proof shows that  T can be isometrically embedded in ooo with 
1 I t  is well-known that  every n-vertex tree T has a "central" vertex O, e ~  l o g 3 - 1  ' 

such tha t  each component of T \  {O} has at most ~ vertices. Let R , L  be two 

snbtrees of T of size < -~ whose union is T, sharing only the vertex O. Find 

l c . l o g n - 1  Such an embedding isometric embeddings, one for L and one for R in ooo 
remains an isometry if all points are translated the same amount. We may thus 
assume that  in the embeddings of L and R the vertex O is mapped  to the origin 
in ]R c'l~ The whole tree is isometrically embedded in a space of one more 
dimension. The coordinates used to embed R and L are maintained, and the value 
of the new coordinate is set as follows: For O it is zero, for x E V(L)  this new 
coordinate is - d T ( O , x  ) and for x �9 V(R) it is dT(O,x ). I t  is not hard to verify 
tha t  this is an isometric embedding, as claimed. 
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The upper bound in terms of the number of leaves is obtained by splitting T 
into two subtrees with a single common vertex, neither of which contains more than 
2 of the leaves of T (see [14] Theorem 2.1'). 
3 

Both bounds are tight for stars, dim(Kl,n_l)=~2(logn) by Proposition 5.5. | 

5.2 Estimating the dimension - -  volume considerations 

Although stated in a different context, [17] shows that dim(Kn)_> glog2n ]. 
Here is a sketch of an argument based on the original ideas and translated to our 
language: 

Proposit ion 5.4. dim(Kn) = flog 2 n 1 . 

Proof. (Sketch) Let Kn be isometrically mapped to {Xl,...  ,Xn} in (]Rd,]B). Let 
D = c o n v { x l , . . .  ,xn}. We claim that  the sets D + x i  ( i=  1,.. .  ,n) have disjoint inte- 
riors. Assuming this for a moment, notice that  since D is convex, D+xi  C 2D for 
all i. Hence n.  vol(D) = vol (Ui (D + xi)) < vol (2D) = 2 d. vol(D) and the conclusion 
follows. To complete the proof, suppose for contradiction that  (D + xi)n (D + x j) 
has a nonempty interior. This implies that x i -  xj is an internal point of D -  D. 
But D - D = c o n v { x a - x ~  I n>-a7~/3> - 1} which are all vectors of norm 1, whence 
D-DC]~ .  It follows that  Xi--xj, a vector of norm 1, is in int(]~), a contradiction. 

On the other hand dim(Kn) < [log 2 n 1 follows by mapping the vertices of Kn 
to the vertices of the Flog 2 n 1-dimensional cube, under l~  norm. | 

Volume considerations yield upper bounds on degrees and a lower bound on 
the diameter: 

Proposit ion 5.5. All vertex degrees in a d-dimensional graph do not exceed 3 d -  1. 
This bound is tight. 

Proof. Place a copy of 1~ around a vertex v, and around each of its neighbors. The 

interiors of all these balls are disjoint, and their union is contained in -321~(v): If w 

is a neighbor of v and zE �89 then IIz-wll <_ �89 since zE �89 and IIw-vll =1 

by the isometry. Hence IIz-  vtl< IIz- wll + IIw- vii _< 3. Comparing volumes we get 
the desired result. Equality is attained by the grid points under l~  norm. | 

Lemma 5.6. d iam(G)> 1 ! _ g ( n d  - 1 ) .  

Proof. Surround each vertex of G by lIB. These balls have disjoint interiors 
and are contained in (d iam(G)+ 1)1~, centered at an arbitrary vertex of G. The 
conclusion follows as before. The bound is nearly tight, as we know of graphs with 

1 1 
diam(G) ~ ~ (n~ - 1). | 
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5.3 E s t i m a t i n g  t h e  d i m e n s i o n  - -  ranks 

Isometric dimensions are related to linear algebra via an alternative definition 
of a norm: Recall that  we are only concerned with normed spaces (X,B) where 
B is a centrally symmetric polytope. Associate with each pair of opposite facets 
{ F , - F }  of B, a linear functional l F which is identically 1 on F,  and - 1  on - F .  
T h e n  VxeX, Hxll = m a x F  I l F ( x ) l .  

An n x r matr ix  M implements a graph G if for all i, j 

max - mjkl = dG(v , v j )  
k 

The following result offers a characterization of dim(G) in terms of matr ix  ranks: 

Theorem 5.7. d i m ( G ) - - m i n  rank(M),  where the minimum is over all matrices M 
that  implement G. 

Proof. If G is isometrically embeddable in (Nd,B), define M via: miF = lF(vi), 
where l F is the functional corresponding to the pair of opposite facets { F , - F }  of 
B. Clearly, M implements G, and its rank is < dim(G). 

On the other hand, suppose that  Mn• implements G and d = rank(M).  
Mapping the vertices of G to the rows of M is an embedding of G to the d- 
dimensional space L, spanned by the rows of M. The norm is induced by the 
unit sphere B =  LN [-1,1] s , the intersection of L with the unit cube in R s. The fact 
that  M implements G implies that  the above mapping is an isometry of G into the 
normed space (L,B). | 

Here are some applications of the theorem: 

k 
Theorem 5.8. I f n l ,  n2, . . . ,  nk>_2, then dim(Knl,n2 ..... n~) >_ ~ [logni] - 1. 

i=1  

Proof. Let Ai be the i-th part  of V and M be a matr ix  implementing G. For 
a, b E Ai, consider a column j where Imaj -- mbj I = 2. If x ~ Ai, then d(x,a) = 
d(x,b) = 1, whence mxj = 1.  (maj +mbj) .  It  follows that  if 1 .  (maj +mbj)"  ~ is 
subtracted from the j - t h  column, all entries not in the rows of Ai become zero. 
Repeat  this step for all columns j that  implement the distance between two points 
from the same part.  Next, eliminate all other columns. The resulting matr ix  Q has 
rank(Q) _< rank(M) + 1 (elementary operations with a single column can increase 
the rank by < 1 and eliminating columns can only decrease it). Q is a direct sum 
Q = oQi ,  where 1 ~Qi implements Kn~, whence rank(Q/) 2 [logni]. The theorem 
follows. | 

k 
The upper bound dim(Knl,n2 ..... nk) <- ~ [logni] is shown easily, using l ~  

i=1 
norm, as suggested by the proof of the lower bound. 

Corollary 5.9. Let G be a clique K2n minus a perfect matching. Then dim(G) = n. 

Proof. Here, it is obvious tha t  the the elementary operations on the columns do 
not cause a loss of one in the dimension. | 
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Proposit ion 5.10. d i m ( C 2 m ) : m .  

Proof. The following construction gives an upper bound, with ll norm: The vertices 
are mapped to the following 2m points: 

i 
for i : l , . . . , m :  x i =  ~ et; 

$ : 1  
m 

f o r i : m + l , . . . , 2 m - l :  x i :  ~ et; 
t=i-m+l 

X2m : O, 
where et is the t-th unit vector. 

For the lower bound, let the matrix A implement C2m, and let Vl,... ,V2m be 
the vertices in cyclic order. All indices are taken modulo 2m. Consider a column 
t where dG(v j , vm+j )=  m is realized. It has the form aj,t = 5; aj+l, t = aj_l ,  t = 
(~+c; a j + 2 , t : a j - 2 , t : ~ + 2 ~ ;  . . . , a j + m , t : 6 + m c ,  for some real 5 and ~E {-1 ,1} .  
By elementary operations with the column vector i" it can be transformed so that  
aj_ i t = a j + i , t = i  for i - -0 , . . .  ,m. We thus obtain an m •  minor whose (r ,s)-entry 
is l r -s[ .  This matrix is non-singular, being the distance matrix of a path, which is 
known to be non-singular (e.g., [44] pp. 64-65). This implies rank(A) _> m -  1. A 
more careful analysis shows that  the elementary operations with the all-one vector 
can be avoided, yielding rank(A) > m. | 

Remark 5.11. For cycles of odd length: m + l > d i m ( C 2 m + l ) >  m 1. The up- 
per bound is achieved with loc norm: Let {Wl,W2,...,Wrn_bl } be m +  1 consec- 
utive vertices in the cycle. Map each vertex x to an (m + 1)-vector, whose i- 
th coordinate is d(x, wi). As for a lower bound, the above argument yields only 
dim(C2m+l) > ~ - 1, though probably d im(Ca)=  [-~] for all n. 

Consequently: 

Corollary 5.12. dim(m-Cube) = m .  

Proof. The m-Cube embeds isometrically in l~ n. The lower bound follows from the 
fact that  the m-Cube contains a 2m-Cycle as an isometric subgraph. | 

Consequently, the infinite cubic grid in ~m has dimension m. Moreover, for 
the part  of the grid G- - [1 , . . . ,  n] m, not only does d im(G)=  m, but also d imc(G)= m 

1 
for any c~n-~ .  This bound can be obtained using volume arguments as described 
in a previous section. 

The stabbing dimension of a finite family of convex bodies X in R d is the least 
dimension of a linear space L which intersects every K C~f. 

Associate with a connected graph G on n vertices, the polyhedron 

P = PG = {x E l~ n with [xi - xj[ ~ d(vi ,vj)  for all 1 < i , j  <_ n} C ]~n. 

Alternatively, P = {x e ]~n with [xi - xj[ < 1,V[vi,vj] e E(G)}.  Clearly, P is a 

centrally symmetric prism. For each i , j  the facets F~-.w and F/',j are determined by 

the equation x i -  xj  = • d(vi,vj).  Let ~ = :~G consist of all such faces. (In fact, 

because of the central symmetry, it would suffice to consider F. + alone.) 
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Theorem 5.13. The stabbing dimension of ~ G coincides with the isometric dimen- 
sion of G. 

Proof. Suppose that  L "stabs" all the faces in ~G, and choose for each pair i , j  
a vector in L N Fid. Let the matr ix  M have these vectors as columns. Clearly M 
implements G; by Theorem 5.7, dim(G)<_ dim(L). 

On the other hand, given a matr ix  of minimum rank implementing G, define 
L to be the span of its columns. Clearly L meets all the required facets, and 
dim(L) =d im(G) .  | 

The case when G is a clique has an interesting geometric implication: 

Theorem 5.14. Let C be the cube [-�89 �89 The stabbing dimension of  any family 
of n pairwise disjoint faces { E l , . . .  , F n }  of C is at least [log 2 n]. 

Proof. Let L be a linear space that  meets all Fi. Choose points vi E L A F i ,  and 
form an n • m matr ix  M whose rows are the vi's. Since the faces are disjoint, for 
each two rows i r j there is a column l where vi j  -- - 1 and vj,l -- 1 or vice versa. 

Since all entries of M are in [ _ 1  �89 M implements the n-Clique. 

By Theorem 5.7 and Proposition 5.4 rank(M) _ [log2nl, whence d imL = 
r a n k M  ~ [log 2 n] as claimed. | 

The remaining par t  of the section concerns dim(G). 

Theorem 5.15. 

�9 dim(G) is the least number of columns in a matr ix  implementing G. 

�9 dim(G) equals half  the least number of  faces of  the unit ball of a normed 
space in which G can be isometrically embedded. | 

Here are some examples demonstrat ing the convenience of working with 
dim(G): 

(i) d im(Kn) = [log2n ]. Let M realize Kn, and recall that  M may be assumed 
to have integer entries. Hence, each column in M realizes the distance between 
every x E A and y ~ A for some A C V. Namely, an isometric embedding of 
Kn into I d is equivalent to covering E(Kn)  by d complete biparti te graphs and 
it is well known that  d ~ flog 2 n], as claimed. A similar argument shows tha t  
dim (linegraph(Kn)) = e (log n). 

(ii) d im(d-Cube)=  2 d-1. Let M implement the d-Cube and let column t realize 
d(x ,y)  = d for some antipodal pair x,y .  Without  loss of generality mtz = d(x,z) .  
Hence every antipodal pair requires a separate column. At the same t ime this is 
just a description of a matr ix  implementing the d-Cube with 2 d-1 columns. 
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6. Separators 

Theorem 6.1. Let  d i m c ( G ) = d  and assume that e . d = o ( n ~ ) .  Then G has a set S 
1 1 

of 0 (c. d. n - ~ ) vertices which separates the graph, so that no component of  G \ S 
has  m o r e  than  (i- vertices 

Proof. Given a distortion-c embedding of G in (Rd,B), our approach is this: Find 
two parallel hyperplanes H1, / /2  in R d at distance 1 (distance is taken in the ~- 
norm). S is the set of vertices which are embedded in the closed slab between the 
two hyperplanes. V1 is the set of vertices embedded strictly above Hi  and in 1/2 are 
those embedded strictly below//2 .  That  S separates V1 and V2 is obvious. What  
we need is to construct H1 and H2, so that,  

and 

1 1 
ISl = O ( c .  d . n  

( 1 ) 
IVll, Ir21 ~ _ 1-d+-----~+o(1 ) n. 

The proof uses a beautiful idea from [50] which starts from the following well known 
consequence of Helly's Theorem [64]: 

Proposit ion 6.2. For any set V of  n points in ]~d there exists a centroid 0 such 
that  every dosed hMfspace determined by a hyperplane passing through 0 contains 
at least n points of V. | 

By translation, O may be assumed to be the origin. 
Part i t ion the points in V according to their distance from O. First we will show 

that  no slab contains "too many" points of V, that  are "near" the origin. Then 
we show that  on a random choice of H1, and H 2 = - H 1 ,  the expected number of 
points in V which are "far" from the origin and fall in the slab is small. 

It is a well known fact (e.g., [52]) that every d-dimensional norm may be 
approximated with distortion v/d by an affine image of the Euclidean norm. That  
is, we may assume that  C is embedded in 12 d with distortion cx/~. 

So we should look for a closed slab I4 of (Euclidean) width cx/d containing 
"not too many" points of V. Let n l = # { x : x E V n H ,  llx[[2 <Ro}.  

Lemma 6.3. Let Ro = O(c. v/-d). Then nl  <_ O(c. d. (2R0 + 1)d-l) .  

Proof. All distances in G are > 1, so the same holds also for the Euclidean distance 
of the images. Therefore, if we locate a 1B around each point in V A H  we get n 1 

spheres with disjoint interiors. Since R0--@(c.v~),  they all reside inside a cylinder 
of height 8(c.v/-d) and base a (d-1)-dimensional ball of radius (R0+I ) .  Comparing 
volumes we obtain: 

nl  "Vd" <_ Vd_ 1 �9 RO + �9 O(c .  V~). 
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7r t 
Where vt is the volume of the unit ball in N t. Recall that  v2t = -fit.- and 

2 t + l  .Trt 
v 2 t + l =  1.3.-.(2t+1)' and in particular, ~ v t  =O(~/~). 

Consequently: n 1 < O(c. d. (2R 0 + 1)d-l) .  l 

Now, we wish to estimate the probability for a remote point x (i.e., llxll2 > 
R0) to belong to a randomly chosen slab. A slab is determined by the unit vector 
perpendicular to its boundary and our choice is by the uniform distribution on 
sd-1 .  

(-) Lemma 6.4. Let z E R  d, [{xI[2>_Ro. Then Pr(xeH)<_O ~ . 

Proof. Associate with each slab H the two points on sd-1 in the directions of the 
two unit vectors perpendicular to the hyperplanes of H. Slabs have width cv~,  so 

the points associated to slabs containing x form a symmetric stripe of width 2c v~ 
Ilzl12' 

on gd-1.  Therefore, the desired probability is the ratio between the surface area of 
this stripe and the surface area of the whole sphere. We recall the following fact: 

Remark  6.5. Let C be a measurable subset of S d - l ,  and let c~ be the ( ( d -  1)- 
dimensional) measure of C. Let a (C)  = {y [ Y = Ax for some x E C and 1 > A > 0}, 
the cone with base C and apex at the origin. Then the (d-dimensional) measure of 
a (C)  is 3 '  In particular, the surface area of S d-1 is d.v  d. | 

We need to evaluate the surface area of C, the part  of the stripe of width 2c v~ I-r ' 
tha t  is on sd-1 .  By the previous remark, this surface area equals d .vo l (a (C) ) .  
Assume that  C is symmetric  with respect to the hyperplane zd=O. Then 

a(C') C_ (Zl , . . . ,Zd)  with Z z/2 -< 1 and Izdl <_ 
1 

and as the volume of this cylinder is oc.~/~ . ~ ' ~ V d - l '  

P r ( x  E H) < 2  c" d3/2 vg-1 - - 0  c . d 

Thus n2, the expected number of remote points x E V  which belong to N, 
satisfies n2 = O ( ~ ) .  

We optimize, by selecting Ro so that  7~ 1 ~.~r~ 2. Then 

n . c . d  
- -  , ~  c .  d .  R0 d-1 

R0 

o r  

Ro = e (n- l ) .  
1 1 

This yields nl  + n2 = O(c. d. n - ~ ) ,  for the expected number of points in the slab. 
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The requirements R0 = O(c .  x/~) and R0 = O(n~) are consistent, since 

c" d = o(n ~ ) was assumed. | 

The centroid can be found in time linear in n and d d (see [47]). Therefore, 
given an embedding of G, the proof translates to a randomized polynomial time 
algorithm to find such a separator, provided that  d = O ( ~ ) .  It is interesting 
to observe that  in [49] an essentially similar separation is obtained, although both 
the setting and the methods are different. 

I _ A  It is not difficult to see that  for G that is a product of d paths of length n ~, 
the theorem is essentially tight. 

7. Low-diameter decompositions of graphs 

Following [43] a decomposition of a graph G = (V, E)  is a partit ion of the vertex 
set into subsets (called blocks). The diameter of the decomposition is the least 5 
such that  any two vertices belonging to the same connected component of a block 
are at distance < 5 in the graph. Modifying this definition in the spirit of [7], we 
consider coverings of G wherein distinct blocks may have nonempty intersections. 
Diameters of coverings are defined as for decompositions. The degree of a covering 
is the largest number of blocks to which any vertex may belong. A covering is 
r-subsuming if every r-ball in G is contained in some block of the covering. 

Theorem 7.1. Let  G be a graph with d=dimc(G),  d = dime(G), and let r be a 
positive integer. Then 

I. G can be decomposed to d + l  bIocks, each of diameter ~ 2e-d. 
2. G can be decomposed to d + l  blocks, each of diameter _ 2cd 2. 
3. G has a covering by -d+ 1 blocks, each of diameter < (6d+  2)cr, that is r- 

subsuming, and the cover has degree ~ (2+  1). 
4. G has a covering by d + 1 blocks, each of diameter ~ (6d + 2)dcr, that is r- 

subsuming, and the cover has degree <_ ( d + l ) .  

Remark 7.2. Combined with Theorem 3.2 we obtain a decomposition to O(logn) 
blocks of diameter O(log3n), and a covering of diameter O(log3n) with degree 
O(logn),  results slightly inferior to the optimal (O(logn),O(logn)) from [43] and 
[7]. 

Proof. We prove the case c----1, the general case then follows easily. Throughout  
the proof we use l~  norm. The key to the proof is the following universal tiling of 

Rd: Consider Z ~, and define Ki, i --O,. . .  , 2 - 1  as the 2d-(2/+1) neighborhood of the 
4d 

i-dimensional faces of its cubes (i.e., K0 consists of radius 22_--1 cubes centered at 
4d 

the grid points , / (1  is the 2d-3 neighborhood of the edges of the grid, etc.). Define 

T0 = K0, Ti = K i - U i - I  K ' .. j=0 ~ for i = 1, . , d -  1. Finally, T~ is the remaining part  of 
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]~d. It  is not hard to check now that  each Ti is a union of disjoint "bricks", each of 
diameter < 1, and that  the distance between any two such bricks is > 1 

- 2 d "  

Claim 1 is now immediate: embed the graph in ~ ,  and consider the tiling as 
above, magnified by factor 2d+~.  Each GNTi is a proper block. 

The proof of Claim 2 is slightly more complicated, since one has to correlate 
between the d-dimensional grid and an arbi trary d-dimensional norm. We need a 
small distortion approximation of B (or a linear transformation thereof) by a cube. 
Distortion d is attainable: first approximate ~ by a Euclidean unit ball (actually, by 
its LSwner-John ellipsoid, see [52]), then approximate the unit ball by a unit cube, 
both  distortions being < vQ. By recent work of Giannopoulos [25] an O(d ~ 
distortion is attainable. 

As before, we embed G in R d, and superimpose on it the (unit) lattice tha t  
approximates ]3 to a factor of d, magnified by 2d2+s .  It  is easy to check that ,  
again, each Ti defines a proper block. 

If c > 1, the only change is that  the diameter of sets covered by a single brick 
may be multiplied by c. 

To prove Claim 3: Magnify the tiling by a factor of 6d+c.  Turn the tiling into 
a covering by defining new blocks as the 1-neighborhoods of the old blocks. Since 

different blocks of Ti were at least 3 apart ,  no point in R 2 is covered more than 

d +  1 times. Furthermore - -  each 1-neighborhood in IR 2 is covered by at least one 

new block, since R 2 is tiled by the old blocks (identify each 1-neighborhood with 
its center). The diameter of each new block is < 6d + 2, since any two connected 
components of the same block are at least one unit apart.  
In order to finish the proof - -  given r > 0 - -  magnify the covering by a factor of r, 

and embed G in R ~. 
The proof of Claim 4 follows easily from the same arguments. | 

Remark  7.3. We have covered R d with {To,.. .  ,Td}, where each Ti is a union 
of compact  sets of diameter < 1, any two of which are at least 1 apart .  The 
construction is nearly optimal in two respects: 

I t  is impossible to cover ~d with fewer than d +  1 sets each of which is the disjoint 
union of compact  sets whose diameters are bounded from above and whose mutual  
distances are bounded away from zero. This follows, e.g., from Lemma 3.4 in [43]. 

We next show that  for any cover {Ti}/d=0 as above, there are two sets in the same 

family whose distance does not exceed O ( ~ ) .  Indeed, there must be a Ti with 

upper density at least 3-~1" Let T * =  Ti + m~ (Minkowski Sum), where 2m is 
the least distance between two connected components of Ti. I f / ( a  is a typical 
connected component of Ti, then the sets Ka+m]~ have disjoint interiors. Also Ti 
has upper density at least ~ in ]R d, and therefore also in K * = U ( / ( a + r n ] ~ ) .  By 

the Brunn-Minkowski inequality (see [52]): 

vol(K  + (vol(K )l/d + vol(m )l/d)  [ 
vol(Ka)  -> vol(K~) = \ 1 +  \ v o l ( K ~ ) /  ] " 
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We used the fact that  in any norm vol(lB)>vol(K) whenever d iam(K)  _< 2, 
which can be shown as follows: Consider the symmetrizat ion Q = ( K -  K ) / 2  
(Minkowski sum). Clearly, Q is centrally symmetric  with respect to the origin, and 
diam(Q) < d iam(K)  _< 2. Also, by Brunn-Minkowski vol(Q) > vol(K).  But  the 
symmet ry  of Q and the bound on its diameter  imply that  Q c ~ and the con- 
clusion follows. By the density properties of Ti, there is an index c~ for which 

vol ( Ks +rag) 
d +  1_> vol(K~) _> (1 +m)  d which implies m = O ( ~ ) ,  as claimed. 

We do not know what  the bound on m is for various norms. A plausible guess 
would be that  rn=O(1/d)  for every norm, and tha t  this is tight for lee. | 

8. Further  problems 

Many of the questions addressed in this paper  can be considered for directed 
graphs as well as for undirected ones. To get started in this direction, let us define 
a directed metric on X as a nonnegative real function d on X • X,  which satisfies 
the directed triangle inequality: d(x,y) + d(y,z)  >_ d(x,z)  for every x ,y , z  E X. A 
directed norm in R n satisfies the same set of requirements as does a norm, except 
tha t  IIAxll = AIIxll is to hold only for nonnegative A. The "unit ball" in such 
a space, i.e., the set of those vectors whose directed norm does not exceed one 
is a convex set which contains the origin in its interior (central symmetry  is no 
longer required) and any such set I~ defines a directed norm in the obvious way: 
I lxll = inf{A > 0 such tha t  ~ E ]~}. 

I t  is pleasing to observe that  an analogue of Lemma 5.1 holds in this more 
general context: 

Proposi t ion 8.1. Every n-point directed metric space (X,  d) can be isometrically 
embedded into R n equipped with an appropriate directed norm. 

Proof. Let X = {xz, . . . ,Xn} with di, j = d(xi ,x j ) .  Pick n linearly independent 
Z i - -  Z " vectors {Zl, . . . ,Zn}.  Let the unit ball be ]~ -- conv{~L~--zzli ~ j},  and map xi to 

a i , j  

zi. (According to this definition ]B is not full dimensional. This may be overcome 
by using ]B ~, a small height bi-pyramid over l~. Alternatively, project all zi to the 
subspace spanned by ]~.) The only way the claim could fail is that  for some pair, 

Z i - - Z  " say {1,n}, the point ~ is in the interior of conv{"~.-~=zli~j }. 
d l , n  a i , j  

If this is the case, then 

z 1 -- z n Z i -- Zj 
tz ' - -  E ~ 

dl,n i,j di,j 

for some # > 1 and some nonnegative ~i,j whose sum is 1. Pick such an equality 
with # as large as possible. Let H be the directed graph on vertex set In] where 
( i , j )  is an edge iff ai,j >0, and observe that:  

�9 H is acyclic: Associated with every directed cycle C in H is a linear dependency 

with positive coefficients: ~ 5 i , j ~  = 0 (with 6i,j > 0). It  is possible 
(i,j)EE(C) 
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to replace ai,j by c~i, j - t .6 i , j  for all (i,j) e E(C) for some t > 0 and renormalize 
the sum, so as to retain O~i, j ~_ 0 while increasing #, contrary to our assumption. 

�9 By linear independence of the zi, the only source in H is 1, and the only sink 
i s  n .  

�9 Without  loss of generality no two directed paths in H have the same start ing 
vertex and the same final vertex. Otherwise, it is possible to shift weight from 
one to the other without decreasing #. 
Consequently, H is a single directed pa th  from 1 to n and the above equality 

has the form: 
n - 1  

z ]  - z n ~ z i - z i +  1 
" - 2 - d  c q , i + l  

d l ' n  i : 1  d i ' i + l  

n - 1  
w i t h  ~ i , i + l  >0 and ~ c ~ i , i + l : l .  

i = 1  

The linear independence of the zi's implies that:  

_ _  5~1,2 __ 0~2,3 _ _  __ g~n- - l , n  

d l , n  d l , 2  d 2 , 3  " . . d n _ l , n  " 

S o  

l = E ai, i + 1 -  /z E di, i+l > ~ 
dl,n 

by the directed triangle inequality, a contradiction. | 

I t  is an intriguing idea that  large diameters in graphs can be essentially a t t r ibuted 
to low-dimensionality. The easy converse is our Lemma 5.6. At tempts  to make 
this s ta tement  precise were, in fact, the initial motivation for this research. A 
plausible conjecture along these lines was formulated with the help of L. Levin. We 
are grateful for his permission to include it here. Let Z d denote the graph of the 
d-dimensional lattice with loc metric. Define the growth rate p(G) of a graph G as 

l~ (where B(x ,r )  is the r-ball  the max imum (over all choices of r and x) of l o g ( r - I - l )  

around x). 

Conjecture 8.2. Let G have growth rate p = p(G). Then Z O(p) contains a (not 
necessarily induced) subgraph isomorphic to G. | 

By a standard counting argument, fewer than p(G) dimensions will not suffice. 
The conjecture is true for G = d-Cube and here is a sketch of a proof: First 

one checks tha t  p = p(d-Cube) @ d = ( ~ ) .  Let Yl,...,YO(p) be randomly selected 

d-dimensional ( -1 ,1)-vectors .  Each vertex x of the d-Cube, (considered as a 
d-dimensional (0,1)-vector) gets mapped  to the vector of (real) inner products  
((x, Yi> I i= 1,. . . ,  O(p)). Neighboring vertices in the d-Cube are mapped  to adjacent 

vertices in Z O(p) , since the yi's are (-1,1)-vectors .  Also, with high probabili ty 
this mapping is one-to-one: Let x,z  be two vertices of the cube, at Hamming  
distance t = ~ ( v ~ ) .  Their images agree in the i-th coordinate iff (x,yi} = <z,yi}. 
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The probability of this event is exactly the chance for a one-dimensional random 
walk to be in the origin at time t, i.e., 0(t-1/2). Therefore, the probability that  
x and z have the same image is t-f~(P) = o(2-d).  Consequently, almost surely no 
collision occurs among points of Hamming distance f~(x/d). On the other hand, 
if the Hamming distance between x and z is O(v~) ,  their probability of collision 

is < 2 -f~(p), but  2 -a(p)  E (d) = o(1). Therefore with high probability this 
~=o(vq) 

mapping is one-to-one, as claimed. The proof for regular trees follows by similar 
arguments. 

Note that  p(G) may be much smaller than any dimension in which G may be 
embedded nearly isometrically: 

Example 8.3. Construct a tree of depth 2m as follows: For m > i > 1 level i 
contains exactly (i + 1) 2 vertices. Each vertex in level i has at least one child and 
the 2i + 3 vertices in a randomly selected set have two children. Vertices in the 
last m levels have exactly one child each. The number of vertices in this tree is 
n- -  O(m3). Now, while p(G) is a constant, a near isometric embedding of G requires 
dimension f~(logn), since the distance between any two of the (m + 1) 2 leaves is 
between 2m and 4rn. The conclusion follows from the standard volume argument. | 

A related notion is the bandwidth, bw(G), of a graph G: It is the least w such 
that  there is a bijection f :  V(G) --+ [n] for which I f ( u ) - f  (v)l< w whenever [u, v] e E.  

1 _ 1  
Conjecture 8.4. Ifdim(G)=d, then b w ( G ) < O ( k ( d ) . n  ~ .polylog(n)). | 

1 d This bound is tight as exhibited by the discrete cube ( [1 ,nT]) .  The case d--2 
can be solved using [1]. 

A question raised in [12] and [5] is to estimate the least r = r so that  
every n-point metric space can be embedded in a ~-dimensional normed space 
with distortion c. In particular - -  what is the least dimension needed to embed 
a constant-degree expander graph with constant distortion? (We have shown that 
it is ~(log 2n).) It is not impossible that a constant-distortion embedding of such 
graphs requires ~(n) dimensions. 

An obvious general question is 

Problem 8.5. What  is the computational complexity of deciding whether 
d im(G)- -d?  Similarly for dim(G) and dimc(G). | 

It is not hard to see, e.g., by Proposition 5.5, that almost all n-vertex graphs 
have dimension at least ~(logn). We would like to know 

Problem 8.6. What  is the typical dimension of an n-vertex graph? | 

We suspect the answer to be linear or nearly linear. The situation for near- 
isometrics is quite different. Since almost all n-vertex graphs have diameter 2, and 
since d i m ( K n ) =  [log2n], almost all graphs satisfy dim2(G)---O(logn).  Further- 
more, by the method of [5] diml+e(G) _< celogn for almost all graphs and every 
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e > 0. On the other hand  d i m ( G ) = f t ( n )  for most  graphs, because almost  surely no 
single coordinate  can implement  the distance between more than  n pairs x , y  with 
d(x, y )=2 ,  but  almost  surely there are f t(n 2) such distances in a r andom G. 

We are only s tar t ing to unders tand the role of girth in this field (but  see [541), 
and offer: 

P rob lem 8.7. Let all vertices in G have degree >_ 3. Does every embedding of G 
in a Eucl idean space (of any dimension) have distort ion f~(girth(G))? | 
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