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Maximal non-affine reducts of simple affine algebras 

~k. SZENDREI 

Dedicated to the memory, of Alan Day 

1. Introduction 

In tame congruence theory the strongest result revealing the general structure of 
finite simple algebras of type 2 is the following representation theorem (cf. Theorem 
6.1): every finite simple algebra S of type 2 can be embedded in a reduct A of a 
finite simple affine algebra; in more detail, 

S ~ S' ~ A = (A; F) with F _ Pol((En d K3)/I), 

where (E,a~:~)A is a finite simple module arising from a vector space 
KA = (A; + ,  K) by considering it a module over its own endomorphism ring. 

To see how far finite simple algebras S of type 2 are from being affine, under 
what conditions they are affine, it is natural to ask the same questions for the 
algebras A first. The aim of this paper is to answer this question (Theorem 2.1). 
Essentially, we determine the maximal possible clones for non-affine algebras 
A = (A ; F) with F ___ Pol((En d x2)A). 

Selecting appropriate representing algebras A for finite simple algebras S of type 
2, one can ensure that certain properties of S are reflected in A; for example, S and 
A generate the same variety, or if S has smjective fundamental operations, then A 
has the same property. This enables us to give an easy proof for the facts, known 
earlier, that every finite simple algebra of type 2 with surjective fundamental 
operations is affine [ 16, 17] (Theorem 6.2), and every finite simple algebra of type 
2 generating a minimal variety is affine [3] (Theorem 6.5). 
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The result in Theorem 2.1 yields also a Rosenberg-type description for the 

maximal subclones of  the clones ~ = POI((E,d Kj)-A) (Theorem 6.11). We note that 
a Stupecki-type theorem for these clones was proved in [12]. 

2. Preliminaries and main results 

I f  not stated otherwise, algebras are denoted by boldface capitals a n d  their 

universes by the corresponding letters in italics. The clone of term operations [the 

set of  n-ary term operations] of an algebra A is denoted by Clo A [resp., Clon A]. 
Similarly, the clone of  polynomial operations [the set of n-ary polynomial opera- 
tions] of  A is denoted by Pol A [resp., Pok A]. 

We will call an algebra A surjective if every fundamental operation of  A is 
surjective. For algebras A = (A; F)  and A ' =  (A'; F'), we say that A is a reduct 
[polynomial reduct] of A' if A = A' and F _~ Clo A' IF _~ Pol A']. The algebras 

A = ( A ; F )  and A ' =  (A'; F')  are called term equivalent [polynomialty equivalent] if 
A = A' and Clo A = Clo A' [Pol A = PoI A']. 

For  a set N, let T~, SN, and C,v denote the full transformation monoid on 3~\ 
the full symmetric group on N and the set of (unary) constant operations on N, 
respectively. The identity mapping and the equality relation on N are denoted by id 

and A, respectively (N will be clear from the context). For  convenience we identify 
every natural number n with the set n = {0, 1 . . . . .  n - 1 }. 

For  a set A and for k _> 1, the nonvoid subsets of  A k will also be called k-ary 
relations (on A), and for an algebra A the universes of subalgebras of A k will be 
called compatible relations of A. An operation f on A is said to preserve a relation 
p if p is a compatible relation of  the algebra (A; f ) .  

We say that an algebra A is semi-affine with respect to an Abelian group 
/1 = (A; + )  if A and ii  have the same universe and 

QA = { ( a ,  b ,  c ,  d )  ~ A 4 : a - b + c = d} 

is a compatible relation of  A (or equivalently, the operations of  A commute with 
x - y + z). Furthermore, A is said to be affine with respect to f~ if it is serni-affine 
with respect to /l and, in addition, x - y + z is a term operation of  A. It is well 
known (cf. [14; 2.1,2.7-2.8]) that 

an algebra A is semi-affine with respect to an Abelian group A if and only if 

A is a polynomial reduct of  the module CE~d ~)A (i.e. J considered as a 
module over its endomorphism ring End 4), and 
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- A is anne  with respect to A if and only if A is polynomially equivalent to a 
module RA for some subring R of End A; this ring R, which is generated by 
all coefficients of term (or polynomial) operations of A, is called the ring of 
A, and is denoted by RA. 

In the representation theorem for finite simple algebras of type 2, an important 
role is played by the modules (~nd,~3)A where xA is a finite vector space (these 
modules are essentially all finite simple modules with trivial annihilator ideals, cf. 
[2]). In analogy with the concept of semi-aNneness and affineness with respect to an 
Abelian group we introduce the following notions. 

DEFINITION. Let xA = (A; + ,  K) be a vector space over a field K, and A an 
algebra. We will say that 

- A is semi-affine with respect to KA if A is a polynomial reduct of the module 
(End/<.,~)~z~, and 

- A is affine with respect to KA if it is semi-affine with respect to ,cA and, in 
addition, x - y  + z  is a term operation of A (or, equivalently, if A is 
polynomially equivalent to a module R.d for some subring R of End KA). 

Clearly, if A is semi-affine [resp., affine] with respect to a vector space xA, then 
it is semi-affine [resp., anne] with respect to the Abelian group A. Conversely, an 
elementary Abelian p-group A can naturally be regarded as a vector space ~/i ,  and 

it is obvious that semi-affineness [resp. affineness] with respect to A and zpA are the 
same. 

It is easy to see that if an algebra A is semi-affine with respect to an Abelian 
group A, then x - y + z is the only Mal'tsev operation that can be a term operation 
of A; furthermore, the group A is uniquely determined by the operation x - y  + z, 
up to the choice of the element 0. Hence, if an algebra that is semi-affine with 
respect to an Abetian group A [or vector space KA] is affine for some Abelian group 
[or vector space], then it is affine with respect to A [resp., KA] as well. We will use 
this fact without further reference, and omit to mention A [resp., KA] in such a 
situation. 

For an Abelian group A = (A; + )  the group {x + a : a E A } of all translations 
of A will be denoted by T(A). For a vector space ,cA = (A ; + ,  K) we will also need 
the family 

P(xA)=-{cx + a : c ~ K - { O } , a ~ A }  

of nonconstant unary polynomial operations of xA. Clearly, P(xA) is a permutation 
group on A and T(A) _~ P(KA). For an algebra A = (A; F) that is semi-affine with 
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respect to A, A* will stand for the algebra (A; K T(A)) arising from A by adding all 

translations of  A as unary operations. Analogously, for an algebra A = (A; F)  that 
is semi-affine with respect to KA, KA* wilt stand for the algebra (A; F, P(KA)) 
arising from A by adding all nonconstant unary polynomial operations of  ~:A to A. 

Let q _> 3. A family T = {O0 . . . . .  Om_ 1 } (m _> 1) of equivalence relations on A 
is called q-regular if each O~ (0 < i _ < m -  1) has exactly q blocks and O r  = 
O0 ca- - �9 c~ O .... ~ has exactly qm blocks. A relation on A is called q-regular if it is of 
the form 

2r  = {(ao . . . .  , aq_ 1) ~ Aq : for all i (0 _< i _< m - 1), ao . . . . .  aq_ t are not pair- 
wise incongruent modulo O~ } 

for a q-regular family T of  equivalence relations on A, 

The ruth matrix power of any unary algebra U = (U; F)  is the algebra U N whose 
base set is U '~, and its operations are exactly all operations h~[go . . . . .  gm-~] 

defined for arbitrary mappings cr :m ~ m , / ~  :m ~ n  and go . . . . .  gm ~ C1ol U as 
follows: for x~ = (x ~ . . . . .  x7 ' - I  ) ~ U '~ (0 _< i _.< n - 1), 

h~[go, g , , -  d(x0, . ,  x , _  ~) o~ _ ~x(m-,~, ,  �9 . . . . . .  (g0(Xo~) . . . .  , g,~ - ~ t (m- ~)~))- 

The mappings a, p will be called the component mapping and the variable mapping 

of  hi[g o . . . .  , g .... ~], respectively. For  unary operations the subscript indicating the 
variable mapping m ~ 1 wilt be omitted. 

An algebra A is called Abelian if A satisfies the so-called term condition (or TC): 

for all n >_k_> 1, for every n-ary term operation f of A and for arbitrary 
~, ~ ~ A ~, ~, 5 ~ A "-k ,  

f ( a , a ) = f ( a , F )  ~ f (~,a)=f(~,F) .  

Furthermore, A is strongly Abelian if it satisfies the strong term condition (or TC*): 
for all n _> k _> 1, for every n-ary term operation f of  A and for arbitrary 
u, g ~Ak,& 5, F ~A ~-k, 

f(a ,d)=f(e ,~;)  ~ f (a ,e )=f(~ ,e) .  

It is not hard to see that every strongly Abelian algebra is Abelian, and it is obvious 
from the definitions that both properties are inherited for subalgebras. Affine 
algebras are Abelian and not strongly Abelian, while matrix powers of unary 
algebras are strongly Abelian. 
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Our main result is 

T H E O R E M  2.1, For an arbitrary finite algebra A that is semi-affine with respect 
to a vector space Kft = (A ; +, K), one of the following conditions holds: 

(2.t.a) 
(2.1.b) 
(2.1.c) 

(2.1.d) 

A is affine with respect to xA; 
A has a nontriviat congruence which is a congruence of xA; 
there is a vector space isomotThism xfl  -~ ( K K )  m which is simultaneously 
an isomorphism between A and a reduct of  (K; Pol~ (xK))[~'~]; 
A has a compatible relation 2r for some q-regular family T of  congruences 
of , ith q > IKI. 

Clearly, if for an algebra A as in Theorem 2.1 condition (2.1.c) or (2.1.d) holds, 
then A cannot be affine; Thus Theorem 2.1 yields a necessary and sufficient 
condition for simple semi-affine algebras to be affine. 

C O R O L L A R Y  2.2. Let A be a finite simple algebra that is semi-affine with 
respect to a vector space K2t = (A; +, K). Then A is affine with respect to xA if and 
only i f  both of conditions (2.1.c) and (2.1.d) fail for A. 

The special case and weaker form of Theorem 2.1 and Corollary 2.2 for finite 
algebras that are semi-~affine with respect to elementary Abelian groups (that is, 
vector spaces over prime fields) was proved in [18]. 

The proof  of  Theorem 2.1 is based on a strong version of Rosenberg's primal 
algebra characterization theorem (see [7]) stated in Theorem 2.3 below. Recall that 
a finite algebra A is called quasiprimal ([5], [6]) if every operation on A preserving 
the internal isomorphisms (i.e. isomorphisms between subalgebras) of A is a term 
operation of A. Further, a k-ary relation p on A is said to be central if p ~ A k 
p is totally reflexive, totally symmetric, and there exists a c ~ A such that 
(c, a i , . . . , a ~ _ l )  Ep for all a~ . . . .  ,ak_~ ~A. 

-THEOREM 2.3 [15]. Let A be a finite simple algebra having no proper subalge- 
bra. Then one of  the Jbllowing conditions hold: 

(a.3.a) 
(2.3.b) 
(2.3.c) 
(2.3.d) 
(2.3.e) 
(2.3.1) 

A is quasiprimal; 
A is a,ffine with respect to an elementary Abelian p-group (p prime); 
A is isomorphic to a reduct of (2; Ta) I~l for some integer m >_ 1; 
A has a compatible q-regular relation jbr some q >_ 3. 
A has a compatible k-ary central relation for some k >_ 2; 
A has a compatible bounded partial order. 
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Given a finite algebra A that is semi-affine with respect to a vector space 
K j = (A; + ,  K), Theorem 2.3 will not be applied directly to A; it will be applied to 
the extended algebra K A*. Therefore it is a crucial step to show beforehand that 
under mild restrictions on A, K A* is affine if and only A has this property. We have 

T H E O R E M  2.4. Let A be a finite algebra such that A is semi-affine with respect 
to a vector space x~] = (A; +, K), and A has no nontrivial congruence which is a 

congruence o f  xft. Then A is affine i f  and only i f  KA* is affine. 

The proof  of Theorem 2.4 is presented in Section 3. Interestingly, the argument 
also requires an application of Theorem 2.3. 

It will turn out that considering KA* instead of A when applying Theorem 2.3 
has the effect that 

the congruences of  KA* are automatically vector space congruences (cf. 
Lemma 3.4), 

- (2.3.e), (2.3.f) cannot hold for KA* ((2.3.a) does not hold either, in view of  
semi-affineness), and 

- even if (2.3.c) or (2.3.d) holds for KA*, the presence of  P(xA) in the set of 
operations forces that the matrix power, resp. compatible q-regular relation 
is nicely related to the vector space KA. 

The latter is the difficult part of the proof; it requires some group theoretical results, 
which are developed in Section 4. The proof  of  Theorem 2.1 is finished in Section 
5, and finally the applications of  Theorem 2.1 mentioned in the Introduction are 
presented in Section 6. 

3. Proof of Theorem 2.4 

Let ~i be an Abelian group. For  arbitrary polynomial operation f =  
2 7  - 1  r ix  i -~- a of  (End .4)A we define 

n - I  

f v  = f - f ( 0  . . . . .  0) = ~ rixi, 
i - O  

and for a set F of such operations we put F v = {fv : f  e F}. If A = (A; F)  is an algebra 
that is semi-affine with respect to A, then A v will denote the algebra (A; FV). Clearly, 
A v is also semi-affine with respect to A (in fact, A v is a reduct of  A*) and {0} is a 
subalgebra of A v. Moreover, if A is an algebra that is semi-affine with respect to a 
vector space x.d, then A v is also semi-affine with respect to K/i. 
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The next lemma clarifies how the clones of the algebras A and A* are related if 
A is semi-atfine with respect to A. 

L E M M A  3.1. For an arbitrary algebra A that is semi-affine with respect to an 
Abelian group i] = (A; +) ,  

Clo A* = r~x~ + a : n >_ 1, a E A, and ~ rsx~ + ao ~ Clo A for some ao e A . 
L i = 0  i = 0  

The proof  is straightforward. Lemma 3.1 has the immediate consequence that 
the 'Abelian group analogue' of  Theorem 2.4 is valid without any restriction on A: 

C O R O L L A R Y  3.2. For a finite algebra A that is semi-affine with respect to an 
Abelian group ft = (A; +), the algebra A* is affine i f  and only i f  A is affine. 

Proof I f  A* is affine, that is, x - y + z E Clo A*, then x - y + z + a0 e Clo A 
for some a 0 ~ A. By identifying variables we get that x + a0 ~ Clo A. Hence, in view 
of the finiteness, it follows that x - y + z ~ Clo A, that is, A is affine. The converse 

implication is obvious. [] 

The claims in the following two lemmas are well-known and easy to check. 

L E M M A  3.3. For an Abelian group ]1 = (A; +), if  G) is an equivalence relation 
on A such that 0 is preserved by all permutations in T(ft), then 0 is a congruence of  

A. 

L E M M A  3.4. For a vector space ,vei = (A; + ,  K), if  6) is an equivalence relation 
on A such that 6) is preserved by all permutations in P(K]t), then 6) is a congruence 

Of KA. 

We will need a characterization of  strongly Abelian algebras in terms of 

compatible relations. 

L E M M A  3.5_ An algebra A is strongly Abelian if  and only if  A has a 4-ary 
compatible relation p such that 

(SA1)p (a, b, a, b) ~ p and (a, b, e, c) ~ p for all a, b, c ~ A, and 
(SA2)p for atkv elements a, x, y ~ A, (a, a, x, y) ~ p implies x =- y. 

Proof. The subalgebra of  A 4 generated by the quadruples of  the form (a, b, a, b) 
and (a, b, c, c) with a, b, c ~ A is 

a = {(f(~,d) , f (~,g) , f (r  f) , f(~, a ) ) : n  >_2, 1 <_k <_n,u, v e A  k, 

& 5, E ~ A ~ - k , f ~  C1% A}. 
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Clearly, a is the least 4-ary compatible relation of A satisfying condition (SA1)~, 
moreover, A is strongly Abelian if and only if a has property (SA2)~. This implies 
the claim. D 

Proof of Theorem 2.4. Suppose A satisfies the assumptions of the theorem. If A 
is affine then clearly KA* is also affine. Assume from now on that A is not affine, 
and hence by Corollary 3.2 A* and its reduct A v are not affine either. It is clear 
from Lemma 3.1 that (AV) * is term equivalent to A*, whence also K(AV) * is term 
equivalent to KA*. Therefore, to prove that KA* is not affine, there is no loss of  
generality in replacing A with A v, or equivalently, in assuming that {0} is a 
subalgebra of  A. 

Because of  the translations, A* has neither proper subalgebras, nor compatible 
central relations, nor compatible bounded partial orders. Obviously, A* is not 
quasiprimal. Now it follows from Theorem 2.3 that either A* is not simple, or one 
of conditions (2.3.c) or (2.3.d) holds for A* (in place of A). Making use of  Lemma 
3.5 we conclude that A* has a compatible relation p where 

(I) p satisfies conditions (SA1); and (SA2)p, or 
(II) p is an at least ternary totally reflexive, totally symmetric relation distinct 

from the full relation, or 
(III) p is a nontrivial equivalence relation. 

The assumption that {0} is a subalgebra of  A ensures that multiplication with each 
element of  K - {0} is an automorphism of xi] as well as of A. 

For  p as above, say p is q-ary, and for any element c ~ K - {0}, put 

Pc = { ( a 0 ,  " �9 " , aq_ i ) E A q : (ca o . . . . .  Caq - i )  ~ P }. 

It is easy to check that each Pc, and hence their intersection ~ = 0 c~ x-{0} Pc as 
well, inherits the following properties of p: 

- it is a compatible relation of A; 

- it is closed under the translations in T(A) (acting componentwise), i.e., it is 
a compatible relation of  the unary algebra (A; T(.4)); 
it is of the same kind (I), (II), resp. (III) as p, allowing the possibility v = A 
in case (III). 

In addition, ~ is closed under the componentwise action of  each multiplication with 
an element c ~ K - {0}. Thus ~ is a compatible relation of  KA*. 

In cases (I) and (II) this shows that xA* is not affine, as was to be proved. 



152 A. SZENDRE1 ALGEBRA UNIV. 

In case (III) each p~ with c e K -- {0} is a nontrivial congruence of  A*, and z is 
a congruence of KA*. By Lemma 3.3 this means that each p~ with c e K -- {0} is a 
nontrivial simultaneous congruence of A and z], while r is a simultaneous congru- 
ence of  A and KA. By the assumptions of the theorem, ~ must be a trivial 
congruence, hence z = A. 

Let B = Alp,  [~ = fit/p. It is straightforward to check that B is semi-affine with 
respect to/~. 

For  any element c ~ K - {0}, the mapping 

q~ : A/p~ -~ A / p  = B, a/p~ ~ ca/p 

is an isomorphism Alp c -~ Alp  = B as well as an isomorphism A Ip~-+.f t i p  = I~. 
Now let d be a generating element of  the cyclic group K -  {0}. The family 
{p~: c e K - {0)} = {pak: 0 < k < ]K] - 2) of congruences yields a subdirect repre- 
sentation 

A s  y~ A/Oak, 
k - O  

a ~ (a/p, atPd, a l P d z , . . . ,  a/pdlel-2), 

and the same mapping embeds also A into I ] ~ o  2 ft/pd~. Using the isomorphisms 
q)dk (0 __< k _< IKI -- 2) we can replace each component with B (resp. /~), to get an 

embedding 

rp : A ~ B Ixq- 2, a ~ (a/p, da/p, d2a/p . . . . .  d I~ - 3a/p, d Ixl - 2a/p), 

which is simultaneously an embedding of A into/~1~-2. Note that the ( ] K ] -  1)-tu- 
ple assigned by ~0 to the element da is (da/p, d~a/p, d 3 a / p , . . . ,  dF~ 2alp, a/p), and 
this ([K 1 --1)-tuple arises from the image of a by a cyclic permutation of the 
components. 

For  convenience, we will identify A with its image under ~0. 
Suppose now that the previous argument was carried out for a p which is 

maximal among the nontrivial congruences of  A that are also congruences of A. 
Hence B has no nontrivial congruence which is a congruence of/~.  Since A is a 
subdirect power of  B and is not affine, therefore B cannot be affine. Repeating the 
first half of this proof  for B in place of A we see that B* has a compatible relation 
p' of  type (I) or (II). Let q denote the arity of p' (q = 4 in case (I), q _> 3 in case 
(II)), and consider the q-ary relation ~ = (p')IXl-lc~ A q on A (here (p')I~-1 denotes 
the relation defined componentwise by p' on the set B I~q- ~). Clearly, in case (I) 
is of type (I), while in case (II) ~ is of type (II). The operations of A* act 
componentwise, therefore ~ is a compatible relation of A*. Since the operation 
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'multiplication by d'  on A is reflected as a cyclic permutation of the components,  

therefore ~ is compatible with this additional operation as well. Thus ~ is a 

compatible relation of xA*, hence xA* is not affine. [] 

4. Some subgroups of general wreath products 

Let G ~_ SA be a permutation group acting on a set A. The orbits of G are the 
minimal nonvoid subsets of  A that are closed under all permutations in G. Clearly, 

the orbits of  G yield a partition of A. We say that G is transitive on A if A is an 

orbit of  G, and G acts regularly on A if it is transitive and the non-identity 

permutations in G have no fixed points. 

Let k and m be arbitrary positive integers, and let P be a subgroup of Sin. 

Clearly, the unary term operations h~ . . . .  , gm-1] of (k; Sk) [m] with a ~ P form a 
permutat ion group acting on the set km. In group theory this group is called the 

general wreath product of SK and P, and is denoted by Sk Wr P (cf. [ 11; p. 272]). In 

Sk Wr P the elements hid[g o . . . . .  gm i] form a normal subgroup (isomorphic to 

the mth  direct power of  Sk), which will be denoted by (Sk) m, while the elements 

h~[id . . . . .  id] form a subgroup (isomorphic to P), which will be denoted by /~. 
Obviously, P is a complement of  (S~) ~ in Sk Wr P in the sense that ( s k ) m n P  = {id} 

and ( sk )mp = S k Wr P. 

I f  P is a regular permutation group on m, then S~ Wr P essentially coincides 
with the so-called complete wreath product of Sk and P (cf. [11; pp. 270, 272]). 

The following proposition was used already in [18], however, for the readers' 

convenience the proof  is included here. Reference [11] which makes the proof  
relatively short was pointed out to me by P. P. Pfilfy. 

P R O P O S I T I O N  4.1. Let H be a subgroup of the permutation group Sq Wr Sm 

where q is a power of a prime number p and m is an arbitrary positive integer. I f  H 
is an elementary Abelian p-group which acts regularly on qm, then H is a subgroup of 
(Sq) m. 

Proof. Let H be a subgroup of Sq Wr Sm satisfying the assumptions of  the 
lemma, and let P denote the group of component  mappings of  permutations in H. 

Thus H is an elementary Abelian p-subgroup of  Sq Wr P acting regularly on qm. 

Let I 0 . . . . .  It i denote the orbits of  P. Then each member  h~[g0, - �9 -, gin- 1] of  H 
acts componentwise, via h~l#[gi :i~I1] ( l = 0  . . . . .  t - l )  on the set qm= 
q10 x - �9 x qIt ~. For  0 < l _< t - 1 let H ~) consist of  the restrictions of  all members 

of  H to the component  q~t of  the base set. Clearly, H ~l~ is an elementary Abelian 

p-subgroup of S q Wr S~, which acts transitively on q~l. By the well-known fact that 
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every commutative, transitive permutation group is regular, it follows that each H ~r 
(l = 0 , . . . ,  t -  1) is a regular permutation group. Consequently, for cardinality 

reasons, H splits into a direct product of these groups H ~t) (l = 0 . . . . .  t - 1). Hence 
it suffices to prove that if P is transitive, then m = 1. 

Assume that P is transitive. Since P is a homomorphic image of H, therefore P 
is an elementary Abelian p-group. From the transitivity and commutativity of P it 

follows that P is regular as well. 
Consider the subgroup I 7  = H c~ (Sq)  m of H. Since H is finite and Abelian, it has 

a subgroup/5 that is a complement o f / t  in H (that i s , / t  r P = {id} and / t / 5  = H). 

Clearly, for each o ~ P , /5  contains exactly one permutation with component 
mapping a. Thus /5 is a complement of (Sq) m in the complete wreath product 
Sq Wr P. It is known (cf. [11; 10.7 in Chapter 2]) that any two complements of 

(Sq)  m in Sq Wr P -  specifically /3 and / 5 -  are conjugate. Since all assumptions 
on H and the required conclusion as well are invariant under conjugation, we 
may assume without loss of generality that /3 _~ H ,  However, as H is Abelian, 

H is contained in the centralizer of /3  in Sq Wr P, which is easily seen to be equal 

to 

{h~[g, . . . , g] : g e Sq,  o (~ P }  

(cf. [l l; Exercise 2 on p. 277]). Obviously, this group is transitive only if m = 1, 

completing the proof. [] 

A permutation group G acting on a set A will be called (for the lack of a better 
name) a vec to r  space  g r o u p  if G = P(Kf]) for some vector space/~A on A. Clearly, 

a group of this form is transitive, moreover, it is non-regular unless IK[ = 2, and 

every nonidentity permutation in G has at most one fixed point. For  a e A the 
s tab i l i z e r  o f  a in G is the subgroup of G consisting of all permutations in G fixing 

a, and is denoted by G~. Clearly, in a vector space group G = P(x f l t )  

- the subgroup T(~]) of all translations is the normal subgroup of G consisting 
exactly of the identity and all fixed point free permutations, and this 
subgroup uniquely determines the + of the Abelian group A once the neutral 
element 0 is fixed; 

- the multiplications by nonzero scalars in K are exactly the members of the 

stabilizer Go of the element 0. 

Thus, up to the choice of 0, the vector space/~A can uniquely be reconstructed 

from the group G = P ( x f l ) .  
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P R O P O S I T I O N  4.2. Let G be a subgroup of  the permutation group Sq Wr S~ 
where q is a power of a prime number p and m is an arbitrary positive integer. I f  G 
is a vector space group on q~, then G is a subgroup of (Sq) m. 

For  the proof  we need two lemmas. 

L E M M A  4.3. I f  the minimal polynomial of  an element a of the Galois field 
GF(p") is of  the Jorm f ( x  ~) for some integer r > 1 and polynomial f e Zp[x], then a 
does not generate the multipticative group of  GF(p~). 

Proof Suppose the assumption of  the claim holds. I f  the degree of  the element 
a over Zp (i.e. the degree of  its minimal polynomial f(x~)) is less than n, then the 

conclusion is obvious. So assume the degree of a is n, and hence r In, say n = rs. 
Since f(x~) is irreducible over Zp, so is S Thus f is the minimal polynomial of  the 
element aL Consequently the degree o f a  r is s, i.e. the subfield Zp(a ~) of  GF(p ~') has 
order p~. Hence for the multiplicative order of  a" we have o(a r) I p s - 1 Thus 

o(a) o(a) 
p ' -  1 > o(a ~) - > - - ,  

gcd(o(a), r) - r 

yielding that 

o(a) <_ (p*-- 1)r < (p~--  1)(p " ~  + p , +  1) = p ' - -  1 = p " - -  1. 

This proves that a cannot be a generating element of  the multiplicative group of  
GF(p ~). [~ 

L E M M A  4.4. Let (q; + )  be an elementary Abelian p-group for some prime p, 
and let zi = (q; + )~' for some integer m >_ 1. Consider an automorphism of A of the 

form h = h ~[g0 . . . . .  gm- 1 ] for some go, - �9 �9 g,~ - l c Aut(q; +), a ~ Sin. I f  h belongs 
to a subfield of  End A and ~r r id, then the minimal potynomiat of  h over Zp is of  the 

form f (x")  for some integer r > 1 and polynomial f e Zp[x]. 

Proof. Suppose h belongs to a subfield K of  End A (K is of  characteristic p), and 

let, say, (0, 1 . . . . .  r - 1) with r > 1 be one of the disjoint cycles of  cr. Consider an 
element of  q~ of the form ~ = ( 0  . . . . .  0, u, 0, .  . . . .  0) with u in the ( r - 1 ) s t  
coordinate, and repeatedly apply h to it. It  is straightforward to check by induction 
that for t > 0 a n d  0 N i _ < r - 1  we have 

( r - -  t -- t ) t h  c o o r d i n a t e  
& 

F 

hrt+i(~) = (0 . . . . .  0, (gr-~'"g,--~gt)(u),  0 , . . . ,  O) where g=gogl  " " g r - ~ .  

(t) 
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Let us denote  the minimal  polynomial  of  h over  Z ;  by 

f ( x ) =  ~ cjxJ~Zp[x], 
O<_j<n 

and for  0 _ < i _ < r - 1  put  

A L G E B R A  UNIV.  

f , (x)  = y, c S e Zp[x]. 
O<_j<~n 

j ~  i (rood r) 

Clearly, fo(h) . . . . .  f r -1 (h )  belong to K, and we have 

,Y, s  =f (h)  = 0 (eK). 
O<i<_r--I 

Thus 

~, f(h)({) =f (h ) ({ )  = 0 (eqm). 
0 < i < r  I 

(~) 

In view of  (-~), for 0 < i < r -  1, all coordinates  of  the m-tuple  f~(h)(~), except 
possibly the (r - 1 - i) th coordinate ,  equal 0. Hence (~) yields that  

fo(h)(~) = o  

(r I)st 

for all ~ = ( 0  . . . . .  O, u, O , . . . , O )  w i t h u c q .  

Since fo(h)~ K and all nonzero members  of  K are au tomorph i sms  of  A, we 
conclude that  f0(h) = 0. He re fo  is not  the zero polynomia l  (as Co # 0), and its degree 
does not  exceed the degree o f f ,  therefore f0 = f ,  complet ing the proof .  

Proof of Proposition 4.2. Let G be a subgroup  of  Sq Wr Sm which is a vector  
space group,  say G = P(K]~) for  some vector  space ,cA = (qm; q_ K), and let 
H = T(A). Clearly, the assumpt ions  of  Proposi t ion 4.1 hold for H, therefore H is a 
subgroup  of  (Sq)". For  0_< l_< m -  1 let H (l) consist o f  the restrictions of  all 
members  of  H to t h e / t h  componen t  of  the base set q" .  As we have seen in the first 
pa ragraph  of  the p r o o f  of  Proposi t ion 4.1, each H (1) (l = 0 . . . .  , m -  1) is an 
e lementary Abelian p - g r o u p  acting regularly on qm, and H splits into a direct 

p roduc t  o f  these groups.  
Let (q; + ,  0) be a fixed e lementary Abelian p - g r o u p  on q, and consider the zero 

element of  A : 0 = (o0 . . . . .  o .... ,). Fo r  0 < i < m -- 1 there exist e lementary Abetian 
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p-groups  (q; +i, oi) such that H ~~ T((q; %,o~)). Fixing any isomorphisms 

~ : ( q ; + i ,  oi)-- '(q; +, O) we get that the permutation hid[so . . . . .  Tc,~_~]e 

Sq Wr Sm conjugates H = T(/]) into T((q; + ,  0)m). 

Since the assumptions on G as well as the conclusion of  the lemma are invariant 

under conjugation, we may assume that the additive group of the vector space K A 

with G = P(Kfil) is A = (q; +)m for a fixed elementary Abelian p-group  (q; + )  on 

q. The multiplications by nonzero scalars in K are exactly the members of  the 

stabilizer Go of the zero element 0 -- (0 . . . . .  0) of  A = (q; +)m. Thus Go - End A, 

and Go together with the zero endomorphism forms a field isomorphic to K. 

Consequently Go is a cyclic group. On the other hand, Go ~-Sq Wr Sm. Let 

h = h~[go, . . . ,  gin-~] (a E Sm, go . . . . .  gin-l C Sq) be a generating element in Go. It 

is straightforward to check that go . . . .  , gin-~ ~ Aut(q; +) .  Now Lemmas 4.3 and 

4.4 show that cr = id, whence Go ~- (Sq) m. Since H u Go generates G, it follows that 
G ~_ (Sq) m. [] 

5. Proof of Theorem 2.1 

Let U be a q-element set (q > 3), and let m > 1. The kernels of  the m distinct 

projections U m ~  U form a q-regular family of  equivalences on U m, which will be 

called the standard q-regular family of  equivalences on U"'; the corresponding 

q-regular relation is called the standard q-regular relation on Um. It is well known 

that the mth  matrix power U Ira] of any unary algebra U = (U; F) admits the 

standard q-regular relation as a compatible relation. 

In the lemma below we collect some well-known facts on finite algebras 

admitting q-regular compatible relations. 

L E M M A  5.1. Let A = (A; F) be afinite algebra, and let T =  {Oo, . . . ,  O,, ~} 

be a q-regular family of  equivalence relations on A such that ),T is a compatible 

relation of  A. 

(5.15) T/OT = {O0/OT, . . . ,  O .... 1lOT} is a q-regular family of  equivalences 
on A /Or ,  and there exists a bijection qo : A /OT ~ q'" carrying T/OT into 
the standard q-regular family of  equivalences on qm. 

(5.1.ii) I f  f ~ F is an n-ary operation whose range meets each block of  some Oi, 

then there exist j , l  ( O < _ j < _ m - l , O < l < _ n - 1 )  such that for all 

Xo, �9 � 9  x,,_ 1, Yo, �9 �9 �9 Yn 1 ~ A we have 

f(xo . . . . .  x ._~)O~f (yo  . . . . .  y ._~) <~ x tOjy l .  (*) 
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(5.1.iii) / f  A is a surjective algebra, then 
(1) O T is a congruence of A, 
(2) the relation 2v/o~ is a compatible relation of A/OT, and 
(3) the bijection cp yields an isomorphism between A/Or  and a reduct of 

the matrix power (q; Sq) ~ml. 

The proof  of (5.1.ii) can be found, e.g. in [9; Lemma 7.3]. In fact, what is 
proved there is the implication ~ in ( , )  for the case when the equivalences in T are 
assumed to have at least q blocks, rather than exactly q blocks, each; however, if the 
equivalences have the same number of blocks, then ~ cannot fail in ( ,) .  The claims 
in (5.1.iii) are well-known consequences of  (5.1.i) and (5.1.ii); see [10], [81. We note 
that Rousseau [10] (cf. also [8]) proved (5.1.iii) (3) for the case O r  = A, however, 
in view of (5.1.iii) (1 ) - (2 )  the more general claim follows immediately from this 
special case. 

LEMMA 5.2. Let X~i be a finite vector space, and let T = {Oo . . . .  , Ore-~} be a 
q-regular family of equivalences on A such that 2v is preserved by all permutations in 
P(xA). Then 

(5.2.i) Oo . . . . .  Om_~, and hence their intersection OT as well, are congruences 
of xA, and 

(5.2.ii) for any vector space (q; +, K), there exists an isomorphism xft/OT 
(q; +, K) '~ carrying T/OT into the standard q-regular family of equiv- 

alences on qm. 

Proof. Consider the unary algebra A = (A; P(x~t)), By our assumption 2T is a 
compatible relation of A. Since A is surjective, we get from Lemma 5.1 (5.1.iii)(1) 
that Ov is a congruence of A. So by Lemma 3.4 O r  is a congruence of xA, 
Applying Lemma 5.1 (5,1.i) and (5.1.iii)(3) we get also that there exists an 
isomorphism ~ between the algebra A/Or  = (A/O; P(KA/O)) and a reduct of the 
matrix power (q; S~) E~l such that 9~ carries T/Ov into the standard q-regular family 
{45 o . . . . .  4~,~_ 1} of equivalences on q'C Let G denote the subgroup of Sq,,, corre- 
sponding to the group P(xfl/6)) under ~0. Clearly, G is a subgroup of Sq Wr Sin. 
Furthermore, by construction, G is a vector space group on q". Now Proposition 
4.2 states that G ~_ (Sq) ~', whence it follows that 4~o . . . . .  q5_  ~ are congruences of 
(qm; G). Via the isomorphism ~0 we get that ~bo/OT . . . . .  Ore_ ~/OT are congruences 
of A/OT, and hence O0 . . . . .  O,~ ~ are congruences of A. Now by Lemma 3.4 we 
conclude that (5.2.i) holds. 

Since the family T of congruences of xA is q-regular, the natural embedding 
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is an isomorphism, and all quotient spaces on the right are q-element vector spaces 

over K. Up to isomorphism, we can replace them with the given space (q; + ,  K), 

and the requirements in (5.2.ii) obviously hold. 

EEMMA 5.3. Let A be a finite algebra that is semi-affine with respect to a vector 
sT~ace 1,A = (A: + ,  K), and let T be a IKt-regular famity o f  congruences of  xf~ such 
that ).~ is a compatible relation o f  KA*. Then 

(5.3.i) O~ is a congruence o f  A, and 
(5.3.ii) l,'/' O r = A ,  then there exists a vector space isomorphism K~--*(KK) ' '  

which is simultaneously an isomorphism between A and a reduet of  
( K, Polt (KK)) ~'t. 

Pro~/i Let T = {O . . . . . .  [~m ~}- Since the members of  T are congruences of  

~.4, so is their intersection OT. 

TO prove (5.3.i) let f be an n-ary operation of A, and let x o . . . . .  x,_~, 

y,, . . . . . .  v,, ~cA  be arbitrary elements of  A such that xk Or yk for all 

0 < k < n - 1. Let 0 < i _< m -- I. Assume first that the range of  f meets at least 
two blocks of  O~. Since X~//O: is a one-dimensional vector space and A is 

semi-affine with respect to xA, it is clear that the range of  f meets each block of  

0,.  Thus we get fi'om Lenn~aa 5.1 (5.1.ii) that f ( x o , . . . ,  x ,_  i ) O i f ( y o , . . .  , y , . - t ) .  
The same conclusion is obvious, if  the range of  f meets only one block of O~. 

Since i was arbitrary, we conclude that f (xo . . . . .  x ,_~) O r f ( y o  . . . . .  y,,_~), as 
required. 

Now let 0 7 . = A .  By Lemma 5.2 (5.2.ii) there exists an isomorphism 

x,4 -~ (xK)"' carrying T into the standard ]KI-regular family of  equivalences on K "~'. 

Let B = (K'", F) be the algebra corresponding to A under this isomorphism. Notice 

that the standard IK[-regular relation on K m is a compatible relation of B, and 

apply Lemma 5.1 (5.1.ii) to each operation f of  B. Let, say, f be n-ary. For  b e K "  
the components  of  b will be denoted by b ~ . . . .  , b  m-~. Let 0 < i _ < m - 1  be 

arbitrary. As in the previous paragraph,  we see that the set of  ith components  of  
j '(b o . . . . .  b,,. ~ ) as the arguments run over all elements of  K m is either K or a 

one-element set. In the first case we get from (5.t.ii) that  there exist indices jr l~ 

(0 _<j~ <_ m - I, 0 _< l~ _< n - 1) and a permutation g~ ~ SK such that the ith compo-  

nent of  f(bo . . . . .  b,~_ ~) equals g~(b~i ) for all b o . . . . .  b,,_ ~ ~ K".  In the second case 
the same holds with g~ constant (and j~, l~ arbitrary). Thus f =  h~[g o . . . .  , g ..... ~] 

where a and ll are the mappings cr : m -*m, i ~--~j~ and Iz : m --*n, i ~ li. Hence B is 
a reduct of  (K; SK w Cx) Iml. Taking into consideration that B is semi-affine with 
respect to (KK)"', one can easily derive that B is a reduct of  (K;PoI~(,~K)) t~t, 
completing the proof  of  (5.3.ii). D 
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Now we are in a position to prove Theorem 2.1. 

Proof of Theorem 2.1. Let A be a finite algebra that is semi-affine with respect 
to a vector space KA = (A; + ,  K), and consider the algebra ~:A*. Because of the 
translations, KA* has no proper subalgebra, no compatible bounded partial order 
and no compatible central relation. If ~A* is not simple, then by Lemma 3.4 ( 2. l.b) 
trivially holds, so assume KA* is simple. Now we can apply Theorem 2.3 for ~ A*. 
Since a semi-affine algebra cannot be quasiprimal, condition (2.3.b), (2.3.c) or 
(2.3.d) in Theorem 2.3 holds for KA*. 

Assume first that (2.3.b) holds for KA*, that is KA* is affine. Since ~.A* is 
simple, A has no nontrivial congruence which is a congruence of ~.A. Hence, by 
Theorem 2.4, (2.1.a) holds for A. 

Now let us consider the case when (2.3.c) holds for KA*, that is, there exists an 
isomorphism q~ between KA* and a reduct of the matrix power (2: T2)r"'l. Let G 
denote the subgroup of $2,, corresponding to the group P(xA) under ~p. Clearly, G 
is a subgroup of $2 Wr Sin, and G is a vector space group on 2"'. By Proposition 4.1 
we have G _ ($2) m, so for cardinality reasons G = ( 3 2 )  m and IKI = 2. Let ~,) be the 
image of 0 e A under ~o, and let ~ be the translation x + co of the Abelian group 
(2; +)~.  It is straightforward to check that the mapping ~0r is a vector space 
isomorphism xA ~ (2; + ,  K )  m which is simultaneously an isomorphism between A 
and a reduct of (2; T2) Im]. Identifying the set 2 with K in the natural way we get xK 
from (2; + ,  K) and (K; Poll(xK)) from (2; T2). Hence (2.1.c) holds with ]K I = 2. 

Finally, suppose condition (2.3.d) holds for xA*, and let T be a q-regular family 
of equivalences on A such that )~r is a compatible relation of KA*. Obviously, ).~ is 
preserved by all permutations in P(xft), so by Lemma 5,2 T consists of congrucnccs 
of KA. It follows now that q is a power of IK I. I f q  > ]K], then (2.1 .d) trivially holds, 
while if q = IKI, then by Lemma 5.3 (5.3.i) and by the simplicity of xA* we have 
O r =  A, whence by Lemma 5.3 (5.3.ii) we conclude that condition (2.1.c) holds 
for A. 

6. Applications of Theorem 2.1 

First we discuss two results on finite simple algebras of type 2. 
By the basics of tame congruence theory ([1]), a finite simple algebra is of type 

2 if and only if it is Abelian but not strongly Abelian. A remarkable result in tame 
congruence theory is that every finite simple algebra of type 2 is representable as a 
subalgebra of a finite semi-affine algebra: 

T H E O R E M  6.1 ([1; Theorem 13.5]). For every finite simple a&ehra S ~/1.~7~" 2 
there exists a finite algebra A such that A is semi-affine with respect to cl le~tor .Sl)ace 
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KA, and S is isomorphic to a subalgebra S' of  A (such that 0 ~ S' and S' generates the 
vector space xft). 

Such a triple (A,/c-~, S') will be called a representation of S. 

(A) Surjective finite simple algebras of type 2 

The fact that  all surjective algebras a m o n g  the finite simple algebras of  type 2 

are affine was proved  earlier separately for  those algebras which do not  have, and 
for those which have a trivial subalgebra  (cf. [16] and  [17]). N o w  Theo rem 2.1, 

combined  with Theo rem 6.1 allows a unified t reatment .  

T H E O R E M  6.2 [16, 17]. Every finite, simple, surjective algebra of  type 2 is 
a~ne. 

Let S be a finite simple algebra of  type 2. We want  to show that  if S is 
surjective, then it has a representat ion where the semi-affine algebra A is also 
surjective. To  this end we need a slightly s t ronger  condi t ion than  the one in the 

parentheses in Theo rem 6.1. Moreover ,  when applying Theo rem 2.1 for A it will be 
useful if (2.1.b) fails for  A. Therefore  we start  with a modif icat ion of  Theo rem 6.1. 

T H E O R E M  6.3. Every finite simple algebra S of type 2 has a representation 
(A, x~i, S') such that 

(6.3.i) for every element a ~ S' the set S' - a generates the vector space xfl, and 
(6.3.ii) A has no nontrivial congruence which is a congruence of Kfl. 

Proof In the p r o o f  o f [ l ;  Theo rem 13.5] the construct ion yields a representat ion 
(A, K/i, S') where xA = (Xl~) k, XIJ'is a 1-dimensional vector  space, k _> 1, and S '  is 
a subset o f  V k containing (0 . . . .  ,0)  such that  the project ion mappings  

6i:S'--*V, (v ~ . . . . .  vk-1)~--~vi ( i = 0 , . . . , k - 1 )  

are linearly independent ,  as members  of  the vector  space (Kl~)s'. 

(6.3.i) can be verified in the same way as its special case a = (0 . . . . .  0) in [1]. 
Indeed, let a = (a ~ . . . . .  a k -  1). Suppose S '  - a is conta ined in a p roper  subspace of  

(xI~)k. Then there exist elements Co . . . . .  ck ~ K, not  all 0, such that  for  all 
s = ( s  0 . . . . .  s k i) e S ,  we have ~ k y l c i ( s i _ a  i )=O. For  s = ( 0 , . . . , 0 )  this im- 
plies ~ _ o  I ciai= O. Hence 

k - I  

Z Ci s i = O  
i 0 

for  all s = (s o . . . . .  s k -  1) e S'.  
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This means that in the vector space (Kl))s' the equality ~;-~ c~6~ = 0  holds, 
contradicting the construction of S'. This proves (6.3.i). 

Consider now arbitrary representation (A, x/i, S') of S, and assume A has a 
nontrivial congruence O which is a congruence of xA. It is straightforward to check 
that in this case the algebra A/O is semi-affine with respect to the vector space 
x/i/O. Obviously, the restriction O[s, of O to S' is a congruence of S'. Since 0 ~ S' 
and S' generates x/i, therefore S' is not contained in a single block of O; i.e., Ols, 
is not the full relation. As S' is simple, O[s, =A. Hence (A/O, r/i/O,S'/OIs, ) is 
again a representation of S. 

Clearly, whenever the representation (A, KA, S') of S satisfies (6.3.i), so does 
(A/O, x/i/O, S'/OIs,). Consequently, among all representations (A, KA, S') of S 
satisfying (6.3.i), every representation for which ]A I is minimal possesses property 
(6.3.ii) as well. FI_~ 

LEMMA 6.4. Let S be a finite simple algebra of type 2, and let (A, K/i, S') be a 
representation of S satisfying condition (6.3.i). I f  S is surjective, then so is A. 

Proof. Let f be a fundamental operation of S, say f is n-ary. The operation of 
A corresponding to f ,  denoted f A, is an n-ary polynomial operation of (End K~/i, say 
fA(xo, X,-1) ~ , - 1  . . . .  =L,~=or~Xi+a (to . . . .  , r~_l~Endx/ i ,  a sA) .  Since 0 ~ S ,  we 
have a =fA(0 . . . . .  0) = f ( 0 , . . . ,  0) s S'. Let Im r~- denote the range of ri; it is a 
subspace of x/i. 

Suppose now that f is surjective. Then 

n - I  

S' = fa (S ' , . . . ,  S') = ~ riS'+ a, 
i = 0  

n - |  implying that S' - a is contained in the subspace ~i=o Im r i of x/i- By assumption 
n - - I  S ' - a  generates ,v/i, therefore ~ ,  = o Im r~ equals x/i. Hence fA is surjective. [] 

Now we are in a position to prove Theorem 6.2. 

Proof of Theorem 6.2. Let S be a finite, simple, surjective algebra of type 2, and 
consider a representation (A, x/i, S') of S satisfying both conditions in Theorem 
6.3. 

We show that conditions (2.1.b)-(2.1.d) in Theorem 2.1 fail for A. (2.1.b) fails 
in view of (6.3.ii), and (2.1.c) fails because otherwise A, and hence S, too, would be 
strongly Abelian. Finally, assume (2.1.d) holds for A. Clearly, the equivalence 
relation Or  is a congruence of x/i. Now we make use of the fact that by Lemma 
6.4 A is a surjective algebra. It follows from Lemma 5.1 (5.1.iii)(1) that O r is a 
congruence of A as well, hence by the assumption (6.3.ii) we conclude that O r = A. 
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Thus (5.1.ii)(3) yields that A, and hence also S, is strongly Abelian, which is 

impossible. 
Consequently, by Theorem 2.1, A is affine with respect to KA. Therefore the 

subalgebra S' of A is an affine algebra, and hence S is also affine. 

(B) Finite simple algebras of type 2 generating minimal varieties 

A variety V is called minimal if it has exactly two subvarieties: V itself and the 
trivial variety. Obviously, every locally finite minimal variety is generated by a finite 
simple algebra having no nontrivial proper subalgebra. Recently, while investigating 
the problem which finite simple algebras of  type 2 generate residually small 
varieties, K. Kearnes, E. W. Kiss, and M. Valeriote noticed the following interest- 

ing fact: 

T H E O R E M  6.5 [3]. Every finite simple algebra of type 2 that generates a 
minimal variety is affine. 

Here we derive this result from Theorems 2.1 and 6.1. For an algebra A the 
variety generated by A is denoted by V(A). 

LEMMA 6.6. Let S be a finite simple algebra of type 2, and let (A, x/i ,  S') be a 
representation of S. The algebra A generates the same variety as S. 

Proof Since S is isomorphic to the subalgebra S' of A, it suffices to prove that 
every identity that holds in S', holds in A. Let t and i b e  arbitrary n-ary terms in 

the language of A (n > 1); the corresponding term operations are denoted as t A, 
n - - I  resp. i A. Let, say, t A = ~720 ~ rix i + a and i A = ~i=0 i~xs + ~. 

Looking at the n-tuples (0 . . . .  ,0) and (0 . . . .  ,0,  s, 0 . . . . .  0) from (S') n we see 
that if the identity t = 7 holds in S' then a = d and the endomorphisms ri, ~, 
(i = 0 . . . .  , n - t) of ,r~i coincide on S'. Since S' generates x.~, we get that ri = ~ 
for all i = 0 . . . . .  n - 1, and hence the identity t = 7 holds in A. [] 

It is well known that for an algebra A the subvarieties of V(A) are in one-to-one 
correspondence with the congruences of the clone Clo A of  A. Therefore A 
generates a minimal variety if and only if every homomorphism of Clo A into the 
clone of a nontrivial algebra is one-to-one. 

We will need a clone homomorphism which is implicit in [4]. 

Let A be a finite set, and let T = {0o . . . .  ,0 .~_ 1} be a q-regular family of  
equivalence relations on A. The clone consisting of all operations on A preserving 
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"~T will be denoted by ~r The other clone playing a rote is the clone of  the ruth 
matrix power of the two-element unary algebra U = (2; 0) whose onty fundamental 
operation is the constant with value 0. 

In [4] it is shown that U H, made into an indexed algebra in an appropriate way, 
generates one of the proper subvarieties of the variety generated by the algebra 
(A; ~T), Our aim is to describe the clone homomorphism witnessing this thct. 

Let f be any operation in :~@, say f is n-ary. We put 

I f  = {i : 0 <_ i < m - I, the range o f f  meets each block of O, }. 

By" Lemma 5.1 (5.1.ii), to each i el l .  there correspond indices j = j : , t = l r  
(0 _<j _< m - i, 0 <_ I <_ n - I) with property (.).  It is easy to see that these indices 
are uniquely determined. This yields two mappings 

~:;If- .>m, i~---~ji, and t ~ : : I f ~ n ,  i~---~li 

with the following property: for every i E/e, 

f(xo ..... x. ~)o./(yo ..... :~_,) ~ x,.:o:~:y~.:. 

LEMMA 6.7. The mapping 

X : ~r -> CIo U p'~, ' ~ * ... f ,  h,,[go, g~_~] 

G[,: = ~:, .l::. = .:, and g~ = I f  with 
otherwise k v  

is a clone homomorphism. 

Proof. Notice first that ;~ is well-defined, since for each i ~ m ou t s ide / /where  
the values of a and p are arbitrary, g; is constant, and hence the operation 
hi[g0, . . . .  g~-1] is independent on these values. 

It is straightforward to check that for each n >_ t and 0 _< i _< n - 1 the mapping 
Z sends the ith n-ary projection from ':.~:T into the ith n-ary wojecfion from Cto U ~'~J. 
We verify that for each k, n _> 1, ;~ commutes with the clone operation 'substituting 
k-ary operations into an n-ary operation'. 

Let f be an n-ary, and fj (0 _<j-_< n -  1) be k-ary operations from qCT, and 
consider the k-ary operation f = f ( f o  . . . .  ,fla- t). Furthermore, let 

�9 �9 s  =h~:go,: . . . . .  ~ . - w t .  f z  =h~[eo . . . . .  g,,,-i]- 
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For  0 <_ i <_k - 1 , f = f ( f o , . . .  , f .  ~) meets each block of  O~ if and only if 
( 1 )  f m e e t s  each block of  @,  

whence for  all elements Xo . . . . .  Xk_ 1, Yo . . . . .  Y ~ -  1 ~ A we have 

f ( x o  . . . . .  Xk l)  O i f ( Y o  . . . . .  Y k - I )  

f ( f o ( X o  . . . . .  Xk_ 1) . . . .  ) @ f ( f o ( Y o ,  . . . , Y k -  , )  . . . .  ) 

f .~(Xo, . . . , Xk_ ,)  @o f i~(  Yo . . . .  , YK-  , ). (* )  

(2) f . ,  meets each block of  @~, 

whence (e)  can be cont inued with 

�9 47> Xiavip  O i a z i ~  Yiavi~. 

Thus 

I f =  { i ~ I f "  ia ~ If~ }, #]zj = @- : Iy ~ m,  i ~-~ i~r'ci~,, filzj = # f  : IT ~ k ,  i ~--~ iavi ~. 

These da ta  uniquely determine the opera t ion  fz .  

N o w  let us compute  the opera t ion  ( f z ) ( f o Z , . . .  , f~ - lZ ) :  

( f z ) ( f o  z . . . . .  L -1  z ) (xo  . . . . .  xk -1 ) 

_ r  

- h~[go . . . . .  gm-1](h f~  ' '  ", gm--1.0](Xo . . . . .  Xk 1 ) ,  

-.-,h~v,"-l[go,n x , . . . , g , , -1 ,n  1](Xo . . . . .  Xk-1)) 

�9 . . X Oz~ =h~[go,  , g m - 1 ] ( ( g o 0 (  Ovo) . . . .  ,gin 1,0(X~211~~ 

(m l)r~ 
(go,. l ( x ~  ,gin , , n - l ( X ( m -  - ' ,))) �9 " �9 , . . . .  1 ) v ~  

- -  O a z o  { v" ( m  - -  I ) a Z f m  _ I )p ) )  
-- (gogoo,o,(Xo~o~), �9 , gm  - I g ( ~ -  l)~,(,~- l).t~(,~ - 1)~i., �9 . 1)la/z.  

Clearly, for 0 < i _< m - 1 the mapp ing  g~g~,~,i~ is the identity if and only if i ~ Iy and 

i~r ~/j; , ,  or equivalently,  if i ~ Ij~. Therefore  g~g~.~ = g,i for  all 0 _< i < m - 1, imply- 
ing that  

( f z ) ( f o Z  . . . . .  f .  - ,  Z) = h~[go . . . . .  g.~ - ,  ] =SA = ( f ( f o  . . . .  , f ~ -  i ))Z, 

as required. [] 
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I t  is wor th  noting, though we will not  need this fact later on, that  the 
h o m o m o r p h i s m  )~ in L e m m a  6.7 is surjective. 

After  these prepara t ions  we prove  Theorem 6.5. 

P r o o f  o f  Theorem 6.5. Let  S be a finite simple algebra of  type 2, and consider 
a representat ion (A, x~], S') o f  S satisfying bo th  condit ions in Theo rem 6.3. By 

L e m m a  6.6 V(S) = V(A). Let  us apply  Theorem 2.1 for A. In  the same manner  as 
in the p r o o f  of  Theo rem 6.2 we see that  condit ions (2.1.b) and (2.1.c) fail. 

Therefore  it suffices to show that  if (2.1.d) holds, then the variety V(A) is not  
minimal .  

Assume A has a compat ib le  relation 2T for  some q-regular  family T =  
{Oo . . . .  , O m - I  } of  congruences of  xA with q > ]K[. Clearly, Clo A is a subclone of  

cg T, so the h o m o m o r p h i s m  Z in L e m m a  6.7 restricts to a clone h o m o m o r p h i s m  
Clo A ~ Clo U Eml. Thus,  if the fundamenta l  operat ions  of  A are f~ (~c < ~), then the 

reduct  B = ( 2 m ;  { f K x  " tr < 0~}) o f U  [m] is contained in the variety V(A). To  show that  
V(B) is a p roper  subvarie ty  of  V(A), we have to verify that  )~ is not  one- to-one on 

Clo A. 
Since A is a finite simple algebra of  type 2, its induced minimal  algebras are 

polynomial ly  equivalent  to one-dimensional  vector  spaces. Therefore  A has a 

non-cons tan t  ternary polynomia l  opera t ion  d o such that  for  arbi t rary  elements 
u, v in the range U of  do we have do(v, v, u ) =  u = do(u, v, v). Let us construct  
the following polynomia l  opera t ion  of  A: d o ( x ) = d o ( x , x ,  x) and d ( x , y , z ) =  

do(do(x), do(y) ,  do(z)). Obviously,  do(u) = u for all u ~ U, hence d and do coincide on 
U, moreover ,  

d(a, a, u) = u = d(u, a, a) for  all u E U, a ~ A. 

For  some n >_ 3, A has an n-ary  te rm opera t ion  f and elements a3, �9 �9 an 1 such 

that  

f (xo ,  x l ,  x2, a 3 ,  . �9 . , a ~  _ 1 )  = d(xo, xl ,  x2) for  all Xo, xl ,  x2 ~ A. 

The propert ies  of  d ensure that  d(x,  y,  z) = ex  - ey + ez + a for some e e End K~] 
and a e A with e 2 = e, ea = 0, and hence 

f ( x o ,  x l , x 2 ,  x 3 . . . . .  x,, I) = e x o - - e x l  + e x 2 + r 3 x 3 + ' ' "  + r ~ - l x n  + b  

for some r 3 , . . . ,  rn_ ~ E End x~,i and b e A. Making  use of  L e m m a  5.1 5.1.ii) one 
can easily see that  for each i ~ / f  ( if  any) we must  have ex  O~ ey for all x, y E A, and 
i/~ I e {3 . . . . .  n - 1}. Hence f x  does not  depend on its variables Xo, xl ,  x2. N o w  it is 
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clear that for the n-ary term operation f ' ( x  o, Xl, x2, x3 . . . . .  x,, 1) = exo - exo + 
e x 2  + r 3 x 3  @ "  " " -]- rn  - l X n  - 1 -}- b of  A arising from f by identifying its variables 
X0, Xl, we have f '  C f  and f')~ = fz ,  completing the proof. [] 

(C) Maximal subcIones of  Pol((Ena KA)A) 

Let K be a finite field, and KA = (A ; + ,  K) an m-dimensional vector space over 
K. Our aim is to determine the maximal subclones of the clone 

~ ( x A )  = POI((En d xA)A). For any coset S of a subspace of KA, -~s(xA) will denote 
the clone consisting of all operations f e N(xA) such that f ( s , . . . ,  s ) =  s for all 
s ~ S, and for any subspace U of xA, Yu(xA) will denote the clone consisting of all 
operations f e ~(KA) which admit every translation x + u with u E U as an auto- 

morphism. Clearly, ~(K~Zl) = ~0}(K~Zl). 

We shall need a description of the clones of simple affine algebras. Note that if 
A is a finite simple algebra which is affine with respect to an Abelian group A, then 
/i is an elementary Abelian p-group for some prime p. 

T H E O R E M  6.8 [14]. For every finite simple algebra A = (A; F) which is affine 
with respect to an elementary Abelian p-group t] = (A; +) (p prime), there exist a 

finite field K and a vector space xy] = (A; +, K) such that 

Clo A = Ns(KA) for a coset S of  a subspace of  xf4. 

o r  

Clo A = ~-~:(xA) for a subspace U of  KA. 

K and xft  are uniquely determined by the fact that the ring of  A is End x/i. 

From now on, we keep K and KA fixed, and for brevity we write ~ ,  ~s ,  ~--~: 
instead of  ~(xA),  Ns(KA), Ju(KA), respectively. First we will look at the isomor- 
phic copies of the clone ~ = Clo(K; Poll (xK)) Lml, as suggested by (2.1.c) in Theo- 
rem 2.1. Let ,co : (KK)m~ xA be an arbitrary vector space isomorphism. The clone 
on A corresponding to ~ under this mapping is 

(~0--1~q) = {(f(xoCP -1 . . . . .  X n _ l q )  1))(~0 : f ( x  0 . . . . .  X n _ l )  E ~ } .  

Consider the unit base e o = ( 1 , 0 , . . , 0 )  . . . . .  % _ ~ = ( 0  . . . . .  0,1) in (xK) m. 
Clearly, (xK) m is a direct sum of  its one-dimensional subspaces Ke i (0 <_ i <_ m - 1), 
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and xA is a direct sum of  the image spaces (Ke~)cp (O<_i < m -  1). The family 

{(Ke~)~p : 0 _< i _< m -  1} will be called the direct decomposi t ion  of  x/ i  determined 
by o. 

L E M M A  6.9. Let  Kft be an m-dimensional vector space over a f inite f ield K, and 

let q)l, ~o2 : (KK) m-~ x A  be arbitrary vector space isomorphisms. The clones ~p ?~ gcp~ 

and cpy ~ 9(P2 coincide i f  and only i f  (Pl and (P2 determine the same direct decomposi- 

tion o f  xA .  

Proo f  It suffices to show that  for arbi t rary  au tomorph i sm ~/ of  ( x K ) "  the 

equali ty ~ / - 1 9 ~  = 9 holds if and only if ~ determines the direct decomposi t ion  

{Kei : 0 <_ i <_ m - 1}, that  is, if  and only if there exist scalars c~ ~ K (0 _< i _< m - 1) 

and a pe rmuta t ion  ~z e &, such that  e//J = cte~ for  all 0 _< i _< m - t. 

Suppose ~b has this proper ty ,  and let ~ = h  ~ ~[go . . . . .  gm-~] where & ( x ) =  

csx (0 <<_ i <_ m - 1). Then ~ = ~, because the two mappings  agree on the vectors 

eo, � 9  era_ 1, and ~, too,  is an a u t o m o r p h i s m  of  (KK)" .  Thus  ~ ~ 9 ,  and the 
equality ~ - ~ 9 ~  = 9 is obvious�9 

Conversely,  assume 6 - ~ 9 ~ ,  = ~ holds. Since the mapp ing  

9 - - + ~ - ~ 9 ~  = 9 ,  f(Xo . . . . .  xn_ l )  ~ -~ ( f ( xoO- '  . . . . .  x~_l~/I-1))tP 

h i d [ l d , . . . ,  id], which is a clone isomorphism,  it sends the m-a ry  diagonal  opera t ion  id " 

depends on all o f  its variables,  into an m-a ry  idempotent  opera t ion  depending on 

all o f  its variables.  Hence  (replacing xi~ p -~ with Yi) we get tha t  for  some/~  e Sin, 

(h{aa[id . . . .  , idl(Y0 . . . . .  Ym-1))0 = hi,,a{id, - . -  , i d l (Y0~/ , . . . ,  Ym-10) 

for all Yo . . . .  , Ym- 1 ~ ( x K )  m" It  follows now tha t  for  any 0 _< i _< m - 1 

/th 

= (hid[ld . . . .  , id](0 . . . .  ,0 ,  e, , 0 . . . .  , 0 ) )0  e i  @ id - 

i th 

= h l d [ i d , . . . , i d ] ( 0 , . . . , 0 ,  e i ~ , 0 , . . . , 0 )  E K%_~. 

This completes  the proot :  D 

By L e m m a  6.9 the clone q~-lgcp, where q~ " ( K K ) m ~ x ~ /  is a vector  space 

i somorphism,  depends only on the corresponding direct decomposi t ion  {(Ke,)~0 " 
�9 \ 

0 _< i _< m -  1} o f  xA, or equivalently, on the co r respond ing \q - regu la r  family 
T = {Oo . . . . .  On, _~ } of  congruences of  xA with q = IK[ and O r  G~ A. (Not ice  that  
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here the case IK[ = 2 is also allowed.) Therefore we will use the notation ~ r  for 

For  arbitrary q regular family T of  congruences of KA with q _> 3, ET will denote 
the clone consisting of all operations of ~ preserving 2r (i.e., 8 r  = ~ n c C r ) .  We 
note that in view of Lemma 5.3, for the case when q = ]K[ > 2 and OT = A we have 

~ T = ~ T  . 

To investigate inclusions among the clones ~Y for various T's we need some 
facts on these clones. We will use the notation ~+ for the set of all surjective 
operations in CT. If r E End KA, then Im r will stand for the range of r, while if O 
is a congruence of Kz~, then Ker O will stand for the block of O containing 0 (both 
are subspaces of KA). If for some elements e 0 , . . . ,  e k _ l E E n d K A  we have 
~ k ~ o ~ e i = l  and e~=e~,e~ej-=0 for all 0 _ < i , j < k - l , i # j ,  then they will be 
called pairwise orthogonal idempotents summing up to 1. 

LEMMA 6.10. Let KA be a finite dimensional vector space over a finite field K, 

and let T = {Oo . . . . .  Od_ 1} be a q-regular family of  congruences Of KA (q >-- 3). For 
O <_ i <_ d - 1  let U~=Ker  ~Q {Oj : O <_j < d -  l , j  r i}, and put U r = K e r O r .  

(6.10.i) ET contains all operations from -~{o} whose range has dimension less than 
dim Uo . . . . .  dim Ud 1; however, for  any element r e End KA with 

I m r = U 0 w e h a v e r x + r y r  
(6.10.ii) For arbitrary elements r eEndx~ i ,  x - r y  + r z  e g r  i f  and only i f  

Imr_~ UT. 
(6.10.iii) OT is a maximal congruence o f  the algebra (A;d  ~+ ). 

d (6.10.iv) ~ r  contains an operation ~/=o eixi such that e o , . . . ,  ed are pairwise 
orthogonal idempotents in EndKA summing up to 1, and 

I m e d =  Ur, Im ei + UT = Ui for all O <_ i < d - 1 .  
(6.10.v) For every operation Y,7=oe~Xi e 8 v  such that e'o . . . . .  e'n are pairwise 

orthogonal nonzero idempotents in End K-,i summing up tO 1, and 

Im e'n = UT, we have n < d; furthermore, i f  n = d, then there exists a 

permutation ~r ~ Sd with Im el. + UT = U~ for all 0 < i <_ d - 1. 

Proof. (6.10.i) Both parts of the claim are easy to check by the definition of d~ 
(6.10.ii) The operations of the form x - r y  + rz are clearly surjective (in fact, 

idempotent), so the claim follows by a straightforward application of Lemma 5.1 
(5.1.ii). 

(6.10.iii) Clearly, T yields a direct decomposition 

~AIOT = KAIUT = U o l U ~ |  . . | u < , _ , l U >  

Fixing a vector space x l 2 = ( q ;  + , K )  we get an isomorphism (p : K A I U r =  
xA / O r ~ K 12d = (q; + ,  K) d carrying T into the standard q-regular family of con- 
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gruences on KIP J. By Lemma 5.1 (5.1.iii)(a) Or is a congruence of the surjective 
algebra A = (A; C} ). Since the operations of A are exactly the surjective polyno- 
mial operations of (En~ ,~a)A preserving 2r, and since Or is a congruence of ,cA, it 
is not hard to see that the operations of the quotient algebra A / O r  are exactly the 
surjective polynomial operations of (End(~/Or)~(A ~Or) preserving )~r/oT. Making use 
of Lemma 5.1 (5.1.iii)(c) for the vector space isomorphism ~0 we conclude that 
A/O r is isomorphic, under ~0, to the reduct of (q; Sq) fdl whose operations are 
exactly all surjective term operations of (q; Sq) M which are simultaneously polyno- 
mial operations of (End Kl2d)(~/'d)" Hence the operations of this algebra are exactly all 
surjective term operations of the algebra (q;G) ~dl where G consists of all surjective 
unary polynomial operations of (End K ~) ~/' It is well known that the d-ary opera- 
tion hiid[id, . . . ,  id] together with the unary operations h (~ 1 d 1)[i d . . . . .  id] and 
hid[g, . . . , g] (g E G) - all of them surjective term operations of (q; G) Edl - generate 
the clone of (q; G) ~al. Hence A / O r  is isomorphic to an algebra term equivalent to 
(q; G) Lal. Since the unary algebra (q; G) is simple, its matrix power (q; G) Edl is also 
simple, implying that A / O r  is simple. Thus Or  is a maximal congruence of A, as 
was to be proved. 

(6.10.iv) Selecting subspaces V~ of U, with U~ = V~ | Ur we get a direct decom- 
position ,cA = Vo | " �9 @ Vd_ 1 �9 Ur. For the endomorphisms eo . . . . .  e d_ ~, ej pro- 
jecting onto the subspaces Vo . . . . .  Va_~, Ur respectively, all requirements are 
satisfied. 

(6.10.v) Let f be the (d + 1)-ary operation constructed in (6.10.iv), and f '  an 
(n + 1)-ary operation ~,7_0 e~x~ satisfying the requirements described in (6.10.v). 
Clearly, f , f '  are operations of the algebra A considered in the proof of (6.10.iii). 
The corresponding operations of A/Or  are 

d 

i = 0  

and 

fi'(Yo + U T , . . . , Y n  + UT) = ~ ei(Yi q- UT). 
i = 0  

Obviously, f and f '  are idempotent operations depending exactly on their first d, 
resp. n variables. In the isomorphic copy of A / O r  under (p they are assigned to some 
term operations of (q; G) Edl with the same properties. Since every term operation of 
(q; G) Edl depends on at most d variables, we get that n < d. Suppose n = d, and omit 
the fictitious variable x~ from f , f '  and from the corresponding term operations of 
(q; G) M. Since any two d-ary idempotent term operations of (q; G) ~d~ depending on 
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all of their variables arise from each other by permuting variables, we get the same 

for )7 and J='. This concludes the proof  of the lemma. [] 

Now we are in a position to describe the maximal subclones of  ~.  Since ~ is 
finitely generated, every proper subclone of ~ is contained in a maximal one. This 
fact will follow also from the proof  of the theorem below. 

T H E O R E M  6.11. The maximal subclones of  ~ are the following: 
(a) ~{s} for an element s E A; J~: for a one-dimensional subspace U of KA; 
(b) Pol(RA) for a maximal unitary subring R of End xA ; 

(c) ~ v f o r  a q-regular family T of congruences often3 with q = ]K I and 6) T = A; 
(d) Er for  a q-regular family T of congruences of  i~fl with q > ]K]. 

The clones listed above are pairwise distinct. 

Proof For a subclone ~ of -~ the ring of the algebra (A; ~ )  will also be 
denoted by R~. 

First we prove that every proper subclone ~ of ~ is contained in one of the 
clones (a ) - (d) .  Let us consider the algebra A = (A; ~ ) ,  which is obviously semi- 
affine with respect to x-3, and apply Theorem 2.1. Assume that (2.1.a) holds for A, 
that is, x - y  + z  ~ .  It is not hard to see (cf. [13], [14]) that in this case all 

n--1 n 1 operations ~i=0 rixi with r0 . . . . .  rn ~ e R~ and ~ i=o  r~ = 1 belong to ~-. There- 
fore, if R~ = End x.3, then A is simple, so Y = Clo A is one of the clones occurring 
in Theorem 6.8. Looking at the inclusion relations among these clones we see that 
Y is included in one of the clones in (a). If R~ is a proper subring of End KA, then 

R j  ~ R for some maximal unitary subring R of End ~A, whence it is obvious that 
Y _ PoI(RA). Suppose that (2.1.b) holds for A, say O is a nontrivial congruence of 
A which is a congruence of KA. Clearly, O is a congruence of the algebra 
(A; ~ ,  x - y + z) as well. Hence the clone W' of  this algebra is a proper subclone 
of ~ containing ~ ,  and the same argument as before applies for ~ ' .  Finally, if 
(2.1.c) or (2.1.d) holds for A, then by Lemma 6.9 it is clear that ~ is contained in 
one of the clones in (c) or (d). 

To prove the maximality and the distinctness of the clones listed in the theorem 
it suffices to verify that none of the clones are contained in any other one. It is 
straightforward to check that there is no inclusion among two clones if both are of  

type (a) or (b). By Lemma 6.9 the same holds if both clones are of  type (c). Indeed, 
any two clones of type (c) are isomorphic, and hence contain for each n the same 
(finite!) number of  n-ary operations; therefore an inclusion implies equality. 

Let us consider now two clones of type (d), say g T  and gT', and assume that 

O~T-----Er,. Here T =  {Oo . . . .  , O~ ,} is a q-regular, while T '=  {Oo . . . . .  O}, ~} is 
a q'-regular family of congruences of KA. As in Lemma 6.10, the corresponding 
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subspaces are I / 0 , . . . ,  b~t-1, UT and U; . . . . .  U'd,-1, UT', respectively. Applying 
Lemma 6.10 we verify that T = T'. Firstly, from (6.10.ii) we get that UT --~ UT,, and 
then from (6.10.iii) that U r =  UT,. Now, by (6.10.i), dim U0<dim U;, which 
implies that q-~ IUo/Ur] <_ ]U'o/UT,]=q'. Furthermore, in view of (6.10.iv) and 
(6.10.v), we have d ~d ' .  Since qd]Ug[ =pro= (q,)d'lUT,], we conclude that q = q' 

and d=d' .  Thus, again making use of (6,10.iv) and (6.10.v) we see that 
{ Uo . . . . .  Ud-t } = { U ; , . . . ,  U},_I }, or equivalently, T = T'. 

It remains to consider inclusions where the two clones are of different types. The 
clones in ( b ) - ( d )  contain all constants and all translations, therefore a clone of  type 
(a) never contains a clone of different type. Since the ring of each clone in (b) is R 
and the ring of  every other clone in the list is End X.~, a clone of type (b) never 
contains a clone of  different type. For  a clone ~ of type (c) the algebra (A; Y )  is 
strongly Abelian, while for other clones the corresponding algebras are not strongly 
Abelian (cf. (6.10.i)); therefore a clone of type (c) never contains a clone of 
different type. Finally, a clone of type (d) does not contain the operation x - y + z, 
and hence any clone of type (a) or (b). Observing that the analogue of (6.10.iii) 
and (6.10.iv) holds for the clone D r for every q-regular family T of congruences of 
K i] with q = [K] and OT = A, a similar argument as in the previous paragraph 
shows that N r  ~ gT' for any q'-regular family T' of  congruences of  ~:A with 
q ' >  [K]. D 

One might pose the problem of  determining all maximal subclones of  each clone 
d which is the clone of a simple affine algebra, see the description in Theorem 6.8 
(not just the maximal subclones of ~ ,  which are in some sense the 'largest' clones 
of these kinds). As at the beginning of the proof  of Theorem 6.11, one can easily 
derive from Theorem 2.1 and Theorem 6.8 that every proper subclone of J / w h e r e  

(1) J = Ns for a coset S of a subspace of K/~, or 
(2) ~4 = J v  for a subspace U of KA 

is contained in one of the following clones: 

(a l )  Ns' for a coset S' of  a subspace of K ~ with dim(S' - S') = 1 + dim(S - S) 
in case (1); 

(a2) Ns for a coset S of a subspace of K ~ with S - S = U, or .Y-~ for a subspace 
U' of ~:A with dim U' = 1 + dim U in case (2); 

(b) ~r for a maximal subring R of End x/i ;  
(c) ~ c ~  T for a q-regular family T of congruences of  K ~ with q = [K t and 

OT=A; 
(d) d ~ g r  for a q-regular family T of  congruences of K ~ with q > [K]. 



Vol. 34, 1995 Maximal non-aNne reducts of simple affine algebras 173 

However ,  the clones l isted here are  not  necessari ly pairwise  incomparab le .  A n  

analysis  o f  inclusions a m o n g  these clones m a y  lead to an explicit  descr ip t ion  o f  the 

max ima l  subclones  o f  sue. 

Note  added in 1994. By a recent  result  on reducts  o f  mat r ix  powers  o f  unary  

a lgebras  [19; Theo rem 1.5, L e m m a  3.3], Th e o re m 2.1 remains  valid if  condi t ion  

(2.1.c) is rep laced  by  the fol lowing more  restr ict ive condi t ion:  

(2.1.c) '  there exis t  a vector space isomorphism ~p : xfit ~ ( x K )  m and a translation 

~ T((KK) m) such that ~pz is an isomorphism between A and an algebra term 

equivalent to (K; Jd )  ~ml f o r  some submonoid  Jd  o f  Poll (KK). 
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