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ON THE BOUNDARY INTEGRAL EQUATIONS 

FOR THE CRACK OPENING DISPLACEMENT OF FLAT CRACKS 

Tuong HA-DUONG 

The boundary integral equations for the crack opening displacement in acoustic and elastic 
scattering problems are discussed in the case of fiat cracks by means of the Fourier analysis 
technique.The pseudo-differential nature of the hypersingular integral operators is shown and 
their symbols explicited. It is then proved that the variational problems assocaited with these BIE 
are well-posed in a Sobolev functional framework which is closely linked with the elastic 
energy. A decomposition of the vector integral equation in the elastic case into scalar integral 
equations is obtained as a by-product of the variational formulation. 

0. INTRODUCTION 

An effective method for crack detection in materials is the nondestructive testing by means of 

ultrasound. It consists of deducing the presence and characteristics of cracks from the analysis of 

the wave diffraction pattern. Mathematically, this inverse problem still remains one of the most 

challenging applied problems. Studies of the direct problem of the elastic wave scattering by 

cracks are then extensively pursued with the purpose of acquiring more useful information. For 

the case of a penny-shaped crack, a fairly complete account of the state of the art in 1983 was 

given by Martin & Wickham [22]. A very recent work is that of Budreck and Achenbach [6]. 

The main tool in these studies is the boundary integral equation (BIE) for the crack opening 

displacement (COD). However, this BIE suffers from a double disavantage of being a first kind 

Fredholm integral equation and of having a hyper-singular kernel. For this reason, almost all the 

references in [22] focus on the techniques of transforming this BIE to a more tractable second 

kind integral equation, or to a Neumann's serie problem. Some techniques of regularization are 

recently investigated to calculate the hyper-singular integral. See e.g. [6], Bui et al.. [7], Hirose 

& Niwa [17], Nishimura & Kobayashi [28]. 
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Another path was opened by Nedelec who showed the good functional properties of the first 

kind BIE and how to deal with the hyper singular character of the kernel. His results for the 

Laplace equation ([25], [26], [27]) were extended by others for the Helmholtz equation [16], the 

biharrnonic equation [13], the electromagnetic or elastic waves scattering problems [3], [2] .... 

Numerical experimentations were performed, giving accurate and stable results in many 

different situations including crack calculus [10], transient acoustic scattering problems [12] or 

electromagnetic scattering by single or gratings of antennas [4], [5]... 

On the other hand, Wendland and his co-workers have made important contributions to the 

analysis of the discretizations of first kind integral equations, including scalar and vectorial 

problems. See e.g.[11, [18], [29] and [30]. 

An important fact which should be stressed on is that although compactness prevents first kind 

integral operators from being continuous and invertible from a Banach space into itself, there is 

nothing to prevent them from being continuous and invertible form a Banach space to an other 

one ! A key idea of Nedelec in proving that such is really the case for the integral operator 

associated with the Laplace equation [27] is the use of a variational formulation for the integral 

equation. For the Neumann's problems, the same idea proves particularly efficient in that it 

permits moreover an elegant treatment of the hyper-singular kernel. See e.g. [25] and [ 16]. 

Naturally, the variational treatment cannot make the integral equations solvable when they are 

not ! This is the ease of the BIE in scattering problems, when the square of the frequency is an 

eigen value of an interior problem. 

This paper deals with the BIE in the scattering problems by a flat crack of arbitrary shape, for 

arbiu:ary harmonic incident waves. Using a Fourier transform with respect to the variables of the 

cracks plane, the pseudo-differential nature of the integral operators is shown, and theirs full 

symbols explicited. From this, a coerciveness estimate (thus, more precise than a Garding 

inequality) is obtained for the associated bilinear form, and this allows us to prove the solvability 

of the equivalent variational problem. This is done first for scalar (or anti-plane) waves in part I, 

where the essential ideas are discussed. In part II, the more complicated calculations for the 

(vector) general elastic waves are presented, following the same path. 

In [24], the authors advocate for the definition of the hypersingular integrals by the Hadamard 

finite part which 'do not involve the tangential derivatives' of the integrand functions.However, 

this absence is, in our view, only apparent .The modern theory of pseudo-differential operators, 

cf. Chazarain & Piriou [8], clarifies this point by using the Fourier integral method. The 

framework of Sobolev spaces appears natural in the context of this theory. This is also the point 

of view adopted in this paper. 
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I. THE SCALAR PROBLEM 

1. The ~cattering problem and its associated BIE 

If the incident wave impinging on the crack is an anti-plane shear wave, so is the scattered wave 

and the whole problem is scalar, identical to the acoustic scattering problem in fluids. Thus, with 

a convenient scaling of the measure units, and suppressing the harmonic factor e ic0t, we have the 

following problem 

A U=(co2+A)u=0 in a=IR3\r  (1.1) 

(P) 0 u - i c 0 u = 0 (  ) w h e n r = l x l - + + ~  (1.2) 
~r 

0u  = f on F (1.3) 
On 

where F is a bounded smooth domain of the plane { x3 = 0 } and f~ the surrounding elastic 

medium. Actually, the crack is better represented by two coplanar (traction-free) surfaces that 

are infinitesimally close : the upper (F+) and lower (F.) faces of F. 

The known function f is the opposite normal trace of the incident wave on F. The radiation 

condition (1.2) expresses the fact that the scattered wave is outgoing. Finally, co is a given real, 

positive frequency. 

This problem is well studied. In particular, we know (see e,g. Colton & Kress [9]) that any 

solution u of (1.1 - 1.2) (for brevity, such solution will be called an outgoing wave) can be 

represented by the layer potentials on F : 

u(x) = ~ G(x,y) [ ~ ( y )  ] de - ~ ~-~y G(x,y) [ u(y) ] dy (1.4) 

where 

ei~x-yl 
G (x,y) = 4~ Ix-yl 

is the fundamental solution of A*, and [g] designates the jump of a function across F : 

[ g(y) ] = lim g(y' ) - lim g(y') = g. (y) - g+ (y) 

y'--+ y y'---~ y 

(Y'3 < 0) (Y'3 > 0) 

(1.5) 

Now, since the condition (1.3) implies that [ 0u ]  On = 0 for the solution of problem (P), this 

solution is then completely determined by its COD 9 = [u] : 
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u(x) = - ~ny " 4~tx-yt q~(y)dy (x ~ if2) (1.6) 

We will see in section 2 a new proof for formula (1.6) in the particular case of a flat crack, using 

the Fourier technique. 

Taking the normal derivative of (1.6) and comparing this to (1.3), we obtain the classical BIE for 

the COD of u : 

I:kp(x) = f(x) ( x e  1-3 (1.7) 

where 

-3 ~ b ( ~ )  
Dg(x) :=  3n---x" ~ 4~lx-yl tp(y)dy (1.8) 

However, since 

32 �9 ~ "  ~ )  when (x  ~ y ) 
3nx 3ny ( Ix-yl ) = 0 ( ix.yl3 

the operator D has an integral kernel which is hyper-singular, and must be defined carefully. 

The following equivalent definition of  D comes from the well-known properties of the double 

layer potential, and for the above reason, is preferable to (1.8) : 

bu 
I )9= ~ -  on F (1.9) 

where u is an outgoing wave with the following jump condition across F:  

j [u] =u_- u+=cp 

/ [3u]=03n 

(1.10) 

we will designate by (Q) the problem (1.1, 1.2 and 1.10). 
It should be noted that, since u is analytic in f~, the condition (1.10) is actually equivalent to : 

[ u ]  (x) = ~ ( x )  (1.11) 

[3n (x)=O f o r x e  {x3=O} 

F 

where r is the extension of 9 by 0 on {x3 = 0}'q-'. 
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In the next section, using a partial Fourier transform with respect to the variables of  the crack 

plane, we will show that D has a simple expression in terms of  the Fourier variables. It follows 

from this expression two main consequences in our point of  view : 

First, it will be obvious that the right way to deal with the BIE (1.7) is the variational method ; 

and secondly, we will be able to prove, with this method, the solvability of  D for all c0. This is 

the essential difference between our case here and the case when the BIE (1.7) is considered on a 

closed surface F. 

2. The Fooricr expression of  D 

We first prove a very simple "limiting absorption principle" for the solution of problem (Q). 

Let us denote by x' = (Xl , x2) the spatial variable in the crack plane, and ~ ' =  ( ~1, ~2) its 

Fourier dual variable. The radiation condition (1.2), joined to the analyticity of  u in D allows us 

to consider the partial Fourier transform with respect to x' : 

(~' ,x3) = Fx, u(x',x3) 

for x 3 ~ 0. From (1.1) fi is then solution of the ordinary differential equation : 

d2 ~ ( ~ ' , x 3 ) = 0 i n { x 3 > 0 }  ~3{ x 3 < 0 }  (-I~' Iz+ oP) ~ (~ ' ,  x3) + ~ 3  2 

And the jump condition (1.11) is transformed into : 

t [~](~,,0) = u(~ ,~)- ~(~,, 0 + ) =  ~0(~') 

(~,, o)= o 

(2.1) 

(2.2) 

The solution of  problem (Q) (the uniqueness of  which is as usual assured by the Rellich 

theorem) is then given in terms of  its Fourier transform in the following lemma : 

LEMMA 1. For 90 ~ H1/2(R2), the solution u of problem (Q) is in Hllocs and is given 

by: 

/ - ~ ~ 1 7 6  for x3 > 0 
~(~', x3)= 

/ l~0(~ ' ) exp( - ix3Z(~ ' , c0 ) )  forx3 < 0  
(2.3) 

where the symbol Z is: 
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{ ~'~-~-1~'12 
z(9', to)= 

i ~]1~' 12- o~  

if I~'1< to 

if I~'1_> to 
(2.4) 

PROOF : a) Let e be a positive real and toe = to + ie. Then, the solution of equation (2.1) that 

does not blow up when Ix31 + + ** is �9 

/ ~ (9' ,0+) exp (ix3 Ze) (x3 > O) ~(~' ~X3) (2.5) 
/~ (~', o_) exp {- ix3 z~) {x3 < o) 

where Ze is the square root of o~ - I~' 12 with strictly positive imaginary part. 

Imposing on fie the same jump condition (2.2) as for fi, we get : 

l - ~ 0  (~ ')exp (ix3 Z e ) ( x 3  > 0) 

~ (9' 'x3)= ~lq~o (~ ')exp (-ix3 Z ~ ) ( x 3  < O) 
(2.6) 

This is clearly an integrable function of x 3, and its Fourier transform with respect to this 

variable is obtained easily : 

~e({ ' ,{3)  = i ~ q ) ~  i~q~o(9')  

g~- z~ I~l~- 

with 9 = (9', 93). 

By the following correspondence in Fourier transform in R 3 : 

1 ~_~ e i ~  Ixl 

I~12- O~ 4~lxl 
(2.7) 

one gets : 

ue(x) = I - - -  y3=0} 

~iol~l x- y I 
( ) r (y) dy 

~Y3 4 ~ l x -  yl  
(2.8) 

The integration is actually on F because of the support of q00. 

b) Suppose now cp0 e H1/2(R 2) , and let us prove that ue has a limit in the sense of Hlloc (f2) 

when e --~ 0. 

Since ueis analytic in f~, in particular for x e { x3 = 0 } \ F ,  it suffices to prove that 11 uE IIHI(V) is 

bounded independently of e fo r  v = v + a  where v+a ={  x ; x 3 E ] 0 , + c ~ [ }  , ~ >  0 is 

given. By (2.6) and the Parseval formula, one gets : 
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/ ,  
Ilual~,~) =1/.,Jm~ I~o(~')l 2 (1 + I~,'l 2 + 17_.d 2) 1-2~-2~Z~im Z~ d~' 

Now, we can remark that : 

(i) In { I~'1 < co }, Im Ze ---> 0 when e ---> 0 ,  but we can always overestimate the ratio 

(1-e-2almZe) by co, 
2 I m Z e  

(ii) In {l~'l>co}, Im7_r --~/1~' 12 - co 2 . 

So that, there is no difficulty to obtain the estimate : 

(1 + 1~'12 + IZO 2) 1 - e  -2almZ~ < C (o~,co) ( 1 + 1~'12) 1/2 
2I ra  Z~ - 

where the constant is independent of I {'1, and of e in ] 0,1 [ .  The boundness of  II ne IIn~(v=) 

follows from this estimate. 

c) The lemma is totally proved from these part a /and b/ ,  and from : (i) The classical results on 

elliptic equations ; (ii) The trace theorems in Hlloc (D~) and Hloc (KL) (fl+ = f2 c3 R 3). 

Note that the correspondence (2.7) is valid for ~ = 0, so is the representation (2.8) in this case. 

Thus, one gets again (1.6), by Fourier technique, as claimed in section 1 �9 

Remarks 1. 

a) The result in I_emma 1 (essentially formula (2.3)) is not new, but may be it is worth setting 

here, for convenient use later, and also for the simple limiting absorption argument in its proof. 

Naturally, this simplicity is due to the geometry of  our problem. 

b) More importantly, il should be noted that, it is not sufficient to suppose that the COD cp is in 

H1/2(F) to obtain the validity of the lemma. The extension by 0 out of  F is actually not 

continuous from H1/2(F) to H1/2(R2). We refer to the treatise of Lions Magenes [21] for all of 

the results on Sobolev spaces used in this paper. In particular, we recall that the relevant fact 

r ~ 2  (IR2), of the elements of H1/2(R 2) with concerning the above question is that the subspace "-r 

support in F, can be identified to the space 

Hi/2 rra H1/2(I -) . pd/2 L 2 00 ~ ' J =  { q ~  , q0~ (I-') } (2.9) 

where p is a positive, regular function on F, equivalent to the distance of  x to the boundary OF 

in a vicinity o f  this boundary. The space ul /2 **00 (r)  is algebraically strictly included in H1/2(F), 

and its topology defined by the norm 
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Ilqlr~(r) = { I lq l2~r)+,  pq/2(pllb(r) }1/2 , (2.10) 

is strictly f'mer than the topology induced by that of  H I/2 (r). 

r.a 1/2 r r 'x  A simple consequence of (2.9), which is worth noting, is that if (p ~ *,00 ~, J is a continuous 

function on F ,  than it must vanish on OF. Then (2.9) can be interpreted as the general "edge - 

condition" to be imposed on (D when dealing with problem (Q) or BIE (1.7). The restricted edge 

condition "(p = 0 on ~ r "  was prescribed by Jones in a work of  1956, solving the scattering 

problem by a penny-shaped crack. 

We can now precise the operator D in this functional framework : 

THEOREM 1. The operator D defined by (1.8) is a continuous operator from u1/2 ,100 (I-') into 
t a l / 2  1,oo (F)) '  , and can be expressed by : 

D(p = (Rro To PF) (P (2.11) 

where PF is the extension operator by 0 out o f  I', in R 2 ; 

RF is the restriction operator on ["; 

and T is the pseudo-differential operator on R 2 defined by : 

- - -  _ i a t ' , , o )  r v ( ~ , ) - -  (2.12) 

where the symbol Z is as in (2.4). 

P R O O F  : From (1.9), Dq) is the restriction on F of ~-~-3 (x' ,0) ,  where u is the solution of 

problem (Q). And from lemma 1, 

b~ 
z 

bx3 

where (P0 = PF (P- 

The conc lus ion  fol lows,  recal l ing that RF is a cont inuous  opera tor  f rom 

H-1/2(IR 2) onto (H~I/2(F)) ' " 

We note that (H~l/2(I')) ' contains strictly H-1/2(F), however,  even if in the BIE (1.7), f is 

given in H -1/2 (F), one cannot drop the edge-condition (2.9) for (p. This should be kept in mind 

when discretising (1.7). 

3. The variational solution of  the BIE (1.7) 

We present in this section the main result of  the paper : that the BIE (1.7) is well-posed in an 

appropriated functional framework, for all frequency co. The key of it is the following 
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THEOREM 2. The sesqui-linear form 

b(93g) :=  < Dg, Xg>r (3.1) 

defined by the duality brackets o f  u1/2 Hoo (F) , can be written in Fourier variables as : 

b(~0,V ) = -i Z(~,co) ~o (~)Wo (~) d~ (3.2) 
2. (2~)z 

and satisfies the following coerciveness estimate : 

2 ~.11/2 i r a  Ib(,P,(P)I- C "'P"lz2,~, v (pc  , , o o  ~ , ,  (3.3)  (~+ 1) 1/2 

In (3.2), q)0 = PF (P as defined in th. 1. And in (3.3), we have adopted the equivalent norm in 

H1/2 oo (F) defined by : 

II q, ~@/2.,0= L ~  (1 + I~ r 2 + ~ ) m  ~ ~2 de (3.4) 

Finally, the constant C in (3.3) is independent of  co. 

PROOF : a) To prove (3.2), we In'st remark that for v ~ (H~  2 (iV))' and ~ ~ ul /2  11oo (F), then 

< v , ~ > r  = < V , P r X g > m  2 (3.5) 

where V is any extension of  v in H-1/2(R 2) and the brackets in the right-hand side of (3.5) 

design duality between H-1/2(R 2) and Hl/2(R2). See e.g. [11]. Now, it suffices to apply this with 

v=D(p (p~ ~1/2 **oo (I ') .  By th. 1, the extension o f v  can be chosen as ToPFqo, so that : 

< Dq), y >r  = < T~p0, ~g0 >r 

and one gets (3.2) by the Parseval formula. 

b) We proceed now to prove the estimate (3.4). 

First, we note that since the support F of  q)0 is bounded, the following inequalities are obvious : 

I~(~')12 <cll,pollb(mb < c 11~ll~/2,o, v ~ ' ~  IR 2 (3.00 
(off+ 1)1/2 

where c depends only on 1". 

Next, let us decompose the integral J = II q~01~1/2, ~o as follows : 
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I :l +f +I +l R~ O<l~l<Ika } Iko< Ig I< co ] r < I~ I < ata } I~i>cto~} 

: =  J1 + J2 + J3 + J4 
where the reals or, 1~ with ]3 < 1 < a will be chosen later. 

The same decomposition will be applied to the integral 

I = I Z I I (Po (~) 12 d~ = I1 + 12 + I3 + I4 
2 

since Z is either a positive real, or a purely imaginary positive number, I is merely 8 7t 2 ] b ] . 

We will compare Jk to Ik. 

c) Let us begin with J3 and J4. 

Using (3.6) and the Cauchy-Schwarz inequality, one gets : 

J 2<  G Ilq~1/2,o, If 1 + ~176 +1~12 d~) / I (1~12 - 0)2)1/2 I~po (~)12 d~) 
(0`22 + 1)1/2 ~J{co< ~i<ov.a} (1~12 - 0`2)112 r } 

Now, using polar coordinates in the plane, one gets : 

1 + 02 + I~12 dE = 27t 1 + 0 2 + r 2 rdr 
~< I~1 < aco} (1~[2 - ~ (r2 - ~ 

=2~co  ~ 2 ~ - i - - I ( g ~ - + 3 ~ c 0 2 + 1  ) 

So that, with the choice 

c o ~ 2 - 1  = 1, i.e. e~= ~1 +0~2 
0`2 ' 

the following inequality is proved : 

j2 < c3 (1 + 0)2) 1/2 IkPd~l/2,o~ 13 

On { It[ > ~co } w e  h a v e  on the o ther  hand : 

1 + 02+1~12  (ix 2 + 1) 0 2 +  1 _< 
[~]2_ 0.)2 0̀2) 2 (0~ 2 - 1) 

then 

[~[2 _ 0). 12)1/2(1 + [C012+ [~[2)1/2[~012d ~ (l~12-O.~2)l/2]~po/2d ~ 
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_< [(a2 + 1)Ct"2 + 111/2 It (p01~1/2,o~ I4 
C0(Ct 2 - 1) xn 

And the same choice of  a as above yields the estimate 

J42 -< c4 (1 + 02) 1/2 ]l (P0 l~l/2,to I4 

d) The same calculus can be applied to J1 and J2, and the choice of  

13= ~ - : - -  1 if c 0 > l  a n d l 3 = 0  if o}<1 
f,D 

(which means that in the last case, the integrals J1 and I1 are evacuated) yields the same type of 

estimates as for J3 and J4 : 

j2 < Ck (1 + r ikp0112/2.oik (3.7) 

NOW, 

4 4 

11r ~ = j2  = ( • Jk)2 < 4 E Jk 2 , 
k=l 1 

and (3.3) follows from (3.7) and the definition of  I , 

The solvability of  the BIE (1.7) is now an immediat corollary of  th. 1 and 2 : 

COROLLARY : For f e ( Hi0/0 2 (l"))' , there exists an unique solution r e ( H 1/2 ( I )  of eq. 

(1.7), which is also the unique solution of the varian'onal problem 

r j l / 2  Tofind r ,,00 (1-) suchthat 
(3.8) 

t_11/2/r~ 
t < D c P , V > r = < f , V > r  ' e V e  ,,00 ~-) 

Remark 2 ,  

Theorem 2 and this corollary make clear a fundamental difference between the problems of  

wave scattering by a bulky objet and by a crack. In the first case, the usual boundary integral 

equations for the problem are all solvable except for a sequence of  spurious frequencies co. Such 

a frequency is the square root of  an eigenvalue of  an interior laplacian problem. Naturally, there 

is no interior problem in the case of  a crack. However, from this absence of  the interior 

problems, it was not clear that the quadratic form b(cp,~p) must be coercive. 

4. Some further remarks 

We conclude this part I with two remarks, on the hyper-singularity of  D and on the connexion of 

the form b to the wave energy. 

a) It was proved by Hamdi [16], in the case of the BIE Drp = f on a closed surface, following an 

original idea of  [25], that the form b (r V) can be written with only weakly singular integrals. 
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In our case, this can be found again from the Fourier expression (3.2). For a convenient use in 

part II, we set out here this stricking observation of Bamberger [2] .  The beginning point is the 

following correspondence of Fourier transform in R 2 : 

*--> e ~'~x~ (4.1) 
2i Z(~,oa) 4~lxl 

Now, we can write 

. i z  = __1_  ( o ~  - I~L 2) 
2 2iZ 

On the other hand, 

I~12 ~Po(~) ~go (~) = (i~a ~0) ( i~  ~g0) + (-i~1 ~P0) (-i~1~0) 

=curl 'P0. curl ~g0 

3r 0q~. ) is the rotational vector of a scalar function in R 2. where curt tpo = ( 3x2 ' - ~Xl 

From these calculations, it follows that 

I I eR~ (curl q00(x).curl To(Y) - o02q~(x)~o(y))dxdy 
b(q0,qt) = RZ x IR z 4~lx-yl 

= I f  x r 4~m,x-y,ei~ (curlr q0(x)'curl Cg(Y) - ~176176 (4.2) 

This is the formula of Harndi, where the hyper-singularity of the kernel in operator D is now 

transferred to the functions q0 and ~ as derivatives. 

With these all properties of the form b, the good way to discretize the BIE (1.7) is clear : in our 

view, it should be done by a finite element method an F, with P1 - elements null on the boundary 

OF, (to respect the edge-condition (2.9)). We refer to [26] for the analysis of these boundary - 

finite element method. 
b) Now, let us say some words on the energy question when dealing with the boundary integral 

equation method. We start with the classical Green formula : 

Dq)(x)~p(x) do(x) = (IVul2" I~ - ~nn g do (4.3) 
IxL=R} 

d 
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where u is the double layer potential (1.6), and f~R is ~ n { Ixl < R } with R sufficiently large. 

We recall also that the radiation condition (1.2) is equivalent to the following behavior of the 

scattered wave u at inf'mity : 

(4.4) 3u= el,,, itoA0 (O) (1 + 0 (1)) 
~r r 

(r = Ixl --~ + oo and O = x ) .  The function A 0 is usually called the far field pattern of u. 

Reporting (4.4) in the last integral of (4.3), one gets : 

Re b(q~,r = lim~R_,.~ f~  (IVul 2 -Io~t~ 2) dx 
R 

-Imb(r cp) = collA011~�90 ) 
(4.5) 

Formula (4.5) links the imaginary part of the quadratic form b to the energy of u which is 

radiated to the infinity. This was used in [15] to explain why, in the discretization of the 

variational problem (3.8) (in the case of an obstacle of arbitrary shape), one can always solve the 

finite dimensional linear equation by a Cholesky decomposition of the matrix. 

On the other hand, the real part of b can be interpreted as the difference of the potential and the 

kinetic energy of u. In our case, by (3.2) we have 

/ 1 I 1~12"~/]-~-~- ~ I~P~ (~)12 d~ 
Re b(cp, lp) = ~- ~1> to} 

/ 1 I  ~ ' ~ P ~  
- Im b (cp,cp) = ~ I~1 < col 

Thus, Re b(cp,9) is also positive contrarily to the case of a closed surface F. Actually, the 

coerciveness of b is no longer true in this general case, because of the existence of spurious 

frequencies. 
We note also that the connexion between b (9,cp) and the energy of u is more striking for the 

time - dependent waves. Indeed, in this case, the causality of waves allows us to extend the 

domain of the frequency variable to the half complex plan {Imc0>0}, and then one can show that 

the last integral in (4.3) tends to zero when R ~ + oo, such that 

(13~,iaxp) = f  (IVul2+lioxll2)dx (4. 6) Re 
J 
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and we have in the right hand side of (4.6) the usual energy of  the acoustic wave v=eiwtu(x): 

E(v) = l  (IVul2+ltil2)dx = e-2Imt~ ('Vul2+lit~ " 

]I - THE ELASTIC SCATrERING PROBLEM 

5. The problem and its associated BIE 
The geometric notations are that of  part I. 
The space IR 3 is now an isotropic, homogeneous elastic medium with the Lain6 constants 7 and 

g. And we want to solve the problem of the elastic scattering by the crack F.  With the 

convention of summation for the repeated indices, the equations are : 

(3ij,j(u) + I~ (t~2 u i=  0 in ~"~, 1 < i < 3  (5.1) 

t~i3--o'(u).n=gi o n F ,  1 < i < 3  (5.2) 

where u is the displacement vector u = (ul, u 2, u 3) and o(u) the strain tensor : 

[~j  = l (Ui , j  + Uj,i) 
(5.3) 

Oij = ~, Ekk ~ij + 2g eij 

co > 0 is the pulsation of  the incident wave u I and the vector function g in (5.2) is 

- ( cr (uI). n ), a known quantity. 

We must add to the equations (5.1, 5.2) an outgoing radiation condition that fixes the decrease of  
the scattered wave u at infinity : 

where T is the operator defined on the sphere of  radius r by : 

Tu= (~,+ 2g) kp (u.n)n + g ks (u-  (u.n)n) (5.5) 

(n =nr = x ). 

In (5.5), the pressure and shearing wave numbers kv, k s are defined as usual : 
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i~ _ c0_  0~,~f-g--_ 
v 

(5.6) 

The existence and uniqueness of the solution of  problem (5.1, 5.2, 5.4) can be found in the 
Kupradze's book [20]. Here, as in the part I we are interested in the solution of  the BIE for the 
crack opening displacement of u. 
From the divergence theorem and the condition (5.2), any scattered wave can be represented by 
the well-known elastic double layer potential with the COD q> = [u] as density : 

u j ( x ) = - ~ r  Xlknk(pi(y) do'(y) (X~ a , l _ < j _ < 3 )  (5.7) 

where the tensor Z is the stress Green tensor, which is related to the fundamental tensor G of 
the displacement equation (5.1) by : 

~ ik  = Ojk (G i) (x-y) 

=(~L ~jk ~Im + I-t(~jl ~km+ ~jm 8kl)) Gi,m(X-y) (5.8) 

-- ci.  (x-y) + ,(C).k(x-y) + G .j (x-y)) 

The fundamental tensor G is given in [20] : 

i -1- / 1"---[-- eik'lxll ~i" 
Gj (x) = I "1" (4~ ]x] J J 

+ 1 _< 
P 032 0Xi Oxj ~ 4• Ixl ] 

(5.9) 

There are no confusion between the index i and the symbol i = gg-T in (5.9). 
Now, as in the case of the scalar waves, the surface traction on F of the double layer potential 

(5.7) is an hyper-singular integral of q0. Let us denote by Dq> this integral : 

I3#= oiu)l r . n with u by (5.7) (5.10) 

The scattering problem (5.1 - 5.2 - 5.4) is then equivalent to the vectorial BIE : 

Dq>=g o n F  (5.11) 
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As indicated in the introduction, our purpose is to prove the well-posedness of  this BIE in a 
convenient functional framework, using a variational approach. We follow the same steps as in 
the scalar case, using the Fourier calculations of Bamberger [2]. 

6. The Fourier expression of the intem'al ooerator D 
The following equivalent definition of D is obtained from the well-known properties of  the 
elastic double layer potential : 

I) 9 = o(u).nl r (6.1) 

where u is solution of(5.1), (5.4) and the following jump conditionson F : 

{ [r = 0 

[ul = r 
(6.2) 

Let us denote again by (Q) the problem (5.1 - 5.4 - and 6.2). 
By a partial Fourier transform with respect to x' = (x 1, x2), we will obtain the solution of (Q) by 

a limiting absorption argument, and then obtain the Fourier expression of D as in part I. 

First, the transform of eq. (5.1) is �9 

~2~ , . "" 
A2 - - ( ~  ,x3) + 1 A1 ~ i / +  A0 u =  0 (6.3) 

~x] Dx3 

where ~' = (~1, ~2) is the dual variable of x' and 

A2= 0 c ~  

ooc~ 
(6.4.1) 

0 0~11 
A I = ( e l ~ - e 2 )  0 0 ~2 / 

} 
I_~1 ~2 o ] 

(6.4.ii) 

A0 = ( o  2 - c2 i~12) i _ ( ~ -  c~) ~.~Y (6.4.iii) 

in (6.4iii) and henceforth, except in some precised places, we will write ~ = (~1, ~a, 0) T and 

identify ~ with ~'. 

Replacing co by t0 + ie (e > 0) in (6.4.iii), the solution of (6.2) in the half-space {x 3 > 0}, that 

does not explode when x 3 ---> + ~,,  can be obtained by the plane waves method (see [2] ) : 
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~(~,X3) = 
-~2 ~lZ~ ~1 ][ ~1 
~1 ~2Z~ ~2 ]l  11"2 
0 -Igl 2 Z~ ~3 

where Ul are constant, and the symbols g, 2~ are defined by 

{Z~)2_ (to+ ie) 2 1~2 
c,3 

ImT_~>0 , I m Z ~ > 0  

e ix~[  

eix~J 
(6.5) 

when c ~ 0 ,  their limits are 

on {l <ksl 
Zs=ti 'f---~-- ~ on {]~->ks} 

(6.6) 

Zp= ~i~--~:kp 2 on {[~>kp} 
(6.7) 

Denote by M e the matrix in (6.5), the boundary value offi e is then uz (~,0+) = M e fi', and we can 
write (6.5) as : 

e ix3z,~ 0 0 ] 

(~,X3) = Me. 0 e ix3zf 0 ] (1Vie) "1 ~ (~,0+) 

0 0 eix3z~ , J 

After some calculations, one gets : 

(~,x3) = r~ (~,x3) ~(~,o+) (6.8) 

with 

F e ( { , x 3 ) = ~ I +  1 (e~_eD~.(e~)T (6.9) 
PE({) 

where 
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/eEa = e ix3z~ = S, P u 
E g T 

= z 4  + 

we can now prove the following "limiting absorption principle" : 

(6. lO) 

LEMMA 2 .  I f  uE(. , 0+) = u+ ~ (Hl/2(IR2)) 3 the solution ur of  (6.8) is in (HI(IR3+)) 3, and 

tends in the sense o f  (H~oc(IR3+))3 , when r ---> O, to the function u which satisfies (5.1 , 5.4) in 

1R3+ = {x3 > 0} and the boundary condition u (,, 0+) = u+. 

In Fourier variables with respect to (x 1, x2), u is given by 

u(~,x3) = E(~,x3) ~+({) (x3 > 0) (6.11) 

where E is as in (6.9)with e null and dropped. 

PROOF : To simplify the notations, we will drop the e in all the below calculations. To avoid 

confusion, if suffices to remember that co has now a positive imaginary part. 
Consider the following orthonormal basis oflE 3 : 

1 
d2- (~2+lZp12) l /2  ~P= ~; 

d3 = l (~1 Zp, ~2 7-~p,- ~ 2) T 

Let ~+ = fj dj be the decomposition of fi+ in this basis. From (6.7) and (6.8), one gets " 

~ (~,x3) 2 < I fl I e- 2 x3 lm Z, +l f3 [Z e-2 x3 Im Z, +[ f212 e-2x3 Im Z~ 

+ ~,312 ~ p -  zs~ [eix 3zp_ eix3z~2 (6. 12) 

An analogous inequality can be easily derived for 3x3 , and the lemma follows by similar 

calculations as in lemma 1. The only different term is the last term in (6.12). After integration for 

x 3, from 0 to x > 0 this can be handled with by an asymptotic development when ~ ~ + oo. 

The formula (6.11) is clear * 
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We can now come back to the case of  real (positive) co. In the same manner as in th. 1, we have 
the following expression of D : 

THEOREM 3. The operator D defined by (6.1) can be written as : 

D~= (R r ~ T.PF) ~ (6.13) 

where R r and P r  are defined in th.1, and T the pseudo-differential operator of order I on IR 2 
defined by ." 

" ~ ( ~ )  = T(~) ~(~) (6.14) 

T(~) = - -  
-ig 

2((0 2 / c 2 )  

- PR(~)Zs ~2 Pc (~)7-~ ~1 ~2P-~ ~) 

- P~(~) PR(~) ~P~(~)  

0 0 

0 

PR(~) 
Zp 

(6.15) 

where 

Pr = I~ 2- 3 Z~ + 4 Zs Zp (6.16) 

PR(~) = ~ 2- 7ff + 4 [aJ2 z~ (6.17) 

ln particular, D is a continuous operatorfrom ~"oolU"2 (F)~ into (I-I~/02 (F)' ~. 

PROOF : From (6.1) one gets after some easy but rather lengthy calculations : 

03+ ({) = ~-~ .n  ({, 0§ = H + ({) ~. ({) (6.18) 

where 

�9 [ Z~k~+~(z~-z~) -~a~(z~-z~) 
H + ( ~ ) = ! l  ~1r Z~ Z~ k~+ r Z~) 

P(r [ ^ 
L- {1 (k~- 2Zs(Z~ - Zp))- {2 (k~- 2Z~(Zs - Zp)) 

~ (k~- 2z~(7~- zp)) 

{2 (ks 2- 2Zs(Zs - Zp)) i6" 19) 

Similar formulas can be obtained for x 3 < 0 and the traces on {x 3 = 0 .  }. Then, (6.13) results 

from the boundary conditions (6.2). 

All these calculus are in Bamberger's work [2]. The reason of (6.13) is as in th. 1. 
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Now, there are no more difficulty to check that each term in the matrix T is a symbol of order 1 

in ~ ,  regular for I~1 > k s 

Remarks 3.. 
a) It can be verified that 

det (H +) = (~)3 PR(~) ks 
P(~) 

where PR'  given in (6.17), is the Rayleigh function, which involves in the research of surface in 

the half-space { x 3 > 0 } with the free surface boundary condition o .n = 0. The formula (6.18) 
gives then another way to obtain the Rayleigh waves. 
b) On the other hand, 

detT(~, = ('2~_~; PI~(~) 
zp( ) k 4 

Thus, we find again that if ~ = kR = ~ where c R is the Rayleigh wave velocity, the matr ix  

T(~) becomes singular. This expected result, however, is not contradictory to the coerciveness 

of operator D in (H01/02 ( I 3 ~ ,  because a function of this space cannot be a Dirac distribution on 
/ 

c! The pseudo-differential character of the integral operator presented here is not new (see [8] for 

a general presentation of the theory). In the literature on integral equations, Wendland others 

used to prove Garding inequality for some first kind integral operators with this method. See the 

raferences of [30]. Stephan did the same in a crack problem of static elasticity in [29]. The main 

difference between our theorems 1 and 3 with the classical results is that we have in formulas 

(2.11) and (6.13) the fu l l  symbols (not only the principal ones) of the interested operators. Of 

course, this is due to the geometry of our problem. Meister and Speck in a similar context (a 

half- plan crack problem, [24]) used also this full symbol T(~) for a Wiener-Hopf solution of the 

problem. 

7. The vari~tion~J solution of the BIE (5.1 1) 
Like the theorem 2 in the scalar case, we have the following : 

THEOREM 4. The sesqui-linear form 

b(cp,~) := < Dcp, ~ > r  (7.1) 

can be written in Fourier variables as 
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f 
b(cp, V) = 1 ~ (T(~) ~o (~) ,  ~o (~)) d~ (7.2) 

(2g) 2 g2 

where ( , ) designates the scalar product in C 3 . The following coerciveness estimate is satisfied 

for  all q~ ~ (H1/02(I")}3 : 

Ib<~,,P)l-- c,~r~r)), (7.3)  

where the constant C is dependent o f  co. 

P R O O F  : The equality (7.2) results from (6.13) in the same manner as it was shown for ((3.2) in 
th.2. 
Now, let us write the matrix T(~) as : 

: 0 

0 0 

From this, it is immediat that the following orthonormal basis of  C 3 is actually composed of 
eigenvectors of  T : 

Vl = 51 v2 = 1 ~ v3 = 0 (7.4) 

0 

liJ 
More precisely, designing by v the constant - , we have : 

I T(~) Vl = V k2 7_s (~) vl 

T(~) v2 = V (PR (~)]Z,(r.))) v2 

I T(~) v3 = v (PR (~) Iz~(~) ) v3 

(7.5) 

Then, if q~0 = ~li vi is the decomposition of ~0 on the basis (vi) ,  and according to (6.5), (6.6), 

(6.17), we can decompose b(cp,cp) into the following parts : 

b(q),{p) = v(I1 + I2 +i I3 + i I4 + i I5) 

with 
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If= I[~[=<kP}{k2~/k2- ~2 ~1(~>2 + PR(~) tz q2(~) 2 + 

I 

12 = I {k2~C~--]~2 ~1(~)2+(~[2"1~  ~z(~)2+4 ~ 2 ~  " ~ 3 ( ~ ) 2 } k v < l ~ [ < k , }  d~ 

,,<1~1<,,) Jl~[ '-k~ 

PR' P' } ' >  

and finally, 15 is the integral on { ~ > klt} of the same (real) function as in 14. The distinction 

these two last integrals is that on {~ > kit = c~ff} the Rayleigh function is negative, so between 
that the integral function in 15 is sum of three positive functions. Actually, we recall (cf.[1]), 
that PR can be factorised by 

where QR is a ~-  funcnon of I~l, which satisfies the following estimates : 

I O< m .  -< ]QR 0~1-< m* < + oo 

/QR(l'l)=-2~'+)'t k~( l+O(+ )) ( 1 ' 1 - - ) + ~ 1 7 6  

(7.7) 

I 
From this, and from (6.17), it is clear that QR is real, non null inll~l > ks}. 
Now, the difference with the scalar case is that the integrals 13 and 14 contribute to Im B with non 
definite signs, and then prevent us from obtaining a direct lower bound of Ibl. So, we proceed to 
prove (7.3) with a contradiction argument. 
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Suppose that (7.3)is not true. Then there exists a sequence (tp TM) in (H1/02(F) ~ 

,I q>m I1{H01/02(I3}3 = 1 

{bin= b(~O~, ~ )  ~ 0 m ~ + , ~  

From the real part of b m , it follows that 

nm tim 

m-->o, m-->oo 

I2n = 0 

On the other hand, by the orthogonality of (vi), we have 

~m (~I= ~3m (~)~ (V~ # 0) ,  

such that (3.6) is satisfied by ~ (~) and consequently 

lira [l~'mll( L2(;~j <k,))3 = lim I[~0mll ( L2(I~I <k,)) s = 0 

m.-.)oo 

such that 

(7.8) 

(7.9) 

and the contradiction with the assumption (7.8) is obtained. 

The theorem is proved # 

[( )]3 
COROLLARY :For all g E H~lo 2 (13 the vectorial BIE (5.11) has an unique solution 

[{HI/02 (I-3)] 3 , which is also unique solution of the variational problem: E 

b(tp,~) = <g,x~> V V~ Lt,[fiax/2 (I)}] 3 . 0 0  (7.10) 

g 
lira / (1 + 1~12) 1/2 1 ~m (~) 12 d~ = 0 

m.-- )o .  J{ I~M > kR } 

Now, ul/2 r ~  is imbedded compactly into L 2 (F) we can choose from (tp m) a subsequence ~t.t00 ,,x j ~ , 

also denoted by (tpm), which converges to (~0) in L2(F). Then (7.8) implies that ~0 (~) = 0 for 

almost all ~ in { ~ < ks}. But as the Fourier transform of a function of compact support, ~P0 is an 

analytic function of ~. It is then identically null. It follows immediatly that the subsequences 

(I N) and (I~ n) tend also to zero, and the same is true for (I~n). 

Applying to these integrals the same calculations as in the proof of theorem 2, we get finally 
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We conclude now this section with some remarks about the variational problem (7.1). First, 
repeating the arguments of section 4, it is easy to show that the bilinear form b(9, ~t) can be 

written with integrals of only weakly singular kernels. 

Moreover, it is clear from the expression of T(~) that problem (7.1) is actually decoupled into 

two smaller and independent variational problems, with respectively the tangential and normal 

parts of q~ as unknowns. Remarkably enough, the problem for the tangential part cp' = (q)l, q>2) 

turns out to be itself decoupled into two independant problems with the unknowns rh,rl2 which 

Fourier transforms are the components of ~p' on the basis (v 1, v2). 

Indeed, from the above discussions, it is easy to verify that ~1,~2 are resp. solution of the 

following variational equations: 

~2 Zs~'~l .~11 d~=f2 ~l .~d~ V~I (7.11) 

and 

V~2 (7.12) 

where T1 and "12 are functions of the data g, defined by 

A"/1 = curl g" 

"/1 = 0 

on F 

on OF (7.13) 

and 

t A ~/2 = div g" onF  

~/2 = 0 on OF 

with g'=(g 1,g2). 

Once the problems (7.11-7.14) solved, we recover q)l, 92 by 

cpl = curl 11' 

= diVrl" 

(7.14) 

(7.15) 

Finally, we would like to point out that our Fourier method is clearly applicable to the two- 

dimensional scattering problem by a rectilinear crack. 
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CONCLUSIONS 

We have shown in this paper that the natural BIE for the COD of a flat crack of arbitrary shape 

is actually well-posed in suitable functional spaces. Moreover, a variational treatment of the 

involved BIE, not only permits to prove this result but also reveals to be an efficient method to 

circumvent the hyper-singuladty of its kernel. 
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