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In this paper we conclude our study ([2, 3]) about the postulation of “general”
curves embedded in a projective space by a non-special linear system. Recall
that a curve C<IP" is said to be of maximal rank if for every k=1, the natural
map of restriction r¢ ,(k): H°(P", Gp.(k))— H®(C, Oc(k)) is surjective or injective.
In this paper we prove the following result (over any algebraically closed base
field).

Theorem. Fix integers n, d, g with n=5, g=0, d=2g+n. Let X be a general
curve of genus g and h: X —»IP" a general nondegenerate embedding with non-
special hyperplane section, deg h(X)=d. Then h(X) has maximal rank.

For n=3 and n=4 the corresponding result was proved respectively in [3]
and [2]. In [2] we assumed that the base field has zero characteristic; however
this assumption can be avoided quoting [11], Prop. 3 and Lemma 4, in the
proof of [2], Lemma 1. Hence this paper, together with [2, 3], vields the so
called “Maximal rank conjecture for non-special curves in IP*, n=3". Since
in the proof of the theorem we use induction on n, we need the main result
of [2] (but not of [3]). As promised in the introduction of [2], here we use
the skeleton of the proof (and often the notations) of the main theorem of
[2]. The main difference with respect to [2, 4], is in §1 (intersection with a
hyperplane). Furthermore we don’t use any nilpotent.

We prove the theorem by induction. We try to construct by an inductive
procedure called “la méthod d’Horace” (see [6, 9, 10]) a suitable reducible
curve Y= IP", degY=d, p,(Y)=g, with good postulation. A theorem of Sernesi
([13]) and Hartshorne-Hirschowitz [7]) states that the curve Y can be deformed
to a smooth curve Z<P", deg Z=d, p,(Z)=g, with h'(Z, 0,(1))=0. By semicon-
tinuity, Z has good postulation.

* Partially supported by Italian M.P.1.
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§ 0. Notations and Preliminaries

Definition. Let Z*(d, g; n) be the closure in Hilb IP” of the set of smooth irreduc-
ible curves C < P" with H'(C, ((1))=0.

It is well-known that Z*(d, g; n) is irreducible. This fact will be used many
times in the next sections without further mention.

For a curve C in IP", N, is its normal bundle. A curve C is said to be
k-secant to another curve D if it intersects D quasi-transversally and exactly
at k points. The next lemma is due to Sernesi {[13]) and Hartshorne-Hirschowitz
([71)- It is the fundamental tool for this paper (as it was for [2] and [3]).

0.1 Lemma. Take YeZ*(d, g; n). Denote by D a rational curve of degree f<n
which spans a W/, Assume that D is k-secant to Y with 1<k<f+1. Then Yu
DeZ*{d+f, g+k—1;n). Furthermore if Y is a locally complete intersection with
h* (Y, Ny)=0, then h*(Yu D, Ny p)=0.

A map is said to be strictly surjective (or s-surjective) if it is surjective but
not injective. Let E be a closed subscheme of the projective space V; %, will
denote its ideal sheaf. For all integers k=1, r ,(k): H°(V, O, (k) > H°(E, Oy (k))
is the restriction map. If V=IP", we write often .7 ,, rz (k) instead of % ,,
re.v(k). If H=IP""! we write often Z*(d, g; H) instead of Z*(d, g; n—1).

For a real number x, [x] denotes its integral part.

0.2 Remark. Let S —IP™ be a general subset, #(S) <m+ 3. Then there is a smooth,
rational normal curve C = IP™ with S C.

§1. Intersection with the Hyperplane

1.1 Definition. Let U, V be irreducible subvarieties of IP". The join, U°V, of
U, Vis the closure of the union of the lines [x, y], xeU, yeV, x=+y.

Note that U°V is irreducible and dim(U°V)< dim(U)+dim(V)+ 1. By itera-
tion one defines V%:=V°¥ %=1 The following lemma is well-known (for ex.

see [1]):

1.2 Lemma. Let C be a nondegenerate, irreducible curve in P". If U is an irreduc-
ible subvariety of ", then dim(U° C)=min(n, dim(U)+ 2).

Proof. If dim(U)<n, since C is nondegencrate there exists peC such that
p¢Vert(U):={x: x°U=U} (note that Vert(U) is a linear subspace of U). Hence
dim(C°U) 2 dim(P° U)=dim(U)+1. If dim(U°C)=dim(U)+1, then p°U
=C°U. It follows that C is contained in Vert(U°C). Since C spans IP",
Vert(U°C)=P", hence U°C=P". ]

1.3 Corollary. Let Cc<IP" be a nondegenerate, irveducible curve, then
dim(C*“* Vy=min(n, 2t +1).

Let H<P" be a hyperplane and D« H be a closed subscheme of dimension
at most one. Denote by C a nondegenerate curve in P*. For h:=[(n—2)/2]
let Ly, ..., L, be h distinct lines, intersecting H transversally, not meeting D
and satisfying the following incidence relations:

(al) L, is 2-secant to C;
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(@2) L;, iz2, is 2-secant to CuL;_, with LinC=+@, L,_,nL;+&. Also
let {Y;}, 1 <j<t, be ¢ lines such that:

(b) forevery j, 15j<t, ;nC# & and Y;is 2-secant to X:=CUL;u...UL,

Set Vi=L,u..uL,uY,u...UY.

1.4 Lemma. With notations as above, assume that v,y ~m), g (k) is strictly surjec-
tive for a given k>0. Then we can deform Ly, ..., L,, Y;,..., Y, to Ly, ..., L,
Yi, ..., Y/, the L;, Y] satisfying (al), (a2) and (b), and we can find a line A 2-secant
to X'=CUL;u...uly, with ChA+& and 1y, ay~m,ulk) surjective (Y’
=L u..uL,uYu..UY)).

Proof. Let ScH be a hypersurface of degree k containing Du(Yn H). If
C°?~HcS, we put Y=Y and take for A a generic 2-secant line to C. If
C°?nHc<S but (C°*nH)4¢S there exists L, =C°? and A<=C°3 such that:
AnL,+&, AnC+g, and AnHd¢S. We deform L, to L;. Since for every
line B, (B°C)nS+ @, we can follow this deformation with a deformation
Ly, ...,L,Y,. Y, of L,,....,L,, Y, ..., Y, in such a way that the incidence
relations (al), (a2), (b), hold and such that (DU (Y’ nH))<S. Then we have
W(H, S vonnma)=h"H, I,y nmuk)—1 by semicontinuity and
Fpor v 4y~ m, a(K) 1S surjective.

If (C°3~H)cS, we go on this way. By 1.3 dim(C°®**?)=n. Hence there
is s<h such that (C°“*VAH)cS and (C°“*?~H)¢S. There exist lines
AcCO* D [ CO*1) 1 <i<s, the I’s having the same incidence relations
as the lines L; and such that: AnHd4&S, AnL,+a, AnC+@. We deform
L,..,Lg to L,...,L. We follow this deformation with a deformation
L,u..vluYu...uY of Li,;u...uL,uY u...uY in such a way that
Du(Y'nH)cS and (al), (a2), (b) do hold. Then, as above, we are done. [

1.5 Lemma. Fix integers d, g, n, s with nz3, g=0, dzg+n, sz1,
g2(s—n—3—(d—g—n))[n/2]. Let S be a general subset of P" with #(S)=s.
Then there exists a curve X € Z*(d, g; n) with S= X and h* (X, Ny)=0.

Proof. Take a general subset S’ of IP", #(S')=min(s, n+ 3). By 0.2 we may find
a smooth, rational normal curve C in P* with §'=C. Hence we may assume
szn+3. If B, 1<i<d—g—n, are d—g-n general points, there are lines L,
1<i<d—g—n, with PeL; and L; l-secant to C. By 1.3, C°**D=P", where
t=[n/2]. Set y=s—n—3—(d—g—n). Given any y general points 4, ..., 4, in
P", there are lines By, i=1,...,t, j=1,...,y, with By; 2-secant to C and if
2<£ist, B;; intersecting both C and B;_,; ; (but not CnB;_; ;) with 4;eB,;,
j=1,...,y (note that B;;c C°“*1V). Now the union of C, L,,...,L,_,_, and
B, 1<i<t,1<j<y,is a curve in Z*(d—(g—yt), yt; n) by 0.1; note that g—yt
=0 by assumption. Adding further (g— y¢) general 2-secant lines to C, we get
the curve in Z*{d, g; n) we were looking for.

1.6 Lemma. Fix nonnegative integers d’, g, n, e, d’, g’ with 0<e<d —g'—n,
d'zg'+n—1. Set s=n+e. Assume g'=(s—n—2—(d"—g"—n+1))[n/2]. Let S
be a general set of s points in a hyperplane H of 1P".

(@) There existe YeZ*(d', g'; n) through S and DeZ*(d", g"; H) through S.
For general such Y and D we have YuDeZ*(d' +d", ¢ +¢"+s5—1; n).
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(b) Set B=Yn(H\S). Assume that ry, (k) is surjective for some k. Then we
may assume that h®(H, S g g (k))=max (0, h°(H, % x (k) — 4 (B)).

Proof. (a) The existence of D’ with h'(D, N,)=0 and passing through S follows
from 1.5. Fix any such D' and S’ =S with #(S)=n. Take C in Z*(d' —e, g’; n)
through S’ with h'(C, N;)=0. Then take the union E of e lines l-secant to
C and such that EnH=S8\S" By 0.1 ’*(D’UCUE, Ny c,p)=0and D'uCu
EeZ*(d +d", g +g"+s—1; n). We may deform D', CUE and S to general
D, Y, S preserving the incidence relations.

(b) The last part follows from 1.4. [

1.7 Lemma. Let H<IP” be a hyperplane, k=1 an integer, C<P", D H reduced
subschemes; assume that no component of C is contained in H.

@) If re  (k—1)y and vy, nc), u(k) are injective, then re p(k) is injective.

(b) Assume that r¢ ,(k—1) and rp, g c), (k) are surjective. Then

hO (]Pn’ ‘fCuD,n(k)) é hO (IPn, ‘fc,n(k_ 1)) + hO (Ha rfDu(Cr\H),H(k))'

Proof. Take feKer(rc,p (k). Since f|H vanishes on DU(CnH), f is divided
by the equation z of H. Since f/z vanishes on C, f=0. (b) Take general subsets
A<P™\H, BcH with #(A4)=h°P", % ,(k—1)), #(B)=h"(H, I, cnm k)
Then apply (a)to CuAand DUB. [

§ 2. Basic Inductive Statements

From now on in this paper we fix integers d, g, n with d=g+n, g=0, n=5.
By [2] and induction we assume the theorem in IP" 1.

2.1 Definition. The critical value v(¢, s, n), t=s+n, s=0, is defined by
v(t, s, )=min{k=1: h°(P", Gpn(k)) 2kt —s+1}.
We set j:==v(d, g, n).
2.2 Definition. We define integers g(k, n), f(k, n) for k=2 by:

k(g(k, n)+n)—g(k, n)+1+f(k, n)=(n;:k), 0sfk,mysk—2. 1)

Set g(1, n):=0, (1, n):=0.
2.3 Definition. We set r =max {k: g(k, n)<g}.
2.4 Definition. For r <k <j we define integers d(k), h(k) by:

kd(k)—g+1+h(k):(n:k), 0<h(k)<k—1. )
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From the definitions we immediately get:

2.5 Lemma. () If t<t, then v(t, s, ) Zo(t, s, n).

(i) g(u, n)+n=max{t=n:v(t, t—n, n)=u};
d(k)=max{t=g+n:v(t, g, n)=k}.

(i) We have r £j with equality if and only if d=g(r, n)+n, g=g(r, n).

Now we introduce the basic inductive statements:

2.6 H(k), k=1: A general CeZ*(g(k, n)+n, g(k, n)—f(k, n); n} has r¢ (k) bijec-
tive.
This definition makes sense because g(k, n) =/ (k, n) (see 4.3).

2.7 R(k), k=r+1: There exists (X, Z, T) such that:

(1) X=Z0UT, ZnT=a, ry (k) is bijective;

(2) ZeZ*(d(k)—h(k), g; n) and T'is the union of h(k) disjoint lines.

We will use R(k) only when it makes sense, i.c. only when d(k)—h{k)=g+n
(see 3.3, 2.5(u)); if k=r+ 2, there is no problem by 4.6.

28 R'(r+1), if g—h{r+1)=0: There exists Y in Z*(d(r+1), g—h(r+ 1); n) with
ry (¥ +1) bijective.

§ 3. Proof of the Basic Inductive Statements

In this section we prove the statements H(k), k=1, R(k), k=r+1, R'(r+1),
modulo some numerical lemmas whose proof is postponed to Sect. 4. These
numerical lemmas will also be used in Sect. 5 (proof of the theorem).

Recall also that, by [2] and induction, we may assume the theorem for
n—1,n=5.

3.1 Lemma. For k=1, H(k) holds.

Proof. H(1) is clear and H (2) was proved in [4], Prop. 1.1.

Assume k=3 and that H(k—1) is true.

(i) First suppose: n—f(k, n)+f(k—1,n)=1.

Set x:=g(k,n)—g(k—1,n). By 4.1, 43 we have x=n—1. By the theorem
for n—1 there exists deZ*(x, x—n+1; H), H a hyperplane in IP", with rp, gz (k)
of maximal rank. Note that

(n ni?k>~(kx~(x—n+ D+D=gk—1,m)+f(k,n)—f(k—1,n)>0 (see4.3).
Hence rp y(k) is s-surjective. Let Sc H be a set of si=n—f(k, n})+fk—1,#n)
general points. Since gk, n)—gk— L n)=zn—1+(fk—1,n)—f(k, n)~2)[(n—1)/
2] (see 4.2) and n+f(k—1, n)=s, we may assume by 1.5, 1.6 that there exists
YeZ*(g(k—1, n)+n, glk—1, n)—f(k—1, n); n) with ry ,(k—1) bijective and such
that Y and D intersect (quasi-transversally) exactly at § and with X:=Yu
DeZ*(g(k, n)+n, gk, n)—f(k, n); n). By 1.7 we get that r¢_,(k) is bijective.

(i) Now assume n—f(k, n)+f(k—1, n)<0.

This time we take for D an element of Z*(x, z;n—1), x as above and
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zi=g(k,n)—glk—1,n)+f(k—1,n)—f(k,n). Note that x=z+n—1 and that
fk,n)<k—2. By 41 we have z=0. We have

14k
(”n_“lL )—kx+z~1=n—|—g(k—1,n)—1.

hence rp, y(k) is s-surjective. We conclude as above (but with #(S)=1). [
3.2 Lemma. If r =2 and g—h(r+ 1) =2 g(r, n)—f (¥, n)($), then R’ {r +1) is true.

Proof. Since g(r, n)= f (r, n) by 4.3, R'(r+ 1) is well-defined.

Set x=d(r+1)—g(r, n)—n, y=min(x+1—n,g—hr+1)—g(F, n)+f(r, n)
and si=1+g—h(r+1)—g(r, n)+f(r, n)—y. If y=x+1—n, we have y =0, because
dir+1)—g(r,n)=2n (see 4.5(b)). So in any case y=0 and x=y+n—1. Hence,
by the theorem for n—1, there is a hyperplane H in IP* and DeZ*(x, y; H)
with rp x(r+1) of maximal rank. We have

(Zj;)—(r+1)x+y—1=g(r, n+n—s.

Hence rp y(r+1) is strictly surjective. Let S H be a general set of s points.
Note that s=1 (assumption ($) and definition of y). To apply 1.5 we have to
check that y=(s—x+y—3)[(n—1)/2]. But if s=1, there is nothing to check.
Hence we may assume y=x+1—n. In this case we see that s<n+f(r, n) and
the inequality follows from 4.5(a). Similarly since s<n+f(r, n), we can apply
1.6 with YeZ*(g(r, n)+n, g(r, n)—f(r, n); n). By 3.1, we may assume that Y sat-
isfies H(r). By 1.7, 1.4 and semicontinuity, X :=Yu D satisfies R'(r+1). [

33 Lemma. If g—h(r+1)<g(r,n)—f(r, n), r =2, then R(r+1) is true.

Proof. By the assumption and 4.4, d(r+ 1)—h(r+1)= g +n, hence R(r + 1) makes
sense. Let H<IP" be a hyperplane and C<H be a general smooth curve of
degree c:=d(r+1)—h(r+1)—g(r, n)—n and genus g—g(r, n)+f(r,n)<r—1. By
44 czn—1+(g—g(r, n)+f(r, n)). Denote by T the general union of h(r+1) dis-
joint lines such that Tn C=g@. Finally set D=TuC. We will sec in 3.4 that
rp,u(r+1) is strictly surjective. We have:

'

Ko (Oxr + 1) —h°(Op(r+1)=2g(r, n)+n—g—f(r,n)—1>0

(by the hypothesis).

Let ScH be a general set of s:==1+4+g—g(r, n)+f(r, n) points. By 2.2, s= 1.
By the hypothesis, s<h(r+1). Hence 0= (s—n—2—(c—n+1)) and we can apply
1.5 to C and S. Now take YeZ*(g(r, n)+n, g(r, n)—f(r, n); n) satisfying H(r).
Since g(r, n)—f(r, N=(s—n—f(r, n))[n/2] (see 4.3) by 1.5 we may assumeCnY
=38. By 0.1 we may assume that Z:=C U Y belongs to Z*(d(r+ 1)—h(r+ 1), g; n).
Finally by 1.7, 1.4 and semi-continuity, we get that rz_r ,(r+1) has maximal
rank. [
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3.4 Sublemma. The map ry, 5 (r+ 1) is strictly surjective.

Proof. Let f be the maximal integer such that

=Gt ems(", ),

Note that f=n+r—2 for n=5, r= 1. Set u=min(c, f). By the theorem for n—1
there is EecZ*(u, g—g(r, n)+f (r, n); H) such that r; 4 (r) is surjective. Fix a hyper-
plane V of H. In ¥ consider the union B of a general rational curve F, deg(F)
=c-u, F intersecting E quasi-transversally and only at a point, and h(r+1)
general disjoint lines.

Note that if r=1 and n=5 we have

r(r+2)+(n—2)(r+1)+Ié(n;i;r).

Hence by (8] if n=S5, by [5] if n=6, rpy(r+1) is surjective. By 0.1, 1.7,
we may assume the surjectivity of ry, y(r+1). By semicontinuity rpr g(r+1)
is surjective. By counting dimensions, it is also strictly surjective. []

3.5 Lemma. R'(r+1) implies R(r+2).

Proof. In a hyperplane H we take for Z a general rational curve of degree
x:=d(r+2)—d(r+1)—h(r+2) and for T the union of h(r+2) general lines. By
[5] D:==Z v Tis of maximal rank. We have:

n+r+1

( he1 )—(r+2) x—1—(r+3)h(r+2)=dr+1)—h(r+1)—1>0 (by 4.5, 4.3).
Hence rp g(r+2) is strictly surjective. Then we take a general set S of s:=h(r
+1)+1 points in H. Since x+1=s (44) we may assume S<Z. Now let ¥
be a general element of Z*(d(r—+1), g—h(r+1); n) (hence satisfying R'(r+1)).
Since d(r+1)=g+n (2.5), by 1.6 we may assume Sc Y. By 0.1 (recall x+1z5s)
and 1.7, 14 and semicontinuity, X:=ZuY Z*d(r+2)—h(r+2),g;n) and
ryor.»(r+2) has maximal rank. [

3.6 Lemma. For k=r+ 1, R(k) implies R(k+1).

Proof. (i) First assume h(k+ 1) = h(k).

In a hyperplane H we take a general rational curve Z of degree
x=d{k+1)—d(k)—h{k+1)+h(k). By 44 x=n—1. Let T=H be the general
union of h{k+ 1)— k(k) lines. By [5] D:=Z U T has maximal rank. We have:

n+k o
<n~1>_h (Oplk+1)=d(k)—1>0.

By R(k) there is X:=YU T" with ry (k) bijective. We may assume that Z and
Y intersect at one point and that Z U Y is smoothable (0.1). We conclude with
1.7, 1.4 and semicontinuity.

(if) Now assume: h(k)>h(k+1).
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This time we take D < H, a general rational curve of degree x:=d(k+ 1)—d (k).
By 4.4, x=n—1. We have:

(1) houlier 1) =014tk =it ®

which according for instance to 4.4 is strictly positive. Hence r, ,(k+ 1) is strictly
positive. As above, R(k) gives X :=Yu T". We would like that D and Y intersect
at one point and that D meets h(k)—h(k+1) lines of T’. This is possible if
we can impose s":=1+h(k)—h(k + 1) general points to D. According to 1.5 this
is possible, because by 4.4 d(k+1)=d(k)+h(k)—h(k+1)—2. Now DuX is
smoothable (0.1). We conclude with 1.7, 1.4, and semicontinuity. []

§ 4. Numerical Lemmas

4.1 Lemma. For n=5 and k=3 we have glk, n)—g(k—1, n)=n+k—2.
Proof. From the definition (1) of g(k, n), g(k— 1, n), we get:

—1+k
=2tk =gty =(" ") e s L= @

Sm.ﬂ&ﬁ{n:§—{k—n(n;i;ﬂ~n—l+&—JXk—Dm+k—%zmd(Lw)

24k
(nn_;)—an3k+ﬁhmweﬂ&—&}—ﬂ&k#k—%Gﬂm.

From the definition (1) of g(k, n) we obtain
k
gwﬂn=K(tt)—kn~1—fmﬂﬁ/m—1q. 5)

Assume g(k, n)—g(k—1, n)<n+k—3. By (4) and (5) to obtain a contradiction,
it is sufficient to check that F,(k)<0. We easily see that G,(k+1)=G,(k), k=2,
nz5, and that G,(2)>0, F,(3)<0,n=5.

4.2 Lemma. We have g(k, n)—g(k—1,n)=n—1+(k—5)n—1)/2if k=5,n=5.
Proof. Set

FogMz{n:fli)—cr+j_v/&—2}ﬂr{k—2}an—I}—Mk—SKn—HQ.

By (1), (4), (5), it 1s sufficient to check that F(n, k)20 if n=5, k=35. Set F'(n, k)
=F(n+1,k)—F(n, k) and F'(n, k)=F (n+1, k)—F'(n, k).

k—1 k-1
smm1wogm:{”:+1 )—(:;Q %hk—mgOEngikgSJtmkamm
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to check that F(5,k)=0 and F'(5, k)=0 for every k=5. This is left to the
reader. [

By the definition (1) of g(k, n) the following lemma follows immediately.
4.3 Lemma. We have g(k, n)=k-n/2+(k—2) for all k=2, n=5.

4.4 Lemma. For every kzr+1, r=1, we have d(k)—d(k—1)=Zn+2k—2, except
in the following cases: k=3, n=5;k=2,n=5or n=6.

Proof. By the definition (2) of d(k), d(k— 1), we find:

(6)

k(d(k)—d(k—l))+d(k—1>+h(k>~h(k—1)=<n:il>'

First assume k= 3. Set

Gn, k):(":f;1)~(”+ﬁ_1)/(k~2)~kn—2k2—3k+1.

Since d(k—1)Zg(k—1)+n, by (5), (6), it is sufficient to check when G(n, k}=0.
Set G'(n, k)=G(n+1, k)—G(n, k) and G"(n, k)=G'(n+1, k)— G’ (n, k). Note that
G"(n, k)=0 for every k=3, n=5. It is easy to check that G'(5, k)=0 for every
k=3 and that G(5,k)=0 for every k=6. Furthermore G(7,3)=0. Since
d2)Zg(2, n)+n, d(1)=n, it is casy to check the thesis for k=3, n=6; k=4,
n=6k=2,n=7. [

4.5 Lemma. (a) We have d(r+1)—g(r, =20+ (r—4)(n—1)2if r=4,n=5.
(b) We have d(r+1)—g(r,n)22nif r=1,n=5.

Proof. From the definitions (1) and (2) we obtain:

(r+D)dr+1)—g(r,n)—n)+2g(r, n)+n—g+hr+1)—f(r, n):(:ll—_f—;) (7

(a) Set

M, r):(n+r)—(n+r>/(r—1)—n—r—2n(r+1)—(r+1)(r—4)(n—1)/2.

n—1 n

By (5) and the inequality: g(r, n)<g, it is sufficient to check when M (n, r)=0.
Set M'(n,r)=M(@n+1,n—M(mnr) and M"(n,7):=M'(n+1, r)—M’(n, r). Since
M"(n,r)20 for n=5, r=2, it is sufficient to check (left to the reader) that
M5, r)=20and M'(5, r) 20 for every r = 4.

(b) Ifr =4, this is covered by part (a); the remaining cases have to be checked
by hands. Assume for instance r=1; it is sufficient to check that
22n)+1=(n+2)(n+1)2ifn=5 O

4.6 Lemma. We have d(r+1)—g(r,n)=n—1+2rif n=5,r=2.

ntr

Proof. Set Z (n, r)=(n 1

>—(n:r)—(r—l)—n—r—(2r— 1)(r+1). Again it is suf-
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ficient to check when Z(n,r=0. Set Z'(n,r)=Zn+1,r)—Z(n,r) and
Z'n,=2Z'"(n+1,r)—Z'(n, ). Z"(n,r)=0 for every n=5, r=2, Z’'(n,1)20 for
every r=22, Z(5,r)z0 if r=3, Z(6,2)=20; if n=35, r=2, we have g(2, 5)=10,
g=g(2,5), hence d(3)=21. [

§ 5. Proof of the Theorem

We fix n=5, g20, d=g+n, and we set j=0v(d, g, n) (see 2.1). Since Z*(d, g; n)
is irreducible, it is sufficient to find X, Yin Z*(d, g; n) such that r,_,(j) is surjective
and ry ,(j—1) is injective (semicontinuity and Castelnuovo-Mumford’s lemma
([12], p. 99)). If j<2 see [4], Prop. 1.1. Hence we assume j=>3. We distinguish
several cases.

5.1 Lemma. If j=r the general curve X in Z*(d, g; n) has rx _,(j) surjective.

Proof. According to 2.5(iii) we have g=g{r, n) and d=g(r, n)+n. We show that
there exist XeZ*(g(r, n)+n, g(r, n); n) and a set P of f(r, n) points such that
rxor.n(r) is bijective. For this we repeat the proof of “H(r—1) implies H(r),
n—f{r,n)+f(r—1,n=1" (see 3.1), with two minor modifications. To get the
correct genus we put #(S)=n+f(r—1, n) (instead of n+f(r—1, n)—f(r, n)). To
have the right number of conditions in H, we add P<H, a set of f(r, n) general
points. We have only to check that g(r, n)—g(r—1, ) 2(f (r—1, n)—2)[(n—1)/2],
to apply 1.5. This follows from 4.2. Note also that deg(Y)—p,(Y)=s, where
Y satisfies H(r—1). Hence we can apply 1.6, 1.4 and conclude by 1.7. [

5.2 Lemma. If j=r the general curve X in Z*(d, g; n) has ry ,(r— 1) injective.

Proof. If r=3 the injectivity is contained in [4]. Hence we may assume r=4.
To prove the lemma it is sufficient to construct J in
Z*(gr—1,n)+n+1, g(r—1,n)+1;n) with r; ,(r—1) injective. Indeed, then we
may take as X the union of J and g(r,n)—g(—1,n)—1 2-secant lines to J
(0.1). To construct J we modify the proof of “H(r—2) implies H(r—1)” (see
3.1).

Setx=g(r—1,n)—gr—2,n)+1and s=f(r—2,n)+n By 4.1 x=n—1. Hence
for general De Z*(x, x—n+ 1, H), H a hyperplane, rj, 5(r—1) is of maximal rank.
We have: (O (r— 1) =R (Op(r—1)=g(r—2, n)—r+14+f(r—1, n)—f (r
—2,n)>0(by43).Sincegr—1,n)—g(r—2, m)=zn—2+(f(r—2, n)—2[(n—1)/2]
(by 4.2), we may apply 1.5 and assume that D contains a general set S of s
points in H. By 1.6(a) there is Y in Z*(g(r—2, n)+n, g(r—2, n)—f(r—2, n); n)
satisfying H(r—2) and such that YNnD=S, Yu
DeZ*(gr—1Lm)+un+1,g(r—1,m)+1;n). Since  deg(Y)—s=h%(04(r—1)
—h°(Op(r— 1)), we conclude with 1.7, 1.6(b). []

5.3 Lemma. If j=r+1 the general curve X in Z*(d, g; n) has ry_,(j) surjective.
Proof. (i) First assume d=d(r+ 1).

Wehave d(r+ 1) g(r, n)+2n—1by 4.4. Note that g = g(r, n) by the definition
of r. Set x=d—g(r,n)—n, y=min(x+1—n,g—g@ n)+f(, n), s=g—g(r, n
+f(r,n)—y+1We have y=0, x=y+n—1 and 1Z<s<n+f(r, n)($$). Let H be
a hyperplane. By the theorem for n—1, for a general De Z*(x, y; n—1), rp z(r+1)
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is of maximal rank. We have:

(Zir;)—ho(@n(rﬂ)):g(r, n)+n—s+h(r+1)>0.

We show the existence of CeZ*(d(r+1), g; n) and of a set P of h(r+ 1) points
such that r¢_p ,(r+1) is bijective. For this we repeat the proof of 3.2 with
D, s defined as above and YeZ*(g(r, n)+n, g(r, n)—f (r, n); n). Furthermore, to
have the right number of conditions, we add h(r+ 1) general points P in H.
We have to verify the hypothesis of 1.5 for D and s. However we may assume
y=x-+1—n (otherwise s=1). Then the condition is:

dr+1)—gr,n)—2n+12(g—dr+D+n+f(r, n)—3)[(n—1)/2].

Since d(r+1)=g+n, this follows from 4.5(a). Finally, since deg(Y)—p.(Y)=s
(by ($9%)), we conclude with 1.6 and 1.7.

(i) Now assume d <d(r+1).

Set c¢=d-g(r,n)—n, v=min(c+1—n,g—g(r, n), wu=max(y,0) and
s=1+g—g(r,n)—n. Take DeZ*(c,u; H) and YeZ*(g(r, n)+n, g(r, n); n) with
ry »(r) surjective. The existence of ¥ was shown in the proof of 5.1. If u=v=¢g
~g(r, n), then s=1 and we conclude with 1.6, 1.7. If u=v=c+1—n, then s<n
and we conclude with 1.5, 1.6, 1.7. Finally s<c+1 if cEn—1. Then D is a
rational normal curve in IP°. We conclude with 0.1, 1.6(b), 1.7. [

5.4 Lemma. If j=r+1, the general curve X in Z*(d, g; n) has rx_,(r) injective.

Proof. The lemma follows from the existence of Te Z*(g(r, n}+n+1, g(r, n)+e; n)
(e=0 if g=g(r, n), e=1 otherwise) with rr ,(r) injective. If e=1 the existence
of T was shown in the proof of 5.2. A slight modification of that proof also
yields the case e=0. We have just to check the corresponding condition for
1.5 which is:

gr,n)—gr—1Lnzn—2+(f(r—1,n—-2)[(n—1)/2].
See 4.2. [
5.5 Lemma. If j=r+2, the general Te Z*(d, g; n) has rr ,(j— 1) injective.

Proof. The lemma follows from the existence of XeZ*(d(j—1)+1, g; n) with
rx..(j—1) injective (note that d=d(j—1)+1, see 2.5).

(i) Assume R(j—2) holds (which is always the case if j=r+4 by 3.4, 3.5). We
apply 1.6(b), 1.7 with: D < H a rational curve of degree x:=d(j—1)—d(j—2)+1;
Y=ZuTgiven by R(j—2)(ZeZ*(d(j—2)—h(j—2), g; n), T the union of h(j —2)
disjoint lines). We require that D intersects Z and each line of T at one point.
This is possible since x+3=h(j—2)+1 (see 4.4). Clearly Yu D is smoothable.
Set m:=h®(Og(j—1))—h°(Op(j —1))=d(j—2)+h(j—1)—h(j—2)—j. By 4.4 or 4.3,
4.5, we have m>0. Since deg(Z)Zm+1, ry_p ,(j—1) is injective by 1.6(b), 1.7.

(i) Now assume j=r+3 and that R'(r+ 1) holds.

In a similar way we take YeZ*(d(r+1), g—h(r+1); n) satisfying R'(r+1),
a rational curve Dc H, deg(D)=x:=d(r+2)—d(r+1)+ 1. Since x=h(r+ 1) (4.4),
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by 0.1 we may assume that D and Y intersects quasi-transversally in
s:=h(r+1)+1 points, and that DU YeZ*(d(r+2)+1, g; n). We conclude with
1.6(b), 1.7.

(iii) Finally assume j=r+2.

Again the proof is similar with YeZ*(g(r, n)+n, g(r, n)—f (r, n); n) satisfying
H(r), DeZ*(x, y; H), x=d(r+1)+1—g(r, n)—n,
y=min(x—n+1, g—g(r, n)+f(r, n)) and s:==g—g(r, n)+f(r, n)+1—y. The con-
dition x=n—1 is equivalent to d(r+1)—g(r, n)=2n—2 (see 4.5(b)). We always
have 1=<s<n+f(r,n)—1, hence deg(Y)}—p,(Y)=s. To use 1.5 for D and s we
may assume y=x+n—1 (otherwise s=1). Since d(r+ 1) = g +n (2.5) it is enough
to show that d(r+1)+2—g(r, n)—2n2(f (r, n)—2)[(n—1)/2] (see 4.5). []

5.6 Lemma. If j>r+2 and d—d(j—1)=h(j—1), the general T in Z*(d, g; n)
has 1 ,(j) surjective.

Proof. (i) Assume R(j—1) holds.

We take YU T satisfying R(j—1), D<= H rational of degree x:=d—d(j—1)
which intersects Y and each line of T at one point. This is possible since
x=h(j—1) by assumption. Hence A=Du Tu Y is connected, p,(4)=g, and by
1.6(b), 1.7, 4 ,(j) is surjective.

(i) In a similar way if j=r+2 and R’(r+1) holds, we take Y satisfying
R'(r+1), D<H rational of degree x=d—d(r+1) and s:=h(r+1)+1. By [5]
we may assume D of maximal rank. We have deg(Y)—p,(Y)=s and x+3=s.
We conclude as usual with 1.6(b)and 1.7. O

57 Lemma. If j=r+2 and d—d(j— 1) <h{j— 1), the general curve Tin Z*(d, g; n)
has ry ,(j) surjective.

Proof. (i) Assume that R(j—2) holds.

Then as in 5.5(i) we construct XeZ*(d(j—1), g; n) with ry ,(j—1) surjective
(for this we have to check: d(j—1)—d(j—2)=h(j—2) (see 4.4)). Then we take
DcH rational of degree d—d(j—1), of maximal rank and intersecting X at
one point.

(i}) Assume j=r+3 and that R’(j—2) holds.

As in 5.5(ii) we construct XeZ*(d(j—1), g; n) with ry ,(j—1) surjective (we
have to check that d(r+2)—d(r+ 1) = h(r+1): 4.4). Once we have X, we conclude
as above.

(ii)) Assume j=r+2.

We construct XeZ*(d(j—1), g;n) with ry ,(j—1) surjective. For this we
repeat the proof of 5.5(iii) but with x:=d(r+1)—g(r, n)—n. The arithmetical
conditions now are: d(r+1)—g(r, n)=2n—14.50b) and d(r+ 1)+ 1—g(r, n)—2n
Z{f(r, ) —2)[(n—1)/2] (4.5(a)). Note that we have 1 <s=<n-+f{r, n) and hence
deg(Y)—p.(Y)2s. O
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