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1. Introduction. Let H be a finite projective plane of order n (see e.g. Albert and Sandier 
[1] or Pickert [8]). We shall denote the line joining two points P and Q of H by [PQ]; the 
point of intersection of two lines a, b will be written as (ab). This paper  is concerned with 
embedding a certain configuration into PG(2, q), the desarguesian projective plane of 
order q. 

Here a configuration K is an ordered pair of m points and n lines with c lines on each 
point and with d points on each line. Such an object is often denoted as (m c, nd); in the 
special case rn = n (hence c = d), this is simplified to m c. An interesting problem in the 
theory of finite projective planes is the study of configurations contained in such planes 
and of configurational propositions (see e.g. Skornyakov [11]). We will here study the case 
of configurations 83. One such configuration is BAG(2, 3), the biaffine plane of order 3, 
which is obtained from the affine plane AG(2, 3) by omitting a point P together with the 
lines incident with P. Let us first observe that  this is the only 83 which is simultaneously 
a partial plane (i.e., no two points are on more than one common line); thus BAG(2, 3) 
is the only candidate for embedding an 83 into any projective plane. 

Lemma  1.1. Let K be a n  8 3 which is a partial plane. Then K is isomorphic to BAG(2, 3). 

P r o o f. Given any line g of K, there is a unique line g' disjoint from g (since each point 
of g is on exactly 3 lines). Choose a point P on g. Since P is on two other lines and since 
P cannot  be joined twice to any other point, at least one line h through P intersects both  
g and 9'. But then h' also intersects both  g and g', and the lines g, 0', h, h' form a 
quadrilateral. The remaining 4 lines are now uniquely determined: for instance, the third 
line through P cannot intersect g or h again and it cannot  contain the point (g' h'); so it 
has to contain the points C and D (see Figure 1). Thus K is unique up to isomorphism 
and therefore isomorphic to BAG(2, 3). [] 

In the remainder of this paper, we will denote BAG(2, 3) by 83. It  will be quite 
convenient to have another  notat ion which allows the explicit description of the points 
and lines of an individual 83. We exemplify this for the 83 on the point set P, Q, R, S, A, 
B, C, D given in Figure 1 : Its lines are the rows, columns and transversals of the punctured 
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(3 x 3)-matrix 

P A Q  

B C 

R D S 

Figure 1 

which is not surprising since the lines of an affine plane of order 3 on the point set of 83 
together with a ninth point X are given by the rows, columns and transversals of the 
(3 x 3)-rnatrix 

P A Q 

B X C 

R D S 

(as is well-known). Thus our notat ion for 83 also shows how to construct the unique 
embedding of 83 into an affine plane of order 3. 

Yet another  way of writing 83 comes from the fact that  BAG(2, 3) (and more generally 
BAG(2, q), see e.g. Jungnickel [6]) admits a cyclic Singer group and thus a representation 
by a relative difference set, e.g. by {0, 1, 3} in the cyclic group Z s of order 8. Thus an 83 
on the point set 0 . . . . .  7 is given by the following schema: 

g7 g6 g5 g4 Q3 92 91 go 
7 6 5 4 3 2 1 0 

0 7 6 5 4 3 2 1 

2 1 0 7 6 5 4 3 

where the point i is on gj if and only if i - j = 0, 1 or 3 mod  8. Note that here the unique 
line g'i disjoint from 9i is gi+g- 

We remark in passing that the hypothesis that  our 83 is a partial plane is indeed 
necessary to prove Lemma 1.1; for instance, the schema based on {0, 1, 2} (in Zs) gives 
a configuration 83 which is not a partial plane. 



Vol. 49, 1987 83 in PG(2, q) 143 

We shall determine all planes PG(2, q) containing 83, and in fact also the number of 
83's they contain. Moreover, it turns out that any 83 contained in PG(2, q) extends to an 
affine plane of order 3 contained in PG(2, q). Thus our result implies the result of Ostrom 
and Sherk [7] who have shown that PG(2, q) contains AG(2, 3) if and only if q is a power 
of 3 or congruent to 1 modulo 3. 

Finally we mention that 83 can also be taken as the base for a configurational proposi- 
tion which might be stated as follows: If a projective plane contains 8 points and 7 lines 
forming on these points 7 lines of an 83, then it contains an eighth line inducing the 
missing 8th line of the 83. (Note that it does not matter which line is taken as the missing 
line, since 83 has a line-transitive group, as shown above.) According to Skornyakov [11], 
Rashevskii [9] has shown that the only planes satisfying this configurational proposition 
are PG(2, 3) and PG(2, 4). This motivates an explicit consideration of these two cases 
before turning to the general problem. 

2. 83 in PG(2, 3). Denote by H the plane PG(2, 3). A combinatorial schema for /7  is 
based on the difference set {0, 1, 3, 9} in Z13: 

El2 Ell ElO E9 E8 E7 E6 ~5 E4 E3 E2 El E0 
1 2 3 4 5 6 7 8 9 10 11 12 0 

2 3 4 5 6 7 8 9 10 11 12 0 1 

4 5 6 7 8 9 10 11 12 0 1 2 3 

10 11 12 0 1 2 3 4 5 6 7 8 9 

It is to be observed, from the schema, that P i I ~ i  + j  = 0, 1, 3, 9 (mod 13). 
Now, let any four collinear points, in the schema of H, and any other point together 

with the lines incident with them, be neglected, the result is an 83-configuration. Hence 
the total number of resulting such configurations is 13 �9 9 = 117. 

To illustrate the method, upon neglecting the four colinear points incident with f 12 and 
any other point, say 3, together with the five lines incident with them, we obtain the 
configuration 83 , which is described by the following schema 

d 9 d 8 E 7 La5 E4. E 3 E 2 E 1 
5 5 6 8 9 11 11 12 

7 6 7 9 12 0 12 0 

0 8 9 11 5 6 7 8 

In the notation of section 1, we may write this 83 as 

5 7 0 

12 6 

9 8 11 

(cf. Figure 2). We thus have the following simple result: 

Proposition 2.1. PG (2, 3) contains exactly 117 ( = 13 �9 9) configurations 8 3 . 
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Figure 2 

3. 8s in PG(2, 4). The finite projective plane of order 4, denoted by H, may be defined 
by the following schema: 

[20 [19 [18 [17 [16 [15 [14 [13 [12 [11 [10 [9 [8 [7 [6 [5 [4 [3 [2 [1 [0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 

4 5 6 7 8 9 10 I I  12 13 14 15 1617 18 1920 0 1 2 3 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 0 I 2 3 4 

10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 

12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 910 11 

It is clear that P~IYj*>i + j  = 0, 3, 4, 9, 11 (mod 21). 
Now upon removing the five points 0, 3, 4, 9, 11 (incident with Yo), wherever they 

appear, and also the five lines [0, [3, [4, [9, [11 (incident with 0) we obtain the following 
schema for the symmetric net S(4) of order 4: 

f20 [19 [18 ~17 [16 [15 ~14 ff13 [12 [lO IS [7 [6 [5 [2 [1 
1 2 6 7 5 6 7 8 12 14 13 14 15 16 19 20 

5 5 7 8 8 10 10 12 13 15 16 17 18 19 i 2 

10 6 12 13 14 15 16 17 18 20 17 18 19 20 2 8 

12 13 14 15 16 17 18 19 20 1 1 2 5 6 7 10 

It is clear that although we are using, in the above schema, only 16 of the residues 
modulo 21, we still have the rule that P i I [ j ~ i  + j  =- O, 3, 4, 9, 11 (mod21). 

Now, the configuration i64, defined by the last schema, may be divided into four 
tetrads of non-intersecting lines as follows: 

f20/17/7 [5, [19[14[13 [20, /16/15 [1212, [28[8 [6 [1" 
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A configuration 83 can be derived (in many ways) by choosing (in a proper way) two lines 
from each tetrad and discarding the points that appear only once. For this purpose, select 
any two points not both incident with any line of the configuration 164, say 17 and 20. 
Notice that the point 17 lies on lines ~7, f~3, E~5 and ~8 (one in each tetrad), while the 
point 20 lies on lines fs ,  f~o, ~12 and f~. From the first three tetrades, choose the six lines 
~7, ~s, E~3, ~ o ,  ~15, ~12 that contain 17 or 20; and from the fourth tetrad choose the two 
lines f~8, b~ that contain neither 17 nor 20. We thus obtain the following schema: 

f7 f5 E13 Elo Els f12 El8 f6 
14 16 8 14 6 12 6 15 

17 19 12 15 10 13 7 18 

18 20 17 20 15 18 12 19 

2 6 19 1 17 20 14 5 

Upon discarding the eight points 2, 16, 8, 1, 10, 13, 7, 5 that appear only once in this 
schema, we obtain the following simpler schema: 

14 19 12 14 6 12 6 15 

17 20 17 15 15 18 12 18 

18 6 19 20 17 20 14 19 

which represents the following 83: 

14 12 6 

17 20 

18 15 19 

Choosing instead the remaining lines: ~20, t~lT, ~19, fl4,  f~6, r gs, r of the four 
tetrads, we obtain 

1 7 2 7 5 1 13 2 

5 8 5 10 8 2 16 8 

10 13 13 16 16 7 1 10 

which defines another 83 whose symbol is 

1 5 10 

16 2 

13 7 8 

Combining these two 83 configurations, as in Fig. 3, we obtain a cycle of four, each 
having one (simple) quadrangle in common with the next: 

1 5 10 5 6 2 6 20 19 20 1 

16 2 14 19 12 15 13 

13 7 8 16 18 7 14 17 18 12 8 

15 

10 

17 

Archiv der Mathematik 49 l 0 
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Figure 3 

This means that we have a chain of four quadrangles 1 10 8 13, 20 15 17 12, 6 19 18 14 
and 5 2 7 16, each is inscribed in the next, Fig. 3, resembling the Pappian chain of three 
triangles (A1-Dhahir [2]). 

Thus we have shown: 

Proposition 3.1. The symmetric net S(4) of order 4 may be partitioned into two disjoint 
configurations 83 . Consequently, both AG(2, 4) and PG(2, 4) contain pairs of disjoint 83's. 

Of course, we may also describe PG(2, 4) by using homogeneous coordinates over 
GF(4) (see e.g. Pickett [8]). We will write the elements of GF(4) as 0, 1, co and co2 where 
co2 + co + 1 = 0. After discarding the five points 

(0, 1, 0), (1, 0, i), (1, 1, 1), (1, co, 1), (1, co 2, 1), 

which are incident with the line [1, 0, 1], we obtain the following two 83 configurations: 

(co2, co, 1) (0,o, 1) (co, 1,1) (0, co, l) (O,l, co) (0,1,1) 
(coz 1, 1) (1, 1, coz) (co, 0, 1) (1, 0, co) 
(1,1, co) (1,0,0) (1, co, co 2) (1,1,0) (o),1,0) (1, co, 0) 

Summarizing our results, we have proved 

Theorem 3,2. In PG(2, 4), there exist: 

(1) two disjoint configurations of the type 83; and 
(2) a chain of four (simple) quadrangles each is inscribed in the next. 

In Section 5, we shall show that any 83 contained in PG(2, 4) extends to an affine subplane 
of order 3 in PG(2, 4); then it will be easy to see that the following holds: 

Proposition 3.3. PG(2, 4) contains exactly 2520 configurations 83 and exactly 280 affine 
subplanes of order 3. 
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4. 8 a in PG(n, 4). In this section we briefly consider the existence of pairwise disjoint 
83's in projective and affine spaces over GF(4); this will be a simple application of 
Proposi t ion 3.1. We first note: 

Proposition 4.1. AG(n, 4) can be partitioned into 2 2n-3  pairwise disjoint 83'S. 

P r o o f .  By Proposi t ion 3.1, the assertion holds for n = 2. Now consider a parallel 
class of planes of AG(n, 4) (where n => 3); this is a partition of the points of AG(n, 4) into 
22, - 2 affine planes of order 4. But each of these affine planes can be parti t ioned into two 
disjoint 83's. [] 

Proposition 4.2. Let 9 be a line of the projective space 11 = PG(n, 4). Then H\9 can be 
partitioned into 22"-3 + 22"-5 + . . .  + 23 + 2 pairwise disjoint 83's. 

P r o o f. Again, the assertion holds for n = 2 by Proposi t ion 3.1. Now let n > 3 and 
choose a hyperplane H of 11. Then 1-1\H is isomorphic to AG(n, 4) and may thus be 
parti t ioned into 22"-  3 configurations 83. Assume 9 c H;  then the assertion follows by 
induction, observing that  H is isomorphic to PG(n - 1, 4). [] 

5. 83 in Pappian planes. We now consider the general question of embedding 83 into 
the Pappian projective plane PG(2, F) over some commutat ive field F. Let P, Q, R, S, A, 
B, C, D be 8 points of PG(2, F) and assume that  the lines of PG(2, F) induce the 83 of 
Figure 1 on these points. Since the collineation group of PG(2, F) is transitive on ordered 
quadrangles, we may  assume P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1) and S = (1, 1, 1). 
Then the coordinates of A, B, C, D may be taken to be A = (1, t, 0), B = (1, 0, y), 
C = (1, z, 1) and D = (1, 1, x), wher e t, x, y, z are suitable elements of F. Since (1, 0, 0), 

0 0 
z 1 = = 1; thus we may  (1, z, 1) and (1, 1, x) are collinear, we have det O, i.e. zx 
1 x 

replace the coordinates of C by the scalar multiple (x, zx, x) = (x, 1, x). Similarly, the 
collinearity of (0, 1, 0), (1, O, y) and (1, 1, x) implies y = x, and the collinearity of (0, O, 1), 

[-~.~ ~[o.-,.q 
( 1 , ~ x )  

-x. , ,., 

Figure 4 

10" 
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(x, 1, x) and (1, t, 0) shows x t  = 1 and allows us to replace the coordinates of A by (x, 1, 0). 
The coordinates are now as shown in Figure 4. 

Finally, the points (1, 1, 1), (1, 0, x) and (x, 1, 0) are collinear; this yields 

0 = det 0 ; thus x satisfies 

1 

(*) x 2 -  x + 1 = 0. 

If char F = 3, (*) can be written as (x + 1) 2 = 0, and we get the unique solution x = - 1. 
If char F = 2, (*) reduces to x 2 + x + 1 = 0 and x has to be a primitive third root of unity. 
In all other cases, x has to be a primitive 6'th root of unity. Conversely, if x is chosen in 
this way, then (*) is satisfied and 

(1,o,o) (x,l,o) (o,l,o) 
(1, 0, x) (x, 1, x) 
(0,0, J) 0,1, x) 0,1,1) 

is an 83 embedded in PG(2, F). Thus we have the following 

Theorem 5.1. Let F be a commutative field. Then the Pappian plane PG(2, F) contains 
an 83 if and only if one of the following cases holds: 

(i) c h a r F = 3 ;  
(ii) char F = 2 and F contains a primitive 3rd root of unity; 

(iii) F contains a primitive sixth root of unity. 

Now any 83 can be embedded into AG(2, 3); this poses the question whether or not this 
AG(2, 3) is contained in PG(2, F) if 83 itself is embedded into PG(2, F). Thus consider the 
83 of Figure 4, embedded into PG(2, F). Now the lines [(1, 0, 0) (1, 1, 1)] = [0, 1, - 1] 
and [(0, 1, 0) (0, 0, 1)] = [I, 0, 0] intersect in the point (0, 1, 1). Thus the affine plane com- 
pleting our 83 will be contained in PG(2, F) if and only if the lines [(1, 0, x) (x, 1, x)] 
= [ -  x, x 2 - x, 1] and [(x, 1, 0) (1, 1, x)] = [x, - x 2, x - 1] contain (0, 1, 1). But the con- 
dition for this just turns out to be equation (*) and is therefore satisfied. We have shown: 

Theorem 5.2. Let F be a commutative field and assume that D is a configuration 83 
contained in PG(2, F). Then D extends to an affine subplane of order 3 of PG(2, F) (for the 
case char F 4: 3, see Figure 5). 

For  example, the two disjoint 83's within PG(2, 4) given in section 3 extend to the two 
affine planes 

14 12 6 1 5 10 

17 0 20 and 16 0 2 

18 15 19 13 7 8 

intersecting in the point O. We do not know whether or not PG(2, 4) contains two disjoint 
affine subplanes of order 3. 
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Figure 5 

6. 83 in PG(2, q). We now specialize the results of section 5 to the finite case. Since the 
multiplicative group of F = GF(q) is cyclic, we obtain the following: 

Theorem 6.1. PG(2, q) contains 83 if and only if q is a power of  3 or 4 or q is congruent 
to 1 modulo 6. Any 83 contained in PG(2, q) extends to an affine subplane of  order 3 of  
PG(2, q). 

Our proof  in fact allows us to determine the number of 83's contained in PG(2, q). For  
any quadrangle of PG(2, q) gives rise to two 83's (for q = 4 a or q - 1 rood 6), since we have 
two choices for x in these cases. On  the other hand, each 83 contains two quadrangles 
and thus is counted twice. Hence the number of 8a's equals the number of quadrangles 
in PG(2, q) and thus is (q2 + q + 1) (q2 + q) q E ( q  _ 1)2/24, cf. Hirschfeld [5]. In the 
remaining case (q = 3a), we have only one possibility for x (i.e. x -- - 1) and thus obtain 
only half as many 83's. Hence we have: 

Proposition 6.2. Then number of  83'S contained in PG(2, q) is 

(q2 + q + 1) (q + 1) q a ( q _  1)2x, 

where x = 1/24 for q = 4 a or q -= 1 mod6,  x = 1/48 for q = 3 a and x = 0 otherwise. 

Since each 83 contained in PG(2, q) extends to a unique AG(2, 3) and since AG(2, 3) 
contains 9 copies of 83, this also implies the following: 
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Corol lary 6.3. The number of affine subplanes of order 3 of PG(2, q) is 

(q2 + q + 1) (q + 1) q3(q_ l )2y ,  

where y = 1/216 for q = 4 a or q -= 1 m o d 6 ,  y = 1/532 for q = 34 and y = 0 otherwise. 

We finally m e n t i o n  that  Rigby [10] has proved that  the on ly  planes PG(2, q) con ta in ing  
an  affine p lane  AG(2, r) with r > 4 are those for which q is a power  of r. This  still leaves 
the quest ion,  however,  whether  "large parts" of AG(2, r) (for example,  BAG(2, r)) can be 
con ta ined  in PG(2, q) for other  values of q. The  result  of Theorem 5.1 for F = ~ resp. 
F = 112 is a l ready given by  Coxeter  [3] a n d  Coxeter  [4]. 

A c k n o w 1 e d g e m e n t.  The third author would like to thank the University of Kuwait for its 
hospitality during the time of this research. 
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