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In this paper we conclude our study ([2, 3]) about the postulation of "general"  
curves embedded in a projective space by a non-special linear system. Recall 
that a curve C c P "  is said to be of maximal rank if for every k >  1, the natural 
map of restriction rc,,(k): Hoop ", @,(k))~H~ (gc(k)) is surjective or injective. 
In this paper we prove the following result (over any algebraically closed base 
field). 

Theorem. Fix integers n, d, g with n>5 ,  g> 0 ,  d>g+n. Let X be a general 
curve of genus g and h: X ~IP" a general nondegenerate embedding with non- 
special hyperplane section, deg h (X)= d. Then h (X) has maximal rank. 

For  n = 3 and n = 4 the corresponding result was proved respectively in [3] 
and [-2]. In [2] we assumed that the base field has zero characteristic; however 
this assumption can be avoided quoting [11], Prop. 3 and Lemma 4, in the 
proof  of [2], Lemma 1. Hence this paper, together with [2, 3], yields the so 
called "Maximal rank conjecture for non-special curves in P", n > 3 " .  Since 
in the proof of the theorem we use induction on n, we need the main result 
of [2] (but not of [3]). As promised in the introduction of [2], here we use 
the skeleton of the proof  (and often the notations) of the main theorem of 
[2]. The main difference with respect to [2, 4], is in w 1 (intersection with a 
hyperplane). Furthermore we don't  use any nilpotent. 

We prove the theorem by induction. We try to construct by an inductive 
procedure called "la m6thod d 'Horace"  (see [6, 9, 10]) a suitable reducible 
curve Y~IW, deg Y=d, pa(Y)=g, with good postulation. A theorem of Sernesi 
([13]) and Hartshorne-Hirschowitz [7]) states that the curve Y can be deformed 
to a smooth curve Z c I W ,  d e g Z = d ,  pa(Z)=g, with hi(Z, (9z(1)) =0.  By semicon- 
tinuity, Z has good postulation. 

* Partially supported by Italian M.P.I. 
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w O. Notations and Preliminaries 

Definition. Let Z*(d, g; n) be the closure in Hilb IW of the set of smooth irreduc- 
ible curves C c lP" with H 1 (C, (9c(1))=0. 

It is well-known that Z*(d, g; n) is irreducible. This fact will be used many 
times in the next sections without further mention. 

For  a curve C in P", Nc is its normal bundle. A curve C is said to be 
k-secant to another curve D if it intersects D quasi-transversally and exactly 
at k points. The next lemma is due to Sernesi ([13]) and Hartshorne-Hirschowitz 
([7]). It is the fundamental tool for this paper (as it was for [2] and [3]). 

0.1 Lemma. Take YEZ*(d, g; n). Denote by D a rational curve of degree f <n 
which spans a ~f .  Assume that D is k-secant to Y with 1 <_ k <_ f+ 1. Then Y• 
D~Z*(d + f, g + k - 1 ;  n). Furthermore if Y is a locally complete intersection with 
hi(Y, Ny)=0, then h l ( y u D ,  Nr~o)--0. 

A map is said to be strictly surjective (or s-surjective) if it is surjective but 
not injective. Let E be a closed subscheme of the projective space V; JE, v will 
denote its ideal sheaf. For  all integers k > 1, r~,v(k): H ~ (V, (9 v (k)) ---, H ~ (E, (9~ (k)) 
is the restriction map. If V=P" ,  we write often JE, m, rE,,,(k) instead of Je, v, 
re, v(k ). If H =IP"-1, we write often Z*(d, g; H) instead of Z*(d, g; n - 1 ) .  

For  a real number x, Ix] denotes its integral part. 

0.2 Remark. Let S c IP '~ be a general subset, # (S) _-< m + 3. Then there is a smooth, 
rational normal curve C c P"~ with S c C. 

w 1. Intersection with the Hyperplane 

1.1 Definition. Let U, V be irreducible subvarieties of IP". The join, U~ of 
U, V is the closure of the union of the lines Ix, y], x ~ U, y ~ V, x 4: y. 

Note that U ~ V is irreducible and dim(U ~ V) =< dim(U) + dim(V) + 1. By itera- 
tion one defines V~ ~ V ~ 1). The following lemma is well-known (for ex. 
see [13): 

1.2 Lemma. Let C be a nondegenerate, irreducible curve in P". I f  U is an irreduc- 
ible subvariety of IP", then dim(U ~ C) = min(n, dim(U) + 2). 

Proof If d im(U)<n,  since C is nondegenerate there exists peC such that 
p(~Vert(U):={x: x ~ U= U} (note that Vert(U) is a linear subspace of U). Hence 
dim(C~176 If d i m ( U ~  then p~ 
=C~ It follows that C is contained in Vert(U~ Since C spans P", 
Vert(UOC)=IW, hence U ~  ". [] 

1.3 Corollary. Let C c P" be a nondegenerate, irreducible curve, then 
dim (C o (t + 1)) = min (n, 2 t + 1). 

Let H ~ P" be a hyperplane and D ~ H be a closed subscheme of dimension 
at most one. Denote by C a nondegenerate curve in IP". For  h,=[(n-2)/2] 
let L 1 . . . .  , Lh be h distinct lines, intersecting H transversally, not meeting D 
and satisfying the following incidence relations: 

(al)  L1 is 2-secant to C; 
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(a2) Li, i > 2 ,  is 2-secant  to C u L i _  1 with L i n C + N ,  L i _ l n L i ~ N .  Also 
let { Yj}, 1 < j  < t, be t lines such that :  

(b) for every j, 1 < j < t ,  Yjn C + ~  and Y~ is 2-secant  to X : = C u L I  u . . .  uLh.  
Set Y,=L 1 ~ ... ~ Lh u I11 u ... u Y~. 

1.4 L e m m a .  With notations as above, assume that rou(rnmm(k) is strictly surjec- 
tire for a given k > 0 .  Then we can deform L 1 . . . .  , Lh, Y1, ..., Yt to El,  ..., Eh, 
Y; . . . .  , Y/, the Ei, Yj satisfying (al) ,  (a2) and (b), and we can find a line A 2-secant 
to X ' : = C u E I • . . . u E  h with C n A = b N  and rDu((Y, uA)nn),H(k ) surjective (Y' 
,=/21 u . . .  u E h u  Y ;  u . . .  u I1/). 

Proof Let  S c H  be a hypersurface  of degree k conta ining D u ( Y c ~ H ) .  If  
C~ we put  Y = Y '  and  take for A a generic 2-secant line to C. I f  
C ~  but  (C~ there exists / 2 1 c C  ~  and A c C  ~ such that :  
Ac~EI#r  Ac~C+r and A n H r  We deform Lj  to E~. Since for every 
line B, (B~ we can follow this de fo rmat ion  with a de format ion  
E2, . . . ,  Eh, Y;, .-. ,  Y/, of  L z, . . . ,  Lh, I11, . . . ,  Yt, in such a way tha t  the incidence 
relat ions (al) ,  (a2), (b), hold  and  such that  ( D ~ ( Y ' c ~ H ) ) c S .  Then  we have  
hO(H, o JD~((r,~A)~a),H(k))=h (H, Jm~( r~m, t t (k ) ) -  1 by  semicont inui ty  and  
rD ~ ((r' ~ A)~ m,n (k) is surjective. 

If  (C~ we go on this way. By 1.3 dim(C~ Hence  there 
is s<h  such that  (C~ and (C~ There  exist lines 
A c C  ~ E i c C  ~ l<=i<s, the E~'s having the same incidence relat ions 
as the lines L~ and such that :  A n H ~z S, A n E~ # ~ ,  A c~ C # N. We deform 
L 1 . . . .  , L~ to E~, . . . ,  E~. We follow this de fo rmat ion  with a de fo rmat ion  
1 J s + l U . . . u E h u Y ~ . . . ~ Y  t' o f L s + l U . . . ~ L h ~ Y l u . . . u Y  t in such a way tha t  
D w ( Y ' c ~ H ) c S  and (al) ,  (a2), (b) do hold. Then,  as above,  we are done. [ ]  

1.5 L e m m a .  Fix integers d, g, n, s with n>3,  g>O, d > g + n ,  s>_>_l, 
g > (s - n - 3 - ( d -  g -  n)) In/2].  Let S be a general subset of lP" with 4t: (S) = s. 
Then there exists a curve X e Z* (d, g; n) with S e X  and hi(X,  Nx) =0 .  

Proof Take  a general  subset  S' of ~",  #(S ' )=min(s ,  n+3) .  By 0.2 we m a y  find 
a smooth ,  ra t ional  n o r m a l  curve C in IP" with S ' c  C. Hence  we m a y  assume 
s > n + 3. If  P~, 1 _< i _ d -  g -  n, are d -  g -  n general  points,  there are lines L~, 
l < _ i < _ d - g - n ,  with P~L~ and L~ 1-secant to C. By 1.3, C~ ", where 
t = I-n/2]. Set y = s - n - 3 - ( d -  g - n). Given  any  y general  points  A ~ . . . .  , Ay in 
IP", there are lines Bu, i =  1 . . . .  , t, j =  1 . . . .  , y, with Bl j  2-secant  to C and if 
2<_i<t, B u intersecting bo th  C and B~_~.] (but not  C n B ~ _ I . j )  with AjeB,j ,  
j = l  . . . . .  y (note tha t  BucC~ N o w  the union of C, La . . . . .  La_~_,  and  
B u, l < i < t ,  l<=j<y, is a curve in Z * ( d - ( g - y t ) ,  y t ;  n) by 0.1; note  tha t  g - y t  
> 0 by assumpt ion .  Add ing  fur ther  ( g - y  t) general  2-secant  lines to C, we get 
the curve in Z*(d, g; n) we were looking  for. 

1.6 L e m m a .  Fix nonnegative integers d', g', n, e, d", g" with O<_e<<_d'-g'-n, 
d"> g" + n - 1 .  Set s = n +  e. Assume g " > = ( s - n -  2 - ( d " - g " - n +  1))In/2]. Let S 
be a general, set of s points in a hyperplane H of ~". 

(a) There existe YeZ*(d', g';  n) through S and DeZ*(d",  g"; H) through S. 
For general such Y and D we have Y u  D ~ Z* (d' + d", g' + g" + s -  1 ; n). 



358 E. Ballico and P. Ellia 

(b) Set B =  Yr~(H\S).  Assume that rD, n(k ) is suqective for some k. Then we 
may assume that h~ (H, Wo~B,n(k))= max(0, h~ (H, JD.~t(k))- # (B)). 

Proof. (a) The existence of D' with h 1 (D, ND,) = 0 and passing through S follows 
from 1.5. Fix any such D' and S ' c S  with #(S ' )=n.  Take C in Z * ( d ' - e ,  g'; n) 
through S' with hi(C, Nc)=0. Then take the union E of e lines 1-secant to 
C and such that E r ~ H = S \ S ' .  By 0.1 h l ( D ' u C u E ,  ND,~cuE)=0 and D ' u C u  
EeZ*(d '+d" ,  g ' + g " + s - 1 ;  n). We may deform D', C u E  and S to general 
D, Y,, S preserving the incidence relations. 

(b) The last part follows from 1.4. [] 

1.7 Lemma. Let H c ]P" be a hyperpIane, k >  1 an integer, C c IF", D c H reduced 
subschemes; assume that no component of  C is contained in H. 

(a) I f  r c , , ( k -  1) and rDu(n~c).n(k) are injective, then rcuo(k) is injective. 
(b) Assume that r c , , ( k -  1) and rm~(unc),/dk ) are surjective. Then 

h ~ (IP", Jc ~ ~,, (k)) < h ~ (IF", J;c,, (k - 1)) + h~ (H, JD u (c ~ m,n (k)). 

Proof Take f~Ker(rc~l),,(tr Since f [ H  vanishes on D u (C ~ H), f is divided 
by the equation z of H. Since f / z  vanishes on C, f =  0. (b) Take general subsets 
A c P " \ H ,  B c H  with # ( A ) = h ~  ", J c , , ( k -  1)), #e(B)=h~ Jv~(c~,m,n(k)). 
Then apply (a) to C u A and D w B. [] 

w 2. Basic Inductive Statements 

From now on in this paper we fix integers d, g, n with d > g + n, g >0, n>  5. 
By [2] and induction we assume the theorem in IP"- 1 

2.1 Definition. The critical value v(t, s, n), t > s + n ,  s>O, is defined by 

v(t, s, n ) = m i n { k >  1: hOOp ", ( 9 ~ ( k ) ) > k t - s +  1}. 

We set j,=v(d, g, n). 

2.2 Definition. We define integers g(k, n), f ( k ,  n) for k_>_2 by: 

k(g(k, n ) + n ) - g ( k ,  n)+ 1 +f(k ,  n)= , O<f(k ,  n ) < k - 2 .  (1) 

Set g(1, n)~=0, f(1,  n):=0. 

2.3 Definition. We set r=max{k :  g(k, n)<g}. 

2.4 Definition. For r < k < ] we define integers d(k), h(k) by: 

k d ( k ) - g + l + h ( k ) = ( n + n k ) ,  O<h(k)<=k-1.  (2) 
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From the definitions we immediately get: 

2.5 Lemma. (i) I f  t<t', then v(t, s, n)<__v(t', s, n). 
(ii) g(u, n)+ n=max {t >n: v(t, t - n ,  n)=u};  

d(k)=max {t > g + n: v(t, g, n)=k}. 
(iii) We have r<_j with equality if and only if d=g(r, n)+n, g=g(r ,  n). 

Now we introduce the basic inductive statements: 

2.6 H(k), k> 1: A general C~Z*(g(k, n)+n, g(k, n)- f (k ,  n); n) has rc,,(k) bijec- 
rive. 

This definition makes sense because g(k, n)>f(k, n) (see 4.3). 

2.7 R (k), k > r + 1 : There exists (X, Z, T) such that: 
(1) X =  Z u T, Z c~ T= ~, rx,,(k ) is bijective; 
(2) ZEZ*(d(k)-h(k), g; n) and Tis the union of h(k) disjoint lines. 
We will use R(k) only when it makes sense, i.e. only when d(k)-h(k)>g+n 

(see 3.3, 2.5 (ii)); if k > r + 2, there is no problem by 4.6. 

2.8 R'(r+ 1),/f g - h ( r +  1)>0:  There exists Y in Z*(d(r + 1), g - h ( r +  1); n) with 
rr,, (r + 1) bijective. 

w 3. Proof of the Basic Inductive Statements 

In this section we prove the statements H(k), k>l ,  R(k), k > r + l ,  R ' ( r+ l ) ,  
modulo some numerical lemmas whose proof is postponed to Sect. 4. These 
numerical lemmas will also be used in Sect. 5 (proof of the theorem). 

Recall also that, by [2] and induction, we may assume the theorem for 
n - l , n > 5 .  

3.1 Lemma. For k >= 1, H(k) holds. 

Proof H(1) is clear and H(2) was proved in [4], Prop. 1.1. 
Assume k >  3 and that H(k-1)  is true. 
(i) First suppose" n - f  (k, n) + f ( k -  1, n) > 1. 
Set x:=g(k, n ) - g ( k - 1 ,  n). By 4.1, 4.3 we have x > n - 1 .  By the theorem 

for n - 1  there exists deZ*(x, x - n + l ;  H), H a hyperplane in IW, with rD,L,(k ) 
of maximal rank. Note that 

n-- + k ] _ ( k x _ ( x _ n  + 1 ) = g ( k -  n)+f(k, n ) - f ( k - 1 ,  n)>O (see 4.3). 
1 

I )+  1, 
n - 1  ] 

Hence r~,H(k ) is s-surjective. Let S c H  be a set of s : = n - f ( k , n ) + f ( k - l , n )  
general points. Since g(k, n)--g(k-  i, n)>_ n-- 1 + ( f ( k -  1, n)- f (k ,  n)--2)[(n- 1)/ 
2] (see 4.2) and n + f ( k - 1 ,  n)>=s, we may assume by 1.5, 1.6 that there exists 
YeZ* (g ( k - 1 ,  n)+ n, g ( k - 1 ,  n ) - f ( k -  1, n); n) with rr,,(k-1) bijective and such 
that Y and D intersect (quasi-transversally) exactly at S and with X:=Yu  
DeZ*(g(k, n)+n, g(k, n)- f (k ,  n); n). By 1.7 we get that rx,,(k ) is bijective. 

(ii) Now assume n - f  (k, n) + f (k-1 ,  n) < O. 
This time we take for D an element of Z*(x,z; n - l ) ,  x as above and 
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z.-=g(k, n ) - g ( k - 1 ,  n)+f(k-1,  n)-f(k, n). Note that x > z + n - 1  
f(k, n)<k-2.  By 4.1 we have z>0.  We have 

n - l + k \  
n - 1  ) - k x + z - l = n + g ( k - l , n ) - l .  

and that 

hence rD,~(k) is s-surjective. We conclude as above (but with @(S)= 1). []  

3.2 Lemma. If r> 2 and g - h ( r +  1)>g(r, n ) - f  (r, n)($), then R' ( r+  1) is true. 

Proof. Since g(r, n )>f ( r ,  n) by 4.3, R ' ( r+  1) is well-defined. 
Set x. .=d(r+ 1) -g( r ,  n)-n, y :=min (x+  l - n ,  g - h ( r +  1) -g( r ,  n)+f(r ,  n)) 

and s := l  + g - h ( r +  1) -g( r ,  n)+f(r, n)-y. I fy  = x +  l - n ,  we have y > 0 ,  because 
d ( r + l ) - g ( r ,  n)>2n (see 4.5(b)). So in any case y > 0  and x > y + n - 1 .  Hence, 
by the theorem for n - l ,  there is a hyperplane H in IP" and DsZ*(x, y; H) 
with rD,H(r + 1) of maximal rank. We have 

n - 1  1 =g(r,  n)+n-s.  

Hence rD,~(r+l  ) is strictly surjective. Let S c H  be a general set of s points. 
Note that s > 1 (assumption ($) and definition of y). To apply 1.5 we have to 
check that y > ( s - x +  y-3)[(n-1)/2]. But if s = 1, there is nothing to check. 
Hence we may assume y=x+ 1-n. In this case we see that s<n+f(r, n) and 
the inequality follows from 4.5(a). Similarly since s<n+f(r, n), we can apply 
1.6 with YEZ*(g(r, n)+n, g(r, n)-f(r, n); n). By 3.1, we may assume that Y sat- 
isfies H(r). By 1.7, 1.4 and semicontinuity, X.'= Yu D satisfies R'(r + 1). [] 

3.3 Lemma. If g - h ( r +  1)<g(r, n) - f (r, n), r > 2, then R (r + 1) is true. 

Proof. By the assumption and 4.4, d ( r+  1 ) -h ( r  + 1 ) > g + n ,  hence R(r+ 1) makes 
sense. Let H c l P "  be a hyperplane and C c H be a general smooth curve of 
degree c ,=d ( r+  1 ) - h ( r +  1) -g( r ,  n)-n and genus g - g ( r ,  n)+f(r ,  n)<r-1. By 
4.4 c > n--1 + (g -g ( r ,  n)+f(r, n)). Denote by T the general union of h (r + 1) dis- 
joint lines such that Tc~ C---N. Finally set D = Tu C. We will see in 3.4 that 
rD,~(r + 1) is strictly surjective. We have: , 

h~ 1))-  h~ + 1))= 2g(r, n)+n--g--f(r, n)-- 1 > 0  

(by the hypothesis). 
Let S c H  be a general set of s.'=l + g - g ( r ,  n)+f(r ,  n) points. By 2.2, s >  1. 

By the hypothesis, s_<_h(r+ 1). Hence O > ( s - n - 2 - ( c - n +  1)) and we can apply 
1.5 to C and S. Now take YeZ*(g(r, n)+n, g(r, n ) - f ( r ,  n); n) satisfying H(r). 
Since g(r, n ) - f ( r ,  n)>(s-n--f(r, n))[n/2] (see 4.3) by 1.5 we may assumeCn Y 
=S. By 0.1 we may assume that Z..=C u Ybelongs to Z*(d(r+ 1) -h ( r  + 1), g; n). 
Finally by 1.7, 1.4 and semi-continuity, we get that rz~r , , ( r+  1) has maximal 
rank. []  
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3.4 Sublemma. The map rD,ti(r + 1) is strictly surjective. 

Proof Let f be the maximal integer such that 

r f + l - - ( g - - g ( r ,  n)+f(r ,  n))_< n-- " 

Note that f > n + r - 2  for n>5 ,  r >  1. Set u=min(c,f). By the theorem for n - 1  
there is EeZ*(u, g - g ( r ,  n)+f(r, n); H) such that r~m(r ) is surjective. Fix a hyper- 
plane V of H. In V consider the union B of a general rational curve F, deg(F) 
=c-u ,  F intersecting E quasi-transversally and only at a point, and h(r+ 1) 
general disjoint lines. 

Note that if r > 1 and n > 5 we have 

In- 1 + r) 
r(r+2)+(n-2)(r+l)+l<~ n - 2  " 

Hence by [8] if n=5 ,  by [5] if n>6 ,  rB.v(r+l) is surjective. By 0.1, 1.7, 
we may assume the surjectivity of rvu~m(r + 1). By semicontinuity rD~r.~(r + 1) 
is surjective. By counting dimensions, it is also strictly surjective. [] 

3.5 Lemma. R'(r+ 1) implies R(r+2).  

Proof In a hyperplane H we take for Z a general rational curve of degree 
x,=d(r+2)-d(r+ 1 ) - h ( r + 2 )  and for T the union of h(r+2) general lines. By 
[-5] D,=Zu Tis of maximal rank. We have: 

n+r+l ) - ( r+2)  h(r+2)=d(r+l)-h(r+ 1 ) - 1 > 0  (by 4.5, 4.3). x - l - ( r + 3 )  
n - 1  

Hence rD,u(r+2) is strictly surjective. Then we take a general set S of s,=h(r 
+ 1 ) + 1  points in H. Since x + l > s  (4.4) we may assume S c Z .  Now let Y 
be a general element of Z*(d(r+l), g-h(r+l) ;  n) (hence satisfying R'(r+l)) .  
Since d(r+ 1 ) > g + n  (2.5), by 1.6 we may assume S c  Y. By 0.1 (recall x +  1 >s) 
and 1.7, 1.4 and semicontinuity, X , = Z w Y  Z*(d(r+2)-h(r+2),g;n) and 
rx~ T,,(r + 2) has maximal rank. [] 

3.6 Lemma. For k >r + 1, R(k) implies R(k + 1). 

Proof (i) First assume h(k+ 1)> h(k). 
In a hyperplane H we take a general rational curve Z of degree 

x:=d(k+l)-d(k)-h(k+l)+h(k) .  By 4.4 x>n--1. Let T c H  be the general 
union of h(k + 1) -  h(k) lines. By [5] D :=Z ~ T has maximal rank. We have: 

n -  1] -h~ 1)) = d (k ) -  1 >0. 

By R(k) there is X:=Yu T' with rx,,(k ) bijective. We may assume that Z and 
Y intersect at one point and that Z ~  Y is smoothable (0.1). We conclude with 
1.7, 1.4 and semicontinuity. 

(ii) Now assume: h(k)>h(k+ 1). 
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This time we take D c H, a general rational curve of degree x ,=d(k + 1)-d(k).  
By 4.4, x > n - 1. We have: 

n + k\ o 
l ] - h /  ((riD(k+ 1)) = d ( k ) -  1 +h(k+ 1 ) -  h(k) 

n -  
(3) 

which according for instance to 4.4 is strictly positive. Hence rD.~(k + 1) is strictly 
positive. As above, R(k) gives X,= Yu T'. We would like that D and Y intersect 
at one point and that D meets h(k)-h(k+l)  lines of T'. This is possible if 
we can impose s ' = l  +h(k)-h(k+ 1) general points to D. According to 1.5 this 
is possible, because by 4.4 d(k+l)>d(k)+h(k)-h(k+l)-2 .  Now D u X  is 
smoothable (0.1). We conclude with 1.7, 1.4, and semicontinuity. []  

w 4. Numerical Lemmas 

4.1 Lemma. For n > 5 and k > 3 we have g (k, n)-- g (Ic - I, n) > n + k - 2. 

Proof From the definition (1) of g(k, n), g ( k - 1 ,  n), we get: 

/ n -  1 + k\ 
(k-2)(g(k, n ) - g ( k - 1 ,  n))= 1 n - 1  ) - g ( k '  n)+f(k-1,  n)-f(k,  n). (4) 

Set F,(k)= n+kn - ( k - 1 ) . ~  n - 1  - n - l + ( k - 1 ) ( k - 2 ) ( n + k - 2 )  and G,(k) 

( n -  2 + k ) -  2 n -  3 k + 7 ; hence F d k - 1 ) -  F,(k)=(k- 2) G,(k). 
=\ n - 2  

From the definition (1) of g(k, n) we obtain 

Assume g(k, n ) - g ( k - 1 ,  n)<n+ k - 3 .  By (4) and (5) to obtain a contradiction, 
it is sufficient to check that F,(k)<0. We easily see that G,(k+ 1)>G,(k), k>2, 
n>5,  and that G,(2)>0, F,(3)<0, n>5.  []  

4.2 Lemma. We have g (k, n)-g ( k -  1, n)> n - 1  + (k -  5)(n- 1)/2/f k > 5, n > 5. 

Proof. Set 

F(n,k) {n+k- = \  n--i  ]--\  n 1 ] / ( k - 2 ) - n - ( k - 2 ) - k ( n - t ) - k ( k - 5 ) ( n - t ) / 2 "  

By (1), (4), (5), it is sufficient to check that F(n, k)>O if n>5,  k>5 .  Set F'(n, k) 
, = F ( n +  1, k)-  F (n, k) and F"(n, k),=F'(n+ 1, k)--F'(n, k). 

Since F" (n, k) = | -- (k-- 2) > 0 if n > 5, k > 3, it is sufficient 
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to check that F(5, k )=0  and F'(5, k)=0 for every k>5.  This is left to the 
reader. [] 

By the definition (1) of g(k, n) the following lemma follows immediately. 

4.3 Lemma. We have g (k, n) >_ k. n/2 + ( k -  2) for all k >= 2, n > 5. 

4.4 Lemma. For every k_>_r+ 1, r > l ,  we have d ( k ) - d ( k - 1 ) > n +  2 k -  2, except 
in the following cases: k=3,  n = 5 "  k=2,  n = 5  or n=6.  

Proof By the definition (2) of d(k), d(k-1), we find: 

k (d (k) - d (k - 1)) + d (k - 1) + h (k) - h (k - 1) = (~  + k - 1] n--1 J" (6) 

First assume k > 3. Set 

G ( n , k ) = ( n + k - l l  [n+k-  

Since d(k-1)< g(k-1)+ n, by (5), (6), it is sufficient to check when G(n, k)>= O. 
Set G'(n, k) = G(n + 1, k ) -  G(n, k) and G"(n, k) = G'(n + 1, k ) -  G'(n, k). Note that 
G"(n, k)> 0 for every k > 3, n > 5. It is easy to check that G'(5, k)__> 0 for every 
k > 3  and that G(5, k)>0 for every k>6.  Furthermore G(7,3)>0. Since 
d(2)<g(2, n)+n,  d(1)=n, it is easy to check the thesis for k=3 ,  n = 6 ;  k=4 ,  
n=6;k=2,  n>7. [] 

4.5 Lemma. (a) We have d(r + l ) - g ( r ,  n)> 2n+(r-4)(n-1) /2  if r>__4, n> 5. 
(b) We have d (r + 1) - g (r, n) > 2 n / f  r > 1, n > 5. 

Proof From the definitions (1) and (2) we obtain: 

(n+r] 
(r + l)(d(r + l)-g(r,  n)-n)+ 2g(r, n )+n-g+h(r  + l ) - f ( r ,  n)=\n_ l ]. (7) 

(a) Set 

In+r\ /n+r\ / 
M(n, r):ln_ll-[n\ / \ / / ] / ( r - 1 ) - n - r - 2 n ( r  + 1)--(r + 1)( r -4)(n-1) /2 .  

By (5) and the inequality: g(r, n)<=g, it is sufficient to check when M(n, r)>O. 
Set M'(n, r),=M(n+ 1, r ) - M ( n ,  r) and M"(n, r):=M'(n+ 1, r)--M'(n, r). Since 
M"(n, r)>O for n>5 ,  r>2 ,  it is sufficient to check (left to the reader) that 
M(5, r )>0  and M'(5, r )>0  for every r=>4. 

(b) If r > 4, this is covered by part (a); the remaining cases have to be checked 
by hands. Assume for instance r = l ;  it is sufficient to check that 
2(2n)+ l <(n+ 2)(n+ l)/2 if n> 5. [] 

4.6 Lemma. We have d(r + l)-g(r ,  n ) > n - l  + 2r if n>5, r> 2. 

Proof Set Z(n, r ) = ( n + : l - ( n + r l - ( r - 1 ) - n - r - ( 2 r - l ) ( r + l ) .  Again it is suf- 
\ 1] \ g / - -  // ] 
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ficient to check when Z(n,r)>O. Set Z ' (n , r )=Z(n+l , r ) -Z (n , r )  and 
Z"(n,r)=Z'(n+l,  r)-Z'(n, r). Z"(n, r)>O for every n>5,  r>2 ,  Z'(n,r)>O for 
every r>2 ,  Z(5, r )>0  if r>3 ,  Z(6 ,2 )>0 ;  if n=5,  r=2 ,  we have g(2, 5)=10, 
g>g(2,  5), hence d(3)>21. [] 

w 5. Proof of the Theorem 

We fix n>5, g>O, d>=g+n, and we set j=v(d, g, n) (see 2.1). Since Z*(d, g; n) 
is irreducible, it is sufficient to find X, Yin Z* (d, g; n) such that rx,,(j) is surjective 
and r r , , ( j - 1 )  is injective (semicontinuity and Castelnuovo-Mumford's lemma 
([12], p. 99)). If j__<2 see [4], Prop. 1.1. Hence we assume j > 3 .  We distinguish 
several cases. 

5.1 Lemma. I f  j = r the general curve X in Z* (d, g; n) has rx,,(j) surjective. 

Proof According to 2.5(iii) we have g=g(r ,  n) and d=g(r ,  n)+n. We show that 
there exist X6Z*(g(r, n)+n, g(r, n); n) and a set P of f(r, n) points such thai 
rx~p,,(r ) is bijective. For this we repeat the proof of " H ( r - 1 )  implies H(r), 
n - f  (r, n )+f (r -1 ,  n ) > l "  (see 3.1), with two minor modifications. To get the 
correct genus we put ~ (S)= n + f (r -1 ,  n) (instead of n + f (r -1 ,  n ) - f  (r, n)). To 
have the right number of conditions in H, we add P ~ H, a set of f(r, n) general 
points. We have only to check that g (r, n ) -g  ( r -  1, n)> ( f  ( r -  1, n ) -  2)[(n- 1)/2], 
to apply 1.5. This follows from 4.2. Note also that deg(Y)-po(Y)>s, where 
Y satisfies H ( r -  1). Hence we can apply 1.6, 1.4 and conclude by 1.7. [] 

5.2 Lemma. I f  j = r the general curve X in Z* (d, g; n) has rx, ,(r-  1) injective. 

Proof If r = 3 the injectivity is contained in [4]. Hence we may assume r > 4. 
To prove the lemma it is sufficient to construct J in 
Z * ( g ( r -  1, n) + n + 1, g ( r -  1, n) + 1 ; n) with rs,,(r- 1) injective. Indeed, then we 
may take as X the union of J and g(r, n ) - g ( r - 1 ,  n ) - I  2-secant lines to J 
(0.1). To construct J we modify the proof of " H ( r - 2 )  implies H ( r - 1 ) "  (see 
3.1). 

Set x = g ( r -  1, n ) - g ( r - 2 ,  n)+ 1 and s=f(r--2,  n)+n. By 4.1 x > n -  1. Hence 
for general D ~ Z* (x, x - n  + 1, H), H a hyperplane, rDm ( r -  1) is of maximal rank. 
We have: h~176 n ) - r  + l + f ( r - l , n ) - f ( r  
- 2 ,  n)>0 (by 4.3). Since g ( r -  1, n ) - g ( r - 2 ,  n ) > n - 2 + ( f ( r - 2 ,  n) -2)  [ ( n -  1)/2] 
(by 4.2), we may apply 1.5 and assume that D contains a general set S of s 
points in H. By 1.6(a) there is Y in Z*(g(r--2, n)+n, g(r--2, n)--f(r--2, n); n) 
satisfying H (r-- 2) and such that Yc~ D = S, Yw 
O~Z*(g(r - - l ,n )+n+l ,g(r - - l ,n )+l ;n) .  Since deg(Y)-s>_h~ 
--h~ - 1)), we conclude with 1.7, 1.6(b). [] 

5.3 Lemma. I f  j=r  + 1 the general curve X in Z*(d, g; n) has rx,,(j) surjective. 

Proof (i) First assume d = d(r + 1). 
We have d(r + 1) > g(r, n) + 2 n -  1 by 4.4. Note that g > g(r, n) by the definition 

of r. Set x=d-g(r ,n ) - -n ,  y=min(x+l -n ,g- -g(r ,n )+f (r ,n ) ) ,  s = g - g ( r , n )  
+f(r, n ) -  y + 1.We have y > 0, x > y + n -  1 and 1 <_ s <_ n +f(r, n)($$). Let H be 
a hyperplane. By the theorem for n -  1, for a general DeZ*(x, y; n-- 1), rD, u(r+ 1) 
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is of maximal rank. We have: 

n+r]--h~ 1)) =g(r,  n)+n-s+h(r+ 1)>0. 
n - -  1] 

We show the existence of CeZ*(d(r+ 1), g; n) and of a set P of h(r+ l) points 
such that rc~e,,(r+l ) is bijective. For this we repeat the proof of 3.2 with 
D, s defined as above and Y~Z*(g(r, n)+n, g(r, n)-f(r, n); n). Furthermore, to 
have the right number of conditions, we add h ( r + l )  general points P in H. 
We have to verify the hypothesis of 1.5 for D and s. However we may assume 
y = x + 1 - n (otherwise s = 1). Then the condition is: 

d(r+ 1) -  g(r, n ) - 2 n +  1 _>_(g-d(r + 1)+n+f(r, n)-  3) [ ( n -  1)/2]. 

Since d(r+l)>g+n, this follows from 4.5(a). Finally, since deg(Y)-p,(Y)>s 
(by ($$)), we conclude with 1.6 and 1.7. 

(ii) Now assume d<d(r+ 1). 
Set c=d-g(r ,n) -n ,  v = m i n ( c + l - n , g - g ( r , n ) ) ,  u=max(v,  0) and 

s =  1 + g - g ( r ,  n)-n. Take DeZ*(c, u; H) and YEZ*(g(r, n)+n, g(r, n); n) with 
rr,,(r) surjective. The existence of Y was shown in the proof of 5.1. If u = v = g  
-g(r, n), then s = l  and we conclude with 1.6, 1.7. If u = v = c + l - n ,  then s<=n 
and we conclude with 1.5, 1.6, 1.7. Finally s<_c+l if c<n-1 .  Then D is a 
rational normal curve in • .  We conclude with 0.1, 1.6(b), 1.7. [] 

5,4 Lemma. If  j = r + 1, the general curve X in Z* (d, g; n) has rx, . (r) injective. 

Proof The lemma follows from the existence of TeZ* (g(r, n)+ n + 1, g(r, n)+ e; n) 
(e=0 if g=g(r ,  n), e = l  otherwise) with rr,n(r) injective. If e = l  the existence 
of T was shown in the proof of 5.2. A slight modification of that proof also 
yields the case e=0.  We have just to check the corresponding condition for 
1.5 which is" 

g (r, n) - g (r - 1, n) > n - 2 + ( f  (r - 1, n) - 2) [(n - 1)/2]. 

See 4.2. [] 

5.5 Lemma. If  j>r  + 2, the general TsZ*(d, g; n) has rr,,(j-1) injective. 

Proof The lemma follows from the existence of XeZ*(d( j -1)+l ,  g; n) with 
rx,,(j--1) injective (note that d>d(j -1)+ 1, see 2.5). 

(i) Assume R ( j - 2 )  holds (which is always the case i f j > r + 4  by 3.4, 3.5). We 
apply 1.6(b), 1.7 with: D c H a rational curve of degree x..=d 0 - 1 ) - d ( j - 2 )  + 1; 
Y = Z u  T given by R(j -2) (Z~Z*(d( j -2) -h( j -2) ,  g; n), Tthe  union of h ( j - 2 )  
disjoint lines). We require that D intersects Z and each line of T at one point. 
This is possible since x + 3 > h ( j - 2 ) + l  (see 4.4). Clearly YwD is smoothable. 
Set m:=h~176 - 1 ) ) = d ( j - 2 ) +  h ( j - 1 ) - h ( j -  2 ) - j .  By 4.4 or 4.3, 
4.5, we have m>0.  Since d e g ( Z ) > m +  1, ryuD,,( j -  1) is injective by 1.6(b), 1.7. 

(ii) Now a s s u m e j = r + 3  and that R'(r+ 1) holds. 
In a similar way we take Y~Z*(d(r+l), g - h ( r + l ) ;  n) satisfying R ' ( r+ l ) ,  

a rational curve D c H, deg (D) = x.'= d (r + 2) - d (r + 1) + 1. Since x > h (r + 1 ) (4.4), 
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by 0.1 we may assume that D and Y intersects qnasi-transversally in 
s,=h(r+l)+ 1 points, and that D~ Y~Z*(d(r+2)+l, g; n). We conclude with 
1.6(b), 1.7. 

(iii) Finally assume j = r + 2. 
Again the proof is similar with Y~Z* (g (r, n)+ n, g(r, n)-f(r, n); n) satisfying 

H(r), D~Z*(x, y; H), x..=d(r + 1)+ 1 - g ( r ,  n)-n, 
y:=min(x-n + 1, g - g ( r ,  n) + f (r, n)) and s , = g - g ( r ,  n) + f (r, n) + 1-y .  The con- 
dition x>__n-1 is equivalent to d ( r+  1 ) -g ( r ,  n ) > 2 n - 2  (see 4.5(b)). We always 
have l < s < _ n + f ( r ,  n ) - 1 ,  hence deg(Y)-pa(Y)>s. To use 1.5 for D and s we 
may assume y = x + n - 1 (otherwise s-- 1). Since d(r + 1) > g + n (2.5) it is enough 
to show that d(r+ 1 ) + 2 - g ( r ,  n)-2n>-(f(r, n) - 2) [(n - 1 ) / 2 ]  (see 4.5). []  

5.6 Lemma. If  j>r+2 and d -d ( j -1 )>h( j -1 ) ,  the general T in Z*(d, g; n) 
has r r , , ( j  ) surjective. 

Proof (i) Assume R ( j -  1) holds. 
We take YwT satisfying R ( j - 1 ) ,  D c H  rational of degree x ,=d-d ( j -1 )  

which intersects Y and each line of T at one point. This is possible since 
x>h( j -1)  by assumption. Hence A = D w T~ Y is connected, pa(A)---g, and by 
1.6(b), 1.7, ra,,(j) is surjective. 

(ii) In a similar way if j = r + 2  and R ' ( r + l )  holds, we take Y satisfying 
R ' ( r + l ) ,  D~H rational of degree x = d - d ( r + l )  and s::h(r+l)+l.  By [5] 
we may assume D of maximal rank. We have deg(Y)-pa(Y)>s and x+3>s. 
We conclude as usual with 1.6(b) and 1.7. []  

5.7 Lemma. If  j > r + 2 and d -  d (j-- 1)< h 0 ' -  I), the general curve T in Z* (d, g; n) 
has rr, ,(j) surjective. 

Proof (i) Assume that R ( j - 2 )  holds. 
Then as in 5.5(i) we construct XeZ*(d( j -  1), g; n) with rx,n(j- 1) surjective 

(for this we have to check: d ( j - 1 ) - d ( j - 2 ) > h ( j - 2 )  (see 4.4)). Then we take 
D c H  rational of degree d-d( j -1 ) ,  of maximal rank and intersecting X at 
one point. 

(ii) Assume j = r + 3 and that R'(j-- 2) holds. 
As in 5.5(ii) we construct XeZ*(d(j-1),  g; n) with rx,,(j-1) surjective (we 

have to check that d(r + 2 ) -  d(r + 1)> h(r + 1): 4.4). Once we have X, we conclude 
as above. 

(iii) Assume j = r + 2. 
We construct X~Z*(d(j-1), g; n) with rx,,(j-1 ) surjective. For  this we 

repeat the proof  of 5.5(iii) but with x:=d(r+l)-g(r, n)-n. The arithmetical 
conditions now are: d(r+ 1) -g ( r ,  n)>2n-- 1 (4.5 (b)) and d(r+ 1)+ 1 - g ( r ,  n)-2n 
>(f(r, n)-  2)[(n-1)/2] (4.5(a)). Note  that we have 1 <-s<-n+f(r, n) and hence 
deg(Y)-po(g)>s. [] 
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