
Acta Informatica 30, 1 59 (1993)

I . nmrmabca
�9 Springer-Verlag 1993

Plain CHOCS
A second generation calculus for higher order processes

Bent Thomsen

European Computer-Industry Research Centre, Arabellastrasse 17, W-8000 Munich 81,
Federal Republic of Germany

Received July 1, 1991/August 11, 1992

Abstract. In this paper we present a calculus of communicating systems which
allows one to express sending and receiving processes. We call this calculus
Plain CHOCS. The calculus is a refinement of our earlier work on the calculus
of higher order communicating systems (CHOCS).

Essential to the new calculus is the treatment of restriction as a static binding
operator on port names. The new calculus is given an operational semantics
using labelled transition systems which combines ideas from the applicative
transition systems described by Abramsky and the transition systems used for
CHOCS. The new calculus enjoys algebraic properties which are similar to
those of CHOCS only needing obvious extra laws for the static nature of the
restriction operator.

Processes as first class objects enable description of networks with changing
interconnection structure, and there is a close connection between the Plain
CHOCS calculus and the re-Calculus described by Milner, Parrow and Walker:
the two calculi can simulate one another.

Recently object oriented programming has grown into a major discipline
in computational practice as well as in computer science. From a theoretical
point of view object oriented programming presents a challenge to any metalan-
guage since most object oriented languages have no formal semantics. We show
how Plain CHOCS may be used to give a semantics to a prototype object
oriented language called O.

1 Introduction

Several attempts to extend calculi for concurrent systems with the capability
of describing processes as first class objects have recently been put forward
[AstReg87; Bou89; Chr88; KenSle88; Nie89; Tho89; GiaMisPra90]. The justifi-
cation for having process passing in a calculus of communicating systems may

2 B. Thomsen

be found in the powerful abstraction technique it yields, just as having (higher
order) functions or procedures in traditional programming languages. Many
systems can easily be described using process passing, some are even most natu-
rally described in this way. As an excellent example take the system consisting
of a satellite and an earth station originally described by Christensen in [-Chr88].
One interesting property of this system is that the satellite is physically far
away from the earth station. If the program controlling the satellite has to
be changed, either because of a program error or because the job of the satellite
is to be changed, then it would be preferable to be able to send a new program
to the satellite, stop the old program and run the new program instead. Alterna-
tively we would have to send a space shuttle to take the satellite out of orbit
to bring it back to earth for reprogramming and then relaunch it, a rather
expensive strategy. A reprogrammable system consisting of two components
could be specified, in a CCS/CSP like syntax, as follows:

Sat = newprg ? x. (x I(int ?. Sat + error ?. Sa t + end ?. Sat))

Ear th = newprg ! Job1 . newprg ! J o b 2 . . .

The satellite is ready to receive a new job on the newprg channel. After reception
it acts according to this job until it is " interrupted" either by a new job or
because a program error has occurred or because the job has finished. In this
example we are beyond CCS/CSP because of ne wprg?x . (x] . . .) , what we receive
on the newprg channel is a program (a process), we then run this program
in parallel with the rest of the system.

In [-Tho89] we showed how to extend CCS with processes as first class
objects and we presented a calculus of higher order communicating systems
(CHOCS) allowing processes to be sent and received in communication. Several
examples showed the usefulness of this calculus. One result of the approach
taken in [Tho89] was that almost all the algebraic laws for CCS carried over
unchanged and only obvious new laws for process passing were introduced.
A major result was the simulation of the (Lazy) 2-Calculus showing that rather
important computational phenomena could be modelled.

But some peculiarities may arise due to the dynamic binding of port names
in processes sent and received. Port names that intuitively would be considered
restricted or bound can become unbound and vice versa as e.g.

(~) (b?x . (x lq)) l ((b !p ' . p) \a) ~---' p ' t q] (p \a)

(2) (b?x . ((x lq) \a)) [(b[p ' .p) , ((p ' lq) \a)[p .

In (1) any occurrence of a in p' becomes unbound after the communication
even though we would expect them to be bound if we analyse the system before
the communication. In (2) we have the opposite situation. Now any occurrence
of a in p' unbound before the communication would be bound after the commu-
nication. These examples show that sending the process p' amounts to passing
the text of p'. This is closely related to the treatment of function parameters
in LISP as originally defined by McCarthy and often referred to as dynamic
binding. This parameter mechanism is complicated to work with when analysing
the behaviour of programs from their text.

Plain CHOCS 3

The approach in [Tho89] was chosen because the semantics of CHOCS
could be given as a straightforward extension of the CCS semantics and because
it yielded simple algebraic laws. However, some of the laws included reference
to the sort of the process (i.e. the set of port names the process might use).
The calculation of the sort is either a costly calculation needing to run the
process (or even worse needing all possible runs of the process) or a very rough
approximat ion to the actual sort. This approximat ion often yields infinite sort
for processes intuitively having finite sort.

Inspired by the idea presented in [EngNie86; MilParWa189] of the restriction
operator p \ a being a scope binder, which intuitively should bind all occurrences
of a in p, we now present a calculus of higher order communicating systems
with static binding of port names by restriction. We call this calculus Plain
CHOCS.

We are looking for a calculus which has the property that scope extrusion,
as we call the technique to take care of the problem in (1) above, will automati-
cally take care of a static binding mechanism for the restriction operator. For
example (1) becomes:

(3) (b?x.(xrq))l((b!p' .p)\a) ~ , (p'{c/a} Iq]p{c/a}) \c ,

where {c/a} is a name substitution such that c does not belong to the set of
free names in q and the restriction will therefore not bind any port in q, only
in p and p'. Also scope intrusion, as we call the problem in (2), will be taken
care of by a new definition of process substitution which takes the static nature
of the restriction operator into account. Therefore (2) above becomes:

(4) (b ?x. ((xlq)\a))l(b!p' .p) ~ , ((x lq) \a) [p'/x]lp = ((P'I q {c/a})\c)l p,

where {c/a} is a name substitution such that c does not belong to the set of
free names in p' and the restriction will therefore not bind any port in p' only
in q. To support the linking of processes received in communicat ion with pro-
cesses in the receiving environment it turns out that it is interesting to have
the capability of describing a kind of dynamic binding of port names of processes
received in communication. This is obtained by allowing free names to be re-
named to bound names upon reception of a process a :

(5) (b ? x. ((x [a ~ a']]{a'/a} q)\a'))l(b !p'. p) , ((p' [a~---~a'][{a'/a} q)\a')] p,

where a' does not belong to the set of free names of p' and q. This construction
simulates the behaviour described in (2). However, we can not p rogram the
behaviour described in (1) since in Plain CHOCS a bound name remains bound
and can never become unbound again.

To illustrate these concepts, before presenting a formal syntax and semantics
of the Plain CHOCS calculus, we first study a small example.

1 Recently Milner [Mil91] and Sangiorgi [San92] have approached this by allowing 2-abstrac-
tions over port names

4 B. Thomsen

Example 1.1 The example consists of a simple user/resource system similar to
the system studied in [EngNie86]. The system is constructed from a number of
users, a resource manager and a resource. In this example the resource is a process
which takes in a number and multiplies it by 2. A resource is obtained on the
c channel, then put into use in parallel with the user process. Note how free
names of the resource are renamed and bound when received by the user process.

U1 =c ? x.(x[b~-~a] la! 8.a ? y.dl ! y.nil)\a

U2 =c ? x.(x[b~-~a]la! 5.a? y.d2 ! y.nil)\a

R M = (c !(R). fin ?. R M) \ fin

R=b?x .b! E2* x]. fin!.nil

SYS=(Ul lU2]RM)\c .

The fin! signal from the resource R tells the resource manager R M when the
resource has finished its task for a user. The resource manager can then (recursive-
Iy) restore itself and thus provide a resource for other users�9 The restriction of
fin ensures that there is a private communication channel between resource and
resource manager which can not be interfered by any user process.

It is interesting to observe how the system executes and how scope extrusion
takes care of preserving private links with the sending process. We give an example
of one execution sequence where U2 gets the resource first.

SYS--(Ull U21RM)\c

l Since U2 - c? x , > U~=(xEb~--*a]la!5.a?y.dz!y.niI)\a and
"C

~ o,(yi,,~ RM' =fin?. R M

(U1 I((R [b ~ all a ! 5. a ? y. d2 ! y. nil)\a[fin ?. R M) \ f in) \c

a? x
Since REb~--~a] , (b! E2,x].fin!.nil) [bF--~a] and

z
~V5.a?y.d2!y.nil a!5 �9 ~ a?y.d2!y.nil

(U1 I(((b ! [-2, 53. fin !. nil) [b ~ a]l a ? y. d2 ! y. nil)\al fin ?. R M) \ f in) \c

a! 10
I Since (b! [2,5].fin!.nil) Eb~--~a] ~ (fin!.nil) [-b~---~a] and

~?y.d2!y.nil a?y d2 ! y.nil

(UI I(((fin !. nil) [b ~ a]ld2 ! 10. nil)\a I fin ?. R M) \ f in) \c

$d2!10 Sinced2!lO.nil ~ 2 t l ~

(Ut](((fin !. nil) Eb ~ a][nil)\a I fin ?. R M) \ f in) \c
f i M f in?

~ z Since (fin!.niI) [b~-~a] ~ nil[b~--~a] and f i n ? . R M - ~ R M

(U1 l((nil [b ~-~ a][nil)\a I R M) \ f in) \c

Plain CHOCS 5

This derivation of transitions illustrates how the system may evolve. However,
the linear representation of the system in the Plain CHOCS syntax does not
show very well how the underlying process network dynamically reco~figures itself.

As an attempt to illustrate this the following cartoon is intended to show how
the system evolves spatially when going through the first of the above transitions:

gl U2

RM

cr 1 cr~ n[a/b]

da

RM I

Fig. 1. Dynamic reconfiguration of user/resource system

We have adopted the convention from the process diagrams in [-MilParWa189]
and displayed private links inside the circles representing processes and public
links along the edges of the connections. The box around the resource R is symbolis-
ing the renaming of the public name b to the private name a.

Note that the number of users and resources is not hard wired into the system.
As for the system studied in [-EngNie86] we may add any number of users or
resources without changing the structure of the overall system e.g.:

SYS1 = (Ull ... [U, IRM11... RMm)\C.

The above system is very simple, but it easily generalises to systems with a queue
system for resource requests from users, multiple resources or even systems where
the resource is returned to the resource manager instead of just stopping and
allowing a new copy to be used. Some quite elaborate examples of user~resource
systems with the above facilities which use process passing have been studied
by Cozens in [Coz90]. This work presents a promising motivation for the use
of process passing in system description.

The paper is organised as follows: In Sect. 2 we present the calculus. The syntax
is essentially that of CHOCS, but with the renaming construct restricted to
the form [b~--~a] meaning b is renamed to a and all other names are not affected.
We introduce the notion of free names, free variables and substitution, and
the operational semantics is given in terms of a labelled transition system.

In Sect. 3 we present an abstracting equivalence between Plain CHOCS pro-
cesses. This equivalence resembles a merge between the applicative bisimulation
of [Abr90], the higher order bisimulation of [Tho89] and the strong ground
bisimulation of [MilParWa189]. We also present the algebraic properties of
Plain CHOCS with respect to this equivalence.

6 B. Thomsen

The connection to Mobile Processes [MilParWal89] is made explicit in
Sect. 4. Here we present two translations, one from Plain CHOCS to Mobile
Processes and one in the reverse direction.

Object-oriented programming is drawing a lot of interest from practical pro-
gramming. Object-oriented programming languages pose a lot of interesting
questions, also from a theoretical point of view. One such question is finding
appropriate formal semantics for such languages. In Sect. 5 we apply the Plain
CHOCS formalism to the semantic study of a toy object-oriented programming
language O.

Finally in Sect. 6 we round off the discussion of process passing in calculi
for communicating systems. We present a brief view of alternatives to the theory
presented in this paper, and we give some directions for further studies.

2 Syntax and semantics

The syntax of Plain CHOCS is essentially that of "dynamic" CHOCS, but
with the renaming construct restricted to the form [b ~-~ a] meaning b is renamed
to a and all other names are not affected.

Processes are built from the inactive process nil, three types of action prefix-
ing, often referred to as input, output and tau prefix, (nondeterministic) choice,
parallel composition, restriction, renaming and variables to be bound by input
prefix. We presuppose an infinite set Names (the set of port names) ranged
over by a, b, c and an infinite set V of process variables ranged over by
x, y, z, We denote by Pr the set of expressions built according to the following
syntax:

p: :=nilla? x.pl a! p'.plz.p] P+ P'I PIP' IP\alp[a~--~b]l x.

To avoid heavy use of brackets we adopt the following precedence of operators:
restriction or renaming > prefix > parallel composition > choice.

We shall write p [S] for p[a~--~b] where S=a~--~b and let Dora(S)= {a} and
Ira(S) = {b}. The operator \ a acts as a kind of 2-binder for port names (elements
of Names) in a sense to be formalised later, e.g. we have a notion of e-convertibil-
ity of restricted names. To formalise this we define the set of free names fn(p)
of a process p.

Definition 2.1 We define free names fn(p) structurally on p:

fn (nil) = 0

fn(a? x.p)= {a} w fn(p)

fn(a! p'.p)= {a} w fn(p')w fn(p)

fn(~.p) =fn(p)

fn(p + p')= fn(p) w fn(p')

fn(p l p') -- fn(p) w fn(p')

fn(p\a) = fn(p)\{a}
fn(p [S]) =-fn(p) w Dom(S) w Ira(S)

fn (x) = O.

Plain CHOCS 7

Intuitively one might expect the clause for renaming to be fn(p[S])
=(fn(p)\Dom(S)) • Im(S) since process p can not interact with its environment
over names in Dora(S). However, the renaming construct can interact with pro-
cesses having ports in Dora(S), so in order to be on the safe side we let the
set of free names of processes constructed using the renaming construct carry
a potential overhead since it is not necessarily the case that the names in
Dom(S)~Im(S) are going to be used, but the overhead is necessary since we
may receive processes in communication with free names which will be renamed
by S. The free names of Plain CHOCS processes are going to play an important
r61e in the definition of the semantics of the language and as we shall see
in the next section, where we define a notion of equivalence, the free names
are the windows through which we can observe the processes. As opposed to
the static sort of "dynamic" CHOCS we point out that processes to be sent
contribute to the free names of the overall system, whereas the empty set of
free names is ascribed to process variables.

We may need to syntactically substitute one port name for another. Using
the above definition we may now define a name substitution.

Definition 2.2 First for a, b, c ~ Names let

{ b a i f C = a
{b/c} a = otherwise

Then name substitution {b/c} p is defined structurally on p:

{b/c} nil =- nil
{b/c} (a? x.p) - ({b/e} a)? x.({b/c} p)
{b/c} (a ! p'. p) =- ({b/c} a)!({b/c} p'). ({b/c} p)

{b/e} - p)
{b/c} (1) + p') -- ({b/c} p) + ({b/c} p')

{b/c} (PlP')-({b/c} p) l({b/c} p')

{b/c} (p\a) - { p \ a if a = c
({b/c}({d/a} p))\d otherwise for some d(~fn(p\a) u {b}

{b/c} (p [a ~-* a']) -({b/c} p) [({b/c} a) ~ ({b/c} a')]

{b /c}(x) -x .

Input prefix is a variable binder. This implies a notion of free and bound vari-
ables.

Definition 2.3 We define the set of free variables FV(p) structurally on p:

FV(nil)=O
eV(a? x .p)=FV(p) \ {x}
FV(a! p'.p) = FV(p) u FV(p')

FV(~.p)=FV(p)
FV(p + p') = FV(p) w fV(p')

FV(plp') = FV(p) ~ fV(p')
F V(p\a) = F V(p)

VV(p [s]) = FV(p)
FV() =

8 B. Thomsen

A variable which is not free i.e. does not belong to FV(p) is said to be bound
in p. An expression p is closed if FV(p)=~. Closed expressions are referred
to as processes. The set of closed expressions is denoted by CPr. We shall
also talk about processes with at most one free variable. We denote this set
by Pr Fx]. Elements of P r [x] may be thought of as functions from processes
to processes i.e. belonging to CPr --, CPr.

To allow processes received in communicat ion to be used we need a way
of substituting the received processes for bound variables. We shall use the
definition of name substitution to avoid unintentional binding of free names
when processes are substituted.

Definition 2.4 The substitution p [q/x] is defined structurally on p:

nil [q/x] -- nil
(a?y.(p[q/x]) if y 4 x and y~FV(q)

(a ? y. p) [q/x] - ~ a ? z. ((p [z/y]) [q/x]) otherwise

t z4FV(p)w FV(q)~ {x, y}
(a! p'.p) [q/x] - a! (p' [q/x]).(p [q/x])

(z. p) [q/x3 = z. (p [q/x])
(p + p') [q/x] - (p [q/x]) + (p' [q/x])

(PIP') [q/x] - (p [q/x])l(p' [q/x])
(p\a)[q/x] -(({d/a} p) [q/x])\d for some d~ (fn(p\a) u fn(q))

(p [s]) [q /x] - (p [q /x]) IS]
y[q/x] -{qy if x = y

otherwise.

The only difference between the above definition of substitution and the one
given for "dynamic" CHOCS in [Tho89] is in the clause for restriction. In
the above definition we ensure that we do not restrict names in q. We shall
consider p - q if p and q only differ up to change of bound names and/or bound
variables.

Here are a few useful properties of substitution:

Proposition 2.5

1. I f x 4 = y then p [p'/x] [p"/y] - p [p"/y] [p' [p"/y]/x].
2. p [p ' / x] - p if x~FV(p).

Proof: Easily established by structural induction on p. []

With the above machinery in hand we may now give the operational semantics
for Plain CHOCS. The operational semantics is given in terms of a labelled
transition system in the style of [Plo81].

Definition 2.6 The transition relation ~ is a family of binary labelled

relations -L* r between elements of CPr (processes) and Pr [x] of the form p ~ p'.

The action F may have one of the following forms: a ? x, a !B P, r, where a s Names,
B_c Names, x ~ V and p ~ CPr. Let the bound names b n of an action be defined
a s ;

b n (F) = { ~ if F=a!Bp'
otherwise.

Plain CHOCS 9

Table 1. Operational semantics for Plain CHOCS. The choice, par, corn-close rules have sym-
metric counterparts

input a ? x . p a~.x p

outputa!p ' .p ,~op' ~P

tauv.p ~ ~p

choice P r ~p"
p + q r ~ p,,

p r ,p,, , bn(F)c~fn(q)=O par
p]q r ~ p,,]q

p a?x)p,,
r e d

p [$3 s(,)? x p,, [S]

P a~Bp' ,p,, , Bc~(Dom(S)wlm(S))=O

p [S] s~)~,, p,, [S]

p * ~ p "

p [S] ~ , p" [S]

res p ~7~ p,, , a , b

p \ b .Tx p " \ b

P "'~P' ~P" , a~=b, bCfn(p')

p \ b .lBp, ~ p " \ b

p " ~ p"

p \ b ~ , p " \ b

aIBp' pH
P ' , a4=c, dq~fn(p\c), c~fn(p ') open

p \ c ~! ~d/~p') , (d/c} p"

com-close p ,TX,p, q ,~Br ,q,, , B c ~ f n (p ') = O

p] q ~ , (p'Eq'/x]] q ') \ B

non-struct p ~ P ' ' p'' , B ~ (fn (p' f n (p"))= Bn' (f n (p' f n (p"))

P a!B,p' ~ p .

In the def ini t ion of the semant ics of Pla in C H O C S it is convenien t to wri te
p \ B where B__Names is a finite set: p \ B is s h o r t h a n d for p \ b 1 . . . \ b , where
B = {b l, . . . , b,} and p if B = 0. W e let ~ be the smal les t t r ans i t ion re la t ion closed
under the rules of Tab le 1.
The s t ruc ture of this t r ans i t ion sys tem is t a i lo red to cater for the b e h a v i o u r
we have in m i n d for systems like those descr ibed by (3) and (4) in the i n t r o d u c t i o n
to this paper , bu t it also carr ies some p h i l o s o p h y of its own. The three k inds
of ac t ions yield the fol lowing types of t r ans i t ions or obse rva t ions :

l 0 B. Thomsen

a ? x t Input action p , p, this kind of transitions may be interpreted as, "the process
p is capable of receiving on channel a". We only allow transitions of this
kind where p~CPr and p'~PrEx]. We want to model input transitions in
such a way that no further observations are possible until a value is supplied.
The reason for this is both technical and philosophical. Technically it ensures
that we do not "rewri te" to open terms which, without care, could lead to

b ? x o f a ? x confusion of free variables e.g.: a?x .x lb?x .x ~a:x .x lx ~xlx. Philo-
sophically it follows a point of view of only observing systems by atomic
observations or combinations of atomic observations. The input observations
consist of observing that input on channel a is possible and the systems
readiness to accept a value. To make further observations about this process
we have to supply a value say q~CPr and observe the system p'[q/x] with

a?
this value. A more suggestive notat ion would perhaps be p ,2x.p', but
it is not essential in the present calculus since x only acts as a place holder.

We have chosen the notat ion p ~?Xp, since p' is describable in the Plain
CHOCS syntax. We could extend the above transition system to open expres-
sions. To avoid confusion of variables introduced by the input-rule we would
have to ascribe the par-rule by the additional constraint FV(p")r~ FV(q)=O.
We have not done this since the theory of equivalence will be defined in
terms of closed expressions and extended to open expressions using the defini-
tion for closed expressions.

Output actions (with scope extrusion) p ~P'~p". We refer to p' as the emitted
process and p as the emitting process or rather p" since this is the state
of the system after emitting p'. If B = 0 this kind of transitions may be interpret-
ed as, "the process p can output the process p' on channel a and in d o i n g
so become p"". To observe this action we observe that output on channel
a is possible, to make further observations we have to observe both the value
p' and the resulting state p ' . If p' and p" share some private channels these
will be in the set B and a scope extrusion is necessary. We observe this
by the combined observation as for normal output actions together with
the additional observation of the scope extrusion. A more suggestive notation

o~ p,,). for output transitions might be p ~ (B, p',

Silent actions p ~ ~ p', this kind of transitions may be interpreted as, "the process
p can do an internal or silent move and in doing so become the process
p' ". Silent actions arise from communicat ions between two processes. Since
communicat ions are the only computat ions in our calculus these are in a
sense the real computat ions of the system, z-transitions may of course arise
from processes of the form T.p as well.

The input, output and com-close rules form the basis for inferring a communica-
tion between two agents. In the rules of Table 1 all transitions of the form

p ~?X~p' have the property that p~CPr and p'~Pr[x] and all transitions of
the form p "~'~P')p" have the property p,p', p"~CPr, therefore p'[q'/x]eCPr
in the com-close rule. This set of rules gives an operational description where
input is modelled as a function and communicat ion acts as a generalised applica-
tion. This is very different from the nature of inferring communicat ion in "dy-

Plain CHOCS 11

namic" CHOCS (or in CCS with value passing [-Mil80]). In "dynamic" CHOCS
we have the following three rules as the basis for inferring communication"

a?p' pt, a!p' ,q"
a?x.p "?P'~p[p'/x] a!p'.p a!p',p p ~ q .

p]q ~,p"]q"

Note that in these rules the transition relation is always between elements of
CPr. One way of interpreting the above rules is to say that the process with
input prefix knows all the possible values it can receive. What it does is to
offer a (an infinite) choice between all the possible new states and when the
communication takes place it is only a signal from the output process to the
input process telling which value to use (choose). This viewpoint is further
strengthened by the (elegant) way of encoding value passing in SCCS as described
in [Mi183]. In [MilParWa189] a scheme similar to the above for inferring com-
munication has been termed early instantiation, referring to the fact that the
instantiation of the free variable takes place in the axiom for input prefix as
opposed to the scheme used in Table 1. The scheme we are using has been
termed late instantiation, though in their case there is a difference since processes
are allowed to offer new transitions after an input transition. This calls for
some machinery to ensure that free variables are not confused. We have chosen

the late instantiation scheme with the restriction that p'~Pr[x] in p a?Xp,
for the reasons given above; late instantiation also seems necessary for the
scope opening and closing rules for the restriction operator. The rules concerning
the restriction operator have several alternatives, e.g. in "dynamic" CHOCS
this operator does not bind names in the process emitted but only in the emitting
process as the examples in the introduction show. Another possibility would
be the following rule

a~p, p ,
p

a4=b.
p\b "! (p'\b) p" \b '

This approach would ensure that bound names would be bound both in the
emitted process and in the emitting process, but it is too restrictive since they
can not use the local channel to communicate with one another since the \ b
encapsulates the process. To elaborate on this we follow the ideas of [EngNie86;
MilParWa189] and adopt a restriction rule with the side condition that p' can
escape the restriction only if b(~fn(p'). In [-Tho89a; Tho90] and previous versions
of this paper the following rule was adopted:

p a!Bp', p"

p\b "~P'\~ p"\b '
a:# b, b(~(fn(p')~ fn(p')).

It was pointed out to me by Crasemann that this rule will imply that Proposition
3.14 does not hold. The reason is that although the emitted process does not
share the restricted name with the emitting process, the emitted process may
be copied upon reception and each copy may share the restricted name. With
the above rule each copy will be encapsulated by the restriction and the sharing
of the name is therefore broken. Originally this rule was intended to allow

12 B. Thomsen

processes embraced by a restriction to emit processes with the restriction if
they are not sharing the restricted name. This was intended to save doing a
scope extrusion in this situation. However, the non-struct rule will suffice in
this case since if the restricted name does not occur free in the emitted process
it may be eliminated using the non-struct rule. In general we may use the non-
struct rule for adding or deleting names in the set of bound names in scope
extrusion if these names are not shared by the emitting and emitted processes.

We also introduce two new rules; open and com-close. The opening rule
signals that in the emitted process there are some bound names, names which
are shared with the emitting process. The corn-close rule ensures that exported
restrictions are reintroduced upon reception. The condition on this rule ensures
that we do not bind free names in the receiving process. When B = 0 this rule
is just a communicat ion rule.

We conclude this section by listing a few useful properties of the transition
system defined in Table 1.

Proposition 2.7

1. I f p ,!,~p' p,, and bf~ fn(p) ~ B then p a!((B\lcD~(b}){b/c}P') {b/c} i f ' for any cEB.

2. I f p "!~P'>p" then p a!~,p' p,, for some B' with Bc~(fn(p ')wfn(p"))=B'~
(fn (p') u fn (p")) and B' ~ fn (p') ~ fn (p") and B' ~ fn (p) = O.

3. I f p ~?X p, then fn(p ')~ fn(p).

4. I f p a~"P'> p" then fn(p') ~ fn(p) u B and fn(p") ~_fn(p) ~ B

5. I f p ' ,p' then fn(p ')~ fn(p).

Proof. By induction on the length of the inference used to establish the transition
and cases of the structure ofp. []

3 Bisimulation equivalence and laws

In the previous section we presented the operational semantics for Plain CHOCS
in terms of a labelled transition system. The structure of this transition system
resembles a merge between the applicative transition systems of [Abrg0] and
the higher order communicat ion trees used in the semantics for CHOCS in
[Tho89]. The transition relation--+ forms the basis for the observations we can
make about processes, but it is in itself too shallow to use as a distinguishing
equivalence. Instead we use the notion of (bi)simulation [Par81, Mi183] redefined
to the kind of observations the transition allows:

Definition 3.1 An applicative higher order simulation R is a binary relation
on CPr such that whenever pRq and aENames then:

a?x t a?y ql (i) Whenever p ~ p , then q > for some q', y and p'[r/x] Rq'[r/y] for
all r ~ CPr

(ii) Whenever p a ~ p , p , with B c~(fn(p)~fn(q))=O, then q a~,p' q,, for some
q', q" with p'Rq' and p"Rq"

(iii) Whenever p ~ , p', then q ~ > q' for some q' with p' Rq'

Plain CHOCS 13

all r E CPr

A relation R is an applicative higher order bisimulation if both it and its inverse
are applicative higher order simulations.

Two processes p and q are said to be bisimulation equivalent iff there exists
an applicative higher order bisimulation R containing (p, q). In this case we
write p,L q.

The first clause of this predicate is essentially the clause for applicative
(bi)simulation in the Lazy-2-Calculus as defined in [-Abr90]. It can be interpreted
as saying that if p can do an input on channel a and become the function
p', then q must match this by being able to input on channel a and become
the function q' and for all values (arguments) we can receive on this channel
the resulting process together with this value should continue to simulate each
other. The second clause with B = 0 and the third clause are similar to the
clauses of higher order bisimulation defined in [Tho89]. The second clause
supports a kind of black box view of the processes being sent. If p can output
a process p' on channel a and in doing so become p", then q should be able
to output some q' on channel a and in doing so become q" and p' and q',
as well as p" and q", should be equivalent. The second clause with B # 0 is
a generalisation of the clause for scope extrusion in the strong ground bisimula-
tion defined in [-MilParWa189]. B is a set of private channels between p' and
p". These channels are exported from their original scope and are intended
to become restricted upon reception.

Proposition 3.2 " is an equivalence
Before relating the process constructions of Plain CHOCS to the underlying
semantic equivalence ' we present a technical construction called an applicative
higher order bisimulation up to restriction. This construction resembles the
bisimulation up to ~ presented in [Mi1893 and it is an adaptat ion to the Plain
CHOCS setting of the notion of strong ground bisimulation up to restriction
presented in [MilParWa189b].

Definition 3.3 An applicative higher order simulation up to restriction R is
a binary relation on CPr such that whenever pRq and asNames then:

(i) If b(~fn(p) w fn(q) then {b/a} pR {b/a} q

(ii) Whenever p a?Xp,, then q ~?Y~q' for some q',y and p'[r/x]Rq'[r/y] for

(iii) Whenever p ~!~P',p" with B c~(fn(p)ufn(q))=O, then q a!~q, q,, for some
q', q" with p' Rq' and p" Rq"

(iv) Whenever p ~ ~p', then q ~ ~q' for some q' and either p'Rq' or for some
p", q" and b: p ' - p " \ b , q '=q" \b and p"Rq"

A relation R is an applicative higher order bisimulation up to restriction if
both it and its inverse are applicative higher order simulations up to restriction.

Lemma 3.4 I f R is an applicative higher order bisimulation up to restriction
then R ~_ "

Proof. We show that the relation R \ = ~ R n where
n ~ r

Ro=R
Rn+ 1= {(p\b, q\b):(p, q)~Rn, bENames}

is an applicative higher order bisimulation.

14 B. Thomsen

First we show by induction on n that if pR,q and cr then
{c/a}pR,{c/a} q. For n = 0 this is immediate from the definition of applicative
higher order bisimulation up to restriction. Suppose n > 0 and p \ b R , q \ b
where p e , _ l q and c C f n (p \ b) ~ f n (q \ b) . If a=-b then {c/a}(p\b)
=- p \ b R \ q \ b =- {c/a} (q\b). If a 4= b then {c/a} (p\b) = ({c/a}({bt/b} p))\bl R\({c/a}
(bl/b} q))\b I =-{c/a} (q\b). Next we show by induction on n that if pR, q then

(i) Whenever p a?~ ~ p,, then q a?y, q, for some q', y and p' [r/x] R\q ' [r/y] for
all r ~ CPr

(ii) Whenever p a!,p, p,, with B c~ (fn(p)wfn(q))=-0, then q , ! B e q,, for some
q', q" with p' R \ q' and p" R \ q"

(iii) Whenever p ~ ,p ' , then q ~, q' for some q' and p'R\q '

The details can be found in Appendix A. []

Lemma 3.5 / f p Z q and bC~ fn (p)u fn(q) then {b/a} p " {b/a} q.

Proof. An easy corollary of Lemma 3.4 and Definition 3.3. []

Let 2 = (x t , ..., x,) be a vector of variables of length n and x i+x j if i4:j.
We also consider ~ as a set of variables {x~, ..., x,} and we write Y~_FV(p)
which means that the set ~ is a subset of FV(p). Let p[gl/'2] mean
(... (p[q~/x~])...)[q,/x,,]. We only consider substitutions of compatible vectors,
i.e. of vectors of the same length. Let c~ ~ Z ~/2 mean q b .Z q2~ for all q~j ~c7~, i e 1, 2
and let cii~ CPr mean q~je CPr for all qi~gti.

Proposition 3.6 Z is a congruence relation on processes (closed expressions).

1, p [ql/3~] :,4.~p [q2/2~] /f ql "~ 1~/2 and ,2 ~_ FV(p)
2. a ? x . p Z a ? x . q if p [r / x]Zq[r / x] for all r
3. a ! p ' . p Z a ! q ' . q i f p Z q a n d ~. p , ' q ,

4. z . p Z z . q if p Z q
5. p + p' ~L q + q' if p Z q and p' ~L q'
6. PlP' Zq lq ' if p Z q and p' Zq '
7. p \ a Z q \ a if p Z q
8. p [S] Z q [S] if p Z q .

The proof of this proposit ion is quite involved. The reason for this is that
we can not prove the congruence properties for Plain CHOCS using the "s tan-
dard" process calculus technique; i.e. prove that for each operator op in the
process language the relation Rop={op(pl), o p (~ z) : p l ~ 2 } is a bisimulation
and then prove the substitution property (i.e. that if c~c~2 then p[~h/2]
~P[glz/Y~]) by structural induction on p. This approach fails for Plain CHOCS
in the case of parallel composit ion since we need to know the substitution
property to prove that the relation R I is a higher order bisimulation and we
thus end up with a circular argument. This may at first seem surprising, but
the "funct ional" nature of Plain CHOCS may indicate that this property should
be hard to prove: e.g. Abramsky has to give quite an argument to prove con-
gruence properties of the Lazy-2-Calculus in [Abr90].

Plain CHOCS 15

Proof. 1. We prove this by showing that the relation ACR*, the reflexive and
transitive closure of ACR, where

ACR= {(p[q,/2], p[qz/Y~]): pmPr & "2~FV(p) & q~ " q2 & q~CPr},

is an applicative higher order bisimulation up to restriction.
Note if ql Z q2 then (x [ql/x], x [q2/x])~ACR* and we write (ql, q2) eACR*.
We only show that ACR* is an applicative higher order simulation up to

restriction, symmetry of ACR* then yields the results. To see that ACR* is
an applicative higher order simulation up to restriction we show that if
(Pl, P2) EACR then p~ =- p [gh/X] and:

(i) If b (~fn(p [tTh/2]) u fn(p [s then {b/a} (p [c7~/2]) ACR* {b/a} (p [ci2/2])

(ii) Whenever p[ql/2] aTx ,p,, then p[c12/2] a?Y ,q' for some q',y and
p' [r/x] ACR* q' Jr/y] for all re CPr

(iii) Whenever p [Ch/2] atB p' p,, with B c~ (fn(p) ufn(q)) = 0, then

p [02/~] SBq ' , q" for some q', q" with p'ACR*q' and p"ACR*q"

(iv) Whenever p[gh/~] ~>p', then p[gt2/f]-2-~q ' for some q' and either
p'ACR*q' or for some p", q" and b: p ' -p" \b , q ' - q " \ b and p"ACR*q"

If (p, q)eACR* then there is a sequence Pl...Pn such that (p, pOeACR,
(Pi, Pi+~) eACR for 1 <i<n and (p,, q)eACR. The result then follows by induc-
tion on the length of the transitive sequence p, ... p, of ACR*.

First (i) is easily proved by structural induction on p using Lemma 3.5 in
the case p-= y.

Next we show (ii) (iv) simultaneously. We proceed by induction on the length
of the inference used to establish the transitions of p [c71/2] and cases of the
structure of p. We only need to consider transitions inferred by use of the struc-
tural rules since we may transform any derivation of a transitions into an equiva-
lent one where we use the non-struct-rule exactly once after each application
of a structural rule. (The full details are given in Appendix A).
2. This is proved by showing that the relation Ra = R u Z , where:

R= {(a? x.p, a? x.q): FV(p)= FV (q)~ {x} & greCPr.p[r/x] Zq [r/x]}

is an applicative higher order bisimulation. Note that the relation R 1 consists
of two parts; one part covers the structure we are interested in and the second
component is a kind of closure to cover the processes sent and received. The
second component is necessary since the processes sent and received do not
necessarily have the structure of the first part.

That the above relation is indeed an applicative higher order bisimulation
is easily established. (The full details are given in Appendix A).
3. follows from ((a! x.y)[(p, p')/(x, y)], (a! x.y)[(q, q')/(x, y)])~ACR if p.Lq and

p'Zq' and x+y.
4. follows from ((z. x) [p/x], (~. x) [q/x]) ~ A CR if p .Z q.
5. follows from ((x + y)[(p, p')/(x, y)l, (x + y)[(q, q')/(x, y)])eACR if p Zq and

p'Zq' and x+y.

16 B. Thomsen

6. follows from ((xly)[(p, p')/(x, y)], (xly)[q, q')/(x, y)])~ACR if p,Lq and p',Lq'
and x ~ y.

7. follows from (x[p/x-l, x[q/xJ)~ACR if pZq and the fact that ACR* is an
applicative bisimulation up to restriction.

8. follows from ((xESJ)[p/x], (x[S])[q/x])~ACR i f p Zq . []

The congruence result easily generalises to open terms by standard techniques
by defining p,Lq iff gr l . . . r , . p [r l . . . r , / x l . . . x ,]Zq[r l . . . r , / x l . . . x , J where
x~ ... x, are the free variables of p and q and r l . . . r, are closed terms. This
is equivalent to the following definition: p :,L q iff a? x~ ... a ? x, . p Z a ? xl ..- a ? x,. q.

From establishing bisimulations between Plain CHOCS processes we may
show that two processes are equivalent, but this technique often involves quite
an amount of ingenuity in the construction of a bisimulation relation. Instead
we may prefer the more well known techniques of algebraic reasoning. A lot
of interesting properties of Plain CHOCS may be inferred from equational rea-
soning. This kind of reasoning may of course be combined with establishing
bisimulations directly.

The first set of laws concerns the choice operator and shows that nit is
a zero for + and that + is idempotent, commutative and associative.

Proposition 3.7

p+ni lZp
p + p Z p
p+p',Lp' +p

p +(p' + p'),L(p+ p')+ p'.

Proof This follows from showing that the following relations are higher order
applicative bisimulations:

R~ = {(p + nil, p)} u Id

R2 = {(p + p, p)) ~ td

Ra={(p+p', p'+p)}wld
R,~= {(p+(p' + p"), (p+ p')+ p')} w ld.

To see this observe that for (r, q)~R i, i~{1, 2, 3, 4} we have either (r, q)~Id and
i f r r , r , then r = q r , q , = r , and we have a matching move or (r,q) belongs

to the first part of Ri and if r r ~ r , then this must have been inferred by the

rules for choice. Then also q r ~ r' which is a matching move. []

We now proceed with some properties of the restriction operator and its
interplay with the other operators. To smooth the presentation of equations
we introduce a fourth (derived) prefix; an output prefix with scope extrusion:
a !B P'. Thus a !B P" P is shorthand notation for (a ! p'. p)\B with the obvious opera-
tional semantics: a !n P'.P ax~p'p. We shall always assume that B ~_fn(p')c~fn(p).

Plain CHOCS 17

Proposition 3.8

p\a ,Lp if aCfn(p)
p \ a \ b Z p \ b \ a

(p + p')\a,L p \a + p ' \a

(a?x .p) \bZa?x . (p \b) if a#:b

(a?x.p)\b,Lnil if a=b

(z. p)\b Z ~. (p\b)

(a!Bp'.p)\bZa!Bp'.(p\b) if a=~b and br

(a!Bp'.p)\b,La!Bu~b~p'. p if ae:b and befn(p')

(a!Bp'.p)\b,LniI if a=b.

Proof The proposition follows from showing that the following relations are
applicative higher order bisimulations:

R1 = {(p\a, p): p~CPr, aq~ fn(p)}

R2 = {(p\a\b, p \b\a): pE CPr} ~ Id

R 3 = {((p + p')\a, p \a + p'\a): Pie CPr} u Id

R 4 = {((a ? X. p)\b, a ? x. (p\b)): a ? x. p E CPr, a 4= b} w Id

R5 = {((a? x.p)\b, nil): a? x .psCPr, a=b}

R 6 = {((z.p)\b, z.(p\b)): p~ CPr} u Id

e 7 = {((a!~p'.p)\b, a!~p'i(p\b)): p, p' sCPr, a , b , br ~ Id

R s = {((a!Bp'.p)\b, a!Bu{b~P'.P): P, p' ~CPr, a=t=b, be fn(p')} w ld

e 9 = {((a!~p',p)\b, nil): p, p' ~CPr, a=b}.

We must include Id in relation R2 to R 4 and R 6 to Rs. For relation R3, R 4
and R6 to R a this is clear since if (p, q)ERi, i~{3, 4, 6, 7, 8} then after the first
transition p r p, and a first matching transition q r_~ q, we will have (p', q') ~ Id.
For R 2 it is necessary to include Id since the restrictions may disappear due
to applications of the open-rule. []

The following theorem states an expected property of restriction, namely
that the restricted name may be e-converted without affecting the behaviour
of the process involved.

Theorem 3.9 p\a,L({b/a} p)\b if bq!fn(p)

Proof This theorem follows by showing that the relation

R =- {(p\a, ({b/a} p)\b): p E CPr, b (~fn (p)} t3 Id

is an applicative higher order bisimulation.

18 B. Thomsen

The Id component of this relation is necessary in case of scope extrusion
due to an application of the open-rule in which case the restrictions will disap-
pear and a respectively b will be substituted with a new name cr
The matching moves are easily established by appealing to Proposit ion 2.7. []

Before presenting any additional laws we need to introduce a concept related
to the concept of an applicative higher order bisimulation up to restriction.
The new concept is called an applicative higher order bisimulation up to :Z
and allows a relaxation of applicative higher order bisimulation in the sense
that the relation only has to satisfy the applicative higher order bisimulation
properties up to the closure property of Z . This is an adaptat ion of the notion
of bisimulation up to ~ [Mi189] to the Plain CHOCS setting:

Definition 3.10 An applicative higher order simulation up to Z is a binary
relation R on CPr such that whenever pRq and a ~ N a m e s then:

(i) Whenever p o:x p,, then q ~:Y,q' for some q',y and p'[r /x]ZR,Lq'[r /y]
for all reCPr

(ii) Whenever p a~Bp' p,, with B n(fn(p)ufn(q))=O, then q ~!Bo' q,, for some
q', q" with p' Z R Z q' and p" Z R Z q"

, q, q' (iii) Whenever p ~ p , then q ~ ~ for some with p',L R,L q'.

A relation R is an applicative higher order bisimulation up to " if both it
and its inverse are applicative higher order simulations up to "

Lemma 3.11 I f R is an applicative higher order bisimulation up to " then R_~ "

Proof. Follows by arguments very similar to the arguments given for Lemma
3.4. []

The following definition is an adaptat ion to the Plain CHOCS setting of
the notion of strong ground bisimulation up to " and restriction from [MilPar-
Wa189b] :

Definition 3.12 An applicative higher order simulation up to ' and restriction
R is a binary relation on CPr such that whenever pRq and a~Names then:

(i) If b~fn(p) u fn(q) then {b/a} p Z R,L {b/a} q

a?y qr (ii) Whenever p a: x ~ p,, then q ~ for some q', y and p' [r/x] ,L R,L q' Jr~y]
for all reCPr

(iii) Whenever p ,~Bp' p,, with B n (f n (p) u f n (q)) = O , then q ~tBq', q" for some
q', q" with p' ,L R Z q' and p" Z R Z q"

(iv) Whenever p ~ ~p', then q ~ ~q' for some q' and either p ' Z R Z q ' or for
some p", q" and b: p',Lp"\b, q' ,Lq"\b and p"Rq".

A relation R is an application higher order bisimulation up to Z and restriction
if both it and its inverse are applicative higher order simulations up to .Z
and restriction.

Plain CHOCS 19

Lemma 3.13 I f R is an applicative higher order bisimulation up to Z and restric-
tion then R ~_ ,L.

Proof. Let R \ - = [J R, where
n ~ c o

R0= .,LRZ

R,+ 1 = Z {(p\a, q\a): (p, q)eR, , aeNames} Z

The argument that R \ - is an applicative higher order bisimulation follows
the same pattern as the proof of Lemma 3.4. []

With this machinery in hand we may now prove the following interplay
between the restriction operator and parallel composition:

Proposition 3.14 P~\alp2 -Z (Pl]p2)\a if a Cfn(p2)

Proof This proposition is proved by showing that the relation

R = {(Pl \ a l p z , (Pl I p2)\a): Pi ~ CPr, a (~fn (p2)} u Id

is an applicative higher order bisimulation up to Z and restriction. (The full
proof is presented in Appendix A). []

The next set of laws shows some expected properties of the parallel operator.
It would perhaps have been more natural to present these laws before the laws
of restriction and its interplay with other operators, but to prove the law of
associativity for the parallel operator we need some of the above properties.

Proposition 3.15
p ln i lZp

p l lp2Zp2 lp l

pl I(p21p3),L(pl [p2)lp3 �9

Proof. This proposition is proved by showing that the first two of the following
relations are applicative higher order bisimulations and that the last relation
is an applicative higher order bisimulation up to .~ and restriction:

R 1 = {(p]nil, p): pc CPr} • Id

R2 = {(pz]P2, P2]P,): p ~ C P r } u Id

R3 = {(Pl I(P2 IP3), (Pl]P2)lP3): pieCPr} u I d .

The Id component in each of the above relations is necessary to cover the
cases when processes are communicated since these processes might not have
the structure of the first part of the relation. (The full proof is presented in
Appendix A). []

20 B. Thomsen

Using the above properties we may now present a law of interplay between
parallel composition and restriction which will look more familiar to readers
with knowledge of CCS.

Theorem 3.16 (Pt I p 2) \ a Z p l \ a l p 2 \ a if aq~fn(pl)~ fn(p2)

Proof. If aq~fn(pl)~fn(p2) then a can not be a free name in both Pl and Pz.
Suppose a~fn(p2). Then by Proposition 3.14 and Proposition 3.8 we have
(Pl I p 2) \ a Z p l \ a l p 2 , L p l \ a l p 2 \ a . The other case where aq~fn(pO follows by a
similar argument after commuting p~ and P2 using Proposition 3.15. []

We now present some expected properties of renaming:

Proposition 3.17

nil I-S] .Z nil

p IS] Z, p IS] IS]

p[S] \bZ , pLb[S] if bCDom(S)wIm(S)

(Pl + P2) IS] .Z p~ ES] + P2 IS]

(Pt I P 2) [S] Z P a IS]]Pa [S] if Dora(S) n (fn (p l) w fn (p 2)) = 0

(a ? x. p) IS] :,L S (a) ? x. (p ES])

(~.p) [s] 2. ~.(p [s])
(a!8 p'. p) ES] .2, S (a)!B p'. (p IS]) if B n (Dora(S) w Ira(S)) = 0

Proof. The proposition follows from showing that the following relations are
applicative higher order bisimulations:

R~ = {(nil [S], nil)}

R 2 = {(p [S], p [S] IS]): p ~ CPr} u Id

R 3 = {(p[SJ\b, p \b[S]): p~CPr, br uIm(S)} u I d

R4 = {((Pl -}- P2) IS], P l [S] q- P2 IS]): p ~ CPr} ~ Id

e s = {((Pl [P2) IS], Pt [S] I P2 [S]): Dom(S) n (Jh(p0 u f n (P2)) = 0} u Id

R 6 = {((a ? x. p) IS], S (a) ? x. (p IS])): a ? x. p ~ CPr} u Id

R7 = {((~. p) [s], ~.(p [s])): pi ~ Cer} u Xd

R s = {((a [B P'. P) [S], S (a)!B P'. (P [S])):
p, p' ~ CPr, B n (Dora(S) u Im(S)) =0} u Id.

The Id component in the above relations serves to cover processes being sent.
In addition the ld component of relation R 3 covers the case when the restriction
disappears due to an application of the open-rule. It is relatively straightforward
to find matching moves for each relation and we omit the details. (The proof
for relation R 5 relies on the fact that p [S] :,g p IS] [S] and this is easily established
since S = [av--~b] and either a = b in which case p IS] Z p or a 4: b in which case
the second renaming will have no effect.) []

We have not listed any immediate interplay between (nondeterministic)
choice and parallel composition. This is due to the fact that the two operators
in general do not commute, but there is a restricted interplay between them:

Plain CHOCS 21

Proposition 3.18 Let 2 = { x l . . . x,}, y = { Y l . . . Y,} and ,2 c~ y :# O and A j c~ f n(q) = 0
and B t n f n (p) = 0 then

if p = S i a i ? x i . P i + Sjaj!AjP).pj

and q=Skbk?yk.qk+Xibz!Bzq}.qt

then p[q Z Zi ai? xi.(pilq) + Sj aj[As P).(PJlq)

+ Sk bk 9. Yk. (Plqk) -I- St bt !Bz q'l. (P I qt)

d- Z(i '/)e{(i, l): ai = bz} Z. (Pi [q'l/Xi]] qt)\Bt

+ Z(j , k)~{(j, k): aj = bk} "C. (Pjlqk [P)/Yk])\Aj,

where ZiFii.Pi describes the sum Fl.pl + . . . + F,.p, when n > 0 and nil if n=0 ,
knowing this notation is unambiguous because of Proposition 3.7.

Proof (Given in Appendix A). []

We can not hope that these equations form a basis for a sound and complete
proof system for Plain CHOCS. One reason for this is hinted in the translation
given in the next section from Plain CHOCS into Mobile Processes [MilPar-
Wa189]. This translation needs parallel composition under the scope of recursion
to work. In [Mi183] Milner shows how this combination could be used to
simulate a Turing machine. Another reason is that we may encode recursion
using the constructs of Plain CHOCS.

Definition 3.19 Let Wx [] be the context:

a ? x. ([] [(xl a ! x. nil) [a ~ b] \ b / x])

and let Yx [-] be the context:

(W~[] I a!(W~[]).nil)[a~-~b]\b.

To a certain extent this construct resembles the Curry paradoxical combinator
Y[] = (2 x . [] (xx)) (2x . [](xx)) which is often referred to as the Y combinator
in the 2-Calculus.

Note that if FV(p) ~_ {x} then

gx[p] , (p [(x I a ! x . nil) [a ~ b] \ b / x] [Wx [pl/x] I nil) [a ~ b] \ b

- (P [Yx [p~/x] I nil) [a ~ b] \ b 2 (p [Y~ [p]/x]) [a ~ b] \ b

- (p [a~--~b]\b) [Y~ [p]/x].

By Proposition 3.8 and Proposition 3.17 we have (p[a~-~b]\b)[Y~[p]/x]
Z p [Y~ [p]/x] if a, b (~fn (p).

Note how Yx[] needs a z-transition to unwind the "recursion ' . This resem-
bles the unwinding of recursion in the inference rule of recursion in TCCS

[HenNic87] : r e c x.p~.*p [r e e x .p /x] , where ~ , may be read as ~ , .

22 B. Thomsen

As in CCS we may introduce a recursion operator r e c x .p with the following
operational semantics:

p [r e c x.p/x] r p,
r p,

recx.p >

The inference rule basically says that a recursive process has the same derivations
as its unfoldings, r e c x . is a variable binder and fn, {/}, FV and [/] have to
be extended to cater for the new operator.

Theorem 3.20 Y~[p] " r e c x.z.(p[a~-+b]\b).

Proof. For this proof we need the following property of substitution'

if x # y then p[p' /x][p"/y]~p[p"/y][p'[p"/y]/x]

and a simple corollary:

if x # y and p', p" are closed then p [p'/x] [p"/y] - p [p"/y] [p'/x]

which is easily established by structural induction on p. (They are not corollaries
of Proposit ion 2.5 since we have to take recursive processes into account.)

Then the relation:

R = {(q [r e e x . z . (p [a ~ b] \b)/x], q [Yx [p]/x]): F V(q) ~ {x} }

is an applicative higher order simulation up to " and restriction. To prove
this we show that:

If c(~fn(q [r e c x. z. (p [a~--~b]\b)/x]) u fn(q [Yx [p]/x]) then
{c/d} (q [r e e x. r. (p [a ~ b] \ b)/x]) Z R Z { c/d} (q [Yx [p]/x]).

Whenever q [r e e x. ~. (p [a ~ b] \b)/x] ~ ~, p', then q [Yx[p]/x] ~? Y, q' for some
q', y and p' [r/x] Z R Z q' [r/y] for all r ~ CPr.

Whenever q I r e e x.r .(p [a ~ b] \ b) / x] a!Bp' p,,, then q [Yx [p]/x] aB!q', q" for
some q',q" with B~(fn(q[reex .z . (p[a~-+b]\b) /x])wfn(q[Yx[p] /x]))=O,
p ' Z R Z q ' and p " Z R Z q " .

Whenever q [r e c x. ~. (p [a ~ b] \b)/x] ~ , p', then q [- Yx [P]/X] ~ , q' for some q'
and either p ' Z R Z q ' or for some p", q" and b: p 'Zp" \b , q ' Z q " \ b and p"Rq".

We prove this by induction on the length of the inference used to establish

the transition q [r e c x.~.(p\a)/x] r ' q, and cases of the structure of q. In the
case where q has the form a?y.q' or r e e y . q ' we need the above properties
of substitution. The theorem then follows by choosing q - x. (The proof follows
the pattern of the proof of Proposit ion 4.6 of [Mi183]). []

Plain CHOCS 23

This proof is limited to the case where at most x is free in q. The extension
to the case where there are other free variables is now routine.

With the Y-context of Definition 3.19 we may program systems which recur-
sively send out copies of themselves.

Example 3.21 Let p - c ! x .x then according to the inference rules of Definition
2.6 Yx [P] has the following derivations:

Y~ [p]

(c! x. x [Yx [p]/x] I nil) [a ~ b] \ b

c! Y ~ [p]

(Y~ [p-11 nil) [a ~ b] \ b

((c ! x . x [Yx [p]/x] I nil) [a ~ b] \ b I nil) [a ~-~ b] \ b

l c! Y x [P]

This is almost a specification of a computer virus. Think of the behaviour of
Yx [P] where p = ethernet!x.(xldelete _all_files!.nil) and the consequences such
a program could have in a network of computers connected via an ethernet.

In [Tho89] the following alternative Y-context was presented:

Y~ [] = (a? x. ([] la! x.nil)l a! (a?x. ([]]a! x .ni l)) .ni l) \a .

For "dynamic" CHOCS [Tho89] this context is limited to processes where
x does not occur free in a sending position (i.e. does not occur free in any
subsubexpression p' of the form q = c!p ' .p" where q is a subexpression of p).

However, for Plain CHOCS it also simulates recursion for processes where
x occurs in a sending position due to the static nature of the restriction operator.

Example 3.22 Let p = - c ! x . x then according to the inference rules of Defini-
tion 2.6 Yj [p] has the following derivations:

Y~ [p] -= (a ? x. (c ! x. x I a ! x . nil) I a ! (a ? x. (c ! x. x] a ! x. nil)), n i l) \a

(c!(a? x.(c! x . x [a! x.nil)).(a? x.(c! x . x l a! x.nil)) l
a!(a? x.(c! x . x I a! x. nil)).nill n i l) \a

lc '~ } (a ' ~ x (c ~ x . x l a ! x . n i l)) a " " "

(a? x.(c !.x l a! x.nil) l a! (a? x . (c ! . x l a! x.nil)).nil l nil)

24 B. Thomsen

After this transition we have a scope extrusion on a, but when the ~
(a? x . (c ! x . x f a ! x . nil)) is received the com-close-rule will ensure that this ~176 copy"
can communicate with a ! (a ? x . (c !. x I a ! x . nil)), nil and thus continue the "recur-
sive unfolding" of p.

However, we can not prove a simulation of recursion theorem for this context
as directly as Theorem 3.20. This is because when we send out copies of the
recursive process we have to do a scope extrusion for a in the Y' construct
to keep a connection to the remaining part and keep the "recursion" going,
and the two terms are incomparable until they are received and we have closed
the scope in the Y' construct. It would be interesting to formulate an equivalence
theory where the kind of distributed property of a system linked by internal
channels such as the above Y' construct is taken into account. I imagine that
such a theory could be based on the ideas of context dependent bisimulation
described by Larsen in [Lar86]. Recently Milner and Sangiorgi have proposed
a notion of barbed bisimulation [MilSan92], which also seems to be a promising
avenue to explore.

4 Plain CHOCS and mobile processes

In this section we compare the approach taken in this paper of sending processes
to that of sending names as described in [EngNie86; MilParWa189]. We shall
not embark on a discussion of which is the best or the correct way of expressing
mobility in concurrent systems, since we feel that both approaches have their
justifications. This is further strengthened by showing that the calculi may simu-
late each other.

The description of Plain CHOCS in Mobile Processes uses the capability
of changing the interconnection structure of processes describable in Mobile
Processes in a very disciplined way. Whenever a process is sent in Plain CHOCS
a link to a trigger construct (which provides copies of the process to be sent)
is sent in the Mobile Processes translation. To a certain extent this resembles
invocations of procedures in conventional programming languages. The trigger-
ing of a copy of the process to be sent and the instantiation of its names could
correspond to a new activation record for a procedure and instantiations of
its parameters.

The description of Mobile Processes in Plain CHOCS is done by passing
very small processes around. These small processes are essentially one element
buffers which simulate the behaviour of channels.

This section is not self-contained. We shall not give a review of the calculus
of Mobile Processes (~-Calculus) in this section, but a short review is included
in Appendix B. For motivat ion of the constructs and exposure of the expressive
power we refer to the excellent presentation given in [MilParWa189]. In the
following we shall use upper case letters such as P and (2 (possibly primed
or indexed) to stand for Mobile Processes and lower case letters such as p
and q to stand for Plain CHOCS processes. To compare terms in the K-Calculus
we use a generalisation of the notion of bisimulation called strong ground
bisimulation ~ .

Before turning to translations between the ~-Calculus and Plain CHOCS
we present a useful construct and show a few facts about this. We shall need

Plain CHOCS 25

communications in the n-Calculus which carry no parameters. This could be
modelled by presupposing a special name e which is never bound and we write
:~.p in place o f f e .p and x.p in place ofx(y).p, where y is not free in p.

Definition 4.1 Let

b ~ P= ree X.b.(PIX)

where bd~n(P) and X~FV(P).
This construction is intended to provide copies of P when triggered by E

actions e.g.:

(b) (6. nil l b. nil l b ~ P) ~ - ~ (b)(nill nil [P E P [b ~ P) ,c p I P.

This construct satisfies several interesting properties:

Lemma 4.2 I f b(~n(Q) then

(b)(P~lb~Q)+(b)(P2lb~Q)~(b)((P~ + P2) I b=>Q).

Proof (Given in Appendix B). []

Lemma 4.3 I f P/ /b, for all derivatives P/ of Pi, ie{1, 2} and br then

(b)(P~ l b ~ Q) l (b)(P2 l b~Q)~(b)((P~ l Pz) l b~Q) .

Proof (Given in Appendix B). []

Lemma 4.4 I f P//b>for all derivatives Pi' of Pi, ie{1, 2} and bigfn(Q) and
cr fn(PO u fn(P2) w fn(Q) then

(c~(b)(Pl l b~Q)) (b)(P2 t b~Q)~(b)(c=~ P~ l P21b~Q).

Proof (Given in Appendix B). []

We now turn to the question of translations between Plain CHOCS and
Mobile Processes. First we give a translation of Plain CHOCS without the
renaming construct into Mobile Processes. This subset of Plain CHOCS corre-
sponds very closely to the idea of encoding process passing in Mobile Processes
described in [MilParWa189]. This translation carries no additional parameters
which shows that Plain CHOCS programs can be viewed as a set of derived
operators in Mobile Processes.

Definition 4.5 ~ ~ : Plain CHOCS --, MP

~nil~ =0
~a? x.p~ = a(x). ~p~
~a! p'.p~ = (b)(db.(~p~ l b ~ ~p'~)), bCfn(p) ~ fn(p')u {a}

~p+p'~--Ep~+~p'~

~p\a~=(a)Ep~
[x]=x.0.

26 B. Thomsen

Note how a process variable in Plain CHOCS is translated into a process which
is only capable of synchronising on the x channel and then stop. This is exactly
the idea described in [-MilParWa189] of an executor to trigger the start of the
process.

An interesting point to note about the above translation is that only a
rather special kind of recursion is needed. We only need a construction which
provides "copies" of the process to be sent. This construction resembles a
Kleene-star operator. Combining this with Theorem 3.20 (which shows that
general recursion may be simulated in Plain CHOCS) we see that using this
Kleene-star operator and the dynamic interconnection mechanism provided by
Mobile Processes we may simulate recursion in e.g. CCS. In fact we do not
need to appeal to Theorem 3.20 to show this; The lemmas above suffice to
prove (z) (~. 0 [z ~ P [-~. 0/X]) ~ r e e X. ~. P if z ~ fn (P).

Note that this translation ensures static scope for the restriction operator
since the process p' being "sent" stays in the "sending" environment e.g.:

~a ? x. (x [x) I (a ! p'. p)\c} = a (x). (2.012.0)l (c)((b)(d b.((b ~]~p'~) [~p~)))

(b) (H. 0] ~. 01 (c)((b => ~P'~) I ~P~))

(b)(G. O l O l (c)([[p']] l (b ~ [~P'~]) I [~P~))

(b)(O[Ol(c)(~p'~ I HP'~] [(b ~ EP'~) I EP~))

(c)([Ip'l] l [[p'~ l [[pl]).

In this example we see how the recursion in the translation of the output prefix
ensures that a sufficient number of copies of the process to be passed is provided.

As we can see from the above example the translated terms need an addition-
al r-move to simulate the substitution. Let us specify this on the Plain CHOCS
level by introducing a notion we call z-substitution [/]~. This substitution is
defined as [p/x]~= [z.p/x]. In the following two propositions let --+ be a transi-
tion relation defined as the transition relation of Definition 2.6, but with [/]~
instead of [/] in the corn-close-rule. Let .Z~ be the appliCative higher order
bisimulation equivalence defined as in Definition 3.1 relative to the new transi-
tion system with r-substitution instead of the usual substitution in clause (i).
Using these definitions we can now formally relate the two calculi. In the follow-
ing ~ is the strong ground bisimulation defined in [-MilParWa189].

Proposition 4.6 ~p [q/x]~ ~ (b)(~p~ {b/x} [b ~ [~q~) where b ~ fn (p) u f n (q).

Proof. By structural induction on p using Lemma 4.2 to Lemma 4.4. []

Proposition 4.7

1. if p a?x p, then ~p~ ~ ~p'~

Plain CHOCS 27

2. if p ~"P', p" then ~p~ a(b), Q ~(b0 . . . (b ,) (b ~p ~[~p ~1 where B = {bt, ..., b,,}
for some Q.

3. if p ~ , p' then ~p~ ~ ~p'~

4. if Q,c ~p~ and Q ~(~), Q' then p ~?~, p' for some p' with Q' {b/x} ~ ~p'~ {b/x}
for all b e Names.

/ ~ b 5. if then Q , , .

6. if Q ~ p ~ and Q a(b),Q, then p ,,,v' p,, with Q' ,c(bO.. . (b,)(b~p'~l~p" ~)
for some B, p', p" where B = {bl, ..., b,}.

7. if Q ~ ~p~ and Q ~ Q' then p ~) p' with Q'~ [p'~ for some p'.

Proof. By induction on the length of the inference used to establish the transitions
observing the structure of the process p. []

The above proposition shows a strong connection between transitions of
processes in Plain CHOCS and their translations into Mobile Processes. We
have so far been unsuccessful in proving that the translation preserves equiva-
lence but we conjecture that this holds under certain restrictions on the observa-
tions we allow ourselves i.e.:

Co.ject.re 4.8
An immediate attempt to prove the above conjecture is to show that the relation:

R1 = {(Q1, Q2): 3Pl, P2. Q, ~ ~Pl~, Q2 ~ ~p2~, pl "Z~p2}

is a strong ground bisimulation and that the relation

R 2 = ((P ~ , P 2) : ~ P I ~ ,4. ~ P 2 ~ }

is an applicative higher order bisimulation w.r.t. [/]~. Unfortunately this attempt
has so far been unsuccessful. The reason for this is that for relation Ra I have

been unable to prove that if Q~ a(~), (2, then Q2 ac~), Qi and Q'~ {b/x} ~ Qi {b/x}
for all baNames from Pl , ? x p, and P2 a?x , p~ and P'I [r/xJ~ Z~ P2 [r/x]~ for all r.

~p'~ [r/xJ~ ~p'2[r/x],~ does not seem to imply ~p'~ {b/x} ~ P i ? {b/x} for all
�9 a . B P ' I) H b~Names. For relation R 2 I have been unable to prove that if p~ p~ then

P2 a"~P~)P~ and p'~ -Z,p2 and p'~Z~p'~ from Q~ a(b), Q, ~,(b~)... (b~)(b~p'~L~p'~'~)
~(b) :, ' ' :::==I> ~ 1 " t and Q2 Q2~(bO...(b,)(b ~P2 I~P2~) and Q ' ~ Q a - It does not seem to

be possible to refer from (b ~P,~I p~)~(b~p'z~][pa~) that ~P',~[P'2~ and

The above only applies to the sublanguage of Plain CHOCS where the
renaming operator has been omitted. The type of systems we can describe in
this language is limited in the sense that there is no real need for passing the
process in the communication since the receiving process can do no more than

28 B. Thomsen

copy it and start each copy at different times. This is reflected in the above
translation in the sense that the process to be "sent" stays in the sending environ-
ment and the "receiving" process only receives a link which can be used to
trigger copies of the '"received" process. The renaming construct allows us to
change the way we communicate with each copy by renaming some of the
free names to locally bound names. This may be incorporated into the translation
by extending the translation function by a list of names L i.e.:

Definition 4.9 ~ ~: Plain CHOCS ~ Names* --, MP

~nil~L=O
~a? x.p~ L = a(x). ~p~ L

~a ! p'. p~ L = (b)(e b. ([p~ L I b (L) => ~p'~ L)), b (~ f n (p) u fn (p') u {a} ~ L

~p+p '~L=~p?L+~p '~L

~PlP'? g = ~P~ g J ~p'~ g
~p\a~ L = (d)~{d/a} p~ L where d~fn(p \a) u L

~p [a ~ hi? L = {b/a} (~p~ I3

where b(L).p means b(Id...b(I,,).p and ffL.p means Gll...61,,.p for L
= {11 , l,).

When translating a Plain CHOCS expression p we then instantiate L to
a list consisting of the elements of fn(p) to obtain the desired effect.

Let us consider the following small example to give an idea about how
the above translation works: Assume { a , b } = f n (p) u f n (p ') u f n (p ") and
b'r

~a? x.(x[b~~'b'] l b'? x .p) \b ' l a! P'.P"~La, b~

a (x). (b')(2 a b'. 0] b'(x). ~p~La, bl)] (C)(a C. ((C (a)(b) =~ ~p'~ t,~, bl) [~P"~r,,, bl))

(c) ((b')(e a b'. 0] b' (x). ~p~Ea, b3)] (C (a)(b) =~ ~p'~t,, bl) [~P"~E,~, bl)

(c)((b')(O l b' (x). ~P~t,, b~ l ({a/a} { b'/b } (~P'~e,:,, b~))) l (c(a)(b)=*" [P'~eo, b~) l ~P"~,,, b~)

(b') (b' (x). ~p~ ta, b~ l ({ a/a} { b'/b } (~P'~Ea, b~)))I ~P"~t,, b~'

Note that if p' has any b-ports they will be renamed to b' and thus be private
between b'(x).~p~Ea, b3 and ~P'~E,,,b3" The translated terms need a sequence of t-

Plain CHOCS 29

transitions to establish the connection between the "receiving" process and the
" c o p y " it is "receiving". This sequence has the same length as the parameter
L. In the above example we needed two r-transitions and in general we will
need as many T-transitions as the cardinality of the set fn(p).

We now turn to the question of encoding label passing using process passing.
This may seem as an artificial question, but as a theoretical result it is of interest
since it will provide a basis for discussion of the expressive power of the two
approaches.

The idea in the translation below is that instead of sending a channel a
we send a wire (a-chan) defined as i?.a?x.c! x .ni l+o?.c?x.a! x.nil. This wire
has a multi-purpose plug c and a switch to indicate in which direction the
wire is to be used. We assume c, i, o are distinct names not used in the Mobile
Processes expression being translated. When this wire is received it is plugged
into the receiving process by the localising constructions: (... [c ~ c'] [i ~ i'] [o ~-~
o'] . . .) \c ' \ i ' \o ' . The receiving process will choose in which direction to use
this wire by sending an o' signal for output or an i' signal for input. The wire
will be private to the sending and receiving processes in the case of a bound
name in the Mobile Processes expression. This is ensured by a scope extrusion
caused by the static restriction operator.

Mobile Processes [MilParWa189] was developed from ECCS [EngNie86]
by simplifying the notions of values, labels and variables into one concept called
names. This, however, presents a problem when translating Mobile Processes
into Plain CHOCS since a name in a process P may act as a name of a link
(as e.g. y in y(x).P) or it may act as a variable (as e.g. x in y(x).P) or it may
act as a local link name (as e.g. x in (x)P). To overcome this difficulty we
first translate all free names and all names bound by input prefix into process
variables. Then we instantiate the process variables corresponding to free names
in the Mobile Processes expression to names in Plain CHOCS. Names bound
by restriction will be allocated names in Plain CHOCS in the first translation
step.

Definition 4.10 E ~1: MP ~ Plain CHOCS is defined structurally:

~0~1 =nil
~x (y). P~I = (x [c ~ c'] [i ~ i'] [o ~, o'] l i'!. c'? y. ~P~ 1)\c ' \ i ' \o '

~2y.P~x =(x[c~-+c'l [i~---~i'] [o~-~o'] [o'! .c'[y. ~P~l)\c ' \ i ' \o '

+ P'l = + EP'I
 PLe'I =EPIll e'l,

~(x)(P)~l = (~P~1 [(a - chan)/x])\a, where a Cfn (P).

~ 2 : MP ~ Plain CHOCS is defined as:

~P~2 = (---(~P~a [(a~ - chan)/xl])...) [(a , - chan)/x,],

where FV(~_P~]O= {xz, ..., x,} and aa ... a, are allocated by some 1 - 1 mapping
between Vand Names (usually established by the 1 - 1 mapping between fn(P)
and FV(~P~ 1)).

30 B. Thomsen

We have omitted the match construct of Mobile Processes. This can be
eliminated in the Mobile Processes expression according to Example 9 in Sect. 4
of [MilParWa189]. Recursion could be translated using the Y~ [-] construction
from the previous section.

It is easy to see from the above definition that name passing in the Mobile
Processes is mimicked by the translation only requiring two additional commu-
nications for each use of the wire, i.e.:

~a(x).P~2 Z z .a? x.'c. ~P~2
.

We may state this more precisely:

Proposition 4.11

i i f P ,(x),p, then ~P~2 r a?~ ~ _ ~ p , ~ 2

2. i f P ab p, then ~P~2 ~ ' ~ ' a!~ ~P'~2

3. i f n a(b), p, then EP~2 ~) ~) a,~b~(b-chan)) Ep,~2

4. if P r) P' thenEP~2--!-*~P'~2or~P~2 ~ ' ~ ~ ~ ~ ~ ' r ~P '~2 .

Proo f By induction on the length of the inference used to establish the transition
of P observing the structure of P. []

We conjecture the following relationship between Mobile Processes and their
translations into Plain CHOCS:

Conjecture 4.12 I f P ~ Q then EP~2~ ~Q~2, where ,~ is a suitable formulation
o f weak higher order applicative bisimulation.

We can not hope for the implication to hold in the opposite direction since
the translation may introduce non-determinism not present in the original term
e.g.: Consider the following term P = (a) (b) (a (x). c (x). 0 + b (x). 0] d c. 0) then P
z .c(x) .O q~P + r.O whereas ~ P ~ 2 , L z . z . z . z . z . z . c ? x . z . n i l + z . O Z ~P+z.0~2.

To see how the translation works we study the following small system consist-
ing of two components. Initially the first component is ready to receive a channel
on a and the second component is ready to send the b-channel on a. Upon
receiving a channel the first component is ready to send a bound channel d
on the newly received channel. The second component is ready to receive this
channel. The end result is that the second component receives a private d-channel
from the first component.

~a (x). (d)(2 d. n) J d b. b (x). Q~ 2
Z

z .a ? x . ~. ~(d)(X d. P)~ 2 [z. z .a ! (b - ehan). ~b (x). Q~ 2

(~ (d)(~ d. P)~ 2 [(b - chan)/xJ] ~b (x). Q~ 2)

((~. r. b ! (d - chan). WP~ 2 [(b - chan)/x]) \ d [r. b ? x . z. ~Q~2)

~) v)_______+)

((~n~2 [(b - chan)/x] I ~Q~2 [(d - chan)/xJ) \d) .

Plain CHOCS 31

Comparing the two translations presented in this section we see that the two
caluli Mobile Processes and Plain CHOCS are equally expressive in the sense
that they may simulate one another. However, the translations are rather ad
hoc. It would be of interest if this comparison could be formulated in a more
general framework for comparison. One such study has recently been undertaken
by Sangiorgi. Based on the notion of barbed bisimulation [MilSan92] he shows
in his forthcoming thesis [-San92] how higher order processes can be simulated
in the ~c-Calculus.

5 Plain CHOCS and object-oriented programming

Over the past two decades object-oriented programming has grown into a strong
discipline in the world of industrial programming. One reason for the success
of this programming notion is the link with ideas of structured programming.
Object oriented programming allows problems to be broken down into "objects"
of manageable size. There is to date no unifying definition of what exactly
an object is and what an object does, although over the years much effort
has been devoted to finding such definitions. It seems as if each object-oriented
programming language (and even each object oriented programmer) has its
(his/her) own definition of an object.

This having been said, there seems to be a consensus that an object is
regarded as an encapsulating entity and there are strong analogies to the ideas
of abstract data types. Thus objects encapsulate "things" and users access these
"things" via "methods". The idea behind the method paradigm is to present
the user with an interface through which objects can be accessed and at the
same time hide the way the objects are implemented. Most present day object-
oriented programming languages have roots in ideas presented in the SIMULA
language [DahMyhNyg68] designed in the late sixties, and ideas presented in
the Smalltalk language [GolRob83] have had substantial influence.

The object-oriented approach has mostly grown out of an imperative sequen-
tial programming discipline as a structuring device for large scale programs,
but recently it has been recognised as a useful tool in the description and con-
struction of distributed and concurrent systems [Atk89]. As we shall see in
this section there seems to be a strong analogy between the idea of objects
and processes, encapsulation and restriction, method call and communication
via named channels. We shall also see that it is possible to make connections
between concurrency theory and inheritance, which for many object-oriented
programmers seems to be a vital part of the definition of what can be character-
ised as object-oriented programming.

Many object oriented programming languages do not have a formal seman-
tics but rely on (thorough) verbal descriptions of the semantics. Recently some
more thorough studies of semantics foundations of object-oriented programming
languages have emerged, POOL lAme87] and Dragoon [-Atk89] are very good
examples of how far the current state of affairs for real life programming lan-
guages has reached.

In this section we study the connection between concurrency and object
oriented programming in more detail. We do this via a small toy language
O. We may consider O as a prototype core of most imperative concurrent object

32 B. Thomsen

oriented programming languages. In O we may define a class of objects and
instantiate objects to be of a defined class. In each class we may define a number
of methods and a thread of control. This thread of control is the primary means
for concurrency since objects may be started and executed in parallel. The paral-
lelism is asynchronous, and synchronisation is obtained by method calls. O
was inspired by the toy language P studied in [MilS0] and in [Tho89], and
the thread of control in each object is similar to the sequential part of P. Expres-
sions in the language O are untyped, but for the cause of simplicity we only
consider type meaningful programs. We assume that objects are declared before
they are created, that all objects are created before started and that all objects
are started only once.

The semantics of O is described in Plain CHOCS in a phrase-by-phrase
style resembling a denotational semantics, However, we do not give any semantic
domains. Instead we may view the O semantics as a set of derived operators
in Plain CHOCS since the translation carries no parameters. Plain CHOCS
only caters for process values in communication. To allow for other values
in Plain CHOCS than process values we use the technique of [Mi183] and
introduce a N-indexed family of actions a?e, a!d, d E ~ for each value domain
9 . Due to the fact that only finite sums of processes can be handled in Plain
CHOCS we restrict our attention to finite value domains as e.g. the set of
booleans and finite subsets of the integers. We let e?x.P abbreviate
SdeD~?d.p{d/x } where {d/x} means exchanging all occurrences of x in p by
d as e.g. a ?~. fl !~. nit {d/x} - Zd~1) ~ ?~. fl !~. nil. We shall use the following construct
from [Mi183]: If b is a boolean valued expression in ~ then let e?x.(/f b then
p else p') be encoded by Ze~O~be?e.p+Zd~D&~bC~?d.p'. We should not confuse
e?x.p with ~?x .p since the first is a convenient shorthand notation and the
latter is part of the Plain CHOCS syntax.

The language 0

Programs in O are built from declarations D, expressions E and commands
C. In declarations we may declare program variables ranged over by X, object
variables Y, methods P with parameter X to be instantiated by reference in
the command body C, and we may declare a class Z with local declarations
D and command body C. Some set of functions F is assumed and for the
cause of simplicity we do not consider types of expressions. Commands are
assignments to program variables, sequencing, conditionals, while loops, skip
statements, blocks with local declarations and three commands for creating
an object of class Z bound to the object variable Y, a command for triggering
the start of the command body of object Yand a command for calling method
P of object Y with X as parameter. O has the following abstract syntax:

Table 2. Syntax of 0

Declarations:

Expressions:
Commands:

D : : = v a r X] o b j Y]D;D]
methodP(refX) is C] class Z is D body C

E: : =XIF(Et , E.)
C:: =X:=EIC; C I i f E then C e l s e C'I

while E do CI skip]begim D; C end[
Y. create ZI Y. start I Y. callP(X)

Plain CHOCS 33

We do not put restrictions on how often a variable, object, method or class
is declared in the same scope. To ensure a deterministic semantics one could
require that variables, objects, methods or classes are only defined once in the
same scope. The semantics presented below will yield a nondeterministic choice
between two declarations of the same name.

To give a smooth definition of the semantics of O we need some auxiliary
definitions.

To each variable X we associate a register Reg x. Generally it follows the
pattern:

Loc = ~ ?~. Reg (x)

Reg (y) = c~ ?~. Reg (x) + 7 !y. Reg (y)

and thus for X we will have L o c x = L o c [~ - - , ~ x] [-7~--~7x]. Initially we write in
a value, thereupon we can read this value on 7 or overwrite the contents of
Loc via ct. We have written the above definition in an equation style to make
it more readable, The proper Plain CHOCS definition is:

where

Loc = (c~ ?x. h !x. nil lReg) \h

R e g = YReg[h?x.(c~?x.h!x.Reg + 7!x.h!x.Reg)] I YKeep[h?x.h!x. Keep].

The second component of this process takes care of the parameters in the recur-
sion of the above equations. (This is in fact a general technique for simulating
the parameterised recursion of [-Mi183]). We also associate a register to each
class Z, each object Y and each method P. It may be defined in the same
way as above with x substituted with x.

To each n-ary function symbol F we associate a function f which is repre-
sented by:

b f : p 19.xl... Pn ?x,,. P !f(.). nil.

Constants will thus be represented as e.g. bt,.u~ = p !,r,e" nil. The result of evaluating
an expression is always communicated via p. It is therefore useful do define:

p result p' = (p lp ') \p .

We adopt the protocol of signaling successful termination of commands via
6 and it is therefore convenient to define:

done = 6 !.nil

p before p' = (p [6 ~-* fl]] f i?.p')\ f l , fl (~fn (p) u f n (p').

We now give the semantics of O by the translation into Plain CHOCS shown
in Table 3.

34

Table 3. Semantics of O

B. Thomsen

Declarations:
[var X] : L o c x
~obj Y~=Locr
~D; D'~ = [D~I[D' ~

[rn e tho d P (r e f X) • s C~ = ((LocpI ap ! (method process), nil)\~p)
el as s Z i s D b o dy C] = ((Loczl r ! (class process), nil)\~z)

where method process = I C~I [ex~-~ee] [7 x~--~ ?e]
and class process = ([D~ [c~eo ~ ~zj] [~e~ ~ yz] ~.. [me~, e-+ az.] [7~ ~ ?ZP~] [~C~)\ V D.

Expressions:
~X~ = ?x?~. p !~. nil

[F(E~ E,)] = (IE,] [P~/P]I ... I[E,] [po/p][b jkp~ ... \p,
Commands:

Ix

ELf E t h e n C e l s e C'~

~while E do C~
[s ip

[beg in D; C end~
Ig. c r e a t e Z~

[Y, sta t
[Y. call P(X)]

= ~E~ result (p?x.ex!~.done)
= [C~ before IC'~
= ~E~ result p?x.(/f ~ then ~C~ else ~C'~)
= Yw[~E~ result p?~.(/f~ then ([C~, before w) else done)]

d o n e

= ([D~I~C~)\L m
9 t z Y Z z = 7z- x. a r . (x [~v= ~ ~vo] [?n~ ~ ?e J)" done

= ~r ? x. (x [b }-+ fi] I fi ?. nil] done)\f l
Y9 Y Y

In the definition of c lass p r o c e s s we let \VD abbreviate restrictions with
respect to all variables and objects declared in D, and [-~e~-+~pZ~] [?pj~--~yz,] ...

z [?e,,~-~?p~,] is a renaming for each me thod (assumed to be named
p1 , P") defined in D. In the equat ion for ~ b e g i n D ; C end~ we let \ L D
abbreviate restriction with respect to c~ and ? channels for all variables, objects,
classes and methods declared in D. The me thod and class definitions each create
a locat ion to store the me thod process respectively the class process. The restric-
tions \ ~ p respectively \ e z ensure that these processes can not be overwri t ten
after their definitions.

N o t e that if we disregard the object oriented par t of O we have essentially
a language definition similar to the definition of P f rom [Tho89] . However ,
if we compare the semantic definition of procedures in P with the semantic
definition of methods in O we note that the T r a n s f o r m process needed to ensure
static binding of variables in the P semantics is no longer present in the O
semantics. This is not because we advocate dynamic binding for variables in
the object oriented paradigm. It is because the static nature of the restriction
opera tor in Plain C H O C S will ensure that static binding is obtained. The static
nature will ensure (by a scope extrusion) that any variable reference is kept
with the defining environment . Assignments to variables may be nondeterminis-
tic since two or more methods may refer to the same variable, and we can
have situations where one method reads the value currently stored then another
me thod writes a new value before the first me thod overwrites the current value.
As for the semantic description of P we can avoid this problem by sur rounding
each variable with a semaphore construct.

Plain CHOCS 35

A class is defined as a process stored in a register. The class process behaves
like a block except that we can invoke the methods defined in the declaration
part. These will execute concurrently with the thread defined by the command
part of the class process. A class is a passive entity in the sense that is stored
in a register. An object Y of class Z is just a copy of the class process stored
in another register. It becomes active when started by the Y. s t a r t command
which reads the register and activates the process by the
~r? x.(x [6 ~-~fl] [fl?. nil ldone)\ f i construct. The finish signal 6 from the activated
process is renamed into fl which is going to synchronise with fi?.nil when the
process terminates. The object which started Y continues its execution since
as soon as the register has been read the done part may issue a 6 signal. The
object which starts Y could be forced to wait until Y terminates by defining
~Y. start~ = T r ? x . x since then the 6 signal to indicate the end of the Y. start
command would have to come from Y. Each method is also just a process
stored in a register. When a method is called the register is read and a copy
of the method process is activated. The renaming surrounding the variable x
ensures a call-by-reference parameter mechanism in the method call. This param-
eter mechanism seems to be most in line with current trends in object oriented
programming, but we can also define call-by-value, call-by-name and lazy pa-
rameter mechanisms for method calls in O using the same approach as in the
definition of parameter mechanisms in P discussed in [Tho89].

The semantic definition of O has not taken the object oriented paradigm
to its extreme where everything is an object. We have kept a distinction between
objects, values and methods. We can go a bit further and describe how objects
can be passed in method call. To some object oriented programmers this is
the true spirit of the object oriented paradigm. Let us see how object passing
in method call can be described semantically:

~me t h o d P (obj Y) i s C~ = ((Loce] ~e ! (method process), nil)\~p),

where method process = ~C] [@o ~--~ %,] Y

[~po~J) before done.

Passing an object in a method call works very similar to the call-by-reference
parameter mechanism for normal method calls. We simply rename the method
calls of the formal parameter to method calls of the actual parameter. It should
be mentioned that this mechanism does not allow for arbitrary assignment of
objects among variables (which is also often considered to be part of the true
spirit of the object oriented paradigm). This is left for future studies, but it
is envisioned that an easy adaptation of assignment to program variables may
facilitate this.

Another phenomenon often connected with object oriented programming
languages is the concept of inheritance. This is often considered the main struc-
turing mechanism. We may describe this semantically as follows:

[c 1 a s s Z i nhe r i t s Z' i s D b o dy C~ = ((Locz i ~z ! (class process), n i t) \%)

and
class process = (Yz' ? x z' z z' z .(x [%~ ~ c%] [~ . ~ ~]

before ([D] [%vw-, ~zJ [7, ~--~Tzv] I [C]) \ VD).

36 B. Thomsen

This describes that the class Z inherits the methods and the thread of control
of class Z'. All methods of Z' are renamed to methods of Z and the thread
of control of Z' is sequentially composed with that of Z. It is easy to generalise
this to multiple inheritance simply by sequentially composing each inheritance
class. In some object oriented programming languages programmers are allowed
to redefine inherited methods. This is easily obtained by restricting the c~ and
7 channels of the redefined method from the inheritance class and redefining
it in the declaration part of the class.

This section represents a small step towards a semantic description of object-
oriented programming in Plain CHOCS. Syntactically O is very similar to the
core of POOL [-Ame87]. The main difference is that O contains one construct
for creating an object and another one for starting it, whereas in POOL objects
are started as soon as they are created. Furthermore method calls in POOL
are only answered through an explicit command, whereas in O they are processed
concurrently with the sequential part of the object. However, the two languages
are rather different semantically since O has a copy semantics, where the code
of the object is copied when assigned to an object variable. POOL has a reference
semantics, where a reference to the object is copied when assigned to an object
variable. This is very well illustrated by the semantics cast in the ~-Calculus
for core POOL given in [Walgl] . Through the translation of the ~-Calculus
we may claim that we can use Walker's translation and obtain a Plain CHOCS
semantics for core POOL. However, this would be rather unnatural. Studying
the (very elegant) presentation of the POOL semantics in [Wal91] there are
a few points, such as class definitions and method declarations, where the
semantic description could benefit from using higher order processes. This seems
to call for a notion where name passing can be mixed with process passing.
This is provided by the recently developed Polyadic ~-Calculus [Mil91]. These
prospects are left for future studies.

6 Concluding remarks

The presentation in this paper has focused on the theoretical aspects of introduc-
ing process passing in a CCS like language. Higher order constructs arise in
almost any branch of theoretical computer science, since they yield elegant and
powerful abstraction techniques. In this paper and in [Tho89] we have studied
how to extend CCS with processes as first class objects. We have seen that
the operations of prefix, (nondeterministic) choice and parallel composition are
equally fundamental and do not allow much variation. But there seems to be
room for various constructs of the "restriction\renaming nature. In this paper
we have followed the ideas of [EngNie86; MilParWa189]. We have described
how a restriction operator with static scope could be introduced and how this
calls for an interplay with the parallel operator. In [Tho89] we showed the
usefulness of such an operator, together with a renaming operator, where both
had a dynamic nature.

Section 4 shows that the distinction between process passing and name pass-
ing is more on the level of abstraction than on the level of expressive power.
The translation from Plain CHOCS into Mobile Processes resembles an imple-
mentation of a procedural imperative programming language in a more primitive
language using Goto's. In the given translation the sending of the name plays

Plain CHOCS 37

the r61e of the Goto and the recursion construction resembles an activation
stack (with all entries active). It is an interesting path to pursue for further
research how CHOCS could act as a high level specification language and
Mobile Processes as an implementation language. The equational theories on
both levels open possibilities for program transformations on both the specifica-
tion and on the implementation level.

The study of Plain CHOCS as a metalanguage for the specification of pro-
gramming languages has only just begun by the application of Plain CHOCS
in giving a semantics to the object-oriented programming language O presented
in Sect. 5. However, in this section we have seen that quite complex notions
such as concurrent method invocations, object passing in method calls and
inheritance can easily be described and investigated using Plain CHOCS. It
is a major challenge to the theory to apply it to larger examples.

In this paper and in [Tho89] we have taken the stand that the processes
sent are inactive until they are received and put into use by the receiving process.
The underlying idea behind this is that it is a process description, either the
text as in [Tho89] or a semantic description as in this paper�9 A different view-
point was taken by Kennaway and Sleep in [KenSle83]. They chose to send
a running process (script) to describe an SKI-reduction algorithm in an Actor
language. Unfortunately it is hard to see how to formalise this idea from the
informal operational semantics they gave. An interesting idea may be found
in [Bou89]. Here internal activity is allowed for the process to be sent. This
could be described by the rule:

p, ~ ~ p"

a!p'.p ~ a ! p " . p

In [Bou89] Boudol presents a translation of the 2-Calculus similar to the one
given in [Tho89]. But the evaluation strategy becomes more "eager" due to
the above rule. This brings the reduction strategy closer to full /?-reduction,
whereas the strategy in [Tho89] coincides with the Lazy-2-Calculus as described
in [-Abr90]. In [Nie89] Nielson has a similar rule to the above in addition
with the following rule:

p _2~ p,,

a! p'.p-L~ a! p'.p"

Both these rules seem to violate the idea that the prefix operators are primitives
for sequentiality. If one accepts to abandon this principle then the processes
should be allowed external activity as well, but then it is hard to see what
effect this will have on the equational theory.

We have not embarked on a discussion of a theory where r-transitions are
interpreted as unobservable. But we conjecture that an easy generalisation of
the bisimulation predicate may yield a notion of observational equivalence. For

technical reasons we would have to define a~x:- o-= ~ * a?x since ~ _~ CPr
x P r [x] (intuitively C P r x [C P r ~ C P r]) and it would not make sense

38 B. Thomsen

to write a? x ~ r : .= , , a?x ~*. We could define the output transitions as

,._qsv~. = ~ ~, a~v' ~ ~* but this would introduce an unnecessary asymmetry. It
is interesting to note that in [Wa188], where bisimulation and divergence is
studied in the context of CCS, the equivalence relation generated using =~ is
stronger than the one using ~ o - In "dynamic" CHOCS [Tho89] the observa-
tional equivalence ~ does not enjoy the property of being a congruence with
respect to the operators of CHOCS. As for CCS, it is the (nondeterministic)
choice operator which gives the problem and this may be seen from the following
counter example first presented in [Mil80]: ~.n i I~n i l but a ! p . n i l + r . n i I @
a [p. nil + nil. We may obtain a congruence using techniques presented in [Mil80]
by defining p ~ q iff V C . C [p] ~ C [q] , where C is a context. It is an interesting
problem to study how to extend the theory presented here to a theory of observa-
tional equivalence.

Another major challenge is to establish a denotational theory. The operation-
al modelling of input suggests that input should be modelled by function space
D -o D, but the behaviour is also dependent on the set of bound names exported
in scope extrusion, thus one suggestion for a denotation domain worth investi-
gating is:

D ~ p O [S a e N [Names ~ D] ---~ D + ~aa N Names x D x D + D],

where pO is the Plotkin Power Domain with the empty set adjoined as defined
in [-Abr91].

In the context of Plain CHOCS there is a very interesting variant of the
applicative higher order bisimulation which deserves to be explored:

Definition 6.1 A variant applicative higher order simulation R is a binary rela-
tion on CPr such that whenever pRq and a e N a m e s then:

(i) Whenever p a.~ x ~ p,, then for all r E CPr there is some q', y such that q a? y ~ q,
and p' [r/x] Rq' [r/y]

(ii) Whenever p a~p;p,, with B c ~ (f n (p) u f n (q)) = O , then q a!Bq;q '' for some
q', q" with p' Rq' and p" Rq"

(iii) Whenever p ~ ~ p', then q ~ ~ q' for some q' with p' Rq'

A relation R is a variant applicative higher order bisimulation if both it and
its inverse are applicative higher order simulations.

If there exists a variant applicative higher order bisimulation R containing
(p, q) we write p Z ' q .

This relation is obtained by commuting the quantifiers in the first clause
of Definition 3.1. The relation -Z' is interesting since it is stronger than the
applicative higher order bisimulation relation. A similar variation of strong
ground bisimulation was suggested in [MilParWa189] and it was shown that
in the context of Mobile Processes the variant relation is strictly stronger. It
is an open question if the inclusion is strict in the context of Plain CHOCS.

Plain CHOCS 39

Acknowledgement. The presentation in this paper owes much to very valuable comments given
by the anonymous referees. Special thanks for comments go to the following people: S.
Abramsky, J. Cozens, C. Crasemann, A. Giacalone, M. Hennessy, L. Leth, R. Milner, P. Mishra,
F. Nielson, L. Ong, I. Phillips and S. Prasad.

Most of this work has been carried out while I was employed as a research assistant
on the Foundational Models for Software Engineering project (SERC GR-F 72475) within
the Department of Computing, Imperial College. I have also been supported by The Danish
Natural Science Research Council and The Danish Research Academy.

References

[Abr90] Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in
Functional Programming, chap. 4, pp. 65-116. Reading: Addison-Wesley 1990

[Abr91] Abramsky, S.: A domain equation for bisimulation. Inf. Comput. 92(2), 161~18
(1991)

[Ame87] America, P.: POOL-T: A parallel object-oriented language. Proceedings of object-
oriented concurrent programming, pp. 199-220. Cambridge, MA: MIT Press 1987

[AstReg87] Astesiano, E., Reggio, G.: SMoLS-driven concurrent calculi. Proceedings of TAP-
SOFT 87 (Lect. Notes Comput Sci., vol. 249, pp. 169-201) Berlin Heidelberg New York:
Springer 1987

[Atk89] Atkinson, C.: An object-oriented language for software reuse and distribution. Ph.
D. Thesis, Department of Computing, Imperial College, London University 1989

[Bou89] Boudol, G.: Towards a lambda-calculus for concurrent and communicating systems.
Proceedings of TAPSOFT 89 (Lect. Notes Comput. Sci., vol. 351, pp. 149-161) Berlin
Heidelberg New York: Springer 1989. Preliminary version in Research Report no. 885,
INRIA Sophia Antipolis, autumn 1988

[Chr88] Christensen, P.: The domain of CSP processes (incomplete draft). The Technical
University of Denmark 1988

[Coz90] Cozens, J.: Adaptable computer systems (incomplete draft). University of Surrey
1990

[DahMyhNyg68] Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA 67 Common base lan-
guage. Norwegian Computing Center 1968

[EngNie86] Engberg, U., Nielsen, M.: A calculus of communicating systems with label pass-
ing. Technical report DAIMI PB-208. Computer Science Department, Aarhus University
1986

[GiaMisPra90] Giacalone, A., Mishra, P., Prasad, S.: Operational and algebraic semantics
for FACILE: A symmetric integration of concurrent and functional programming. Pro-
ceedings of ICALP 90. (Lect. Notes Comput. Sci., vol. 443, pp. 765 780) Berlin Heidelberg
New York: Springer 1990

[GolRob83] Goldberg, A., Robson, D.: Smalltalk 80: The language and its implementation.
Reading: Addison-Wesley 1983

[HenNic87] Hennessy, M., Nicola de, R.: CCS without ~'s (Lect. Notes Comput Sci., vol.
249, pp. 138-152). Berlin Heidelberg New York: Springer 1987

[KenSle83] Kennaway, J.R., Sleep, M.R.: Syntax and informal semantics of DyNe, a parallel
language. Proceedings of workshop on the analysis of concurrent systems 1983. (Lect.
Notes Comput. Sci., vol. 207, pp. 222-230) Berlin Heidelberg New York: Springer 1985

[KenSle88] Kennaway, J.R., Sleep, M.R.: A denotational semantics for first class processes
(Draft). School of Information Systems, University of East Anglia, Norwich 1988

[Lar86] Larsen, K.G.: Context dependent bisimulation between processes. Ph.D. Thesis, Edin-
burgh University 1986

[-Mil80] Milner, R.: A calculus of communicating systems (Lect. Notes Comput. Sci., vol.
92) Berlin Heidelberg New York: Springer 1980

[Mi183] Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267 310
(1983)

[Mil89] Milner, R.: Communication and concurrency. Engtewood Cliffs, NJ: Prentice Hall
1989

40 B. Thomsen

[MilParWal89] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I.
Report ECS-LFCS-89-85, University of Edinburgh 1989

[MilParWa189b] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part
II. Report ECS-LFCS-89-86, University of Edinburgh 1989

[Milgl] Miluer, R.: The polyadic ~-calculus: A Tutorial Report ECS-LFCS-91-180, Universi-
ty of Edinburgh 1991

[MilSan92] Milner, R., Sangiorgi, D.: Barbed bisimulation. Proceedings of ICALP 92. (Lect.
Notes Comput. Sci., vol. 623, pp. 685-695) Berlin Heidelberg New York: Springer 1992

[Nie89] Nielson, F.: The typed 2-calculus with first-class processes. Proceedings of PARLE
89. (Lect. Notes Comput. Sci., vol. 336, pp. 357-376) Berlin Heidelberg New York: Springer
1989. (Preliminary version: Technical Report ID-TR: 1988-43 ISSN 0902-2821, Depart-
ment of Computer Science, Technical University of Denmark, August 1988)

[ParS1] Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical computer science. (Lect. Notes Comput. Sci., vol. 104, pp. 196-223) Berlin
Heidelberg New York: Springer 1981

[Plo81] Plotkin, G.: A structural approach to operational semantics. Technical report DAIMI
FN-19, Computer Science Department, Aarhus University 1981

[San92] Sangiorgi, D.: Forthcoming Ph.D. thesis, Computer Science Department, Edinburgh
University 1992

[Tar55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5, 285 309 (1955)

[Tho89] Thomsen, B.: A calculus of higher order communicating systems. Proceedings of
POPL 89, pp. 143-154. The Association for Computing Machinery 1989

[Tho89a] Thomsen, B.: Plain CHOCS. Technical report 89/4, Department of Computing,
Imperial College, London University 1989

[Tho90] Thomsen, B.: Calculi for higher order communicating systems. Ph.D. Thesis, Imperial
College, London University 1990

[Wa188] Walker, D.: Bisimulation and divergence. Proceedings of LICS 88, pp. 186 192.
Oxford: Computer Society Press 1988

[Wa191] Walker, D.: ~z-Calculus semantics of object-oriented programming languages. Pro-
ceedings of Conference on Theoretical Aspects of Computer Software (Lect. Notes Comput.
Sci., vol. 526, pp. 532-547) Berlin Heidelberg New York: Springer 1991

Appendix A

L e m m a A.1 (L e m m a 3.4) I f R is an applicative higher order bisimuIation up to
restriction then R ~= ~ .

Proof. W e show tha t the re la t ion R \ = U R n where
n ~ o

Ro=R
R,+ I = {(p\b, q\b): (p, q)eR~, b~Names}

is an appl ica t ive h igher o rde r b i s imula t ion .
F i r s t we show by induc t ion on n tha t if pR, q and c~ fn (p)u fn (q) then

{c/a} pR. {c/a} q.
F o r n = 0 this is immed ia t e f rom the def ini t ion of app l ica t ive h igher o rde r

b i s imu la t ion up to restr ic t ion. Suppose n > 0 and p \ b R , q \b where pRn_ 1 q
and c (~fn(p\b) u f n (q \ b) . If a = b then {c/a} (p \ b) - p \ b R \ q \b =- {c/a} (q\b). If
a =~ b then {c/a} (p \ b) - ({c/a} ({bl/b} p))\bl R \({c/a} ({bl/b} q))\bl - {c/a} (q\b).
Next we show by induc t ion on n tha t if pR~ q then

Plain CHOCS 41

a ? x ~ a ? y q, ,
(i) Whenever p ~ p , then q ~ for some q , y and p' [r/x] R \q' [r/y]

for all r e CPr
(ii) Wheneve r p a,Bp ~p,, with Bc~(fn(p)wfn(q))=O, then q a~"q~q" for

some q', q" with p'R\q ' and p"R\q ''
(iii) Whenever p ~ ~ p', then q ~ ~ q' for some q' and p' R \ q'

n = 0 This case is immedia te f rom the fact tha t R o is an appl icat ive higher
order b is imula t ion up to restr ict ion and f rom the definit ion of R \.

n > 0 Suppose pR, q where p=-pl \b and q=-ql\b.
a ? x p r a ? x

1. If p ~ this must have been inferred by the res-rule and p l ~ P'I

with a4=b and p' -p '~ \b . Then for some q'~, y we have ql a?y ~q] and

P'I [r/x] R \ q'a [r /y] for all re CPr. Then q ~?y , qr= q'l\b and for all re CPr
and some c(~fn(p ' l \b)u fn(q ' l \b)wfn(r) we have

p' [r/x] = (({c/b} p'~) [r/x])\cR\(({c/b} q'~)[r/x])\c- q' [r/xl.

2. Suppose B ~ (fn(p) ~ fn(q))= 0. If p a ! ,p , p,, and this has been inferred

by the res-rule then p~ "t'P~,p]' with a4=b and bq~Bwfn(p'l) and p'=-p'~
,'t a!Bq' l ,,t and p"=p~\b . So for some q'l, qz we have qa ' q l and p'~R\q'~ and

p'; R\q~. Thus q a!Bq' q,, with q'=-q'~ and q"-q~_\b and p'R\q r and
p" R \ q".
If p "~'~P'~p" and this has been inferred by the open-rule then p~ "~'~"~ p';
with a 4= b, B = B ' u {c} and b ~fn(frO and c (Efn (p~\b)~ B' and p ' - {c /b} p'a
and p"={c/b}p~. So for some q'l, q'~ we have ql a!~,q'~q,, and p'~R\q '~
and p';R\q';. Thus q ,,~Bq' q,, with q'={c/b} q'~ and q"={c/b} q'~ and
p 'R \q ' and p"R\q ''.
If p "~P',p" and this has been inferred by the non-s t ruct - ru le then

P a!~,p' p,, with B' ~ (fn(p') wfn(p")) = B ~ (fn(p') wfn(p")). So for some qr

q" we have q a~,q' q, and p'R\q ' and p"R\q ''. Thus B' c~(fn(q')~fn(q"))
= B ~ (f n (q ') ~ f n (q ")) and q a!Bq, q,, and we a l ready k n o w p'R\q ' and
p"R\q".

3. I f p ~,p' then p~ ~,p'~ and p'=p'~\b. Then q~ ~ ,q'~ and p'~R\q'~.
T h u s q ~ ~q'=q'~ and p'R \q'. []

Proposi t ion A.2 (Proposition 3.6) " is a congruence relation on processes (closed
expressions).

1. p[Ftl/2]Zp[Flz/X] ifY71ZFt2 and 2~_FV(p)
2. a?x .p ,La?x .q if p [r /xJZq[r /x] for allr

3. a!p' .p~La!q' .q if p,Lq and p',Lq'

4. "c.pZz.q if p Z q
5. p + p ' Z q + q ' if p Z q a n d p ' Z q '
6. p[p',Lq]q' if p,Lq and p',Lq'

7. p \ a , L q \ a if p,Lq
8. p[S],.Lq[S] if p,.Lq.

42 B. Thomsen

Proof. 1. We prove this by showing that the relation ACR*, the reflexive and
transitive closure of ACR, where

ACR = {(p [(1~/2], p [(12/2]): p6Pr & 2 ~_ F V(p) & (1~ Z (12 & (1~ CPr},

is an applicative higher order bisimulation up to restriction.
Note if q~ "Zq2 then (x[ql/xl, x[q2/x])~ACR* and we write (ql, q2) ~ACR*.
First we show a few useful lemmas about ACR and ACR*"

Lemma A.3 I f (P'I, p'~)eACR and (P'2, p'~)~ACR then (P'I [P'2, P'~IPJ) 6ACR

Proof. Since (p'~,p~)eACR there exist P3, (1~, (11 and 2 ~ such that p'~
- P 3 [(11/2~l and p7 - Pa [(1~/2~] with FV(P3) ~ 21 and (11 Z (1~2. Also, since (Pl, P~)
~ACR there exist P4, (1~, (122 and 2 ~ such that Pl = P~ [(12/22] and p'~ =-p4 [(122/22]
with FV(p~)=Y~ 2 and (12 :,L(12. We may assume 2 ~ c~22=0 since if 21~x2=t=0
we proceed by choosing 35 such that 35~(FV(p3)wFV(p4)w2aw2z)=O
and we have pa[(1~/21]=(p3135/21])[(1~/35] by Proposition 2.5. Therefore
we have P'z]P~ -- (P3 F(11/2I])I(P4 [(12/~2])_ (P3]P~) [-(11 ~ (1~z/21 ~)~21 and p'~lp'~
-(p3[(1~/21])[(p4[(1~/22])-(p3]p4)F(1~2 ~(12/~ 1 ~ 2 2] and (p'~ Ip'2,P'~ lp~)~ACR.
(Note that if we have introduce a "new")5 it is because two or more occurrences
of the same x~ refer to different q~'s after the transition.) []

Lemma A.4 I f (fit, p'~)eACR* and (P'2, p'~)eACR then (Pl IP'2, P'~ [p~)eACR*

Proof. Since (p'~, p';)eACR* there is a sequence ql .-. q, such that (q~, q~+ 1)~/tCR
for l < i < n with P'~-ql and p'~-q,. Thus for each pair (qi, q~+I)~ACR we
may apply Lemma A.3 and conclude (qilP'2, q~+ ~Ip~)eACR thus (p'~ [p~, P'~lP~)
eACR*. []

Lemma A.5 I f (P'x, Pl) ~ACR* and (P'2, p~)~ACR* then ([~ IP'2, p'~Ip'~)6ACR*

Proof. " ' " * Since (P2, P2) EACR there is a sequence ql .-- q, such that (ql, qi+ 1)~ACR
for l < i < n with p'2=ql and p'd=q,. Thus for each pair (qi, qi+l)6ACR we
may apply Lemma A.4 and conclude (P'llqi, P~]qi+Or thus

! I t tr , (p'~]p2,pl]pz)~ACR. []

Lemma A.6 I f (r', r")~ACR then (p~ [r'/z], P'I' [r"/z])~ACR.

Proof. If (r',r")~ACR then r ' -ra[fh/2] and r"==-rl[(12/~2] for some rl with
FV(rx)~_2 and (11Z(12 for some closed (1i-Then p'1'[r'/z]--p';[rx[(11/Y]/z]
- (P'I' [rl/z]) [(11/2] and p'; [r"/z] - p'; Erl [(1S2]/z] -- (P7 [rl/z]) [-(12/~] since
FV(p';)={z} and FV(r l)=2 we have FV(p'~(rl/z])=X and ((pT[r~/z])[(11/2],
(p'; [rdy-I) [(1z/2])~ACR. Thus (p'; [r'/z], P7 [r"/z-I)EACR. []

Lemma A.7 I f (r', r ')~ACR* then (p'; [r'/z], p~ [r"/z])~ACR*.

Proof. Since (r', r")~ACR* there is a sequence ql --. q, such that (qi, qi+I)~ACR
for 1 < i < n with r '=ql and r " - q , . Thus for each pair (ql, qi+~) ~ACR we may
apply LemmaA.7 and conclude (p';[qi/z], p~[qi+lz])~ACR thus (p~[_r'/z~],
p'~i[r"/z])eACR*. []

Lemma A.8 I f (P'l, p'z)~ACR then (p'l\b, p'2\b)~ACR.

Plain CHOCS 43

Proof. Since (P'I, p'2)EACR there exist P3, 41, q2 and 2 for each r such that
p ' l -p3[fh /2] and ff2-=P3142/'2] with FV(p3)~_2 and qt 'Z42 and (p'l\b)
- (p3\b) [fh/2] and (p'2\b) =- (p3\b) [42/i] thus (p'~\b, p'2\b)~ACR. []

Lemma A.9 I f (P'I, p'2)eACR* then (fit \b, p'a\b)~ACR*.

Proof. Follows the pattern of the proof of Lemma A.7. []

We now return to the main proof. We only show that ACR* is an applicative
higher order simulation up to restriction, symmetry of ACR* then yields the
result. To see that ACR* is an applicative higher order simulation up to restric-
tion we show that if (P l, P2)~ACR then P i - P F41/2~] and:

(i) If b (~fn (p [41/3~1) k.)fn(p [42/2]) then {b/a} (p [qx/x]) ACR* {b/a} (p [q2/2])

(ii) Whenever p [41/2] o?x p,, then p [42/2] a?y, q, for some q', y and
p' Jr/x] ACR* q' [r/y] for all re CPr

(iii) Whenever p [41/2] a~Bp' p,, with B n (fn(p) w fn(q)) = O, then

P[42/x] "~Bq'~ q" for some q', q" with p'ACR*q' and p"ACR*q"

(iv) Whenever p[gh/2] ~,p', then P[42/2] ~,q ' for some q' and either
p' ACR* q' or for some p", q" and b: p' =- p" \b , q' - q " \b and p" ACR* q".

If (p ,q)sACR* then there is a sequence Pl . . -P, such that (p, p l)EACR,
(Pi, Pi § 1) ~ ACR for 1 < i < n and (Pn, q) ~ ACR. The result then follows by induc-
tion on the length of the transitive sequence Pl ..- P, of ACR*.

First (i) is easily proved by structural induction on p using Lemma 3.5 in
the case p - y.

Next we show (ii)-(iv) simultaneously. We proceed by induction on the length
of the inference used to establish the transitions of p [q l /x] and cases of the
structure of p. We only need to consider transitions inferred by use of the struc-
tural rules since we may transform any derivation of a transition into an equiva-

lent one where we use the non-struct-rule exactly once after each application
of a structural rule.
p - nil Trivial since p [4i/2] ~ .
p - a ? y . p l Assume yd~2 (otherwise use e-conversion on y). Then p[4i/x]

- a?y.(pa [qi/2]) and p [41/x] a?, Pl [4i/X]. Since FV(pl)_~ (2 w {y}) and
y r 2 we have

(Pl [41/2])Jr/y] - P l [41, r/if, y] ACR* Pl [42, r/2, y] - (p l [42/2])[r/y]

for all r~CPr, since r Z r and 4~ are closed.

P =- a!pl.P2 Then p [4i/2] ~!~ {~/~1) (P2 [4i/X])
and P2 [41/2] ACR*p2 [42/2] and Pl [gh/2] ACR*pl [42/2]

p - z . p ~ An argument similar to the argument given in the case above yields
this case.

P=-Pl+P2 I f p [q l / 2] r , p , then

either p1[-41/2] r ,p, by a shorter inference. There are three cases
depending on the structure of F. We show the case when F = a ? x :
By induction P1142/2] ~?:'p" and p '[r /x]ACR*p"[r /z] for all

44 B. Thomsen

r eCPr. By the operational semantics for choice we have
(P~ +P2)[02/2] ":5 p" which is a matching move.

or P2 1-772/2] F p, and we may argue as above.

P=-PlIP2 IfP[771/2] r~p, then

either PI [771/2] r P'I by a shorter inference and p ' -P ' I]P2 [771/X] - There
are three cases depending on the structure of F:

F = a ? x Then by induction P11-612/3~] a ? z , , P'I' ---~Pl and (P'I [r/x], Jr~z])
eACR* for all re CPr. Then by the operational semantics for paral-
lel we have (p~ [p2)[-772/3~] ~ 091 [772/2])1(p2 [q2/2"1) "?~, P'~lP21772/2]. We
have (/)'1 I P2 [772/f]) Jr~x] =- p'a [r/x] IP2 [77~/2] and (P'I'] P2 [772/2]) Jr~z]
=-p~ [r/z] [P2 [772/2] for each reCPr by Proposition 2.5 since r and
ql, and q{ are all closed. Since (P'I Jr~x], p'~[r/z])eACR* for all
re CPr and P2 [772/2], P2 [77~/2] e A CR* we may apply Lemma A.5
and conclude ((Pl]P2 [772/2]) [r/x], (P't'lP2 [qz/f]) [r/z]) e ACR* for
all re CPr.

F = a !~ p' Then B c~fn (pa [-77~/2]) = 0. By induction p~ [772/2] ,~,v'; P7
with (p',p")eACR* and (P'I,P'~)eACR* and Bc~(fn(p~ [77~/2])
wfn(Pl [772/2]))=0. Thus B ~fn(p2 [772/2])=0 and by the opera-
tional semantics for parallel p~ [q2/2] IP2 [~/2] ~"P"~ P'~IP2 [772/2].

-22 [77~/2]eACR* we may Since (p'~,p'~)eACR* and P2[q2/], P2
apply LemmaA.5 and conclude ((pilp2177~/2]), (P';[p2177~/2]))
eACR*.

F = z and we may argue as above.

or P2 [77~/2] r p, and we may argue as above.

a ! B r ' t or F = r and w.l.o.g. P11771/x] "?X~p'x and P21771/X] ~P2 by shorter
inferences and p'-(p'l [r'/x] [p'2)\B and B ~fn(p'l)=O. By induction

p2 [772/2] ~,~r,,> , P2 with (r ' , r")eACR* and (P2,P2)eACR and
PI [772/2] ~?z P'I' with (P'I [r/x], P'i [r/z])eACR* for all reCPr. By prop-
osition 2.7 we may assume that B~fn(p'~)=O. By the operational
semantics for parallel (Pl]P2)[772/2] ~> (p'; [r"/z] [p'~)\B. To see that

~. t t t ! t ! p'a[r'/x]Ip'zACR pl[r /z]lp2 and thus showing that ACR* is an
applicative higher order bisimulation up to restriction we observe
that (p'~ Jr~x], p~[r/z])eACR* for all reCPr, in particular this is true
for r'. By Lemma A.7 we have p~ It'~z] ACR*p~ [r"/z] since r'ACR*r".
Thus (P'I [r'/x], p~[r"/z])eACR*. Since also (p'2,p~)eACR* we may

t t t t~ I t :~ apply Lemma A.5 and conclude (P'I [r'/x] [P2, P l [r /z][pz)eACR .

p =- p~Lb Then p [77i/2] - (({dJb} p~) [77~/2])\d~ for some d~ (~fn(p ~\b) wfn(770. By
(i) we may assume b=dl=d2r If
p[qa/2] r ~p,, then if

F = a ? x Then Pl [771/2] "?~P'I by a shorter inference and p'=-p'l\b and
a =# b. By induction p~ [772/2] o:~ P'z and (p'~ [r/x], P'2 [r/z])e ACR* for
all reCPr. By the operational semantics for restriction

Plain CHOCS 45

(pa\b) [q2/2]- ,2= p'2\b. Since (p'~ [r/x], P'2 [r/z])eACR* for all rmCPr
we may apply Lemma A.9 and conclude ((p'~\b) [r/x],
(p'~\b) [r/z])eACR* assuming r(~fn(r) (otherwise use ~-conversion).

Y = a !~p' Then

either Pl [Ch/2] ~ P~ by a shorter inference and p' =- p], p" ~ p'[\b, b + a,
bCB, bCfn(p' O. Then by induction p~[c~2/2] ~P~,p~ with
(p], p'z)~ACR* and (p'[, p'~)~ACR* and B c~ (fn(pl [c~/2])
wfn(p~[E12/'2]))=O. Then by the res-rule we have (pl[~tz/~Y])\b
a~,p~ p2\b and we may argue as above that (p]'\b, p~\b)eACR*.

or Pl [Eh/2] ":"'Pi p~ by a shorter inference and p ' - {d/b} p'~, p"=- {d/b} p'~',
b * a, b(~B', b~fn(p'~), B = B' u {d}, dr wfn((p~ [~jff])\b). Then by

induction p, [c~2/2] "~'P~, p~ with (p'~, p'2)eACR* and (p'~, p'~)eACR*
and B' c~ (fn (Pl [q 1/2]) u fn (Pl [~2/2])) = 0. If b e fn (P'2) n fn (p'~) then
by the open-rule we have (pt[Eh/2])\b ,~,{e/b}vl {d/b} pj and by (i)
we have ({d/b} p'~, {d/b} p'2)eACR* and ({d/b} p'~, {d/b} p~)eACR*.
If b~fn(p'2) c~fn(p'~) then by the non-struct-rule we have
(Pl [g12/2]) \ b ~ p~ and P'2 - { d/b } P'2 and p'~ - { d/b } p'~ and by (i) we
have ({d/b} p'~, {d/b} p'2)eACR* and ({d/b} p~, {d/b} p~)eACR*.

F = z and we may argue as above.

P - Pl [S] If p [01/2] - (p~ [c~/2]) [S] r p,, then if

F= a?x we have p~ [~ / ~] b?5 p,[by a shorter inference and a = S(b) and

p " - p'~' IS]. By induction p~ [c/2/x] ~75 p~ and P'I [r/x] ACR*p~ [r/z]
for all r~CPr. Then (px[Eh/Y])[S] "75p2[S] with (p~[r/x])[S]
- (p]' IS]) [r/x] ACR* (p'~ IS]) Jr/z] - (p'~ [r/z]) IS] for all r ~ CPr.

/ b B ~ I I,' r = a ! ~ p we have p ~ [g t l / 2] ~ p a by a shorter inference and a=S(b)
and B c~ (Dom(S) ~ Im(S)) = 0 and p' = p', and p" ~ p'~ IS]. By induction

-- - - b . B p ' 2 I t t :~ ! I t ~ t t Pl [q2/x] > P2 and p, ACR P2 and Pl ACR P2. Then
a ! ~ p ' 2 I I r - o ~

(Pl [c~/2])I-S] ~ P2 [_a3 with p'~ ACR* p'~ and p;' IS] ACR* p~ [S].
F = z this case is similar to the above.

p=-y

.

By assumption FV(p)~_ ,2 thus 2 = (y) and if p [c~1/2]----ql r ~ q, then if

F = a ? x we have p[E12/2]-q2 aT~,q' 2 for some q~ and z. Since qlZq2
we have (q'l[r/x], q'2[r/z])~Z for all r ~ C P r and thus
(ql [~/x], q2 [r/z])eACR for all reCPr

F=a!Bp' we have p[~2/2] - q 2 at,o~' q~ for some q~ and q~. Since ql Zq2
we have (q'l,q~)~" and (q';,q~)E" and thus (q'l,q'2)eACR* and

t ! l ! (ql, q2) ~ACR
Y = z A similar argument as above applies.

Thus in each case we have a matching move for p [c~2/2].

This is proved by showing that the relation R a = R vo Z , where:

R = {(a?x.p, a? x. q): rV(p) = FV(q) c_ {x} & Vre CPr. p [r/x] Z q [r/x]}

46 B. Thomsen

p' Z q' and

4. follows

5. follows
p' Zq ' and

6. follows
and x # y.

is an applicative higher order bisimulation. Note that the relation R~ consists
of two parts; one part covers the structure we are interested in and the second
component is a kind of closure to cover the processes sent and received. The
second component is necessary since the processes sent and received do not
necessarily have the structure of the first part.

That the above relation is indeed an applicative higher order bisimulation
is easily established. Assume (p, q)eR~. Then

either p Z q and we are done since if p r p, then q r ' q, for some q' ,F ' . If
F = a?x then F ' = a?y and for all re CPr we have (p' [r/x], q' [r/y])e Z ~ R 1 .

If F=a!Bp" then F'=a!Bq" and we have Bc~(fn(p)ufn(q))=O and
(p" ,q") /~_R 1 and (p',q')Z~_R~. If F = z then F ' = z and we have
(p', q')Z ~_R~.

or p - a ? x . p ' and q - a ? x . q ' . If a?x.p' r p, then F=a?x . Then a?x.q, a?x q,
and by assumption p'[r /x]Zq '[r /x] for all reCPr which implies
(p' [r/x], q' [r/x])e R 1 .

3. follows from ((a!x.y)[(p,p')/(x,y)], (a!x.y)[(q,q')/(x,y)])eACR if p Z q and
x+y .
from ((z. x) [p/x], (z. x) [q/x]) e A C R if p .Z q.

from ((x + y) [(p, p')/(x, y)], (x + y) [-(q, q')/(x, y)]) e ACR if p .Z q and
x # y .
from ((xly)[(p,p')/(x, y)], (xly)[(q, q')/(x, y)])eACR if p Z q and p' Zq '

7. follows from (x [p /x] , x [q /x])eACR if p Z q and the fact that ACR* is an
applicative bisimulation up to restriction.

8. follows from ((x[Sl)[p/x], (x[S])[q/x])eACR if p,Lq. []

Proposition A.10 (Proposition 3.14) pa\alp2 Z (Pl l P2)\ a / f a(~fn(p2)

Proof. This proposit ion is proved by showing that the relation

R = {(pl \a]pz,(pl Ipa)\a): pieCPr, a(~fn(pa) ~ I d

is an applicative higher order bisimulation up to Z and restriction. To see

this we show that when (p, q)eR and p r ~p, then qr--2~q ' with a move which
satisfies the conditions of applicative higher order bisimulation up to .Z and
restriction. If (p, q)eId the case is obvious so assume that P - p I \ a l p 2 and q
---(Pl IP2)\ a and a(~fn(p2).

If p r , p, this transition must have been inferred in the following way:

either this has been inferred from the par-rule and P2 r ~p~ and p'=-pl\alp~.
There are three cases:
F = b ? x then b4=a since ar Then by the par-rule and the res-rule

we have (p 1]P2)\ a b?x (p 1 }p'~)\a and for all r e CPr we have (p 1 \ a]p~) [r/x]
,L ({d/a} p 1)\b]p~ Jr~x] R ({d/a} P l]P'~ [r/x])\d,L ((Pl [p~)\a) [r/x] for
some dCfn(pl) ~ fn(p2) ~ fn(r).

Plain CHOCS 47

F=b!~p'2 then b4=a and we may assume Bc~({a} ~ f n (p l)) = 0 . Then by the
par-rule and the res-rule we have (pllpa)\a bBP~-,(pllp~)\a which is a
matching move.

F = ~ and we may argue as in the above case.

or this transition has been inferred by the par-rule and pl\arS-~p'~ and this

has been inferred from the res-rule and Pl r-L+P'; ' and P'=-P'llP2. There are
three cases:
F=b?x then p~-p~ ' \a and b+-a. Then by the par-rule and the res-rule

we have (Pl I p2) \a b?~ (p,;,[p2)\a. This is a matching move since for all
r e CPr we have
(p'~"\a[p2) [r/x] Z (({d/a} p'~") [r/x])\blP2 R (((d/a} p'~') [r/x]lp2)\d
Z ((p';'lp2)\a) [r/x] for some d (~fn(pl) wfn(p2) w fn (r).

F=b!Bp'I then Pl b:Bp~"~ p~,, and b4=a and
either ag~fn(p'~") in which case P'I-~F~" and p~-p'~'\a. Then by the par-
rule and the res-rule we have (PlIP2)\a bt~P'~'(P~'IP2)\a which is a
matching move.
or aefn(p'l'") in which case P'I - P'I'" and p7 - p~' and B = B' w {a} for some
B' with a(~B'. We may assume B'c~fn(p2)=O. Then by the par-rule and
the open-rule we have (pl IP2)\a b~Bp'~ p~,tp2 which is a matching move.

F = z and we may argue as in the above case.
or F = r and the transition has been inferred by the corn-close-rule and

pl \a b?~ , p,l\ a which has been inferred by the res-rule and Pl b'-~-~P'l with

b4=a and P2 b:Bplp,~ and p'-((p't\a)[p'2/x]lp'~)\B. We may assume
Bwfn(pO=O and a(~fn(p'2). Thus by the corn-close-rule and the res-rule
we may infer that (p~lp2)\a ~ ~ (p'~ [p'2/x]lp~)\B\a which is a matching move
since (I)'1 [p2/x][p~)\B\a Z (p'~ [p'2/x]lp~)\a\B by Proposit ion 3.8 and
((p'~ \a) [p'2/x]] p~) R (P'I [p'2/x]]p~)\a.

or F=z and the transition has been inferred by the corn-close-rule and

pl \a b~pl P'i which has been inferred by the res-rule and P1 b!~i";p,,, and
b+a and aq~fn(p~") and p'~-p';" and p';=-p';'\a and P2 ~?~'P'~ and p'
-(p'~'[p~[p't/x])\B. We assume Bc)fn(p~)=O. Then by the corn-close-rule

and the res-rule we have (p~]p2)\a ~ , (P'I'[PJ [p~"/x])\B\a which is a match-
ing move since (p';'lp~ [p]'"/x])\B\a,L (P'['IP~ [p'ff'/x])\a\B by Proposit ion
3.8 and p~]p~ [p'~/x] R(p';' [p~ [p~"/x])\a.

or F = r and the transition has been inferred by the corn-close-rule and
p~\a b!~v~ p,, which has been inferred by the open-rule and p~ b~,pi"; p],, and
b4=a and a~fn(p'~")cafn(p'~") and Pl =-P'~" and p~=p'~' and B=B'w{a} for

some B' with a(~B' and P2 b?x>p,~ and p'--(p'~]p~[p'~/x])\B. We assume
B'c~fn(p'~)=O. Then by the com-close-rule and the res-rule we have

(pl]p2)\a ~,(p';'lp'~[p';"/x])\B'\a which is a matching move since
(p'ff[p~ [p'ff'/x])\B'\a ,L (P't"IP'~ [p't'"/x])\B by Proposit ion 3.8 and
p~lp'~ [p'~/x] ep';'lp'~ [p'~"/x].

We omit the proof for the cases showing R-~ is an applicative higher order
simulation up to :,L and restriction. The arguments in these cases are very
similar to the above and follow almost from symmetry. []

48 B. Thomsen

Proposition A.11 (Proposition 3.15)

p l nil ,L p

Pl Ip2,Lp21pl

Pl I(P21P3)~L(Pl IPz)IP3-

Proof. This proposition is proved by showing that the first two of the following
relations are applicative higher order bisimulations and that the last relation
is an applicative higher order bisimulation up to :,L and restriction:

R l = {(P I nil, p): p ~ CPr} w I d

R2 = {(Pl I P2, P2 I Pl): Pie CPr} u I d

R3 = {(p,](P2 IP3), (Pl IP2)[P3): pi@CPr} u Id.

The I d component in each of the above relations is necessary to cover the
cases when processes are communicated since these processes might not have
the structure of the first part of the relation. To see that the above relations
are indeed applicative higher order bisimulations respectively applicative higher
order bisimulations up to ,Z and restriction we analyse each relation in turn.
(The Id part of the above relations is obvious.)

R1 Any transitions of p fnil must have been inferred from a transition of p
and the rule for parallel composition since nil has no transitions, thus p
has a matching move for each move of p lnil and vice versa.

R 2 This is easily established by noting that both rules (par and corn-close)
involving the parallel operator are symmetric.

R 3 The proof that this relation is an applicative higher order bisimulation up
to .Z and restriction is surprisingly complicated. This is due to the fact
that the communication of processes may introduce restrictions and thus
alter the structure of the term. To illustrate this point we show the case

when PlI(Pz[P3)_2~ p, and this transition has been inferred by the corn-close-

rule and Pl b~X~P'l and (p21p3)-bt"P'~p ''' and this is due to an application
b ! B P t t t

of the par-rule and pz------~pz with Bc~fn(p3)=O and P'"=P'zlP3 and p '=

(p'~ [p"/x] [(p~ I p3))\B. Then by the corn-close-rule pl]Pz ~ ' (P'~ [p'/x] [p'z)\B

and by the par-rule (Pl i P2)IP3-!--~(P'1 [p"/x] I p'z)\Blp 3. Since B c~fn(p3)=O
we can apply Proposition 3.8 and (p'~ [p'/x]lp'z)\BIp3 Z ((p'~ [p"/x]lp'2)l P3)LB
and we have established a matching move which satisfies the conditions
of an applicative higher order bisimulation up to Z and restriction. There
are five other similar cases: one when Pa does an output transition and
P2 does an input transition, two when P l and P3 communicate and two
when P2 and P3 communicate. These cases follow the same pattern of argu-
ment as above. The only three remaining cases are when either of the three
components does a transition on its own but in each case a matching move
can be established by two applications of the par-rule. []

Plain CHOCS 49

Proposition A.12 (Proposition 3.18). Let 2 = {x~ ... x,}, ~ = {Y l-.-Yn} and ~ ~ ~ ~: 0
and Ajc~ fn(q)=O and Bt~ fn(p)=O then

if p=~iai?xi .p i+2jaj IAjp) .p j
and q=Xkbk?Yk.qk+Zzbl!B~q'z.qz

then p I q Z 2i ai? xi. (Pi I q) + Sv aj!A~ P). (Pyl q)
+ S,k bg ? yk.(plq~) + Zt bt[B~ q'z.(Plq~)
-~- Z(i,1)r =b,} 75. (Pi [q'l/Xi] l qz) \ BI
+ Z(j,k)~(;,k):,j =b,~ z. (Pj[qk [p)/yk])\A:

where ZiFi.pi describes the sum Fl.pl + ... +F~.p, when n > 0 and nil if n = 0 ,
knowing this notation is unambiguous because of Proposition 3.7.

Proof. Assume the premises of the proposition. Let rhs denote the right hand
side of the above equation. Let

R = {(Plq, rhs)} u Id.

Then R is an applicative higher order bisimulation. For each transition of P lq
we may find a matching transition of rhs and vice versa.

If p l q ~ r then

either p r p, and r - p ' l q . If F = a i ? x i then p'=p~ for some i and rhs r p~lq
which is a matching move since xi4FV(q). If F=aj!Aj p) then p ' - p j for some

j and r hs r > p2] q which is a matching move.

or q r > q, and r--plq' . Then similar arguments as above apply.
or F = z. Then

ai? xi) bl !B I qi>
either p Pi and q ql and r-(pi[q 'z /xJlql) \B z and ai=bt. Then

rhs ~ > r which is a matching move.

ajtAjP'j
or q b~?x~ qk and p > pj and r--(pjlqk[p)/yk]lqk)\A ~ and a~=bk. Again

rhs ~ , r which is a matching move.

If rhs r r then a similar case analysis as above will yield matching moves
for plq. []

A p p e n d i x B

We briefly review the 7r-Calculus as presented in [MilParWa189]. This calculus
is a description tool for Mobile Processes with link passing as a means for
expressing process networks with dynamically changing interconnection struc-
ture.

Processes are built from the following range of constructs: The inactive pro-
cess 0, three types of prefixes; input prefix x(y), output prefix)~y and z prefix,
(non-deterministic) choice, parallel composition, restriction, match and recur-
sion.

This is summarised by the syntax of the 7z-Calculus:

P : : = O l x (z) . P I ~ y . P I z . P I P + P '] PIP' I (y) P l [x = y l P l r e e X . P [X .

50 B. T h o m s e n

Here X~Var (a set of variables to be bound by the recursion construct). In
[-MilParWa189] agent identifiers are used to express recursion, but we prefer
the equivalent but more explicit recursion construct above. We shall use the
notation ~(y).P as shorthand for (y)(Yy.P) for y#:x. This construct creates
a new name and sends it out immediately.

In the 7c-Calculus the communicable values are links or rather names of
links, thus x, y above belong to the set Names of port names. The constructs
of input prefix and restriction bind port names in their scope. The set of free
names of a process is denoted by fn(P), the set of bound names of a process
is denoted by b n(P) and the set of names of a process is n(P)= b n(P)w fn(P).

We may substitute one name for another and name substitution in the To-
Calculus follows the pat tern of name substitution in Plain CHOCS. We have
to take care not to bind free names by input prefix or restriction. If the names
coincide we do e-conversion:

{z'/z}(x(y).P)-{z'/z} x(y').({z'/z}({y'/y} P)) where y'(~fn((y)P)u{z'}
{z'/z}((y)P)-(y')({z'/z}({y'/y} P)) where y'(~fn((y)P)w{z'}.

Free and bound (recursion) variables are defined as usual and substitution of
processes is the usual one taking care of not accidentally binding free names
by restriction and free recursion variables by the recursion construct.

The dynamic behaviour of processes is defined in terms of an operational
semantics given as a labelled transition system. Processes may evolve by perform-
ing actions of the following kind: input actions x(y), free output actions ciy,
actions and bound output actions 2(y). Actions are ranged over by ~. A name
occurring in brackets in an action is said to be a bound name and the set
of bound names of an action is denoted by bn(~), fn(~) denotes the set of
free names of an action and n(c 0 denotes the set of all names of an action.
c(~) denotes x in ct=x(y) and ~=2(y) .

In the following we give the operational semantics for the 7c-Calculus as
presented in [MilParWa189]. Formally the operational semantics is given as
the smallest relation ~ satisfying the following rules:

Table 4. Opera t iona l semant ics for the 7r-Calculus. Rules involving the
b inary opera tors + and [addi t ional ly have symmet r i c forms

T A U - A C T : z . P ~ , P

O U T P U T - A C T : 2 y . P eY > P

I N P U T - A C T : x (z). P ~(w), {w/z} P, w (~fn ((z) P)

p ~ p '
S U M :

p + Q ~ , p ,

p ~ p '
M A T C H :

[x = x] P ~ , P '

R E C : P [r e o X . P / X] ~ ~ P'

r e c X . P ~ ~P'

P ~ ' P ' , b n (e) ~ f n (Q) = O P A R :
PIQ ~ ,P'IQ

Plain CHOCS

Table 1 (continued)

COM:

CLOSE:

RES:

OPEN:

p ~r ,p,Q x(,),Q,

P[Q ~ 'P'IQ'{y/z}

p x(~, p, Q ~(wl, Q,

PIQ ~ ,(w)(P'IQ')

P ~ ,P" ,y~n(a)

(y) P ~ , (y) p,

P XY,P' ,y:#x,wr

(y) n ~'~, {w/y}n'

51

To compare terms in the re-Calculus we use a generalisation of the notion
of bisimulation called strong ground bisimulation:

Definition B.1 A strong ground simulation R is a binary relation on CPr such
that whenever (P, Q)eR then:

(i) Whenever P~('),P' and y(~n(P)wn(Q), then Q X(y~Q, for some Q' and
({w/y} P', {w/y} Q')~R for all w e N a m e s

(ii) Whenever P ~Y, P', then Q xy Q, for some Q' and P'RQ'

(iii) Whenever P ~tY),P' and y(~(n(P)un(Q)), then Q ~tr) Q, for some Q' with
P'RQ'

(iv) Whenever P ~ ~ P', then Q ~ , Q' for some Q' with P'RQ'

A relation R is a strong ground bisimulation if both it and its inverse are
strong ground simulations. Two processes P and Q are said to be strong ground
bisimulation equivalent iff there exists a strong ground bisimulation R containing
(P, Q). In this case we write P ~ Q.

In [MilParWa189] the relation ~c is shown to be an equivalence relation
and it has the expected congruence properties with respect to the constructs
of the ~-Calculus. It also satisfies a set of expected properties.

P +O,~ P

P + P , ~ P
p + Q . c Q + p

P + (Q + R) , c (P + Q) + R

(x) n .c n if x~ fn (n)
(x) (y) P,~ (y) (x) n

(x) (P + O) ~ (x) P + (x) Q
(x) c~. P-c a. (x) P if x q~ n (a)

(x) a.P ~O if x=c(cQ

PIO~P
P[Q,~QIP

(x) (PI Q)-c (x) P I Q if x ~fn (Q)
P](Q[R).c(P[Q)[R.

52 B. Thomsen

The relat ion ~ is however not preserved by arb i t ra ry name substi tutions. A
not ion of s t rong bis imulat ion equivalence ~ is in t roduced in [MilParWa189]
as P ~ Q iff {a/b} P ~ { a / b } Q for all name subst i tut ions {a/b}. We shall not
concern ourselves with this relat ion since the s t rong g round bis imula t ion relat ion
suffices for the presenta t ion in this paper.

Before turning to t ransla t ions between the ~z-Calculus and Plain C H O C S
we present a useful const ruct and show a few facts abou t this. We shall need
communica t ions which carry no parameters . This could be model led by presup-
posing a special name s which is never bound and we write 2 . P in place of
2 ~ . P and x . P in Place o f x (y) . P where y is not free in P.

Definition B.2 Let

b ~ P = r e e X . b . (P I X)

where br and X ~FV(P) .

This cons t ruc t ion is in tended to provide copies of P when tr iggered by E act ions
e.g.:

(b)(b.nill6.niI] b ~ P) ~ , ~ , (b)(nil l nil lP I Pl b ~ P),.~ P [P.

This const ruct satisfies several interesting propert ies"

L e m m a B.3 (L e m m a 4.2) I f b~n(Q) then

(b) (P1 I b ~ Q) + (b) (P21 b ~ Q) ,~ (b) ((P~ + P2)[b ~ (2)

Proof. Let L H S denote the left hand side and R H S denote the right hand
side of the above equat ion. Firs t note tha t the P~'s are al lowed to tr igger b ~ Q,
but we assume tha t only b ~ Q b Q Ib ~ Q. We use b as a pr ivate name
in bo th s u m m a n d s of L H S and in RHS, this is convenient and ob ta inab le by
a suitable e -convers ion on the pr ivate names.

To prove the l e m m a we show that the relat ion:

R = {(LHS, RHS)} ~ I d

is a s t rong g round bisimulat ion.

To see this observe that if L H S ~ > R then

either (b)(P1]b ~ Q) ~ > R and this is because

either P~ ~ , P~' with ct 4= b-and R = (b)(P[E b ~ Q). Then R H S ~ , (b)(P~'] b ~ Q)
which is a ma tch ing move.

or P~ b, PI' with ct = z and R = (b) (P(]Q] b ~ Q). Then

R H S ~ , (b) (P ; I Q I b ~ Q) which is a ma tch ing move.

or (b)(P2 [b ~ Q) ~ , R and an a rgumen t as above applies.

Also if R H S ~ R then
either P1 ~' ' PI' with

Plain CHOCS 53

either ~' = ~ =# ~ and R -= (b) (PI' t b ~ Q). Then LHS ~, (b) (P~ I b ~ Q) which is
a ma tch ing move.

or e' = b and ~ = z and R - (b) (P~' I QI b ~ Q). Then LHS ~, (b) (P[]QI b ~ Q)
which is a ma tch ing move.

or P2 ~'> PJ and an a rgumen t as above applies.

We have abused the no ta t ion slightly when c~ 4:b-in the above p r o o f since we
should analyse each case of c~: a(x), ?tb, d(c) or z. We shall no t do so since
it is not hard (only elaborate) and each case follows the general pat tern. []

Lemma B.4 (Lemma 4.3) I f P/ / b , for all derivatives P/ of Pi, ie{1,2} and
b~fn(Q) then

(b) (P~ I b ~ (2)1 (b) (P2] b ~ Q) .~ (b)((/'l I P2)I b ~ Q).

Proof. Let LHS denote the left hand side and RHS denote the right hand
side of the above equat ion. To p rove the l e m m a we show tha t the relat ion:

R = {(LHS, RHS)}

is a s t rong g round bis imulat ion.

T o see this observe tha t if LHS ~ , R then

either (b)(P, I b ~ Q) ~ > R' and R ~ R' I(b)(P2 h b ==> (2) and this is because

either P1 ~ ' P [with ~=t=E and R' - (b) (P~Ib~Q) . Then

RHS ~' ' (b)(P; IP21 b ~ Q) which is a ma tch ing move.

or P1 ~, P,' with ~ = ~ and R' --= (b) (P[I Q] b ~ Q). Then

RHS ~, (b) (P; I P2 I QI b ~ Q) which is a ma tch ing move.

or (b)(P21b ~ Q) ~, R' and an a rgumen t as above applies.

or P1 ~ 'PI ' and P2 ~ 'P~ and c~=r and R-(b)(P21b~Q)I(b)(P~Ib~Q), where
is an act ion with oppos i te polar i ty of ~ [MilParWa189]. Then

RHS ~ , (b) (P; leVI b =~ (2) which is a ma tch ing move.

Also if RHS ~ ~ R we m a y argue in a similar way as above. []

Lemma B.5 (Lemma 4.4) I f Pi' / b > for all derivatives P~' of Pi, i~{1, 2} and
br fn(Q) and cr fn (P 0 w fn(P2)u fn(Q) then

(e :=> (b) (Pt I b ~ Q))I (b) (P21 b ~ Q) ~ (b) (c =*- P, l P21 b ~ Q)

Proof. Let LHS denote the left hand side and RHS denote the right hand
side of the above equat ion. To p rove the l e m m a we show tha t the relat ion:

R = {(LHS, RHS)}

is a s t rong g round bis imula t ion up to ~ (strong g round bis imula t ion up to
is defined similarly to the definit ion of b is imula t ion up to ~ in [Mi189]).

54 B. Thomsen

To see this observe that if LHS ~ ~ R then

e i ther e = c a n d R --- (b) (P~ I b ~ Q)[(c => (b)(P~ I b ~ Q))I (b)(P2 I b ~ Q)
:~ (c ~ (b) (PI] b ~ Q))I (b) (P1 [P2 [b ~ Q) which follows by Lemma 4.3. Then
RHS ~ , (b) (P1] c ~ P~ I P21 b ~ Q) which is a matching move.

or ~ # c and (b) (Pz lb~Q)-5~R ' and R - c ~ (b) (P 1 , b~Q)IR ' and this is because
either P2 ~'' P~ with c~ = c(:t: b- and R' - (b) (P~ [b ~ Q). Then
RHS ~ (b) (c ~ P ~ I P~ I b ~ Q) which is a matching move.
or Pz ~> Pz' with ~ = ~ and R' - (b) (P2]Q[b ~ Q). Then
RHS ~ (b) (c ~ P1 [Pz I Q I b ~ Q) which is a matching move.

Also if RHS ~ ~ R we may argue in a similar way as above. []

P r o p o s i t i o n B . 6 (P r o p o s i t i o n 4.6) ~p[q/x],~,~(b)(~p~{b/x}lb~q~)
b (~fn(p) •fn(q)

Proof. By structural induction on p using Lemma 4.2 to Lemma 4.4.
p - n i l ~nil[q/x]~ =-

 .iq
0 :~

(b) (0 { b/x}[(b ~ ~q~))
(b)(~nil~ {b/x}](b2~ ~q~))

p=-a?y.pl Assume y + x and y(~FV(q)
[(a?y.pO[q/x]~
~a ? y. (Pl [q/x] ~)~ =
a (y). ~(Pl [q/x]~)~ ~c
a(y) .(b)(~p~{b/x}l(b~q~)) .c
(b)(a(y).([pl~{b/x}l(b~q~))) :c
(b)((a(y). ~p~) {b/x} l (b~ ~q~)) =
(b)(@ ? y.pa~) {b/x}l (b ~ ~q~))

p=-a[pl .P2 ~(a!pl .p2)[q/x]~
- by definition of [- /]~
~a!(Pl [q/x]O. (P2 [q/x]~)~
by definition of ~
(b) (a b. ((b ~ ~p~ [q/x] ~)] [P2 [q/x] ~))

by I.H. (bCfn(pO u fn(p2) w fn(q))
(b) (a b. ((c)((b ~ (c)(~p~ ~ {c/x}l(c ~ ~q~)))
](c) (~P27 {c/x}](c ~ ~q~)))))
~. by Lemma 4.4.
(b) (d b. (c)((b ~ ~p~ {c/x})[~P2~ {c/x}l(c ~ ~q~)))
:~ since c ~= a and c =~ b, otherwise use a-conversion on c
(c) (b) (~ b. ((b ~ ~p~ ~ {c/x})l ~P2~ { c/x} I(c ~ [q~)))
- by definition of { / }
(O(b)(ab.(((b EP11)I

, .4.a

(c)((b)(ab.(((b~ [~P~)I~P2~){c/x})l(c~ ~q~)))
:c since b C fn (q)

where

by definition of [/]~
by definition of ~
by algebraic laws
by definition of ~

(otherwise use c~-conversion)
by definition of E/3~
by definition of ~
by I.H.
since b(~ fn(p)
since y (~ F V(q) and y :# x
by definition of ~

Plain CHOCS 55

P=--P1+ Pz

P=-Pl[P2

p=-pl\a

p=-y

~(Pl -[-/)2) [q/x],~
by definition of [/]~ and by definition of ~

[Pl [q/x],~ + ~P2 [q/x]~
by I.H.

(b) (~p~ ~ { b/x}[(b =~ [q~)) + (b)(~P2~ {b/x}[(b ~ ~q~))
.c by Lemma 4.2.
(b)((~p: ~ {b/x} + ~P2~ {b/x})] (b ~ ~q~))
= by definition of { / }
(b) (~Pt + P2~ {h/x}l(b =~ ~q~))
~(Pl]P2)[q/x]~
=- by definition of [/]~ and by definition of ~
~P t [q/x]d[~pz [q/x] ~
~ b y I.H.
(b)(~p~ ~ { b/x}l(b=~ ~ q~))[(b)(~p2~ { b/x}l(b=* ~ q~))
.cby Lemma 4.3.
(b)((~p~ {b/x} l ~p2~ {b/x})l(b=~ ~q~))
~- by definition of { / }
(b)(~pl IP2~ {b/x) [(b~ ~q~))
Assume a~fn(q) otherwise use ~-conversion.

f (pl\a)Eq/x]~ --- by definition of [/]~
(Pl [q/x]~)\all = by definition of ~

(a)(~pl [q/x-l~ ~ by I.H.
(a)(b)([pa~{b/x}l(b=~q~)) ~ since a(~fn(q)
(b)((a)(~p~{b/x})l(b~q~)) =- by definition of { / }
(b)(~p~ \ a N {b/x}l(b~ ~q~))
if y 4= x then
~_y[q/x]~

y.O ,~
(b) ((y. O) { b/x} [(b =~ ~ q~))
if y = x then
~y[q/x]r =-

-c.~q~ ,~
(b)((y.O){b/x}](b~q~)) [2

Proposition B.7 (Proposition 4.7)

1. if p ~ p' then ~p~ ~(x), ~p,}

2. if p a~,~p, p,, then [p~ a(b),Q~(bl) , .(b,)(b ~p ~I~P ~) where B={bl , b,,}
for some Q.

3. if p ~, p' then [p~ --~ ~p'~
4. if Q ~ ~p~ and Q "(~)> Q' then p ,7~p, for some p' with Q' {b/x}.c ~p'~ (b/x}

for all beNames, ab
5. if (2 ~ ~P~ then (2 - - / - * .
6. if (2~p~ and Q a(b), Q, then p ~"P', p" with (2'.,~(bO...(b,)(b=>~p'l]L~p"~) for

some B, p', p" where B = {bl , b,}.
7. if (2 ~ ~p~ and Q ~ , Q' then p ~ , p' with Q' ~ ~p'~ for some p'.

56 B. Thomsen

Proof. 1. By induction on the length of the inference used to establish p a?5, p,
observing the structure of the process p. The cases when p~nil, p-a!pa.p2

a?x

and p -- z.pl are trivial since p -/---,.
p - a ? x . p l Then a?x.pl aTx ~Pl by the input-rule and P'=-Pl. Also ~a?x.pl~

--a(x).[pl~ ,(x), [pl~ by the INPUT-ACT-rule.

P-Pl+P2 I fp aTx p, then

either p~ a?Xp, by a shorter inference, and by induction we have
~p~ ~ ~p'~ and by the SUM-rule we have ~Pl + Pa~ ~ ~P'~.

or P2 ~?X'P' by a shorter inference, and by induction we have
[P2~ ~ ~P'~ and by the SUM-rule we have ~Pl + P2~ ~ ~P'~.

P=P~IP2 I fp ~X>p'then

either p~ ~?~,p'~ and P'=-P'I IP2 by a shorter inference, and by induction
we have ~p,~ ~ ~Pi~ and by the PAR-rule we have ~Pl]P2~ ~ ~P'~.

a?x , p, or P2- >P2 and - P l]P~ by a shorter inference, and by induction we
have EP~ ~ [Pi~ and by the PAR-rule we have EP~ [P:~ ~ ~P'~.

p - p ~ \ b Ifp-O?~p ' then p~ a?~p'~ with a+b and p'=-p't\b by a shorter infer-
ence, and by induction we have ~p~ a(~), ,~p,~ and by the RES-rule we
have ~p,\b~ ~(~', ~p'~.

2. By induction on the length of the inference used to establish p ~"P', p" observ-
ing the structure of the process p. The cases when p =-nil, p =-a?x. Pl and p - z. pl

a!Bp"

are trivial since p />.
a!oPl

P~a!pl .P2 Then a!px .P2 -----~P2 by the output-rule. Also
~a !Pl-P2~ a(b), (b ~ ~p I~)I~P~ by the INPUT-ACT-rule.

P=-Pl +Pa I fp "!~P'~ p" then

either p~ ~P' ,p" by a shorter inference, and by induction we have
[p~ dt-YRL~ ~) P'",~(b~)... (b,)((b~ ~p'~)]~p"~) and by the SUM-rule we have
~P~ + P2~ ,(b), p,,,,~(b~)... (b,)((b~ ~p'~)[~p"~)

or p2S'~P',p '' by a shorter inference, and by induction we have
~P2~ ,(b~, P'".~(bl)...(b,)((b ~p ~)]~p }) and by the SUM-rule we have

~P~ +P2~ ~ P'""~(b0. . . (b,,)((b~ ~p'~)]~p"~)
P=-P~[P2 If p ~ p " then

either p~ "~P'~ p'~ and p"=-P'~'IP2 by a shorter inference, and by induction
we have [pl~ ,(b), p,,,.~(bO... (b,)((b~ ~p'~)][p'~'~) and by the PAR-rule
we have ~p~ [P2~ ~(b) p,,,.~(b~)...(b,)((b ~P ~)I~P~)][P2~ .c
(bO... (b,)((b~ ~p'~)]~p"~)(using a suitable c~-conversion).

or P2 ":~P"P'd and P"-Pl]P~ by a shorter inference, and by induction
we have [P2~ ,(b), I'd",~(bO... (b,)((b~ [p'~)]~p~) and by the PaR-ru le
we have ~p~ I P2~ .(b), p, , ,~ ~p~?l(b~)... (b.)((b~ ~P'~)I~P~) ~c
(bO... (b,)((b~p'~)]~p"~)(using a suitable c~-conversion).

Plain CHOCS 57

p=p~ \d I fp "!~P',p" then

either Pl '~B'C'P'~ by a shorter inference and dafn(p') and B = B ' u {d}
and a 4: d and p" = p';. By induction we have
~_pl~ ~(b), p';' ~(bd. . . (b~)((b~ ~_P'~)I~P';) and by the RES-rule we have
~pl\d~ =(d)(~pa~) a(b), p,,, (d)(bl)...(b,)((b~p,~)l~p,a,~).

or Pl a~Bpl p,, by shorter inference and d(~fn(p') and a4:d and P'=-P'a
and p" - p'I'\d. By induction we have
~Pl~ a(b,, p,,,,~(bl)... (bk)((b~ ~p'~)]~p'~'~ and by the RES-rule we have
~p~\d~ = (d)(~p~) a(b), p,,, ~ (d)(bl)... (b,)((b~ ~p'})]~p'~'~),~

(bO...(b,)((b~ ~p'~)[(d) ~p'~).

3. By induction on the length of the inference used to establish p - ~ p' observing
the structure of the process p. The cases when p=niI, p=a?x .p l and p=-a!pl .P2
are trivial since p)/+.

p=-z.pl Then p ~ 'P l by the tau-rule and p ' - p l . Also ~P~=z.~Pl~ ~'~Pl~
by the TAU-ACT-rule.

P - P l + P 2 I fp ~ p ' t h e n
either p l o p ' by a shorter inference, and by induction we have

~Pl~ ~ ~P'~ and by the SUM-rule we have ~Pl + P2~ - -~ ~P'~.

or P2 ~' P' by a shorter inference, and by induction we have ~p;~ ~ ~p'~
and by the SUM-rule we have [Pt + P2~ ~ + {P'~.

P-P~IP2 I fp ~ p ' t h e n

either pl ~ p ' ~ and p'--p'~]P2 by a shorter inference, and by induction
we have ~Pl~ ~' ~P'I~ and by the PaR-rule we have ~Pl IP2~ ~ [rp,~.

or Pa ~ ~P~ and P'=PlIP'2 by a shorter inference, and by induction we
have ~P27 ~' ~Pi~ and by the PAR-rule we have [p~ [P2~ ~ ~P'~.

or Pl "?~P'~ and P2 a:~p~ p,~ by shorter inferences and p'
-(P'I [p'a/x]~]p~)\B. By induction and Propositions 4.7.1 and 4.7.2 we

�9 ~ l t t have ~Pl~ ~ P ' I ~ and EP2~ ~ (b ,) ..(b,)((b ~p2~)l~p2~). Then by
the CLOSE-rule we have ~Pl[P2~ ~'(b)(~P'~,!b/x}](bl)...(b,)
((b ~ P i ~) [[P~)) ~ (b 1)... (b,)((b)(~p'~ {b/x} [(b ~ ~P2~)] ~P2~))
= ~(p'~ [p'2/x],]p~)\B~ by Proposition 4.6 and assuming B c~fn(p') = 0
(otherwise use a-conversion).

a?x , a!BPl) p~ or P2)P2 and p~ and we may argue as above.

p - p l \ b If p ~ ~p' then p~ ~ ,p'~ by a shorter inference, and by induction we
have ~pl~-5--~p'a~ and by the RES-rule we have ~pl\b~
= (b)(~pl~) ~-~ (b)(~p~)= ~p'~.

4. Assume Q ~ p ~ and Q "(~), Q'. Then [p~ ~(~), Q" for some Q" with Q'{b/x}.,~
(2" {b/x} for ai1 b~Names since Q .,~ [p~.

58 B. Thomsen

We proceed by induction on the length of the inference used to establish
~(~)~ Q" observing the structure of p.

If ~p~ ~(~)~ Q" then p must have one of the following forms"

p=-a?x.pl In this case ~p~ a(x))~pl~. By the input-rule we have ag.x.pl a?X>pl
which proves the lemma in this case.

P=-Pl +P2 In this case
either ~Pl~ a(X),Q,, by a shorter inference and by induction Pl a?X'P'l

and Q"{b/x}~p'l~{b/x} for all beNames. By the sum-rule we have
Pt +P2 ~'*~' p'l and Q" {b/x} ,~ [[p'~] {b/x} for all b~Names.

a ? x or ~P2~ a(x))Q,, by a shorter inference and by induction P2)P2 and
Q"{b/x},~pi~{b/x} for all beNames. By the sum-rule we have

P, +P2 a ~ p~ and Q" {b/x} ~c ~p'2~ {b/x} for all beNames.
P-Pl IP2 In this case

either ~p~ ~(:'), Q'f by a shorter inference and Q"= Q'~]~p2~. By induction
a ? x pt ,p'~ and Q'~{b/x}~p'~{b/x} for all beNames. By the par-rule

we have p, IP2 "?x' P'~ IP2 and Q" {b/x} ~ ~p'~ IP2~ {b/x} for all beNames.
or ~P2~ a(~), Q~ by a shorter inference and Q"-~pa~lQ~. By induction

P2 "?~'P2' and Q'e~p'2~. By the par-rule we have PlIP2 a?~'P~lP'2
and Q" {b/x} ~ ~p~ [p'2~ {b/x} for all beNames.

p=p , \ c In this case ~p,~ ~(X),Q,~ and a+c. By induction Pl ~VX'p'l and
~p~{b/x},~Q'l'{b/x} for all beNames. By the res-rule we have
p~\c ~?x p'~\c and O" {b/x} ~ [p'~\c~ {b/x} for all beNames.

ab

5. From the definition of ~ it is easy to see that ~p~ / , . Since Q ~ ~p~ this
must be true for Q.
6. Assume Q ~ ~p~ and Q a(b), Q,. Then ~p~ a{b), Q,, with Q'~c Q", since Q ~ ~p~.

We proceed by induction on the length of the inference used to establish
~p~ a(b), Q,, observing the structure of p.
If ~p~ a(b), Q,, then p must have one of the following forms:

p-a[p~.p2 From the output-rule we have p a~m P2 and from the OUTPUT-
ACT-rule we have ~p~ a(b),(b~pa~)l~P2~ which proves the lemma in
this case.

P=-P~ +Pz either ~pa~ a(b), Q,, by a shorter inference and by induction we have
a!BP'I t , , , t tt a !BP' I t , pl ,p~ and Q ,~(ba)...(b.)((b~p~)l~p~). Then P~+P2 'PI

by the sum-rule and by the SUM-rule we have ~p~ a(b), Q. which
proves the lemma in this case.

or ~p~ e(v), Q" and an argument as above applies.
P-P~ [Pa either ~p~ a(b), Q], by a shorter inference and Q",~ QT[~pz~. By induc-

tion we have pl ~P~, p'~ with Q'~'.~(bO... (b,)((b~p'~)[~p~). By the

par-rule we have pz [P2 a:~p'~ p,; [P2 and by the PAR-rule and RES-rule
we have ~p~ [P2~ ~(~)' Q"~ (ha)... (b,)((b~ ~PI~)[[P~[P2~) by a suitable
c~-conversion such that B c~fn(pz)=0.

or ~P2~ e(b)~ Q~ and symmetric arguments as above yield the result.

Plain CHOCS 59

p=-pl\d Then ~p~J a~b),Q~ by a shorter inference and a+d and Q"-(d)(Q~).
; ' . ~ ! t ! By induction we have pa a,~,i p,~ with Q '~(b t) . . (b ,) ((b ~P~)[~Px~).

If dCfn(p'O then by the res-rule we have p~\d ~Bp; pT\d and by the
RES-rule we have ~p~ a(b), Q,, ~ (bO... (b,)(d)((b~ ~p'~)IWp';~ ~
(b O ...(b,)((b ~ ~p;~)l(d) ~p'~).
If defn(p'l) then by the open-rule we have p l \d a! ,~p) p~ and by the
RES-rule we have ~p~ a~b), Q , , (bO...(b.)(d)((b~ ~p'l~)l ~-p';~).

7. Assume Q ~ ~p~ and Q ~, Q'. Then ~p~ ~, Q" with Q'~ Q" since Q ~ ~p~.
We proceed by induction on the length of the inference used to establish
~p~ _!_+ Q,, observing the structure of the process p.
If ~p~ ~ , Q" then p must have one of the following forms:

p=-z.p~ Then by the tau-rule we have p ~, p~ and by the TAU-rule ~p~ ~, ~p~
which proves the lemma in this case.

P~Pl-I-P2 either ~pl~-L-~Q '' by a shorter inference. By induction we have
p~ *,p] with Q"~.~p'I~. By the sum-rule P l+P2 ~ 'P'I and by the
SUM-rule we have ~Pl + P2~ ~ ' Q"

or ~p2~ ~ ' Q" and a similar argument as above applies.
P ~ Pa I P2 either ~p~ ~-~ Q7 by a shorter inference and Q"-- Q'~I ~p2~. By induc-

tion we have p~ - ~ p'~ with Q'f ~ ~p'~. By the par-rule p, I P2 ~ ' P'I [P2
and by the PAR-rule we have ~p~ I P2~ ~' Q~I~p2~ ~ ~p'~lp2~

or ~p2~ ~ ' Q~ and an argument as above applies.
or ~Pl~ ~(~)'Q'~ and [-P2~ a(b)'Qi by shorter inferences and

Q" ~(b)(Q'~ {b/x}l Q~) modulo the appropriate e-conversions. By Propo-
sition 4.7.4 we have Pl a?~p, with Qi{b/x}~pi~{b /x} for all
beNames and by Proposition 4.7.6 we have P2 a!npSp~ with
Qi~(bl)...(b.)((b~p'2~)l~p'~). By the corn-close-rule we have
P~]P2 ~,(p'l[pl/x]~lp'~)\B assuming Bnfn(p'l)=O (otherwise use a
suitable e-conversion). By the COM-rule we have

t t ..~, b t t ,~ ~P~ I P2~ ~ Q �9 ()(~p~ {b/x}l(bl)... (b,)((b=,. ~pi~)] ~-P~))
~(p'l [p'2/x]~ I p~\B~ according to Proposition 4.6.

or ~P1~ a(b), Q, and ~P2~ "(~)' Qi which is a symmetric case to the above.
p=-pa\b Then ~p~ * , Q'[with Q"-(b)(Q'~) by a shorter inference. By induction

p~ ~, p] with Q'~ ~ ~p'~. By the res-rule we have pa\b ~, p'~\b and by
the RES-rule we have [p l \ b ? - ~ ~p'~\b~. []

