Mathematische

The Maximal Rank Conjecture for Non-Special Curves in \mathbb{P}^n

Edoardo Ballico¹ * and Philippe Ellia²

¹ Dipartimento di Matematica, Universitá di Trento, I-38050 Povo (TN), Italia

² CNRS LA 168, Departement de Mathematiques, Universite de Nice, Parc Valrose,

F-06034 Nice Cedex, France

In this paper we conclude our study ([2, 3]) about the postulation of "general" curves embedded in a projective space by a non-special linear system. Recall that a curve $C \subset \mathbb{P}^n$ is said to be of maximal rank if for every $k \ge 1$, the natural map of restriction $r_{C,n}(k): H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) \to H^0(C, \mathcal{O}_C(k))$ is surjective or injective. In this paper we prove the following result (over any algebraically closed base field).

Theorem. Fix integers n, d, g with $n \ge 5$, $g \ge 0$, $d \ge g+n$. Let X be a general curve of genus g and h: $X \to \mathbb{P}^n$ a general nondegenerate embedding with non-special hyperplane section, deg h(X) = d. Then h(X) has maximal rank.

For n=3 and n=4 the corresponding result was proved respectively in [3] and [2]. In [2] we assumed that the base field has zero characteristic; however this assumption can be avoided quoting [11], Prop. 3 and Lemma 4, in the proof of [2], Lemma 1. Hence this paper, together with [2, 3], yields the so called "Maximal rank conjecture for non-special curves in \mathbb{P}^n , $n \ge 3$ ". Since in the proof of the theorem we use induction on n, we need the main result of [2] (but not of [3]). As promised in the introduction of [2], here we use the skeleton of the proof (and often the notations) of the main theorem of [2]. The main difference with respect to [2, 4], is in §1 (intersection with a hyperplane). Furthermore we don't use any nilpotent.

We prove the theorem by induction. We try to construct by an inductive procedure called "la méthod d'Horace" (see [6, 9, 10]) a suitable reducible curve $Y \subset \mathbb{P}^n$, deg Y=d, $p_a(Y)=g$, with good postulation. A theorem of Sernesi ([13]) and Hartshorne-Hirschowitz [7]) states that the curve Y can be deformed to a smooth curve $Z \subset \mathbb{P}^n$, deg Z=d, $p_a(Z)=g$, with $h^1(Z, \mathcal{O}_Z(1))=0$. By semicontinuity, Z has good postulation.

^{*} Partially supported by Italian M.P.I.

§0. Notations and Preliminaries

Definition. Let $Z^*(d, g; n)$ be the closure in Hilb \mathbb{P}^n of the set of smooth irreducible curves $C \subset \mathbb{P}^n$ with $H^1(C, \mathcal{O}_C(1)) = 0$.

It is well-known that $Z^*(d, g; n)$ is irreducible. This fact will be used many times in the next sections without further mention.

For a curve C in \mathbb{P}^n , N_C is its normal bundle. A curve C is said to be k-secant to another curve D if it intersects D quasi-transversally and exactly at k points. The next lemma is due to Sernesi ([13]) and Hartshorne-Hirschowitz ([7]). It is the fundamental tool for this paper (as it was for [2] and [3]).

0.1 Lemma. Take $Y \in Z^*(d, g; n)$. Denote by D a rational curve of degree $f \leq n$ which spans a \mathbb{P}^f . Assume that D is k-secant to Y with $1 \leq k \leq f+1$. Then $Y \cup D \in Z^*(d+f, g+k-1; n)$. Furthermore if Y is a locally complete intersection with $h^1(Y, N_Y) = 0$, then $h^1(Y \cup D, N_{Y \cup D}) = 0$.

A map is said to be strictly surjective (or s-surjective) if it is surjective but not injective. Let E be a closed subscheme of the projective space V; $\mathscr{I}_{E,V}$ will denote its ideal sheaf. For all integers $k \ge 1$, $r_{E,V}(k)$: $H^0(V, \mathcal{O}_V(k)) \to H^0(E, \mathcal{O}_E(k))$ is the restriction map. If $V = \mathbb{P}^m$, we write often $\mathscr{I}_{E,m}$, $r_{E,m}(k)$ instead of $\mathscr{I}_{E,V}$, $r_{E,V}(k)$. If $H = \mathbb{P}^{n-1}$, we write often $Z^*(d, g; H)$ instead of $Z^*(d, g; n-1)$.

For a real number x, [x] denotes its integral part.

0.2 Remark. Let $S \subset \mathbb{P}^m$ be a general subset, $\#(S) \leq m+3$. Then there is a smooth, rational normal curve $C \subset \mathbb{P}^m$ with $S \subset C$.

§1. Intersection with the Hyperplane

1.1 Definition. Let U, V be irreducible subvarieties of \mathbb{P}^n . The join, U^0V , of U, V is the closure of the union of the lines $[x, y], x \in U, y \in V, x \neq y$.

Note that $U^0 V$ is irreducible and $\dim(\overline{U^0 V}) \leq \dim(\overline{U}) + \dim(\overline{V}) + 1$. By iteration one defines $V^{0i} := V^0 V^{0(i-1)}$. The following lemma is well-known (for ex. see [1]):

1.2 Lemma. Let C be a nondegenerate, irreducible curve in \mathbb{P}^n . If U is an irreducible subvariety of \mathbb{P}^n , then dim $(U^0 C) = \min(n, \dim(U) + 2)$.

Proof. If $\dim(U) < n$, since C is nondegenerate there exists $p \in C$ such that $p \notin \operatorname{Vert}(U) := \{x: x^0 \ U = U\}$ (note that $\operatorname{Vert}(U)$ is a linear subspace of U). Hence $\dim(C^0 \ U) \ge \dim(P^0 \ U) = \dim(U) + 1$. If $\dim(U^0 \ C) = \dim(U) + 1$, then $p^0 \ U = C^0 \ U$. It follows that C is contained in $\operatorname{Vert}(U^0 \ C)$. Since C spans \mathbb{P}^n , $\operatorname{Vert}(U^0 \ C) = \mathbb{P}^n$, hence $U^0 \ C = \mathbb{P}^n$. \Box

1.3 Corollary. Let $C \subset \mathbb{P}^n$ be a nondegenerate, irreducible curve, then $\dim(C^{0(t+1)}) = \min(n, 2t+1)$.

Let $H \subset \mathbb{P}^n$ be a hyperplane and $D \subset H$ be a closed subscheme of dimension at most one. Denote by C a nondegenerate curve in \mathbb{P}^n . For h:=[(n-2)/2]let L_1, \ldots, L_h be h distinct lines, intersecting H transversally, not meeting Dand satisfying the following incidence relations:

(a1) L_1 is 2-secant to C;

(a2) L_i , $i \ge 2$, is 2-secant to $C \cup L_{i-1}$ with $L_i \cap C \neq \emptyset$, $L_{i-1} \cap L_i \neq \emptyset$. Also let $\{Y_i\}, 1 \le j \le t$, be t lines such that:

(b) for every $j, 1 \leq j \leq t, Y_j \cap C \neq \emptyset$ and Y_j is 2-secant to $X := C \cup L_1 \cup \ldots \cup L_h$. Set $Y := L_1 \cup \ldots \cup L_h \cup Y_1 \cup \ldots \cup Y_t$.

1.4 Lemma. With notations as above, assume that $r_{D\cup(Y\cap H),H}(k)$ is strictly surjective for a given k>0. Then we can deform $L_1, \ldots, L_h, Y_1, \ldots, Y_t$ to L'_1, \ldots, L'_h , Y'_1, \ldots, Y'_t , the L_i, Y'_j satisfying (a 1), (a 2) and (b), and we can find a line A 2-secant to $X' := C \cup L'_1 \cup \ldots \cup L'_h$ with $C \cap A \neq \emptyset$ and $r_{D\cup((Y'\cup A)\cap H),H}(k)$ surjective $(Y' := L'_1 \cup \ldots \cup L'_h \cup Y'_1 \cup \ldots \cup Y'_t)$.

Proof. Let $S \subset H$ be a hypersurface of degree k containing $D \cup (Y \cap H)$. If $C^{02} \cap H \Leftrightarrow S$, we put Y = Y' and take for A a generic 2-secant line to C. If $C^{02} \cap H \subset S$ but $(C^{03} \cap H) \Leftrightarrow S$ there exists $L_1 \subset C^{02}$ and $A \subset C^{03}$ such that: $A \cap L_1 \neq \emptyset$, $A \cap C \neq \emptyset$, and $A \cap H \Leftrightarrow S$. We deform L_1 to L_1 . Since for every line B, $(B^0C) \cap S \neq \emptyset$, we can follow this deformation with a deformation $L_2, \ldots, L_h, Y_1, \ldots, Y_t$, in such a way that the incidence relations (a 1), (a 2), (b), hold and such that $(D \cup (Y' \cap H)) \subset S$. Then we have $h^0(H, \mathscr{I}_{D \cup ((Y' \cup A) \cap H), H}(k)) = h^0(H, \mathscr{I}_{D \cup (Y \cap H), H}(k)) - 1$ by semicontinuity and $r_{D \cup ((Y' \cup A) \cap H), H}(k)$ is surjective.

If $(C^{0,3} \cap H) \subset S$, we go on this way. By 1.3 dim $(C^{0(h+2)}) = n$. Hence there is $s \leq h$ such that $(C^{0(s+1)} \cap H) \subset S$ and $(C^{0(s+2)} \cap H) \notin S$. There exist lines $A \subset C^{0(s+2)}, L'_i \subset C^{0(i+1)}, 1 \leq i \leq s$, the L'_i 's having the same incidence relations as the lines L_i and such that: $A \cap H \notin S$, $A \cap L'_s \neq \emptyset$, $A \cap C \neq \emptyset$. We deform L_1, \ldots, L_s to L'_1, \ldots, L'_s . We follow this deformation with a deformation $L'_{s+1} \cup \ldots \cup L'_h \cup Y'_1 \cup \ldots \cup Y'_i$ of $L_{s+1} \cup \ldots \cup L_h \cup Y_1 \cup \ldots \cup Y_i$ in such a way that $D \cup (Y' \cap H) \subset S$ and (a1), (a2), (b) do hold. Then, as above, we are done. \Box

1.5 Lemma. Fix integers d, g, n, s with $n \ge 3$, $g \ge 0$, $d \ge g+n$, $s \ge 1$, $g \ge (s-n-3-(d-g-n))[n/2]$. Let S be a general subset of \mathbb{P}^n with #(S)=s. Then there exists a curve $X \in Z^*(d, g; n)$ with $S \subset X$ and $h^1(X, N_X) = 0$.

Proof. Take a general subset S' of \mathbb{P}^n , $\#(S') = \min(s, n+3)$. By 0.2 we may find a smooth, rational normal curve C in \mathbb{P}^n with $S' \subset C$. Hence we may assume $s \ge n+3$. If P_i , $1 \le i \le d-g-n$, are d-g-n general points, there are lines L_i , $1 \le i \le d-g-n$, with $P_i \in L_i$ and L_i 1-secant to C. By 1.3, $C^{0(t+1)} = \mathbb{P}^n$, where $t = \lfloor n/2 \rfloor$. Set y = s - n - 3 - (d-g-n). Given any y general points A_1, \ldots, A_y in \mathbb{P}^n , there are lines B_{ij} , $i = 1, \ldots, t$, $j = 1, \ldots, y$, with B_{1j} 2-secant to C and if $2 \le i \le t$, B_{ij} intersecting both C and $B_{i-1,j}$ (but not $C \cap B_{i-1,j}$) with $A_j \in B_{tj}$, $j = 1, \ldots, y$ (note that $B_{ij} \subset C^{0(i+1)}$). Now the union of C, L_1, \ldots, L_{d-g-n} and B_{ij} , $1 \le i \le t$, $1 \le j \le y$, is a curve in $Z^*(d-(g-yt), yt; n)$ by 0.1; note that g-yt ≥ 0 by assumption. Adding further (g-yt) general 2-secant lines to C, we get the curve in $Z^*(d, g; n)$ we were looking for.

1.6 Lemma. Fix nonnegative integers d', g', n, e, d'', g'' with $0 \le e \le d'-g'-n$, $d'' \ge g''+n-1$. Set s=n+e. Assume $g'' \ge (s-n-2-(d''-g''-n+1))[n/2]$. Let S be a general set of s points in a hyperplane H of \mathbb{P}^n .

(a) There existe $Y \in Z^*(d', g'; n)$ through S and $D \in Z^*(d'', g''; H)$ through S. For general such Y and D we have $Y \cup D \in Z^*(d' + d'', g' + g'' + s - 1; n)$. (b) Set $B = Y \cap (H \setminus S)$. Assume that $r_{D,H}(k)$ is surjective for some k. Then we may assume that $h^{0}(H, \mathscr{I}_{D \cup B,H}(k)) = \max(0, h^{0}(H, \mathscr{I}_{D,H}(k)) - \#(B))$.

Proof. (a) The existence of D' with $h^1(D, N_{D'}) = 0$ and passing through S follows from 1.5. Fix any such D' and $S' \subset S$ with #(S') = n. Take C in $Z^*(d'-e, g'; n)$ through S' with $h^1(C, N_C) = 0$. Then take the union E of e lines 1-secant to C and such that $E \cap H = S \setminus S'$. By 0.1 $h^1(D' \cup C \cup E, N_{D' \cup C \cup E}) = 0$ and $D' \cup C \cup$ $E \in Z^*(d' + d'', g' + g'' + s - 1; n)$. We may deform $D', C \cup E$ and S to general D, Y, S preserving the incidence relations.

(b) The last part follows from 1.4. \Box

1.7 Lemma. Let $H \subset \mathbb{P}^n$ be a hyperplane, $k \ge 1$ an integer, $C \subset \mathbb{P}^n$, $D \subset H$ reduced subschemes; assume that no component of C is contained in H.

- (a) If $r_{C,n}(k-1)$ and $r_{D\cup(H\cap C),H}(k)$ are injective, then $r_{C\cup D}(k)$ is injective.
- (b) Assume that $r_{C,n}(k-1)$ and $r_{D\cup(H\cap C),H}(k)$ are surjective. Then

$$h^{0}(\mathbb{P}^{n}, \mathscr{I}_{C \cup D, n}(k)) \leq h^{0}(\mathbb{P}^{n}, \mathscr{I}_{C, n}(k-1)) + h^{0}(H, \mathscr{I}_{D \cup (C \cap H), H}(k)).$$

Proof. Take $f \in \text{Ker}(r_{C \cup D,n}(k))$. Since $f \mid H$ vanishes on $D \cup (C \cap H)$, f is divided by the equation z of H. Since f/z vanishes on C, f=0. (b) Take general subsets $A \subset \mathbb{P}^n \setminus H$, $B \subset H$ with $\#(A) = h^0(\mathbb{P}^n, \mathscr{I}_{C,n}(k-1))$, $\#(B) = h^0(H, \mathscr{I}_{D \cup (C \cap H), H}(k))$. Then apply (a) to $C \cup A$ and $D \cup B$. \Box

§ 2. Basic Inductive Statements

From now on in this paper we fix integers d, g, n with $d \ge g+n$, $g \ge 0$, $n \ge 5$. By [2] and induction we assume the theorem in \mathbb{P}^{n-1} .

2.1 Definition. The critical value $v(t, s, n), t \ge s + n, s \ge 0$, is defined by

$$v(t, s, n) = \min\{k \ge 1: h^{o}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)) \ge k t - s + 1\}.$$

We set j := v(d, g, n).

2.2 Definition. We define integers g(k, n), f(k, n) for $k \ge 2$ by:

$$k(g(k, n)+n) - g(k, n) + 1 + f(k, n) = \binom{n+k}{n}, \quad 0 \le f(k, n) \le k-2.$$
(1)

Set g(1, n) := 0, f(1, n) := 0.

- **2.3 Definition.** We set $r = \max\{k : g(k, n) \leq g\}$.
- **2.4 Definition.** For $r \leq k \leq j$ we define integers d(k), h(k) by:

$$k d(k) - g + 1 + h(k) = {\binom{n+k}{n}}, \quad 0 \le h(k) \le k - 1.$$
 (2)

Curves of Maximal Rank

From the definitions we immediately get:

2.5 Lemma. (i) If $t \leq t'$, then $v(t, s, n) \leq v(t', s, n)$. (ii) $g(u, n) + n = \max\{t \geq n : v(t, t-n, n) = u\};$ $d(k) = \max\{t \geq g + n : v(t, g, n) = k\}.$

(iii) We have $r \leq j$ with equality if and only if d = g(r, n) + n, g = g(r, n).

Now we introduce the basic inductive statements:

2.6 $H(k), k \ge 1$: A general $C \in Z^*(g(k, n) + n, g(k, n) - f(k, n); n)$ has $r_{C,n}(k)$ bijective.

This definition makes sense because $g(k, n) \ge f(k, n)$ (see 4.3).

2.7 $R(k), k \ge r+1$: There exists (X, Z, T) such that:

(1) $X = Z \cup T, Z \cap T = \emptyset, r_{X,n}(k)$ is bijective;

(2) $Z \in Z^*(d(k) - h(k), g; n)$ and T is the union of h(k) disjoint lines.

We will use R(k) only when it makes sense, i.e. only when $d(k)-h(k) \ge g+n$ (see 3.3, 2.5(ii)); if $k \ge r+2$, there is no problem by 4.6.

2.8 R'(r+1), if $g-h(r+1) \ge 0$: There exists Y in $Z^*(d(r+1), g-h(r+1); n)$ with $r_{Y,n}(r+1)$ bijective.

§ 3. Proof of the Basic Inductive Statements

In this section we prove the statements H(k), $k \ge 1$, R(k), $k \ge r+1$, R'(r+1), modulo some numerical lemmas whose proof is postponed to Sect. 4. These numerical lemmas will also be used in Sect. 5 (proof of the theorem).

Recall also that, by [2] and induction, we may assume the theorem for $n-1, n \ge 5$.

3.1 Lemma. For $k \ge 1$, H(k) holds.

Proof. H(1) is clear and H(2) was proved in [4], Prop. 1.1.

Assume $k \ge 3$ and that H(k-1) is true.

(i) First suppose: $n-f(k, n)+f(k-1, n) \ge 1$.

Set x := g(k, n) - g(k-1, n). By 4.1, 4.3 we have $x \ge n-1$. By the theorem for n-1 there exists $d \in Z^*(x, x-n+1; H)$, H a hyperplane in \mathbb{P}^n , with $r_{D,H}(k)$ of maximal rank. Note that

$$\binom{n-1+k}{n-1} - (kx - (x-n+1)+1) = g(k-1, n) + f(k, n) - f(k-1, n) > 0 \quad (\text{see 4.3}).$$

Hence $r_{D,H}(k)$ is s-surjective. Let $S \subset H$ be a set of s:=n-f(k, n)+f(k-1, n)general points. Since $g(k, n)-g(k-1, n) \ge n-1+(f(k-1, n)-f(k, n)-2)[(n-1)/2]$ (see 4.2) and $n+f(k-1, n) \ge s$, we may assume by 1.5, 1.6 that there exists $Y \in Z^*(g(k-1, n)+n, g(k-1, n)-f(k-1, n); n)$ with $r_{Y,n}(k-1)$ bijective and such that Y and D intersect (quasi-transversally) exactly at S and with $X:=Y \cup D \in Z^*(g(k, n)+n, g(k, n)-f(k, n); n)$. By 1.7 we get that $r_{X,n}(k)$ is bijective.

(ii) Now assume $n-f(k, n)+f(k-1, n) \leq 0$.

This time we take for D an element of $Z^*(x, z; n-1)$, x as above and

z := g(k, n) - g(k-1, n) + f(k-1, n) - f(k, n). Note that $x \ge z+n-1$ and that $f(k, n) \le k-2$. By 4.1 we have $z \ge 0$. We have

$$\binom{n-1+k}{n-1} - kx + z - 1 = n + g(k-1, n) - 1.$$

hence $r_{\mathbf{D},\mathbf{H}}(k)$ is s-surjective. We conclude as above (but with #(S)=1).

3.2 Lemma. If $r \ge 2$ and $g - h(r+1) \ge g(r, n) - f(r, n)(\$)$, then R'(r+1) is true.

Proof. Since $g(r, n) \ge f(r, n)$ by 4.3, R'(r+1) is well-defined.

Set x:=d(r+1)-g(r, n)-n, $y:=\min(x+1-n, g-h(r+1)-g(r, n)+f(r, n))$ and s:=1+g-h(r+1)-g(r, n)+f(r, n)-y. If y=x+1-n, we have $y \ge 0$, because $d(r+1)-g(r, n)\ge 2n$ (see 4.5(b)). So in any case $y\ge 0$ and $x\ge y+n-1$. Hence, by the theorem for n-1, there is a hyperplane H in \mathbb{P}^n and $D\in Z^*(x, y; H)$ with $r_{D,H}(r+1)$ of maximal rank. We have

$$\binom{n+r}{n-1}$$
 - $(r+1)x + y - 1 = g(r, n) + n - s$

Hence $r_{D,H}(r+1)$ is strictly surjective. Let $S \subset H$ be a general set of s points. Note that $s \ge 1$ (assumption (\$) and definition of y). To apply 1.5 we have to check that $y \ge (s-x+y-3)[(n-1)/2]$. But if s=1, there is nothing to check. Hence we may assume y=x+1-n. In this case we see that $s \le n+f(r, n)$ and the inequality follows from 4.5(a). Similarly since $s \le n+f(r, n)$, we can apply 1.6 with $Y \in Z^*(g(r, n)+n, g(r, n)-f(r, n); n)$. By 3.1, we may assume that Y satisfies H(r). By 1.7, 1.4 and semicontinuity, $X := Y \cup D$ satisfies R'(r+1).

3.3 Lemma. If g - h(r+1) < g(r, n) - f(r, n), $r \ge 2$, then R(r+1) is true.

Proof. By the assumption and 4.4, $d(r+1) - h(r+1) \ge g+n$, hence R(r+1) makes sense. Let $H \subset \mathbb{P}^n$ be a hyperplane and $C \subset H$ be a general smooth curve of degree c := d(r+1) - h(r+1) - g(r, n) - n and genus $g - g(r, n) + f(r, n) \le r-1$. By $4.4 \ c \ge n-1 + (g-g(r, n) + f(r, n))$. Denote by T the general union of h(r+1) disjoint lines such that $T \cap C = \emptyset$. Finally set $D = T \cup C$. We will see in 3.4 that $r_{D,H}(r+1)$ is strictly surjective. We have:

$$h^{0}(\mathcal{O}_{H}(r+1)) - h^{0}(\mathcal{O}_{D}(r+1)) = 2g(r, n) + n - g - f(r, n) - 1 > 0$$

(by the hypothesis).

Let $S \subset H$ be a general set of s := 1 + g - g(r, n) + f(r, n) points. By 2.2, $s \ge 1$. By the hypothesis, $s \le h(r+1)$. Hence $0 \ge (s-n-2-(c-n+1))$ and we can apply 1.5 to C and S. Now take $Y \in Z^*(g(r, n) + n, g(r, n) - f(r, n); n)$ satisfying H(r). Since $g(r, n) - f(r, n) \ge (s-n-f(r, n)) \lfloor n/2 \rfloor$ (see 4.3) by 1.5 we may assume $C \cap Y = S$. By 0.1 we may assume that $Z := C \cup Y$ belongs to $Z^*(d(r+1)-h(r+1), g; n)$. Finally by 1.7, 1.4 and semi-continuity, we get that $r_{Z \cup T,n}(r+1)$ has maximal rank. \Box

360

3.4 Sublemma. The map $r_{D,H}(r+1)$ is strictly surjective.

Proof. Let f be the maximal integer such that

$$rf+1-(g-g(r, n)+f(r, n)) \leq {\binom{n-1+r}{n-1}}.$$

Note that $f \ge n+r-2$ for $n \ge 5$, $r \ge 1$. Set $u = \min(c, f)$. By the theorem for n-1 there is $E \in Z^*(u, g-g(r, n)+f(r, n); H)$ such that $r_{E,H}(r)$ is surjective. Fix a hyperplane V of H. In V consider the union B of a general rational curve F, deg(F) = c-u, F intersecting E quasi-transversally and only at a point, and h(r+1) general disjoint lines.

Note that if $r \ge 1$ and $n \ge 5$ we have

$$r(r+2) + (n-2)(r+1) + 1 \leq {\binom{n-1+r}{n-2}}$$

Hence by [8] if n=5, by [5] if $n \ge 6$, $r_{B,V}(r+1)$ is surjective. By 0.1, 1.7, we may assume the surjectivity of $r_{V \cup B,H}(r+1)$. By semicontinuity $r_{D \cup T,H}(r+1)$ is surjective. By counting dimensions, it is also strictly surjective.

3.5 Lemma. R'(r+1) implies R(r+2).

Proof. In a hyperplane H we take for Z a general rational curve of degree x:=d(r+2)-d(r+1)-h(r+2) and for T the union of h(r+2) general lines. By [5] $D:=Z \cup T$ is of maximal rank. We have:

$$\binom{n+r+1}{n-1} - (r+2) x - 1 - (r+3) h(r+2) = d(r+1) - h(r+1) - 1 > 0 \quad (by 4.5, 4.3).$$

Hence $r_{D,H}(r+2)$ is strictly surjective. Then we take a general set S of s:=h(r+1)+1 points in H. Since $x+1 \ge s$ (4.4) we may assume $S \subset Z$. Now let Y be a general element of $Z^*(d(r+1), g-h(r+1); n)$ (hence satisfying R'(r+1)). Since $d(r+1) \ge g+n$ (2.5), by 1.6 we may assume $S \subset Y$. By 0.1 (recall $x+1 \ge s$) and 1.7, 1.4 and semicontinuity, $X:=Z \cup Y Z^*(d(r+2)-h(r+2), g; n)$ and $r_{X \cup T,n}(r+2)$ has maximal rank. \Box

3.6 Lemma. For $k \ge r+1$, R(k) implies R(k+1).

Proof. (i) First assume $h(k+1) \ge h(k)$.

In a hyperplane H we take a general rational curve Z of degree x:=d(k+1)-d(k)-h(k+1)+h(k). By 4.4 $x \ge n-1$. Let $T \subset H$ be the general union of h(k+1)-h(k) lines. By [5] $D:=Z \cup T$ has maximal rank. We have:

$$\binom{n+k}{n-1} - h^{0}(\mathcal{O}_{D}(k+1)) = d(k) - 1 > 0.$$

By R(k) there is $X := Y \cup T'$ with $r_{X,n}(k)$ bijective. We may assume that Z and Y intersect at one point and that $Z \cup Y$ is smoothable (0.1). We conclude with 1.7, 1.4 and semicontinuity.

(ii) Now assume: h(k) > h(k+1).

This time we take $D \subset H$, a general rational curve of degree x := d(k+1) - d(k). By 4.4, $x \ge n-1$. We have:

$$\binom{n+k}{n-1} - h^0(\mathcal{O}_D(k+1)) = d(k) - 1 + h(k+1) - h(k)$$
(3)

which according for instance to 4.4 is strictly positive. Hence $r_{D,H}(k+1)$ is strictly positive. As above, R(k) gives $X := Y \cup T'$. We would like that D and Y intersect at one point and that D meets h(k) - h(k+1) lines of T'. This is possible if we can impose s' := 1 + h(k) - h(k+1) general points to D. According to 1.5 this is possible, because by 4.4 $d(k+1) \ge d(k) + h(k) - h(k+1) - 2$. Now $D \cup X$ is smoothable (0.1). We conclude with 1.7, 1.4, and semicontinuity. \Box

§ 4. Numerical Lemmas

4.1 Lemma. For $n \ge 5$ and $k \ge 3$ we have $g(k, n) - g(k-1, n) \ge n+k-2$. Proof. From the definition (1) of g(k, n), g(k-1, n), we get:

$$(k-2)(g(k,n)-g(k-1,n)) = \binom{n-1+k}{n-1} - g(k,n) + f(k-1,n) - f(k,n).$$
(4)

Set $F_n(k) = {\binom{n+k}{n}} - (k-1) \cdot {\binom{n-1+k}{n-1}} - n - 1 + (k-1)(k-2)(n+k-2)$ and $G_n(k)$ = ${\binom{n-2+k}{n-2}} - 2n - 3k + 7$; hence $F_n(k-1) - F_n(k) = (k-2) G_n(k)$.

From the definition (1) of g(k, n) we obtain

$$g(k, n) = \left[\left(\binom{n+k}{n} - k n - 1 - f(k, n) \right) / (k-1) \right].$$
 (5)

Assume $g(k, n) - g(k-1, n) \le n+k-3$. By (4) and (5) to obtain a contradiction, it is sufficient to check that $F_n(k) < 0$. We easily see that $G_n(k+1) \ge G_n(k), k \ge 2$, $n \ge 5$, and that $G_n(2) > 0, F_n(3) < 0, n \ge 5$. \Box

4.2 Lemma. We have $g(k, n) - g(k-1, n) \ge n - 1 + (k-5)(n-1)/2$ if $k \ge 5$, $n \ge 5$. *Proof.* Set

$$F(n, k) = \binom{n+k-1}{n-1} - \binom{n+k-1}{n} / (k-2) - n - (k-2) - k(n-1) - k(k-5)(n-1)/2.$$

By (1), (4), (5), it is sufficient to check that $F(n, k) \ge 0$ if $n \ge 5$, $k \ge 5$. Set F'(n, k) := F(n+1, k) - F(n, k) and F''(n, k) := F'(n+1, k) - F'(n, k). Since $F''(n, k) = \binom{n+k-1}{n+1} - \binom{n+k-1}{n+2} / (k-2) \ge 0$ if $n \ge 5$, $k \ge 3$, it is sufficient

362

to check that $F(5, k) \ge 0$ and $F'(5, k) \ge 0$ for every $k \ge 5$. This is left to the reader. \Box

By the definition (1) of g(k, n) the following lemma follows immediately.

4.3 Lemma. We have $g(k, n) \ge k \cdot n/2 + (k-2)$ for all $k \ge 2, n \ge 5$.

4.4 Lemma. For every $k \ge r+1$, $r \ge 1$, we have $d(k)-d(k-1) \ge n+2k-2$, except in the following cases: k=3, n=5; k=2, n=5 or n=6.

Proof. By the definition (2) of d(k), d(k-1), we find:

$$k(d(k) - d(k-1)) + d(k-1) + h(k) - h(k-1) = \binom{n+k-1}{n-1}.$$
(6)

First assume $k \ge 3$. Set

$$G(n, k) = \binom{n+k-1}{n-1} - \binom{n+k-1}{n} / (k-2) - kn - 2k^2 - 3k + 1.$$

Since $d(k-1) \leq g(k-1)+n$, by (5), (6), it is sufficient to check when $G(n, k) \geq 0$. Set G'(n, k) = G(n+1, k) - G(n, k) and G''(n, k) = G'(n+1, k) - G'(n, k). Note that $G''(n, k) \geq 0$ for every $k \geq 3$, $n \geq 5$. It is easy to check that $G'(5, k) \geq 0$ for every $k \geq 3$ and that $G(5, k) \geq 0$ for every $k \geq 6$. Furthermore $G(7, 3) \geq 0$. Since $d(2) \leq g(2, n) + n$, d(1) = n, it is easy to check the thesis for k = 3, n = 6; k = 4, n = 6; k = 2, $n \geq 7$. \Box

4.5 Lemma. (a) We have $d(r+1) - g(r, n) \ge 2n + (r-4)(n-1)/2$ if $r \ge 4$, $n \ge 5$. (b) We have $d(r+1) - g(r, n) \ge 2n$ if $r \ge 1$, $n \ge 5$.

Proof. From the definitions (1) and (2) we obtain:

$$(r+1)(d(r+1)-g(r,n)-n)+2g(r,n)+n-g+h(r+1)-f(r,n)=\binom{n+r}{n-1}.$$
 (7)

(a) Set

$$M(n, r) = \binom{n+r}{n-1} - \binom{n+r}{n} / (r-1) - n - r - 2n(r+1) - (r+1)(r-4)(n-1)/2.$$

By (5) and the inequality: $g(r, n) \leq g$, it is sufficient to check when $M(n, r) \geq 0$. Set M'(n, r) := M(n+1, r) - M(n, r) and M''(n, r) := M'(n+1, r) - M'(n, r). Since $M''(n, r) \geq 0$ for $n \geq 5$, $r \geq 2$, it is sufficient to check (left to the reader) that $M(5, r) \geq 0$ and $M'(5, r) \geq 0$ for every $r \geq 4$.

(b) If $r \ge 4$, this is covered by part (a); the remaining cases have to be checked by hands. Assume for instance r=1; it is sufficient to check that $2(2n)+1 \le (n+2)(n+1)/2$ if $n \ge 5$. \Box

4.6 Lemma. We have $d(r+1) - g(r, n) \ge n - 1 + 2r$ if $n \ge 5, r \ge 2$.

Proof. Set
$$Z(n, r) = {\binom{n+r}{n-1}} - {\binom{n+r}{n}} - (r-1) - n - r - (2r-1)(r+1)$$
. Again it is suf-

ficient to check when $Z(n, r) \ge 0$. Set Z'(n, r) = Z(n+1, r) - Z(n, r) and Z''(n, r) = Z'(n+1, r) - Z'(n, r). $Z''(n, r) \ge 0$ for every $n \ge 5$, $r \ge 2$, $Z'(n, r) \ge 0$ for every $r \ge 2$, $Z(5, r) \ge 0$ if $r \ge 3$, $Z(6, 2) \ge 0$; if n = 5, r = 2, we have g(2, 5) = 10, $g \ge g(2, 5)$, hence $d(3) \ge 21$. \Box

§ 5. Proof of the Theorem

We fix $n \ge 5$, $g \ge 0$, $d \ge g+n$, and we set j = v(d, g, n) (see 2.1). Since $Z^*(d, g; n)$ is irreducible, it is sufficient to find X, Y in $Z^*(d, g; n)$ such that $r_{X,n}(j)$ is surjective and $r_{Y,n}(j-1)$ is injective (semicontinuity and Castelnuovo-Mumford's lemma ([12], p. 99)). If $j \le 2$ see [4], Prop. 1.1. Hence we assume $j \ge 3$. We distinguish several cases.

5.1 Lemma. If j = r the general curve X in $Z^*(d, g; n)$ has $r_{X,n}(j)$ surjective.

Proof. According to 2.5(iii) we have g = g(r, n) and d = g(r, n) + n. We show that there exist $X \in Z^*(g(r, n) + n, g(r, n); n)$ and a set P of f(r, n) points such that $r_{X \cup P,n}(r)$ is bijective. For this we repeat the proof of "H(r-1) implies H(r), $n-f(r, n)+f(r-1, n) \ge 1$ " (see 3.1), with two minor modifications. To get the correct genus we put #(S) = n + f(r-1, n) (instead of n + f(r-1, n) - f(r, n)). To have the right number of conditions in H, we add $P \subseteq H$, a set of f(r, n) general points. We have only to check that $g(r, n) - g(r-1, n) \ge (f(r-1, n)-2)[(n-1)/2]$, to apply 1.5. This follows from 4.2. Note also that $\deg(Y) - p_a(Y) \ge s$, where Y satisfies H(r-1). Hence we can apply 1.6, 1.4 and conclude by 1.7. \Box

5.2 Lemma. If j = r the general curve X in $Z^*(d, g; n)$ has $r_{X,n}(r-1)$ injective.

Proof. If r=3 the injectivity is contained in [4]. Hence we may assume $r \ge 4$. To the prove lemma it is sufficient to construct Jin $Z^*(g(r-1, n)+n+1, g(r-1, n)+1; n)$ with $r_{J,n}(r-1)$ injective. Indeed, then we may take as X the union of J and g(r, n) - g(r-1, n) - 1 2-secant lines to J (0.1). To construct J we modify the proof of "H(r-2) implies H(r-1)" (see 3.1).

Set x = g(r-1, n) - g(r-2, n) + 1 and s = f(r-2, n) + n. By 4.1 $x \ge n-1$. Hence for general $D \in Z^*(x, x-n+1, H)$, H a hyperplane, $r_{D,H}(r-1)$ is of maximal rank. $h^{0}(\mathcal{O}_{H}(r-1)) - h^{0}(\mathcal{O}_{D}(r-1)) = g(r-2, n) - r + 1 + f(r-1, n) - f(r)$ We have: (-2, n) > 0 (by 4.3). Since $g(r-1, n) - g(r-2, n) \ge n-2 + (f(r-2, n)-2)[(n-1)/2]$ (by 4.2), we may apply 1.5 and assume that D contains a general set S of spoints in H. By 1.6(a) there is Y in $Z^*(g(r-2, n)+n, g(r-2, n)-f(r-2, n); n)$ satisfying H(r-2)and such that $Y \cap D = S$ $Y \cup$ $D \in Z^*(g(r-1, n)+n+1, g(r-1, n)+1; n).$ $\deg(Y) - s \ge h^0(\mathcal{O}_H(r-1))$ Since $-h^{0}(\mathcal{O}_{p}(r-1))$, we conclude with 1.7, 1.6(b).

5.3 Lemma. If j = r + 1 the general curve X in $Z^*(d, g; n)$ has $r_{X,n}(j)$ surjective.

Proof. (i) First assume d = d(r+1).

We have $d(r+1) \ge g(r, n) + 2n - 1$ by 4.4. Note that $g \ge g(r, n)$ by the definition of r. Set x=d-g(r, n)-n, $y=\min(x+1-n, g-g(r, n)+f(r, n))$, s=g-g(r, n)+f(r, n)-y+1. We have $y\ge 0$, $x\ge y+n-1$ and $1\le s\le n+f(r, n)(\$\$)$. Let H be a hyperplane. By the theorem for n-1, for a general $D\in Z^*(x, y; n-1)$, $r_{D,H}(r+1)$ is of maximal rank. We have:

$$\binom{n+r}{n-1} - h^0(\mathcal{O}_D(r+1)) = g(r, n) + n - s + h(r+1) > 0.$$

We show the existence of $C \in Z^*(d(r+1), g; n)$ and of a set P of h(r+1) points such that $r_{C \cup P,n}(r+1)$ is bijective. For this we repeat the proof of 3.2 with D, s defined as above and $Y \in Z^*(g(r, n)+n, g(r, n)-f(r, n); n)$. Furthermore, to have the right number of conditions, we add h(r+1) general points P in H. We have to verify the hypothesis of 1.5 for D and s. However we may assume y=x+1-n (otherwise s=1). Then the condition is:

$$d(r+1) - g(r, n) - 2n + 1 \ge (g - d(r+1) + n + f(r, n) - 3)[(n-1)/2].$$

Since $d(r+1) \ge g+n$, this follows from 4.5(a). Finally, since $\deg(Y) - p_a(Y) \ge s$ (by (\$\$)), we conclude with 1.6 and 1.7.

(ii) Now assume d < d(r+1).

Set c=d-g(r, n)-n, $v=\min(c+1-n, g-g(r, n))$, $u=\max(v, 0)$ and s=1+g-g(r, n)-n. Take $D\in Z^*(c, u; H)$ and $Y\in Z^*(g(r, n)+n, g(r, n); n)$ with $r_{Y,n}(r)$ surjective. The existence of Y was shown in the proof of 5.1. If u=v=g-g(r, n), then s=1 and we conclude with 1.6, 1.7. If u=v=c+1-n, then $s\leq n$ and we conclude with 1.5, 1.6, 1.7. Finally $s\leq c+1$ if $c\leq n-1$. Then D is a rational normal curve in \mathbb{P}^c . We conclude with 0.1, 1.6(b), 1.7. \Box

5.4 Lemma. If j = r + 1, the general curve X in $Z^*(d, g; n)$ has $r_{X,n}(r)$ injective.

Proof. The lemma follows from the existence of $T \in Z^*(g(r, n) + n + 1, g(r, n) + e; n)$ (e=0 if g=g(r, n), e=1 otherwise) with $r_{T,n}(r)$ injective. If e=1 the existence of T was shown in the proof of 5.2. A slight modification of that proof also yields the case e=0. We have just to check the corresponding condition for 1.5 which is:

$$g(r, n) - g(r-1, n) \ge n - 2 + (f(r-1, n) - 2)[(n-1)/2].$$

See 4.2.

5.5 Lemma. If $j \ge r+2$, the general $T \in \mathbb{Z}^*(d, g; n)$ has $r_{T,n}(j-1)$ injective.

Proof. The lemma follows from the existence of $X \in Z^*(d(j-1)+1, g; n)$ with $r_{X,n}(j-1)$ injective (note that $d \ge d(j-1)+1$, see 2.5).

(i) Assume R(j-2) holds (which is always the case if $j \ge r+4$ by 3.4, 3.5). We apply 1.6(b), 1.7 with: $D \subset H$ a rational curve of degree x := d(j-1) - d(j-2) + 1; $Y = Z \cup T$ given by R(j-2) ($Z \in Z^*(d(j-2) - h(j-2), g; n$), T the union of h(j-2) disjoint lines). We require that D intersects Z and each line of T at one point. This is possible since $x+3 \ge h(j-2)+1$ (see 4.4). Clearly $Y \cup D$ is smoothable. Set $m := h^0(\mathcal{O}_H(j-1)) - h^0(\mathcal{O}_D(j-1)) = d(j-2) + h(j-1) - h(j-2) - j$. By 4.4 or 4.3, 4.5, we have m > 0. Since deg $(Z) \ge m+1$, $r_{Y \cup D,n}(j-1)$ is injective by 1.6(b), 1.7.

(ii) Now assume j = r + 3 and that R'(r+1) holds.

In a similar way we take $Y \in Z^*(d(r+1), g-h(r+1); n)$ satisfying R'(r+1), a rational curve $D \subset H$, $\deg(D) = x := d(r+2) - d(r+1) + 1$. Since $x \ge h(r+1)$ (4.4), by 0.1 we may assume that D and Y intersects quasi-transversally in s := h(r+1) + 1 points, and that $D \cup Y \in Z^*(d(r+2)+1, g; n)$. We conclude with 1.6(b), 1.7.

(iii) Finally assume j = r + 2.

Again the proof is similar with $Y \in Z^*(g(r, n) + n, g(r, n) - f(r, n); n)$ satisfying H(r), $D \in Z^*(x, y; H)$, x:=d(r+1)+1-g(r, n)-n, $y:=\min(x-n+1, g-g(r, n)+f(r, n))$ and s:=g-g(r, n)+f(r, n)+1-y. The condition $x \ge n-1$ is equivalent to $d(r+1)-g(r, n) \ge 2n-2$ (see 4.5(b)). We always have $1 \le s \le n+f(r, n)-1$, hence $\deg(Y)-p_a(Y)\ge s$. To use 1.5 for D and s we may assume y=x+n-1 (otherwise s=1). Since $d(r+1)\ge g+n$ (2.5) it is enough to show that $d(r+1)+2-g(r, n)-2n\ge (f(r, n)-2)[(n-1)/2]$ (see 4.5). \Box

5.6 Lemma. If $j \ge r+2$ and $d-d(j-1) \ge h(j-1)$, the general T in $Z^*(d, g; n)$ has $r_{T,n}(j)$ surjective.

Proof. (i) Assume R(j-1) holds.

We take $Y \cup T$ satisfying R(j-1), $D \subset H$ rational of degree x := d - d(j-1)which intersects Y and each line of T at one point. This is possible since $x \ge h(j-1)$ by assumption. Hence $A = D \cup T \cup Y$ is connected, $p_a(A) = g$, and by 1.6(b), 1.7, $r_{A,n}(j)$ is surjective.

(ii) In a similar way if j=r+2 and R'(r+1) holds, we take Y satisfying R'(r+1), $D \subset H$ rational of degree x=d-d(r+1) and s:=h(r+1)+1. By [5] we may assume D of maximal rank. We have $\deg(Y)-p_a(Y) \ge s$ and $x+3 \ge s$. We conclude as usual with 1.6(b) and 1.7. \Box

5.7 Lemma. If $j \ge r+2$ and d-d(j-1) < h(j-1), the general curve T in $Z^*(d, g; n)$ has $r_{T,n}(j)$ surjective.

Proof. (i) Assume that R(j-2) holds.

Then as in 5.5(i) we construct $X \in Z^*(d(j-1), g; n)$ with $r_{X,n}(j-1)$ surjective (for this we have to check: $d(j-1)-d(j-2) \ge h(j-2)$ (see 4.4)). Then we take $D \subset H$ rational of degree d-d(j-1), of maximal rank and intersecting X at one point.

(ii) Assume j=r+3 and that R'(j-2) holds.

As in 5.5(ii) we construct $X \in Z^*(d(j-1), g; n)$ with $r_{X,n}(j-1)$ surjective (we have to check that $d(r+2) - d(r+1) \ge h(r+1)$: 4.4). Once we have X, we conclude as above.

(iii) Assume j = r + 2.

We construct $X \in Z^*(d(j-1), g; n)$ with $r_{X,n}(j-1)$ surjective. For this we repeat the proof of 5.5(iii) but with x:=d(r+1)-g(r, n)-n. The arithmetical conditions now are: $d(r+1)-g(r, n) \ge 2n-1$ (4.5(b)) and $d(r+1)+1-g(r, n)-2n \ge (f(r, n)-2)[(n-1)/2]$ (4.5(a)). Note that we have $1 \le s \le n+f(r, n)$ and hence $\deg(Y)-p_a(Y) \ge s$. \Box

References

- 1. Ådlandsvik, B.: Joins and higher secant varieties, preprint, Bergen, 1984
- 2. Ballico, E., Ellia, Ph.: On postulation of curves in P⁴, Math. Z. 188, 215-223 (1985)
- 3. Ballico, E., Ellia, Ph.: The maximal rank conjecture for non-special curves in ₱³. Invent. Math. **79**, 541–555 (1985)

- Ballico, E., Ellia, Ph.: On the hypersurfaces containing a general projective curve, Compositio Math. 60, 85-95 (1986)
- 5. Ballico, E., Ellia, Ph.: On the postulation of many disjoint rational curves in \mathbb{P}_N , $N \ge 4$, Bollettino U.M.I. (6) **4-B**, 585–599 (1985)
- 6. Hartshorne, R., Hirschowitz, A.: Droites en position générale dans ℙⁿ. Algebrai Geometry 1981, Lect. Notes in Math. 961, pp. 169–189. Berlin-Heidelberg-New York: Springer 1982
- Hartshorne, R., Hirschowitz, A.: Smoothing algebraic space curves, Algebraic Geometry-Sitgers 1983, Lect. Notes in Math. 1124, pp. 98–131. Berlin-Heidelberg-New York: Springer 1984
- Hartshorne, R., Hirschowitz, A.: Courbes rationnelles et droites en position générale. Annales Institut Fourier 25, 39–58 (1985)
- 9. Hirschowitz, A.: Sur la postulation génerique des courbes rationnelles. Acta Math. 146, 209-230 (1981)
- Hirschowitz, A.: La methode d'Horace pour l'interpolation à plusieurs variables. Manusc. Math. 50, 337–388 (1985)
- Laksov, D.: Indecomposability of the restricted tangent bundles, in Tableaux de Young et foncteurs de Schur en algèbre et géométrie, pp. 207-219. Astérisque 87-88, 1981
- Mumford, D.: Lectures on curves on an algebraic surface, Annals of Math. Studies, vol. 59, p. 200. Princeton: Princeton Univ. Press N.J. 1966
- 13. Sernesi, E.: On the existence of certain families of curves. Invent. Math. 75, 25-57 (1984)

Received July 1, 1986