
comput complexity 3 (1993), 1-18 1016-3328/93/010001-18 $1.50+0.20 
@ 1993 Birkh/iuser Verlag, Basel 

O N  L O W E R  B O U N D S  F O R  
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P R O G R A M S  
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Abs t rac t .  A syntactic read-k-times branching program has the restric- 
tion that no variable occurs more than k times on any path (whether 
or not consistent) of the branching program. We first extend the re- 
sult in [31], to show that the "n/2 clique only function", which is easily 
seen to be computable by deterministic polynomial size read-twice pro- 
grams, cannot be computed by nondeterministic polynomial size read- 
once programs, although its complement can be so computed. We then 
exhibit an explicit Boolean function f such that every nondeterminis- 
tic syntactic read-k-times branching program for computing f has size 

Subjec t  classifications. 68Q05, 68Q25. 

1. In troduc t i on  

Complexity theory, and in particular Boolean complexity theory, has had very 
!imited success in the a t tempt  to prove lower bounds for "explicitly defined" 
functions (e.g., Boolean functions in the class NP). With regard to general 
models such as Boolean circuits or branching programs, existing results either 
are quite weak or depend essentially on restrictions placed on these models. 
In particular, with and without restrictions the branching program model, in- 
t roduced in [18, 20], has been studied extensively in the last decade (see for 
example [29]). In fact, the closely related models of switching networks and 
switching-and-rectifier networks were already well studied models preceding the 
study of branching programs (see for example [12], [26]). A survey of known 
lower bounds for all of these models (both with and without restrictions) can 
be found in [24]. 

Although our goal is to derive bounds for Boolean functions f : {0, 1} n 
{0, 1}, it will be convenient to consider an R-way variant [9] of branching 
programs for computing functions f : R n -~ {0, 1} where R is a finite set. 
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A nondeterministic (n-input) R-way branching program P (hereafter denoted 
n.b.p, when n and R are understood) is a directed acyclic multi-graph with 
a distinguished sink node labeled "accept". For each nonsink node, the edges 
directed out of the node are either unlabeled or labeled "xi = d" for some 
d E R and i E {1 , . . . , n} .  We think of each node as a state of the com- 
putation and the label "x~ = d" indicates that only inputs satisfying xi = d 
may follow this edge in the computation. Unlabeled edges allow all inputs to 
proceed. Our lower bound results hold for this nondeterministic model. A 
deterministic branching program (denoted b.p.) is a n.b.p, with the additional 
restriction that there are no unlabeled edges and for each nonsink node there 
is.a variable xi such that all out-edges from this node are labeled by "zi  = d" 
for some d E R and for each d there is exactly one such labeled edge, l?br a 
branching program P, we define size(P) as the number of labeled edges in P 
and length(P) as the length of the longest path in P. A n.b.p. P computes a 
function f :  R ~ ~ {0,1}, in the obvious way; that is, f ( a ~ , . . o , a ~ )  = 1 if and 
only if there is a computation on {al , . . . ,a , ,}  leading to the accepting state. 
It is well understood that length(P) and log2 size(P) are nonuniform measures 
corresponding (simultaneously) to sequential time T and space S. Of course, 
in the nonuniform branching program model every function f : R ~ ~ {0, 1} 
can be computed in length n so that branching program length only becomes 
interesting in the context of restricted branching program size. Following [9], 
a T .  S = f/(n 2) tradeoff result is established in [8] for the n-input, n-output 
sorting function f : R '~ ~ R ~ where R = {1, . . .  ,n}. Such a result immedi- 
ately yields corresponding lower bounds for Boolean multi-output functions. 
These results are further developed and extended in a number of papers [1], 
[2], [19], [30]. However, there are no such lower bounds presently known for 
single output or decision problems. A "complexity breakthrough" would be 
to exhibit an explicitly defined class of functions {f,,]n ~ 0} such that for any 
sequence of (deterministic) branching programs (Pnln >_ 0} computing (f,~), 
size(P,) = n ~ implies length(P~) r O(n); that is, logarithmic space implies 
nonlinear time (or equivalently, linear time implies nonloga,rithmic sp~ce). 

There are two restricted classes of branching programs for which such trade- 
off results have been established, namely oblivious branching programs [3], [5] 
and read-once branching programs. An oblivious b.p. is a leveled b.p. (i.e., 
edges leaving nodes at level j enter nodes at level j + 1) with the further restric- 
tion that for each level j there is a fixed input xi that is associated with all out 
edges at that level (i.e., all labels are restricted to zl = d for some d). Bounded 
width b.p. (see for example [3], [7]) can be viewed as a special case of oblivious 
b.p. since such programs can be easily converted to be oblivious. At present, 
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the best lower bound for oblivious b.p. [5] is that there is an explicitly defined 
class of Boolean functions {f~) such that for every sequence (Pn) of determin- 
istic oblivious branching programs computing (fn), !ength(Pn) = o(nlog ~ n) 
implies width(P,~) and hence size(P,~) = exp(nn(1)). With some modifications, 
these results extend to nondeterministic oblivious b.p. (see for example [16]). 

A read-once b.p. [20] has the property that no input variable zi appears 
more than once on any consistent computation path. (A path is consistent 
if for all i and for all d l r  d2, the labels "xi = da" and "xi = d2" do not 
both appear on the path.) We note that for deterministic read-once b.p. it 
is equivalent to insist that no input variable xi appears twice on any path 
(whether or not consistent) in the branching program. In this latter form, we 
would choose to refer to this restriction as syntactic read-once. 

Such programs are, of course, a severe restriction of linear length programs. 
With this restriction, several results on program size have been obtained [4], 
[11], [27], [29], [31]. In particular, it was proved in [31] (see also [29]) that the 

Boolean function CLIQUE-ONLYr~ : {0, 1}'~('~ -1) ~ {0, 1} requires determin- 
istic read-once branching program size exp(a(m))  where CLIQUE-ONLYm(z12, 
�9 . . ,  Xm-X,m) = 1 if and only if the input (xij) represents a graph which is ex- 
actiy an ~ clique. Note for comparison that there is a read-twice b.p. (i.e., no 
input variable appears more than twice on any path) of size O(n 3) computing 
this function. In [41, a strictly exponential lower bound of exp (f/(m2)) is es- 
tablished for the Boolean function which counts rood 2 the number of triangles 
in a graph having m nodes. 

Our work is motivated by the exposition in [27]. 
We extend the lower bound from [31] for the CLIQUE-ONLY function so 

as to hold for nondeterministic read-once and then observe that the comple- 
ment problem can be solved by a polynomial size nondeterministic read-once 
program. This shows that both the Savitch [25] (applied to the complement 
problem) and Immerman-Szelepcs~nyi [13], [28] constructions necessarily re- 
quire multiple reads. Our proof is essentially based upon obtaining a lower 
bound for the nondeterministic communication complexity in a model which 
strengthens the model introduced by Papadimitriou and Sipser in [22] that 
allows an arbitrary partition of variables. 

A syntactic read-k-times branching program (denoted k-b.p, or k-n.b.p, in 
the nondeterministic case) is a branching program with the property that no 
input variable xi appears more than k times on any path in the program. 

We show that there exists an explicitly defined (in fact, NCa-computable) 
class of functions gn : F~ n ~ {0, 1} such that any sequence of Fq-way k-n.b.p. 

(P,~) which computes (gn) must have size exp (f/(4~-'~))" Specifically, if q _> 3 
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is a power of a prime and if A is a Generalized Fourier Transform matrix over 
Fq, then g, : F~" ~ {0, 1} is the function defined by g,~(X, Y) = 1 if and only if 
X A Y  T = 0 where X = ( x l , . . . ,  x , )  and Y = ( y l , . . . ,  y~). As a corollary of the 
proof technique, it is easily seen that the same size bound holds for oblivious 
programs of length < kn, although this bound is not as good as the bounds 
obtained in [5]. Like the proof in [5], our result can be understood in terms 
of a multi-party communication game but in our case each party has access to 
only a small fraction of the inputs rather than to all but a small fraction of the 
inputs. Our result immediately yields a corresponding result for the Boolean 
function fn : {0, 1} ~ --* {0, 1} which is derived from g, by encoding the 
inputs of Fq. 

2. Decomposing nondeterministic syntactic 
read-k-times branching programs 

An R-way switching-and-rectifier network is a tuple (G, s, t ,#)  where G is a 
directed multi-graph (W,E)  with two distinguished vertices s , t  and # is a 
labeling function which associates with some edges e E E their labels #(e) of 
the form "xi = d" where xi is a variable (1 < i < n) and d C R. Edges which 
do not receive any label are called free. The network {G, s, t, #) computes the 
function f :  R ~ ~ {0, 1} def ined  as follows: for each u ~ R ~ we let  f ( u )  = 1 

if and only if there exists at least one (directed) s-t path (called an accepting 
path for u) such that all labels along this path are consistent with u. The size 
of the network (G, s, t, #} is the total number of labeled edges in G. 

Without loss of generality, in what follows we will consider only nondeter- 
ministic branching programs (abbreviated n.b.p.) which we will define as those 
switching-and-rectifier networks (G, s, t, #) for which the underlying digraph G 
is acyclic. 1 

A nondeterministic branching program (G, s, t, #) is syntactic read-k-times 
if and only if for each 1 < i < n and for each s-t path p, labels of the form 
"xi = d" appear along p at most k times. Let N B P k  denote the corresponding 
size complexity measure. 

THEOREM 1. Let f : R ~ ~ {0,1} be a function in n variables; let k ,a  be 
positive integers. Let T = (2NBPk( I ) )  2k~. Then f can be represented in ~he 

1There is a well-known construction for converting an arbitrary switching-and-rectifier 
network to one with an acyclic digraph G. We also note that our definition of a n.b.p, is 
somewhat nonstandard but equivalent to the model which introduces nondeterminism into 
branching programs by allowing "guessing nodes". 
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f o r m  
T k a  

f =  V A f,j(xij) (1) 
i = l  j = l  

where fij is a function depending only on variables from Xij C_ {xl , . . . ,  x~}, 
]Xijl <_ [n/aJ and for any I < i < T, each variable belongs to at most k of the 
sets {Xla,. . . ,  X~,k~ }. 

PROOF. Let S be a syntactic read-k-times nondeterminist ic branching pro- 
gram of size NBPk(f) computing f .  First we show that  without loss of gen- 
erality we may assume that  the overall number  of edges in S (including free 
edges) is at most (2NBPk(f)) 2. 

Indeed, i f  S has a vertex w incident only to free edges 

! I W  II~ �9 . (wl, w), , <w, w;'> (2) 

then we can remove w from the program S and replace the set of free edges 
(2) by be free edges {(w~,w~) I 1 < i < b, 1 _< j < c}. The resulting program 
has the same size, computes the same function f and retains the read-k-times 
property. Repeating this process, we eventually obtain a program in which each 
vertex is incident to a labeled edge. This implies that  this program contains at 
most 2NBPk(f) vertices and hence at most NBPk(f)+2NBPk(f)[2NBPk(f)- 
1] < (2NBPk(f)) 2 edges. 

Now, for each pair of vertices w, w', denote by X(w, w') the set of all vari- 
ables which appear in labels on all possible paths from w to w'. By f~,~, 
we denote the function computed by the program (G, w, w ~, #); that  is by the 
program which is obtained after moving the origin s to w and the sink t to 
w t. Clearly, fw,w, depends only on the variables X(w, w'). We call a sequence 
el, e2,..., et (say ei = (wi, w~)) of edges a trace if and only if the following are 
true: 

a) for each j ,  I _< j _< g + 1, IX(wj_l, wj) 1 < n/a, 

b) for each j, 1 <_j <_ g, ]X(w~_a,w~) [ >_ n/a, 

where we set w~ = s and we+l = t. 
It is easy to see that  any s-t path p contains a (uniquely determined!) trace 

( e l , . . . ,  ee) where edges ca , . . . ,  ee appear along p in this prescribed order. Now 
we define the following function f*: 

/+1 

f* = V A (f"}_~s A #(ej)),  where #(e~+a) = 1. (3) 
trace ( e l , . . . , e t )  j= l  
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This function expresses the fact that  t h e r e  exists at least one trace 
( e l , . . . ,  et) and at least one accepting path p for the input being considered 
such that  p contains edges e l , . . . ,  et (which must  appear in this order). Hence, 
by the remark above, f* = f and we only have to check that  the representation 
(3) has the desired form (1). 

Indeed, the function f~}_l~ i A#(ej) depends only on variables X(W}_l, wj)U 
{#(ej)} and we take this set of variables as the corresponding X~j in (1). Then 
]X~j[ <_ [n/aJ follows from the part a) of the definition of a trace. If some 
variable x~ belonged to more  t h a n  k sets among X(W}_l, w}) (1 ~ j < f + 1) 
then we could replace in p corresponding subpaths going from ~wj_lr to wj' by 
subpaths containing x~. This would result in an s-t path along which x~ occurs 
more than k times which contradicts the read-k-times restriction. Hence each 

l ! variable belongs to at most k sets among X(wj_l,  wj). The same is certainly 
true for X(w}_l,wj)  O {#(ej)} since X(w}_l,wj) U {#(ej)} C__ X(w;.1,w}).  

Part b) of the definition of trace implies ~ IX(w}_l, w}) I >_ - -  + IX(wPe, t)l. 
j = l  a 

On the other hand, since each variable contributes to the left-hand part at most 
~ + l  

k times, ~ IX(W~_l, w})] ~ kn. Hence ~ <_ ka and the equality is possible only 
j = l  

if X(w~,t) = 0. But the latter implies that  f~'~t is a constant so in that  case 
we can drop in (3) either the (f + 1) ~t conjunctive term or the whole term 
corresponding to our trace. We see that  in any case each conjunction in (3) 
contains at most ka nontrivial terms. The fact * _< ka also implies that  the total 
number  of traces does not exceed T, which finishes the proof of the theorem. 
rn 

3. A lower bound for read-once nondeterminis t i c  
branching programs 

We first apply Theorem 1 to the case k = 1 (i.e., read-once programs). 

COROLLARY 2. Let f be a Boolean function in n variables, n even. Then f 
can be represented in the form 

T 

f = V [fil(Xil) A fi2(Xi2)] (4) 
i=1  

where {Xil, Xi2} is a partition of { x l , . . . ,  xn} into two groups of equM size and 
T <_ NBPI( f )  ~ 
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PROOF. Set R = {0, 1} and a = 2 in Theorem 1. If Nil U Xi2 for some i 
misses certain variables then distribute them among Xil,Xi2 in an arbitrary 
way to make their cardinalities equal. D 

Note that  if the parti t ion {Xn, Xi2} in (4) is independent  of i, then log 2 of 
the minimal possible T is equal to the nondeterministic communicat ion com- 
plexity in the model which allows an arbitrary parti t ion of inputs [22]. This im- 
plies that  the lower bounds on T proved below also hold in the Papadimitriou- 
Sipser model. 

Let CLIQUEm, . [respectively, CLIQUE-ONLYm,s] be the Boolean function 
.i 

in re(m-l) variables which outputs  1 at an input  (xn ,  Xm-l,m) if and only 
2 " ' ' '  

if the corresponding graph contains an s-clique [respectively, is exactly an s- 
clique]. 

THEOREM 3. a) NBPI(CLIQUE.~,s)>_ exp(a(min(s ,  r n -  s))). 
b) NBP~(CLIQUE-ONLYm,~) >_ exp(fl(min(s,  m - s))). 

PROOF. Let f be either CLIQUEm, s or CLIQUE-ONLYm, s. We may assume 

without loss of generality that  the number  of variables n = ~ is even. 2 
Fix a representation of the form (4) for f .  We will call functions of the form 
fn (Xi l )  A fi2(Xi2) ({Xil, Xi2} is a parti t ion into two groups of size n/2 each) 
elementary rectangles. Let u be a random variable uniformly distributed over 
the set of all ones of the CLIQUE-ONLYm, s function. Clearly, Theorem 3 (for 
either of the two functions) would follow from the following lemma (note that  in 
the case s >_ m/3 ,  CLIQUE~(,~_,),�89 can be easily reduced to CLIQUEm, . 

3 and we may apply Lemma 4 with rn := 7 ( m -  s) and s := � 89  8)). 

LEMMA 4. Let s <_ m/3 and let R be an elementary rectangle such that R C_ 
CLIQUEm,s. Then e[R(u)  = 1] < exp( - f l ( s ) ) .  

PROOF OF LEMMA 4. Let R be as above; R = f l (Xl )Af2(X2)  where {X1,X2} 
is a part i t ion of all edges into two equal parts. Let U~ be the set of all assign- 
ments of X,  which make f~ equal 1. Let E be the bipartite graph on U1 x U~ 
defined by (ul, u2) E E if and only if CLIQUE-ONLYm,s(ul, u2) = 1. We are 
going to prove first that  E is a star. 

! I t Otherwise E contains two edges (ul,u2) and (ul, u2) where ul # u 1 and 
u2 ~ u~. For any assignment u ,  E U~ (think of u~ as a set of edges in the input  
graph) denote by s(u~,) the number  of vertices of the input  graph incident to 
at least one edge in u~. Since (ul, u2) and (ul, u~) represent s-cliques, all four 

t t values S(Ul), s(u2), s(u~), s(u2) are at most s. Now, either s(u~) = s(u'~) = s 
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or s(u2) = s(u~) = s. Otherwise we would have two assignments ~" 
(v = 1, 2) with s(u~ t) _< s - 1, s(u~) _< s - 1. That  would imply that (u;, u'~2, 
cannot contain a clique of size s which would contradict the assumption R _ 
CLIQUEm,s. 

Without loss of generality we may assume s(ul) = s(u~) = s. Also we may 
assume that [u~[ < ]u2[ where ]u] is the number of ones in the assignment u. 
Now look at (u~, u~) (considered as an assignment of X). On the one hand, 
since (Ul,U~) must contain an s-clique and I(ux,u~)[ < ](Ul,U2)] = ~ it 

- -  2 ' 

follows that (Ul,U~) E E. Since u~ # u2, this s-clique is different from (u~, u2). 
But this is impossible because S(Ul) = s implies that there is at most one 
s-clique containing Ul. This contradiction shows that E does not contain any 
2-matching and hence is a star. 

So, we may assume without loss of generality that E is formed by (u~,u~), 
(ul, u~) , . . . ,  (ul, u~) for some h. Let V be the set of vertices incident to edges 
f r o m u l a n d l e t  IV] = s(ul) = a. For a n y i ,  1 < i < h, (ul,ui2) is an s-clique 

on a set of the form V (J Vii, Iv/t = s - a. In particular, all edges from the 

and hence to )(2. Since ]X2] = ~ we may apply clique on V,. belong to u 2 4 

the Lemma of Appendix 1 (with n := m, e := ~ and s := s - a) and 
4 

conclude that h _ m .  ( s-~-i _< rn. ~-I ] since s <_ m/3 .  So, 

p[R(u) = 1] = ~ _< exp(-~t(s)) .  This completes the proofs of Lemma 4 and 

Theorem 3. [] 

THEOREM 5. NBPI( -~CLIQUE-ONLY,~ , , )  < O(m4). 

PROOF. The theorem follows immediately from the following description of 
the function -~CLIQUE-ONLYm,s: 

A graph G is not an s-clique if and only if at least one of the foliowing is 
true: 

a) there are two edges (vl, v2) and @a, v4) in G such that vl # v3 and (vl, v3) 
is not an edge; 

b) there exists at least one vertex whose degree differs from both 0 and s - 1; 

c) G is empty. 

Now we only have to note that the disjunction of functions computable by 
read-once branching programs is computable by the read-once nondeterministic 
branching program obtained by placing the original programs in parallel. [] 
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4. A lower bound for nondeterministic syntactic 
read-k-times branching programs 

Let A be an n x n matrix over a finite field Fq. We consider the function 
gA : F~ ~ --~ {0, 1} defined by ga(X, Y) = 1 if and only if X T A y  = 0 (X  and Y 
are n-column vectors over Fq). 

We denote by aA(S) the minimal possible rank of a minor of the matrix A 
with at least s entries. 

THEOREM 6. Let A be an n x n matrix over Fg (q is a constant). Let k be an 
arbitrary integer and 

n 2 

s - -  
2 . 4  k 

Then 
NBPk(gA) >_ exp(fl(aa(s)/k2)).  

PROOF. Let a = 4k, T = (2NBPk(gA)) sk2. Applying Theorem 1 to gA we 
represent it in the form 

T 4k 2 

gA = V /k fii(Xij,YiJ) 
i = l  j = l  

where IX jl + I jl -< Ln/2kj and each variable belongs to at most k sets among 
Xij, Yij for each fixed i. Again, as in the proof of Theorem 3, we call each 

4k 2 

function of the form A f j (Xj ,  Yj) (with IXj] + IYj[ <_ Ln/2kJ and each variable 
j = l  

belonging to at most k sets among Xj,  Yj) an elementary rectangle. As in the 
proof of Theorem 3, we only have to show that  for each elementary rectangle 
R such that  R <_ gA, P[R(u) = 1] _< exp(--fl(an(S))) where again u is the 
uniform distribution on the set of all l 's  of gA. Let (r r  denote the uniform 
distribution on F~ '~. Since P[gA(r ~b) = 1] > 1/q, we may replace u by (r r  
and prove that  

P[n(r  r  =1 ]  _< exp(--a(aA(S))).  (5) 

We call a pair of variables (x, y) good if and only if there is no j E {1 , . . . ,  
4k 2 } for which x E Xj,  y G Yj and bad otherwise. The  total number  of bad 
pairs does not exceed 4k2 .~[~j l  ,~ 2. (Note that  for a given j the number  of bad 
pairs is maximized when # X j  = •Yj = 1 ,~ [~J  .) Hence there are at least n-2-2 

2 
good pairs (without loss of generality, we assume L~J -< v ~ ) .  



10 Borodin, Razborov g~ Smolensky comput complexity 3 (1993) 

Now, consider a uniformly distributed random coloring X : {1~ .o ,  4k 2} 
{0, 1}. We associate with it the following sets of variables: X ~ = U{Xj ! )c(J) = 
0}, Y~ = U{Yj [ x(J) = 1}. For each good pair (x, y) the events x ~ X ~ y 9~ Y1 
are independent  and hence P[x r X ~  ~ Y* I (x,y)  is a good pair] >_ 4 -~. 
Here we use the property that  x (respectively y) occurs in at most k of the sets 

~z  2 

Xj (respectively Yj). This implies E[#{(x ,y )  I x f~ X ~  ff y1}] > 2.4---~ = 8. 
Fix an arbitrary X for which # { ( x , y )  I x ~[ X~  f[ y1} > s. 

We know that  for each j either Xj c X ~ or Yj C_ y 1  Therefore our rect- 
angle R can be represented in the following simplified form: R = f~176  Y) A 
f l ( X ,  y1). We prove that  even after an arbitrary assignment p to variables 
from X ~ U y1 we still have 

P[R(r ~b) = 1 I (r r satisfies p)] <_ exp(--f~(c~A(S))). 

Let A ~ be the submatrix of A corresponding to rows X ~ = co-X ~ and columns 
Y' = co-Y a. Then P(gA) = 1 if and only if ( x ' ) T A ' y  ' + L(X' ,  Y') = 0 where 
L ( X ' , Y ' )  is a linear affine function. By definition of C~A(S), we know that  
rank (A') >_ aA(S). Let # X '  = t and # Y '  = u and note that  t . u  >_ s. 
We let f l ( X ' )  = p(f f ) ,  f2(y , )  = p(fO), A1 = {v e Ftq I f l (v )  = 1} and 

As = {w e F~ I f2(w) = 1}. In more combinatorial terms, the goal is to 
show that  ~ A x .  #A2  < qt+,,, exp(--f~(c~A(S))), knowing that  there exist zl E 

u gtq, z2 E Fq, c E Fq such that  

(*) for a l l v E A 1 ,  w E A 2 ,  v r A ' w + v  T . z l + z  r . w + c = O .  

Now fix any vo E A1, Wo E A2 and let A1 = {v - v0 i v E A1}, s  = 
{w - w0 I w E A2}. From (*), we obtain 

(**) for all ~ E/~1, w E A2, f ) rAIw  + i )rz i  ----- 0 

and then 

(***) for all ~ E/~1, t~ E /~2, vTA'Ev = O. 

Letting V be equal to the vector space generated by/~1 C ~ _ vq and W equal 

to the vector space generated by/~2 E_ F~, we then have 

(****) for a l l v E V ,  w E W ,  vTA'w=O.  

Since #/~1 = #A1 _< qaim(V) and #/~2 = # A s  _< qaim(W), it is sufficient to 
show d i m ( V ) + d i m ( W )  < u + t -- aA(S). Let H = {vT A ' I v E V} C F ~ _ - -  q -  
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Then dim(H) >_ rank ( A ' ) -  ( t -  dim(V)) _> d i m ( V ) +  C~A(S)- t. Since H and 
W are orthogonal, dim(H) + dim(W) _< u which implies the desired bound 
dim(V) + dim(W) <_ u + t - aA(S). This completes the proof of Theorem 6. [] 

5. Matr ices  whose  submatr ices  have large rank 

In this section we are going to look at Generalized Fourier Transform matrices 
(GFT for short) and prove that every sufficiently large submatrix of a GFT 
matrix has large rank (by a submatrix we mean throughout any matrix which 
can be obtained from the original one by deleting arbitrary rows and columns). 

There are examples of explicit matrices over Q such that all minors (i.e., 
square submatrices) of all sizes are nonsingular. However it is not hard to see 
that over a finite field any n x n ,matrix has an fi(log n) x f~(log n) submatrix 
of rank at most 1. 

Proving good lower bounds for the minimal rank of a u x t submatrix 
of an explicit n x n matrix over a finite field is an interesting combinatorial 
problem in its own right and has applications to complexity questions other 
than those discussed in this paper. For example, such bounds can be used in 
!ower bound proofs for constant depth circuits computing an explicitly given 
!inear transformation over F (see [23]). 

For an abelian group G and a splitting field F of G (see Appendix 2) we 
define the Generalized Fourier Transform matrix A that corresponds to G and 
F as follows. 

The rows of A are indexed by elements of G and the columns are indexed 
by elements of G*. For g E G and X E G* the corresponding entry of A is x(g). 
The columns of A describe the homomorphisms from G to F* and thus they 
are linearly independent over F; moreover, since # (G)  = :/J:(G*), A is an n x n 
invertible matrix (see Appendix 2). 

Observe that the rows of A (as well as the columns of A) form a group 
under componentwise multiplication. 

Conversely if A is an invertible matrix over F whose rows form a group G 
under componentwise multiplication then each column of A defines a different 
homomorphism from G to F* and hence A is the GFT matrix corresponding to 
G and F.  In particular the columns of A form a group under componentwise 
multiplication. 

EXAMPLE 7. Let G = (F2) d and F = Fa be the l~eld having 3 elements. Since 
all elements of G have order 2, F3 is a splitting t~eld of G and G* is isomorphic 
to G. 
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Choosing a basis for G uniquely defines a dual basis for G* since ---I is the 
only primitive square root of unity in F3. 

Now representing the elements of G and G* in terms of basis dements  we 
can view the corresponding GFT matrix A as a 2 d x 2 a matrix with rows and 
columns indexed by binary vectors of  length d. An entry a~j of  A is I (in F3) 
i f  the dot product over [::2 of vector i and vector j is 0 and a~j is - 1  (in F3) 
i f  the dot product over F2 of i and j is 1. Such matrices are called Sylvester 
matrices. Clearly A is NCl-computable .  

T h e  r anks  of  s u b m a t r i e e s  of  a G F T  m a t r i x  

In what follows iet A be a GFT matrix corresponding to an abetian group 
G and its splitting field F.  

For a subset V of G and a subset. W of G* we denote by Av, w the submatrix 
of A whose rows are indexed by V and whose columns are indexed by W. The 
following proposition is an elementary property for submatrices of any matrix. 

/ PROPOSITION 8. For any V1,V2 C G and W _ G*, rank ',Avluv2,w) <_ 
rank (Avl.w) + rank (Av2,w). 

Together with the next proposition, which is of central importance, these 
are all the tools that we need for estimating the ranks of submatrices. 

PROPOSITION 9. For any V C G, W C_ G* and any element g E G we have 
rank (Agv, w) = rank (Av, w). 

PROOF. Since agv,~ = av,,~ag,~,, the columns of the matrix Agv, w are obtained 
from the corresponding columns of Av, w by multiplying them by nonzero con- 
stants ag,~. Hence columns of Agv, w generate the same linear subspace as those 
of Av, w and hence the matrices have the same rank. [] 

Now we are ready to bound from below the rank of Av, w. Leg ~ (G)  = 
# ( c * )  = n .  

T~EOREM 10. ITV C_ G and W C_ G* with # ( V )  = t and # ( W )  = u then 
rank (Av, w) > ~t 

- -  2 n l n ( 2 n / u ) "  

PROOF. Let ,~ = t In ( ~ ) .  Independently choose e random elements 
gl ,g2 , . . . , ge  of G. Let the set Z consist of those elements of G that do not 
belong to the union of the sets giV where i E {1, 2 , . . . ,  g}. 

For every g E G, g E giV if and only ifg~ -1 E g- iV;  hence for any fixed g E 
G, the probability that g f[ 9iV is 1 -- t and these are independent events for all 
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i E { 1, 2 , . . . ,  g}. Hence E[#Z]  = n ( 1 -  ~)~. Thus there is a particular choice of e 
elementsgl,g2,.. . ,g~ e G such that  # ( Z )  < n ( 1 - ~ ) ~  = n ( 1 - ~ )  -?ln{2~/~) _< ~. 

Now Z U glV U g2V. . .  U g~V = G. So by Proposition 8, rank (Az, w) + 
rank (Aglv, w ) + . . .  + rank (Ag,v,w) >_ rank (Aa,w). 

Since the columns of Aa,w are linearly independent  we know that  
rank (Aa,w) = # ( W )  = u. On the other hand rank (Az,w) <_ ~ since # ( Z )  _< 
3, and by Proposition 9 rank (Aj, v,w) = rank (Av, w) for any i C {1 ,2 , . . .  ,*}. 

u u t  We conclude * - r ank  (Av, w) >__ -~ and rank (Av, w) >_ 2.~l~(2n/u)" [] 

Since the columns of A also form a group under componentwise multiplica- 
ut  tion by the dual argument we have rank (Av, w) >__ ~nln(2~/t)" 

Combining these two results we obtain the following corollary. 

COROLLARY 11. If Av, w is a t x u submatrix of A with area s = tu, then 
8 rank (Av, w) >_ 2,~(m(2,0-�89 

PROOF. Either u > x/~ or t > v/~. Apply Theorem 10 in the first case and 
the dual bound in the second case. [] 

It only remains to combine this Corollary with Theorem 6 of the previous 
section to establish the following result. 

THEOREM 12. Let A be a GFT matrix over Fq, q Axed. Let 9A : F:2q n ~ {0, 1} 

be det~ned by g A ( X , Y ) = 1  i f X T A y  = 0. Then NBPk(gA) >_ exp (f~ (4k-'-~3)). 

PROOF. As in Theorem 6, we set s = 2.4k" Then by the above Corollary 

8 
(8) > 

- 2 n ( ( l n 2 n ) -  }In(s))  
/ n 

Theorem 6 completes the proof. [] 

Finally, we can now establish the result claimed in the abstract by showing 
how each function gA can be used for constructing a Boolean function f with 
the same lower bound for NBPk( f )  as in Theorem 12. We show how to do this 
for Sylvester matrices (see Example 7). 
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Let d be an integer and a,/~ run over (F2) d. Introduce n = 4~ 2 d variables 
x~,l, x~,2, yr YO,2 and define 

f ( x , y )  = 1 if and only if ~(-1){~'z)(x~, l  + x~,2)(yz,~ + yz,2) =-" O rood 3. 

(The inner product (c~, ~} is taken over F2.) 

PROOF. Let A be the Sylvester matrix of order 2 d x 2 d. Each ~-n.b.p 
computing f is converted into a 3-way k-n.b.p, computing gA as follows. 

Replace labels "x~,l = 0", ~'x~,l = 1", ~'x~,2 = 0", "x~,2 = 1" by "x~ - 
0 or 1", "x,  = 2", "x,  = 0" and "x~ = 1 or 2" respectively (by "x~ = 0 or !" 
we mean two parallel edges labeled "x,  = 0" and "x,  = 1" respectively). Do 
the same for y-variables. It is easy to see that the resulting 3-way program 
computes gA. 

Now the proof is completed by applying Theorem 12. [] 

A p p e n d i x  1 

LEMMA. Each graph with n vertices and e edges contains at mos'c n (\[v~J,_l) 
cliques of size s. 

PROOF. Order vertices of the graph in such a way ~21, v2,.. o , V n  that dl > d2 _> 
�9 .. >_ dn where di is the degree of vi. Denote the weight w ( K )  of an s-clique K 
to be the maximum i for which vi E K. It is sufficient to check that for each 
w, 1 _< w <_ n, there are at most "~(/~J~J_ )c l iques  of weight w. 

It is obvious in the case w __% [v~-~J since in that case all cliques K with 
w(I( )  = w belong to {Vl, V 2 , . . .  , V[.~e] }. 

n 

Assume that w > [x /~] .  Since ~ di = 2e and dl __k .." _> d~, we see that 
i=1 

d~ < [x/~J .  Which implies that there are at most ([ _~J)  possibilities to bring 
up an s-clique from the vertex %. [] 
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Appendix 2 

We introduce some notation and basic results from representation theory. 
Let G be a finite abelian group and F be a field. The set of all homomor- 

phisms from G to F* (also known as the set of linear characters of G in F)  
forms a group under pointwise multiplication; i.e., (hi  o h2)(g)  = h l (g )h2 (g ) .  
This group is called the dual of G with respect to F and will be denoted by 
G*. 

THEOREM (Dedekind). Any set Xx, X2, . . . ,  Xn C G* of distinct characters of G 
in F is linearly independent over F.  

PROOF. (See [14], p. 291.) 

Since G is abelian we can decompose it into a direct product of cyclic 
groups. Let g l , g 2 , . . . , g ~  be the generators of these groups. For a character 
X E a* ,  X(.qi) iS an m i  th root of unity in F where mi  is the order of gi. Hence 

the number of distinct characters is at most l~  mi = ~G.  On the other hand 
i=1 

every map from the gi's to the corresponding roots of unity can be extended 
to a character. 

Hence # (G)  = #(G*) if and only if F contains a primitive mth root of unity 
for every m dividing ~G.  In this case G is isomorphic to G*. To describe the 
above situation we say that F is a splitting field of G. 
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Added in proof 

After this paper was submitted for publication, we learned that similar bounds 
were independently proved by other authors. Namely, Krause, Meinel and 
Waack [17] established exponential lower bounds for nondeterministic read-once 
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branching programs computing the function PERFECT-MATCHING-ONLY 
(in a bipartite graph). Okolnishnikova [21] proved exponential lower bounds for 
deterministic syntactic read-k-times branching programs computing the char- 
acteristic functions of some linear codes. Jukna [15] extended the result of [21] 
to hold for nondeterministic syntactic read-k-times branching programs and 
noted that the complements of these functions are computable by polynomial 
size nondeterministic read-once branching programs. 
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