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INTERPOLATION PROBLEMS, EXTENSIONS OF SYMMETRIC OPERATORS
AND REPRODUCING KERNEL SPACES II
(Missing Section 3)

Daniel Alpay, Piet Bruinsma, Aad Dijksma, Henk de Snoo

Bv an oversight on the part of the authors this section was not included in the paper
previously published in Integral Equations Operator Theory. volume 14/4 (1991), 466-500.

3. INTERPOLATION VIA REPRODUCING KERNELS

The theory of reproducing kernel spaces of holomorphic functions given in Sections 1 and
2 will now be applied to the interpolation problem (IP). This approach to solve interpolation
problems was initiated by Dym in {Dy1,2]. As mentioned in the Introduction, the method

developed in this paper has several points of contact with Dym’s work.

We build from the data of the interpolation problem (IP) the following finite

dimenstonal. resolvent invariant space M of rational functions:
DR:{( )(Z L) cireC IR

where 7. the nxr matrices V.l and the rxr matrix Z are all associated with the data of (IP) and
defined in the Introduction. In order to apply the results of Section 2 to our interpolation
problem. we connect the notations used there, cf. (2.3)-(2.6), with the ones used in the
formulation of (IP) by setting the 2nxl vectors ¢, equal to

W ( :
jz ) Vg _h((" (w,)"/qL. W]q=£f)(w])*/q!, l<j<m, 0<g<r),

4

C

so that ¢ 15 the 2nxr matrix
C={ Cieyte i€t oo Cpgtees i | = V)
Thus the linear space M can be written as
M=Ls {Fd)|g=1.2,....m. q=0,1....,7, }.
where Fo(£). the g-th element of the j-th chain. is given by

q g~
(8:1) Fill)= ¥ (6= B, I e
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From the formula
F(£) = Fyol€):Fpy(€):eec:Fyr (€)1 Frngl €)1 Py (£) ) = ~C(Z )"

it easily follows that IR is resolvent invariant. Except when explicitly stated otherwise, we
fix in this section the signature matrix J and set it equal to
_ (0 -,
I= ( i, 0 ) ’

Note that now the Lyapunov equation (0.6) can be rewritten as
PZ- 7P = - C*(iJ)C,
which agrees with (2.7).

The space M can be used to provide a test to check whether a Nevanlinna pair {(M(£),N(£))
is or is not a solution of the interpolation problem (IP). To formulate this test we associate
with each ordered pair (M(£),N(£)) of matrix functions satisfying (2.14) the linear mapping

T=7yn from the space M to some linear space of functions defined by
(3.2) (TF)(&) = (- M) N (€)F(8). Fem,

cf. (2.17). If 7 maps IR into the space L(M,N), then the same is true for each ordered pair
equivalent to (M(£),N(£)) and we shall say that 7 associated with the Nevanlinna pair
(M(2),N(£)) takes Pt into &(M,N), cf. the remarks after Theorem 2.5. The test is stated in the
first part of the next theorem. For the definition of the rxr matrix Py » where (M(¢),N (£)eN",

appearing in the second part of the theorem, we refer to the Introduction, formula (0.8).

TueoreM 3.1. (i) The Nevanlinna pair (M(€),N(£)) is a solution of the wnterpolation
problem (IP) if and only if the mapping T takes M into K(M,N). (it) If the Nevanhnna pair
(M(€),N(£)) 15 a solution of the interpolation problem (IP), then

(3.3) [7F,7Flemny=Fun,
i.e., in terms of the matrix components [TF]q,TFlp]Q(M’N)=(PM’,\/)ZZ)?.

To prove the theorem we need the following technical lemma, which we also apply in the

proof of Theorem 4.1 in Section 4.

LemMma 3.2. Let (M(£),N(£)) be an ordered pawr of holomorphic mairix functions on C\R
that satisfies (2.14) and is a solution of the interpolation problem (IP). Then there exist
unique vectors e]qu", J=12,...,m, ¢=0,1,...,r), such that the coefficients c,, of F (£) in

(3.1) are given by

h —
(3.4) ep=1 ((D)" ‘(%Eﬁ;)} o=, €525

3=42,...,m, h=0,1,...,7,
=0 J
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and then we have

. C -t

(35) (TFy)€)= L {(D5)" Ly n(6-A) ) D, e

If. mn addition, the ordered pawr setisfies the relation LML)+ N(¢)=1. then the vectors ey, are
given by

(3.6)  e50=(D3) (MK, (A) 4L, (A T acuy

and hence,

(37) (TF i) = (D5 {Law (& MK )+ £,00)" ) acu,

M) e
M) ) the
two (N + 1)x{N+ 1) block matrix functions Ay(£) and By{£). whose ij—th blocks are the nx2n. 2nxn

Proof. For any N=0,1,... we associate with the 2nxn matrix function X'(£) = (

matrix functions, defined by

(An(£))y = (D)X, iz, (Ap(€)),=0. 1<].

(By(£)),, = (D) 7 X(2), >, (BN(€))yy =0. i<},

respectively. where we recall the notation (De) = (1/g0(d/de)’. 120. The symmetry condition in
(2.14) can be rewritten as Xﬁ((l)JX(é’,) =0, £eC\R, and after differentiating this identity & times.

we obtain

f ((De)""x’i(z))J(DMX(@) =0. k=0,1,....N,
7=0

which implies that Ay(€)By(¢)=0, £eC\R. Tt follows that R(By(£)) cv(An(£)). £eC\R. To show
that

(3.8) V(Ay(£))=R(By(£)). ¢€CR,

we use a simple dimension argument. By the nondegeneracy condition 1n (2.14).
rank X (£) =rankX(£)" =n, from which one gets that the (N+1)nx2(:¥ + 1)n matrix Ay(¢) and the
2N+ 1)nx(N+ 1)n matrix By(£) have full rank {(N+1)n. Hence,

dimp(Apy(£)) =2(N+ 1)n— dimR(Ap(£)) = (N + 1) = dimR(By(¢))

and now (3.8) easily follows. Nexl we rewrite the interpolation problem (IP) at w, as

£ oot ks up

and by taking adjoints we obtain

Crn
Ar,(wz) [ : ] =
C.

e,

(Y(e))l(’,zuvi:0~ DSPST“

L (D D o) e | =0
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It follows from (3.8) and the fact that B, (#,) has full rank, that there exist unique vectors

elpeCn, i=1,2,...,m, p=0,1,...,7,, such that

Cig €0
[ ; =Br,<w,)[ :]
czrL ezr,

or, equivalently, such that c¢; is as in (3.4). Substituting (3.4) into formula (3.1) we find

that

Il

Fult)= £ (D" (63X ) Iaca, o

and hence,
(TFyg)(8) = (— M (8) NF(£)) Fgf) = 6X°(€) T Fygf6) =
=i f (DRI X)) e

Since LM’N(K,)\)=(€—X)_1Xu(€)(zJ)X(X)., this proves (3.5). Formula (3.6) follows from the
following calculations:
I I « 0
(De)t(m,(ﬂ)Jrﬁj(«@))le:wJ=(De)t((ﬁj(ﬁ Ky () Memw, = S w]) +6e( ) =
I
)

-1, -1-r *
& (D)7 X(O)em, )" (1, ) + L & (D)7 X(O)ems, )" (

3
=]

il
40

J

((Dr)_r(l )X )ie:a;])*=@;t-

It
| D~
& *

<
=]

It is only in this last equality that we have used the condition that (7:£)X(¢)=/. Finally,
(3.7) follows from formula (3.5) by substituting for e,, the righthand side of formula {3.6).

This completes the proof of the lemma.

Proof of Theorem 3.1. In order to prove the theorem we consider representatives
M(£),N(£) of the Nevanlinna pair that are holomorphic matrix functions in C\R. We first
establish the sufficiency in (i). Suppose that the map 7 takes MR into £(M,N). Then by

Proposition 2.4 the function (7F,,)(¢) is holomorphic on C\R. Since

(3.9)  (TF)q)(€) = (= MH(€) :N*(£))F () =

q g
= (-, " (N e) )L (¢ @)V - M 0% (- @)W )

for y=1.2....,m, g=0.1.. we find by integrating both sides over a small circle around £ =%

Ty J

and using Cauchy’s formula, that

0= (D) (N LOKS(8) - M () L5() ) [0=a, =

J
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= (D) (KON @)= LAOME) ) lm)) "> 7=01,07,.

It follows that K (£)N(£)~ L;(£)M(£) has a zero of order 7,+1 at ®@,, which shows that the pair
(M(£),N(£)) is a solution of the interpolation problem (IP). If conversely, the pair
(M(£),N(£)) is a solution of (IP) then by Lemma 3.2 and Proposition 1.1 we have that
TF,,e YM,N}. Since the F,;’s form a basis for IR, this proves the necessity in (). We now come
to the proof of (ii). If the representing pair (M(£),N(£)) has the stronger property that
EML)+N(£) =1, £ eQ\R, then (3.3) can easily be deduced from (3.7), the reproducing property of
the kernel Ly x(£,A) and the definition of Py y. The general case follows from the observation
that both sides of this equality are independent of the chosen representative of the Nevanlinna

pair (M(£),N(£)). This completes the proof of the theorem.

Part (i) of Theorem 3.1 can be considered as a weak version of Theorem 2.5(i). The
spaces in Theorem 2.5 have a Hilbert space inner product and the mapping 7 there is a
contraction. In Theorem 3.1(%) the space IR has not been provided with a Hilbert space structure
and the test to determine whether or not a Nevanlinna pair is a solution of the interpolation
problem (IP) only involves the range of the mapping 7. An inner product on $t is suggested by
part () of Theorem 3.1, namely the one which makes 7 an isometry between Hilbert spaces. If
(M£),N(£}}eN" is a solution of (IP) then we know from the Appendix of Part I that P=Py v is a
Pick matrix, i.e., a hermitian solution of the Lyapunov equation (cf. the proof of Proposition
1.7 of Part I, but the reader should note that this Appendix contains an independent study of
the Lyapunov equation and does not rely on the extension theory in part I). If moreover, P is
positive, then there exists a uniquely determined inner product on Mt which makes 7 an isometry
between IR and 2(M,N). In this case, F(£) is a basis of I and P is the Gram matrix associated
with F(£) and therefore a positive solution of the Lyapunov equation. Now, a converse also
holds and by turning things around, that is, by starting with a positive solution P of the
Lyapunov equation we obtain a parametrization of all solutions (M(£),N(£))eN" of the

interpolation problem (IP) that satisfy the condition Py =P.

THEOREM 3.3. Let P be a positive solution of the Lyapunov equation (0.6) and let the
space M be endowed with an wmner product [.,.ly such that P 1s the Gram matrix associated with
the basis F(£), i.e.., P={F,Flg. Then:

(1) M=5H(O), where the J inner function O(¢) 15 given by

()I)'

(3.10) O(£)=1+ (‘;')(z_m"n:"(vv*:v*)(_, 0

(i1) O(£) has the property that the formula
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3.11) | W’)) =a(¢) (B(‘?))

establishes a one to one correspondence between all the solutions (M(£),N(£))eN" of the
wmierpolation problem (IP) satisfying the supplementary condition Py y=F and all Nevanlinna
pairs {A{(L).B(L)).

A J inner function @(4) with the property mentioned in part (z2) of Theorem 3.3 is called
a solution matrix for the interpolation problem (IP) associated with the positive Pick matrix
P. Note that the solution matrix ©(£) defined by (3.10) coincides with the solution matrix
Un(€) given in Part [, Theorem 3.7. We shall come back to this in Section 4. We recall that if
the interpolation points w, are such that w, # @, for all indices .j, then the Lyapunov equation
has a unique solution P and it automatically coincides with Py . In this case all solutions of
the problem (IP) satisfy the relation Py »=P. Only in case some interpolation points occur in
conjugate pairs. this relation implies that the Nevanlinna pair (M(£),N(£)) satisfies certain

additional interpolation requirements at these points.

Proof of Theorem 3.3. Part (2) follows from Theorem 2.2, and the representation (3.10)
of &(£) comes from formula (2.8). To prove (i), first assume that (M(£).N(£))eN" is a solution
of the interpolation problem (IP) with Py =P. Then by Theorem 3.1 the mapping 7 is an
1wometry from M = H(O) into LM.N) and by Theorem 2.5(¢) (3.11) is valid for some Nevanlinna pair
(A(£).B(£)). Since O(£) is J inner this pair is uniquely determined. For the proof in the
other direction. assume that (M{£),N(£)) is given by (3.11) for some (A(£),B(£))eN". Then
(M(£).N(£))eN" and again by Theorem 2.5(i) T=Tyy maps M=H(O) into LMAN) and is a
contraction. On account of Theorem 3.1(z) the former conclusion implies that (M(£)},N(£)) is a
solution of the interpolation problem (IP), whereas the latter implies that Py » <P. Since both
members of this inequality are solutions of the Lyapunov equation and o(Z)nR =@, the diagonal
entries of Py y and P are the same. Hence the matrix P—Py v is nonnegative and has a zero main

diagonal which implies that Py y =P. This completes the proof of the theorem.

We have seen in the proof of Theorem 3.3(i¢) that the mapping 7 is an isometry.
Therefore on account of Theorem 2.5(i2) the following result holds, to which we return in

Section 4.

CorovLLARY 3.4. If O(£) 1s given by (3.10) and (3.11) 15 vald, then the space S(M,N) has

the orthogonal decomposition

SIMN) = (- M AYBO) b LA, B).

Up till now we have heen concerned with the solvability of the interpolation problem

(IP) when the corresponding Lyapunov equation possesses positive solutions. For this case
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Theorem 3.3 provides for an enumeration of all solutions of the interpolation problem over the
Nevanlinna class N". TIf it is given that the corresponding Lyapunov equation possesses a
nonnegative solution, then with the techniques we have developed in this paper we can prove, see
Theorem 3.5 below, that the interpolation problem (IP) also has a solution. In this case it is

also possible to obtain an enumeration of all solutions, see [Br].

TueoreM 3.5. The interpolation problem (IP) has a solution if and only if the Lyapunov

equation (0.6) has a nonnegative solution P>0.

To prove this theorem we again state and prove a proposition concerning perturbed
Lyapunov equations. Since this result may be of independent interest, we provide a complete

proof. In the proposition the matrix J is an arbitrary signature matrix.

ProrosiTION 3.6. Let Z be as in the Introduction, and suppose that the pair (C,Z) is

observable. Assume that the Lyapunov equation
PZ-Z'P=-C"uJ)C

has a nonnegative solution P. Then there exists a sequence of matrices C(g), € >0, such that (i)

C(e)>C as >0, and (i) the corresponding Lyapunov equations
PZ-Z"P= - C*e)(i])Cle),
possess positive solutions P(e)>0 such that P(e)>P as 0.

Proof. Without loss of generality we may and shall assume that Z =diag (Z,,Z_), where the
spectruma(Z,) C" and the spectrum ¢(Z_) c C . We decompose the matrix C as C = (C,, : C_) such
that the number of columns of C, is equal to the size of Z,. Let U(e), €>0 and small, be a

family of invertible matrices, such that
Ue)JU(e) <J, Ule)>I as e>0.

For example, if J is represented as J = é,'*diag( Iy, —1,)€, where £ is a constant unitary matrix,
take
Ule) = (1+¢%)2&* diag (1 ~e) L, (1+), ) E.
Next we define C+(e) by
Cule)=JU(e) ' JC,, C.(e)=Ule)*C..
Clearly C,(e)»C, as £e>0. We consider the equation

(3.12) PZ-Z'P= —i(C,(e): C_(e)) J(C,(g): C_(g)) = —iC"JC —idiag (A,(€),A_(€)),

where we have put
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-1

A(e)=CLIUE) (I -U(e)TU(eNli(e) IC,, A(e)=C{l(e) U=y ~J)C .

To obtain a solution of the equation (3.12), it suffices to look for solutions of the equations

(3.13) P (e)Z,-Z P (e)= —iA,(e),

(3.14) P(e)Z_—-ZP_(e)= —1A_(€).

For, if P,() is a solution of (3.13) and P_(¢) one of (3.14) then P(¢) =P+ diag(P,(<),P_(¢)) is a
solution of (3.12). Aso(Z,) cC’ and 0(Z_)cC these equations have unique, and hence, hermitian
solutions P,{s) and P_{¢), respectively. Since the observability of ((',7) implies that of
(C,.Z.) and of (C_,Z_), we may apply Theorem 3.3 of [G] to each of the equations (3.13) and
(3.14) and conclude that the spectra o(P.(e)) are contained in the right half plane
{zeC|Rez>0} and hence that P,()>0, £>0. In the Appendix of Part I it is shown that the
entries of the solutions P.() can be expressed as linear combinations of the entries of A (e},
cf. the proof of Proposition A.1 in Part I. Since A,(e)>0, we see that P,(¢)»0, as e»0. From
these results for P.(e) it now easily follows that P(e)=P+diag(P.(¢),P_(¢)) is a positive
solution of the given Lyapunov equation with the property that P(e)»P. as e»0, which proves the
proposition.

From the proof of Proposition 3.6 and the construction of P(e) it follows that the rate

of convergence in which P(g) tends to P is at least equal to the rate of convergence in which

C(e) tends to C as e~>0.

Proof of Theorem 3.5. If the Nevanlinna pair (M(£).N(£)) is a solution of the
interpolation problem (IP), then by (3.3) Py x>0, since 2(M,N) is a Hilbert space. As already
observed before, Py y satisfies the Lyapunov equation and thus the Lyapunov equation has a
nonnegative solution. To prove the converse, we assume that the Lyapunov equation (0.6) has a
nonnegative solution P. At the interpolation points w,, 7=1.2,....m, we perturb the
interpolation data V and W in such a way that the perturbed interpolation data V{e) and W(¢),

>0, give rise to a perturbed Lyapunov equation
PZ-Z"P=V(e)'W(e)-W(e)V(e),

which for every >0 posseses a positive solution P(e}, and that V(e). W(e) and P(¢) have the

limiting behaviour
W(e)>W, V(e)>V, P(e)>P, as e>0.

By Proposition 3.6 such a perturbation is possible. Indeed, without loss of generality we may

assume that the data satisfy the following rank condition:

For each 7=1,2,....m the set { (:{//0) |w,=w,} is linearly independent in ™.
W0
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which implies that the pair (C,Z) is observable. That this may be assumed without loss of
generality can be seen as follows. If the rank condition is not satisfied for some j, we
reorder the equations in the interpolation problem (IP) such that only the first s equations,
say, involve the interpolation point w, and such that ry>7,>...>7,. Let ¢ be the first index

such that the set
vV
{(Wzg) l1=1,2,....t}

is linearly dependent. Then in the equations
(KN EN'T | g, = (LM oy 0P,

the terms involving the highest derivatives of M(¢) and N(¢) can be eliminated and then the
resulting equations involve derivatives of at most order r,~1. In this way the number of
equations is reduced by at least one without changing the appearance of the interpolation
problem, i.e., the new equations are also of the form (IP). If necessary one can start all
over again to obtain another reduction of the number of equations. Since there are only
finitely many equations, this reduction procedure must terminate and this occurs precisely when
the rank condition is met.

With the perturbed data we build the space JR(e) with basis F (£) = ‘%3 Wz -8)—1 and we
endow ¥i(s) with the inner product determined by [F.,7.]=P(e). Then, by Theorem 3.3, there
exists a J unitary rational function @.(£¢), such that $t(e)=9(6,) and such that for each

Nevanlinna pair (A(€),B(£)) the pair (M.(£),N(£)) defined by

151 () =604

is a solution of the perturbed interpolation problem (IP),., i.e., (IP) with ¥ and W replaced
by V() and W(e). Fix a parameter (A(£),B8(¢))eN" and define the Nevanlinna pair (M.(£),N (£))
by (3.15). Let the ordered pair (/\Affg((’,),/i\/e(é)) be the representative of (M.(£),N_(£)) with the
property that 8&5(6” Y (¢y=1I. Then on account of {2.16} - AA’Is{d) is a Nevarnlinna function and

hence holomorphic on C\R, and

M) <1/)Ime], £eC\R.
By Vitali's theorem it follows that, for some sequence &(n)>0 with e(n)>0 as n->o0, the limits
ng /ﬂe(n)(ﬁ) and 121310 ,r@’e(n)((ﬂ) exist uniformly on compact subsets on C\R. We write

M) =im My(&), N (€)= 1im Vi (€).

The matrix functions M(£) and A'(£) are holomorphic on C\R and it is easy to verify that the pair
(M(£).N(£)) 15 a Tepresentative of a Nevanlinna pair with the property that ¢M(¢)+N(¢)=1.

Moareover, for all peN we have that
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MPe) = 1im MThye),  MP(e)=1im A0 ()

e(n)
and therefore, since for each £>0 the pair ()\Ads(ﬁ),ﬂ\/s(é)) solves the perturbed interpolation

problem (IP)., the Nevanlinna pair (M(£).,N(£)) is a solution of the interpolation problem
(IP). This completes the proof of the theorem.

If (M(£),N(£))eN" is a function, then det M(£)20 on C* and on €, Q(£) = N(£)M(£) is a
Nevanlinna function, and the pair (M(£),N(£)) is a solution of the interpolation problem (IP)

if and only if Q(£) satisfies
K(£)Q(£) - L,(8) =o((£~w,)"™), i=1,2,...,m.

Similarly, if (M(£),N(£))eN" is the inverse of a function, then detA/(£)#0 on C" and on C,
P(ﬁ):N(é)M(é)—l is a Nevanlinna function, and the pair (M(£),N(£}) is a solution of the
interpolation problem (IP) if and only if P(4) satisfies

K(8)~ L )PE) =o((£—w,)), 1=1,2,....,m

In part I, Corollary 3.5, we formulated necessary and sufficient conditions which ensure that
all solutions of (IP) are functions or inverses of functions. In the proof we gave there we
made use of the correspondence between the selfadjoint extensions of a symmetric relation
associated with the data of the problem (IP) and its solutions. Now we repeat the corollary

and give another proof based on the method developed in the present part of the paper.

COROLLARY 3.7. Suppose that the Lyapunov equation (0.6) has a nonnegative solution.
Then (i) all solutions of the interpolation problem (IP) are functions if and only of rankV =n,
and (i1) all solutions of the interpolation problem (IP) are inverses of functions if and only
1f rankW =mn.

If P> 0 the proof is a straightforward consequence of Proposition A.6 and Theorem A.9 in
the Appendix. We show this for item (i). In (3.11) N(£) is invertible for all (A(£),5(£))eN"
if and only if

Ls. {(1:0)f(11) | feH(O)} =C"

for one {(and hence for all) pe2(@)\R. Since

F&)= () yz-e)

is a basis of H(O) and thus (1:0)F(£) = ‘W(Z—(,)_l, we see that N(£) is invertible if and only if

rankW =n.

Proof of Corollary 3.7. (1) Assume that (M(£).N(£))eN" is a solution of the
interpolation problem {IP) and that it is not a function. Denote by (A( )K"M)) the

representative of the Nevanlinna pair (M(£),N(£)) which has the property that M )-H/\( )=
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Then there exists a vector ¢eC", ¢#0, such that /@(6)0:0 or, equivalently, 6/(/(6)(: =c for all
£eC\R, and it follows from formula (3.9) (with M(£),N(£) replaced by /@1(6),/\7(6), respectively)
that

eH(TE ) (6 =bc* ¥ (E-D

g1 .
h=0 J)Z ! lNa(e)I/th

g -
=c* ; (e—ﬁj)hqlV]h7 7=12.....m, ¢=0.1..... ).

The lefthand side is holomorphic on €\R and hence ¢*V,, =0 for all indices j=1,2,....m,
h=0.1,...,7;, in other words ¢*¥ =0. Thus we have shown that if rankV =n then all solutions of
the interpolation problem (IP) are functions. To prove the converse. we assume that there
exists a vector ceC”, ¢ #0, such that ¢*/ =0. Let weC\R be a point which does not coincide with
any of the interpolation points of (IP) or their complex conjugates. Consider the new
interpolation problem (IP)y, which consists of finding all solutions (M(¢£),A(£)) of (IP) which
also satisfy the condition ¢*M(w}=0. We denote the matrices for this new problem that
correspond to the matrices V, W and Z introduced in connection with the interpolation problem
(IP) by V4. W, and Z,, respectively. Then Vo=(V:0), W= (W :¢) and Z,=diag(Z,w) and it
follows that if P is a nonnegative solution of the Lyapunov equation (0.6) associated with
(IP), then P, = diag (P,0) is a nonnegative solution of the Lyapunov equation associated with the
interpolation problem (IP),. By Theorem 3.5 the interpolation problem (IP), has at least one
solution (M(£).N(£)), say. This Nevanlinna pair is also a solution of the problem (IP) but is
not a function, since c*/ﬁ('w) =0 and hence c*/";t(é) =0 for all £eC\R. Thus we have shown that if all
solutions are functions of the interpolation problem (IP) then rankV =n. () This part
follows from (i) by taking advantage of the symmetry of the problem (IP): interchange K(£) and
—L{£), and N(£) and —M(¢) and use the fact that (M(£),N(£))eN" if and only if (N(£), ~M(£))eN",
cf. the proof of Part I, Corollary 3.5 (i%).

D. ALPAY Present address:

DEPARTMENT OF THEORETICAL MATHEMATICS DEPARTMENT OF MATHEMATICS

Tae WEIZMANN INSTITUTE OF SCIENCE Ben-GurloN UNIVERSITY OF THE NEGEV
ReHovoT 76100 BEERSHEVA

ISRAEL ISRAEL

P. Bruinsma, A. Duksma, H.S.V. pDE SNoo
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GRONINGEN

PosrBox 800

9700 AV GRONINGEN

Tur NETHERLANDS

MSC 1991, Primary 47A57; Secondary, 47B25,46E22



