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;5. IN ['ERPOLAI'ION VIA REPRODUCING KERNELS 

The theory of reproducing kernel spaces of holornorphlc functions given in Sections 1 and 

2 will now be applied to the interpolation problem (IP). This approach to solve interpolation 

problems was initiated by Dym in [Dyl,2]. As mentioned in the Introduction, the method 

developed in this paper has several points of contact with Dym's work. 

We build from the data of the interpolation problem (IP) the following finite 

dimenslonah resolvent invariant space N of rational functions: 

,)t~ = { ( g r V ) (Z -~) - l c [  c, e C  }, 

where r. the nxr  matrices V.B: and the rxr  matrix Z are all associated with the data of (IP) and 

defined in the Introduction. In order to apply the results of Section 2 to our interpolation 

problem, we connect the notations used ther% cf. (2.3)-(2.6), with the ones used in the 

formulation of (IP) by setting the 2nxl vectors Cjq equal to 

Cjq ~ ( Wjq 

so that ( ~s the 2nxr matrix 

( =  ( c,~:ql: .  : c ~ :  :croci:... :Cm~,,, ) = ( I~ . . . . .  V ) �9 

Thus lhe linear space N can be written as 

9~=l.s.{Fjq(~,) l j =  1,2,...,m. q=0,1  .. . . .  r j}.  

where Yjq(,g,). the q-th element of the j - t h  chain, is given by 

( 3 . [ )  Fjq(~)= f (~--~),])-q-l+he?h, 
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From the formula 

:T(~) = ( F10(g):fn(g): . . .  :Flrl(g): .... :F,~0(g): ... :fmrm(g) ) = - C ( Z - g )  -1 

it easily follows that  ~R is resolvent invariant. Except when explicitly stated otherwise, we 

fix in this section the signature matrix J and set it equal to 

0 -iI,~ 
J =  ( i ,o 0 ) '  

Note that  now the Lyapunov equation (0.6) can be rewritten as 

P Z -  Z*P = - C*(iJ)C, 

which agrees with (2.7). 

The space N can be used to provide a test to check whether a Nevanlinna pair (N(Q,JV(Q) 

is or is not a solution of the interpolation problem (IP). To formulate this test we associate 

with each ordered pair (N(g),g(g))  of matrix functions satisfying (2.14) the linear mapping 

r =  rMtr from the space ~R to some linear space of functions defined by 

(3.2) ( rF) (e )=( -M~(Q:N~(e ) )F(Q.  F e N ,  

cf. (2.17). If r maps ~ into the space ~(M,N), then the same is true for each ordered pair 

equivalent to (M(~),N(~)) and we shall say that  r associated with the Nevanlinna pair 

(M(~),N(Q) takes ~ into ~(M,N), cf, the remarks after  Theorem 2.5. The test is stated in the 

first part of the next theorem. For the definition of the r• matrix PM,,v where (M(~),N(g))~N n, 

appearing in the second part of the theorem, we refer  to the Introduction, formula (0.8). 

THEOREM 3.1. (i) The Nevanlinna pair (M(g)~N(g)) is a solutzon of the interpolation 

problem (IP) i f  and only i f  the mapping v takes ~ into E(M,iV). (ii) I f  the Nevanhnna pair 

(M(g),N(g)) zs a solution of the interpolatzon problem (IP), then 

(3.3) [TY,rY]~(M,~) = PM,~r , 

i.e., in terms of the matrix components [TF~q,~-F,p]~(M,~r (PM,A/)~. 

To prove the theorem we need the following technical lemma, which we also apply in the 

proof  of Theorem 4.1 in Section 4. 

LEMMA 3.2. Let (M(g),N(~)) be an ordered paw of holomorphic matrix functions on C\R 

that satisfies (2.14) and is a solution of the interpolation problem (IP). Then there exzst 

unzque vectors e~q~C ~, j = l , 2 , . . . , m ,  q=0 ,1 , . . . , r s ,  such that the coefficients csh of Fsq(~ ) in 

(3.1) are given by 

(3.4) csh=t~oi t~e,  ~ [M(g)) ) [e=ffSest , j= l ,2 , . . .~m~ h=O,1, . . . , rs ,  
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and then we have 

(3.5) (TFjq)(Q= ~, ((D~,)q-tLM.~(~,,A))j),=~,ew 
1=0 

I[, m addition, the ordered paw satisfies the relation ~N(~)+~'((,)= I, then, the vectors clh art, 

given by 

( 3 . 6 )  t - * ej~=(Dx) (~EflA)+~:s(A))[.~=% 

and ]zence~ 

(3.7) (rFjq)(~) = (Dx) q (LM,N(~,A)(AI@(A)+s } tA=u,/ 

Proof. For any N = ()~ 1 .... we ~ssociate with the 2nxn matrix function X(e,) = ()4(~.) ) the 

two (N+ 1)x(N+ 1 ) block matrix functions ANte) and BN(g). whose i j - t h  blocks a.re the nx2n. 2nxn 

matrix functions, defined by 

(AN(e))Zl=((D~,)~-~X:(~))J, i > _ ] ,  (AN(~,))U = O, ~<j. 

(Bs(g))u=(De)*-3A'(e), i>_j, (BN(Q)u =O, i<j ,  

respectively, where we recall the notation (De)S= ( t / f)(d/dg)~,  j 20. The symmetry condil ion in 

(2.14) can be rewritten as X~(g)JX(e,)= 0, g~C\N, and after differentia.ling this i(te~JtJty k times. 

we obtain 

((De)k-)2(~(e))J(De)S,Y(e)=O. k = O,t, .,N, 
3=0 

which implies that AN(~ ) BN( g, ) = 0, ~, ~ C\N. It follows that ')?( BN( g, ) ) c u ( A~,(g, ) ), ~, ~ C\N. To show 

that 

(3.8) U(AN(g)) = ~(BN(g)), ~, e C\N, 

we use a simple dimension argument. By the nondegeneracy con(htion m (2.14), 

rankX(~) = rankX(~)*=n ,  from which one gets that the (N+l)nx2(N+ l)n ma.trix AN(g,) and the 

2(N + 1)nx(N+ 1 )n matrix BN(g,) have full rank (N + l)n.  tlence, 

dimv(As(g ) ) = 2(N + l )n-dimN(AN( g ) ) = (N + l )n= dim~(BN( Q ) 

and now (3.8) easily follows. Next we rewrite the interpola.tion problem (IP) at w~ as 

~, (De,)k((Z;~(g) :g.~(g))J((De)P-~X'(g))Je,=.,=O, O<_p<_r~, 
k=O 

and by taking adjoints we obtain 

A~,(w~) ~ P-~ * �9 = (((De) X(~,))l~,=w, ) Jc,k = O. 
k=o p=O 

Czr~ 
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It follows from (3.8) and the fact that Br~(~z) has full rank, that there exist unique vectors 

ezpEC n, i= l ,2~ . . . ,m,  p=0,1, . . . , r~ ,  such that 

ii:1t -~ 
or, equivalently, such that C,h is as in (3.4). Substituting (3.4) into formula (3.1) we find 

that 

Fjq(g) = t~0 ((Dx)q-t (e-X)-IX(N)) I a=w'e:t 

and hence, 

(rf:q)(g) = ( - M~(g) :N~(g)) Fjq(g) =iX~(g)Jfaq(g) = 

= Zt~=O ( (O x)q-t(~,-x)-IX~(e)J X ( ~ )  ) l a=w, eat.  

Since LM,~r this proves (3.5). Formula (3.6) follows from the 

following calculations : 

, , , I )%:_,(~)= 
(De) (g/Ca(e)+Cj(g))le=w,=(De) ((s ( ))[e=wj=cat( % 

t . * [ t - 1  . , 
: ~ = o  ~ e'~((DJ-rx(e)le=~,)(~,)+~o ea~((ve)t-~-~x(e)le=%)= (~)= 

t , . , 
= s ear ((Dt)'-~(I : e)x(e)ie=<) = e~t. 

r=O 

It is only in this last equality that we have used the condition that ( l : t , )X (g )=I .  Finally~ 

(3.7) follows from formula (3.5) by substituting for eat the righthand side of formula (3.6). 

This completes the proof of the lemma. 

Proof of Theorem 3.1. In order to prove the theorem we consider representatives 

:vl(g),N(g) of the Nevanlinna pair that are holomorphic matrix functions in C\R. We first 

establish the sufficiency in (g).  Suppose that the map r takes ~ into E(M,N). Then by 

Proposition 2.4 the function (rF:q)(t,) is holomorphic on C\R. Since 

(3.9) (rFaq)(g) = (-M~(g) :Afi(g))Faq(~.)= 

= ( ~ - ~ , ~ a ) - q - l ( a v l ~ ( g )  ~ (g-'~aa)hVah-M~l(~-,) ~ (~,--~)a)hWah) 
h=0  h=0  

for 3 = t, 2 .... ,m, q = O, 1 .... , r3, we find by integrating both sides over a small circle around g = ~j  

and using Cauchy's formula, that 

o = ( D S (  t , :(e)~(e)_ M~(e)~(e) )le=~, = 
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= ( (De)q( J@(I~)A/(E)- s ) I~=% ) *, q = 0,1 ,...,r). 

It follows that ~;s(~)?J.(Q-s has a zero of order r )+  1 at @3, which shows that the pair 

(?q(Q,N(~)) is a solution of the interpolation problem (IP). If conversely, the pair 

(M(~),A/(Q) is a solution of (IP) then by Lemma 3.2 and Proposition 1.1 we have that 

vF3qes ). Since the Fsq'S form a basis for ~/~, this proves the necessity in (z). We now come 

to the proof of (ii). If the representing pair (M(~),JV(Q) has the stronger property that 

gM(g) +iV(g) = I,  g eC\~ ,  then (3.3) can easily be deduced from (3.7), the reproducing property of 

the kernel L&N(~,A) and the definition of P~t,tr The general case follows from the observation 

that both sides of this equality are independent of the chosen representative of the Nevanlinna 

pair (M(Q,N(Q). This completes the proof of the theorem. 

Part (i) of Theorem 3.1 can be considered as a weak version of Theorem 2.5(i). The 

spaces in Theorem 2.5 have a ttilbert space inner product and the mapping r there is a 

contraction. In Theorem 3.1(i) the space N has not been provided with a Hilbert space structure 

and the test to determine whether or not a Nevanlinna pair is a solution of the interpolation 

problem (IP) only involves the range of the mapping 7. An inner product on N is suggested by 

part (ii) of Theorem 3.1, namely the one which makes r an isometry between ttilbert spaces. If 

(N(Q,N(~))eN n is a solution of (IP) then we know from the Appendix of Part I that  [o=[o .~r is a 

Pick matrix, i.e., a hermitian solution of the Lyapunov equation (cf. the proof of Proposition 

1.7 of Part I, but the reader should note that this Appendix contains an independent study of 

the Lyapunov equation and does not rely on the extension theory in part I). If moreover,  P is 

positive, then there exists a uniquely determined inner product on N which makes r an isometry 

between N and ~(M,~r In this case, Y(g) is a basis of ~t and P is the Gram matrix associated 

with Y(g) and therefore a positive solution of the Lyapunov equation. Now, a converse also 

holds and by turning things around, that is, by starting with a positive solution P of the 

Lyapunov equation we obtain a parametrization of all solutions (34(~),&'(g))cN" of the 

interpolation problem (IP) that  satisfy the condition P]~.~ =P. 

THEORE~ 3.3. Let P be a positive solution of the L~,apunov equatwn (0.6) and let the 

space ~J) be endowed w~th an znner product [.,.]~ such that P zs the Gram matrix assoczated wzth 

the basis Y(g),  i.e., ~=[Y, :T]~ .  Then: 

(z) f~=g2(O), where the J inner [unction O(g) zs given by 

0 I 

(iz) 0(~) has the property that the formula 
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(3.l~) (M(~)) =e(~,)/,4(~,)) 

e,stabhshes a one to one correspondence between all the solutions (M(~)~JV(~,))~N n of the 

mterpola, tion problem (I P) sat~,sfymg the supplementary condition P/q,N = P and all Nevanlinna 

pair,~ (A(~,),B(~)). 

A J inner function (-)if,) with the property mentioned in part (n) of Theorem 3.3 is called 

a solution matrix for the interpolation problem (IP) associated with the positive Pick matrix 

?. ,Note that the solution matrix O(~) defined by (3.10) coincides with the solution matrix 

U| given in Part L Theorem 3.7. We shall come back to this in Section 4. We recall that if 

the imerpolation points w~ are such that  w~ # ~j for all indices L j ,  then the Lyapunov equation 

has a unique solution F and it automatically coincides with PM,?r In this case all solutions of 

the problem (IP) satisfy the relation PM,N = F. Only in case some interpolation points occur in 

conjugate pairs, this relation implies that the Nevanlinna pair (M(~L,V(Q) satisfies certain 

additional interpolation requirements at these points. 

Proof of Theor~l~ 3.3. Part (~,) follows from Theorem 2.2, and the representation (3A0) 

of O(6) comes from formula (2.8). To prove (iiL first assume that (hl(~),/V(f,))eN ~ is a solution 

of the interpolation problem (IP} with FM.A,=F. Then by Theorem 3.1 the mapping T is an 

~sometry from ~)~ = 5(6)) into ~()4,~') and by Theorem 2.5(i) (3.11) is valid for some Nevanlinna pair 

(Aff, LB(~,)). Since O(~) is J inner this pair is uniquely determined. For the proof in the 

o~her direction, assume that (tq(~),&'ff,)) is given by (3.11) for some (A(~),B(~))eN n. Then 

(M(Q.u  n and again by Theorem 2.5(i) r=TMA~ maps ~ = ~ ( O )  into t~(MjV) and is a 

contraction. On account of Theorem 3.1(~) the former conclusion implies that  (M(~),/V(~)) is a 

solution of the interpolation problem (IP), whereas the lat ter  implies that  PM,A/<P- Since both 

members of this inequality are solutions of the Lyapunov equation and v'(Z)n R = O, the diagonal 

entries of FM, ~' and e are the same. tlence the matrix [P-PM,~r is nonnegative and has a zero main 

diagonal which implies that, P~A~=IE. This completes the proof of the theorem. 

We have seen in the proof of Theorem 3.3(ii) that  the mapping ~ is an isometry. 

Therefore on account of Theorem 2.5(ii) the following result holds~ to which we return in 

Section 4. 

(:OROtA,ARY 3.4. I f  (9(~,) ZS given by (3.10) and (3.1l) zs va, hd, then the space E()J,N) has 

the orthogonal decmaposition 

Up till now we have been concerned with the solvability of the interpolation problem 

(IP) when the corresponding Lyapunov equation possesses positive solutions. For this case 
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Theorem 3.3 provides for  an enumerat ion of all solutions of the in terpola t ion problem over  the 

Nevanlinna class N n. If it is given tha t  the corresponding Lyapunov equat ion possesses a 

nonnegat ive  solution, then with the techniques we have  developed in this paper  we can prove,  see 

Theorem 3.5 below, t ha t  the in terpola t ion problem (IP) also has a solution. In this case it is 

also possible to  obta in  an enumerat ion of all solutions, see [Br]. 

THEOREM 3.,5. The interpolation problem (IP) has a solution i f  and only if  the Lyapunov 

equation (0.6) has a nonnegative solutwn P_>0. 

To prove this theorem we again s ta te  and prove a proposi t ion concerning per turbed  

Lyapunov equations.  Since this result  may be of independent  interest ,  we provide a complete 

proof.  In the proposi t ion the mat r ix  J is an a rb i t r a ry  s ignature  matrix.  

PROPOSITION 3.6. Let Z be as in the Introduction, and suppose that the pair (C,Z) is 

observable. Assume that the Lyapunov equation 

P Z -  Z*P = -C~ (~J )C 

has a nonnegatwe solution P. Then there exzsts a sequence of matmces C(c), c > 0, such that ( i) 

C(r as r and (ii) the corresponding Lyapunov equatzons 

P Z -  Z*P = -C*(r 

possess positwe solutions P(r  0 such that P(~)-->P as c-->O. 

Proof. Without loss of general i ty  we may and shall assume tha t  Z = diag (Z+,Z_), where the 

spectrum a(Z+) c C + and the spectrum a(Z_) c C-. We decompose the mat r ix  C as C = (C+ : C_) such 

tha t  the  number  of columns of C+ is equal to the size of Z• Let U(c), c > 0  and small, be a 

family of invert ible  matrices,  such tha t  

U(r U(e)-)I as r 

For example, if J is represented as J = E*diag (Iv, - Iq)E,  where g is a cons tant  un i ta ry  matrix,  

take 

Z , 

U(e) = ( l+eZ)-~g diag((1-e)Ip , ( l+e)Iq)g.  

Next we define C•162 by 

C+(e) =Jg(e)- lJC+,  C (e) =U(e)*C_. 

Clearly C•177 as e->0. We consider the equat ion 

(3.12) P Z -  Z*P = - i(C+(e) : C_(e))*J (C+(e) : C_(e)) = - iC*JC- idiag (A+(e),A_(r 

where we have  put  
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~+(e) = C*+ JU(e)-*(J - U(~)*JU(c))U(c)-l.lC+, J_(c) = C*_ (U(~).IU(~)*-.I )( ' .  

To obtain a solution of the equation (3.12), it suffices to look for sol , l ions of the equations 

(3.13) P+(e)Z+-Z+e+(c)=-iA+(s),  

(3.14) P _ ( e ) Z _ - Z * P _ ( r  

For, if P+(r is a solution of (3.13) and e_(r one of (3.14) then [P(e)=P+diag(P+(e),P_(r is a 

solution of (3.12). As a(Z+) cC + and or(Z_) cO- these equations have unique, and hence, ilermitia, 

solutions ~+(r and P_(e), respectively. Since the observabili ty of (C,Z) implies that  of 

(C+,Z+) and of (C_,Z) ,  we may apply Theorem 3.3 of [G] to each of the equations (3.13) and 

(3.14) and conclude that the spectra a(e+_(e)) are contained in the right, half plane 

{ z ~ C I R e z > 0  } and hence that  e+(e)>0, e>0 .  In the Appendix of Part I it, is shown that, the 

entries of the solutions e+(e) can be expressed as linear combinations of the entries of A_+(e), 

cf. the proof of Proposition A.I in Part I. Since _4_+(r we see that P+(e)->0, as e-->0. From 

these results for P_+(r it now easily follows that P(e)=P+diag(P+(e) ,e_(e))  is a positive 

solution of the given Lyapunov equation with the property that P(e)-->P, as e->0, wtfieh proves the 

proposition. 

From the proof  of Proposition 3.6 and the construction of P(e) it. follows that  the rate 

of convergence in which P(s) tends to P is at least equal to the rate  of convergence in which 

C(e) tends to C as e-,0.  

Proof of Theorem 3.5. tf  the Nevanlinna pair (~l(g),A/(g,)) is a solution of the 

interpolation problem (IP), then by (3.3) PM,~ >- o, since s ~') is a tlilbert space. As already 

observed before, PM.tr satisfies the Lyapunov equation and thus the Lyapunov equation has a 

nonnegative solution. To prove the converse, we assume that the Lyapunov equation (0.6) has a 

nonnegative solution P. At the interpolation points w s, j = l , 2  . . . . .  m, we perturb the 

interpolation data  V and W in such a way that  the perturbed interpolation data V(r and lb(e), 

e > 0, give rise to a perturbed Lyapunov equation 

P Z -  Z*P = V(e)*W(e) - W(e)* V(e), 

which for every e>O posseses a positive solution P(e), and that  V(e). lb(e) and P(r have the 

limiting behaviour 

W(e)~W, V(s)~.V, P(e)->P, as e->O. 

By Proposition 3.6 such a perturbation is possible. Indeed, without loss of generality we may 

assume that the data. satisfy the following rank condition: 

V,0 For each j = 1,2,. . . ,m the set { (W,o ] ]w,=w s } is linearly independent in C 2", 
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which implies that the pair (C,Z) is observable. That this may be assumed without loss of 

generality can be seen as follows. If the rank condition is not satisfied for some j, we 

reorder the equations in the interpolation problem tIP) such that only the first s equations, 

say, involve the interpolation point w 2 and such that r 1_> r 2 >. . .  > r s. Let t be the first index 

such that the set 

{ V,o 
{ t W , o ) l z = l , 2  . . . . .  t} 

is linearly dependent. Then in the equations 

(s tp) le=% = (s tp) It=%, 0_<p_<rt, 

the terms involving the highest derivatives of 34(~) and A/(t) can be eliminated and then the 

resulting equations involve derivatives of at most order r t - 1 .  In this way the number of 

equations is reduced by at least one without changing the appearance of the interpolation 

problem, i.e., the new equations are also of the form tIP). If necessary one can start  all 

over  again to obtain another reduction of the number of equations. Since there are only 

finitely many equations, this reduction procedure must terminate and this occurs precisely when 

the rank condition is met. 
w(e) -~ 

With the perturbed data  we build the space N(e)  with basis Joe(t) = - (v(e) ) ( Z - t )  and we 

endow N(a) with the inner product determined by [Ye,Ye] = P(e). Then, by Theorem 3.3, there 

exists a J unitary rational function Oe(t), such that  N(e)=O(O~)  and such that  for each 

Nevanlinna pair (A(g),B(t))  the pair (Me(t),Ne(g)) defined by 

Bff,) (3.15) (~'At)l=O_(t)(A(tl) tM~(e)J o 

is a solution of the perturbed interpolation problem (IP)~, i.e., tIP) with V and W replaced 

by V(a) and IV(c). Fix a parameter (A(~),Bff,))eN n and define the Nevanlinna pair (Me(t),A/~(e)) 

by (3.15). Let the ordered pair (Me(t)~/~[~(t)) be the representative of (M~(t),AZ~(t)) with the 

property that ~Me(~)+.~/e(t) = I.  Then on account of (2.I6) -M~{~ ) is a Nevanlinna function and 

hence holomorphic on C\R, and 

ItM~(t)lt <_i/llmgl, ~ C \ R .  

By Vitali's theorem it follows that, for some sequence e(n)>0 with e(n)->O as n->oo, the limits 

li.m,~e(n)(t) and limA2~e(n)(g) exist uniformly on compact subsets on s We write 

Mtt) = lira Me(n)tt), &~(t) = liy~ ,'~re(,)(t ). 

The matrix functions M(g) and .V(~,) are holomorphic on C\R and it is easy to verify that the pair 

(N(,~,),,V(,~,)) m a representative of a Nevanlinna pair with the property that t M ( ~ ) + N ( ~ ) = / .  

Moreover, for all p e n  we have that 
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M(P)(g) = lira ~[~))(e), JV(P)(g) = !ira ~/~f,))(g) 

and therefore,  since for each e > 0  the pair ()~s(g),A/e(g)) solves the perturbed interpolation 

problem (IP)~, the Nevanlinna pair ()4(g),A/ff,)) is a solution of the interpolation problem 

(IP). This completes the proof of the theorem. 

If (M(g),N(g))~N n is a function, then dett4(g)~0 on C + and on C-, Q(g)=N(g)M(~)-lis  a 

Nevanlinna function, and the pair (M(g),Ar(g)) is a solution of the interpolation problem (IP) 

if and only if Q(g) satisfies 

t c , ( t )Q( t ) - c , (g )=o( (g -w, )~ , ) ,  i = t , 2  .... ,m. 

Similarly, if (M(t) ,N(t))~I~ n is the inverse of a function, then detA/(t)~O on C + and on C-, 

P ( t )=A/( t )M( t )  -1 is a Nevanlinna function, and the pair (M(t),N(~)) is a solution of the 

interpolation problem (IP) if and only if P(t)  satisfies 

IC,(t) - s = o(( t  -w,)q) ,  ~ = 1,2,...;m. 

In part  I, Corollary 3.5, we formulated necessary and sufficient conditions which ensure that 

all solutions of (IP) are functions or inverses of functions. In the proof we gave there we 

made use of the correspondence between the selfadjoint extensions of a symmetric relation 

associated with the data of the problem (IP) and its solutions. Now we repeat  the corollary 

and give another proof based on the method developed in the present part of the paper. 

COROLLARY 3.7. Suppose that the Lyapunov equatzon (0.6) has a nonnegatwe solutzon. 

Then (i) all solutzons of the interpolation problem (IP) are functions zf and only zf rankV= n, 

and (ii) all solutions of the interpolation problem (]P) are inverses of functions if and only 

zf rankW = n. 

If P > 0 the proof is a straightforward consequence of Proposition A.6 and Theorem A.9 in 

the Appendix. We show this for item (ii). In (3.tl) iV(t,) is invertihle for all (A(~),B(~,))~N n 

if and only if 

l.s.{ (l:O)f(t~)lf~OlO)} =C" 

for one (and hence for all) pe~2(O)\R. Since 

y(e,) = - (  w )(z_g)-~ 
V 

is a basis of ~(0)  and thus (I:O)U(g,) = -W(Z-$ , )  -t, we see that u  is invertible if and only if 

rank W = n. 

Proof of ('orollary 3.7. (~) Assume that (M(g,)./V(~))EN" is a solution of lhe 

interpolation l)roblem (IP) an(l thal it is not a function. Denote by (~l(g,).~'(#,)) lhe 

representative of the Nevanlinna pair (M(f,), &;(f, ) ) which has lhe property t h a i  )~4($, ) + g,~'(f, ) = I. 
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Then there exists a vector  c e C  n, c # O, such thai, ~t(t)c = 0 or, equivalently, t~(4)c  = c for all 

t e s  and it follows from formula (3.9) (with 34(t),,g(g) replaced by M(t),s respectively) 

that 

q 
gc*(rFjq)(g ) = gc* ~ (~ - ff~j)h-q-l)~(~ ) Vj h = 

h=0 

q 
=C* ~ ('~-Y)3)h-q-lV#h, J = l , 2  .... ,m, q=0 ,1  . . . . .  r9. 

h=0 

The lefthand side is holomorphic on C\R and hence c * ~ h = 0  for all indices 3=1,2,  .... m, 

h = 0,1 .... ,rj,  in other words c*l/= 0. Thus we have shown that if rank V= n then all solutions of 

the interpolation problem (IP) are functions. To prove the converse, we assume that there 

exists a vector c e s c # 0, such that  e*V = 0, Let ~0 ~ s be & point which does not coincide with 

any of the interpolation points of (IP) or their complex conjugates. Consider the new 

interpolation problem (IP)0, which consists of finding all solutions (M(Q,A/(~)) of (IP) which 

also sar the condition c*M(w)=O. We denote the matrices for this new problem that  

correspond to the matrices V, W and Z introduced in connection with the interpolation problem 

(IP) by V o, W o and Z0, respectively. Then V0= (V:0), W0= (W:c) and Z o = d i a g ( Z : w )  and it 

follows that, if P is a nonnegative solution of the Lyapunov equation (0.6) associated with 

(IP), then P0 = diag (P,0) is a nonnegative solution of the Lyapunov equation associated with the 

interpolation problem (IP)0. By Theorem 3.5 the interpolation problem (IP)0 has at least one 

solution (M(~),N(g)), say. This Nevanlinna pair is also a solution of the problem (IP) but is 

not a function, since c*~/(w) = 0 and hence c*M(~ ) = 0 for all ~ ~ C\R. Thus we have shown that if all 

solutions axe functions of the interpolation problem (IP) then r a n k l / = n .  (~z) This part 

follows from (i) by taking advantage of the symmetry of the problem (I P): interchange K(~) and 
n .  �9 n 

- Z;(g), and A/(Q and -34(g) and use the fact that (M(QwV(Q)eN if and only if (A/(g), - M ( g ) ) e N  , 

cf. the proof of Part I, Corollary 3.5 (ii). 
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