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Abstract. In this paper we present a calculus of communicating systems which 
allows one to express sending and receiving processes. We call this calculus 
Plain CHOCS. The calculus is a refinement of our earlier work on the calculus 
of higher order communicating systems (CHOCS). 

Essential to the new calculus is the treatment of restriction as a static binding 
operator on port names. The new calculus is given an operational semantics 
using labelled transition systems which combines ideas from the applicative 
transition systems described by Abramsky and the transition systems used for 
CHOCS. The new calculus enjoys algebraic properties which are similar to 
those of CHOCS only needing obvious extra laws for the static nature of the 
restriction operator. 

Processes as first class objects enable description of networks with changing 
interconnection structure, and there is a close connection between the Plain 
CHOCS calculus and the re-Calculus described by Milner, Parrow and Walker: 
the two calculi can simulate one another. 

Recently object oriented programming has grown into a major discipline 
in computational practice as well as in computer science. From a theoretical 
point of view object oriented programming presents a challenge to any metalan- 
guage since most object oriented languages have no formal semantics. We show 
how Plain CHOCS may be used to give a semantics to a prototype object 
oriented language called O. 

1 Introduction 

Several attempts to extend calculi for concurrent systems with the capability 
of describing processes as first class objects have recently been put forward 
[AstReg87; Bou89; Chr88; KenSle88; Nie89; Tho89; GiaMisPra90]. The justifi- 
cation for having process passing in a calculus of communicating systems may 
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be found in the powerful abstraction technique it yields, just as having (higher 
order) functions or procedures in traditional programming languages. Many 
systems can easily be described using process passing, some are even most natu- 
rally described in this way. As an excellent example take the system consisting 
of a satellite and an earth station originally described by Christensen in [-Chr88]. 
One interesting property of this system is that the satellite is physically far 
away from the earth station. If the program controlling the satellite has to 
be changed, either because of a program error or because the job of the satellite 
is to be changed, then it would be preferable to be able to send a new program 
to the satellite, stop the old program and run the new program instead. Alterna- 
tively we would have to send a space shuttle to take the satellite out of orbit 
to bring it back to earth for reprogramming and then relaunch it, a rather 
expensive strategy. A reprogrammable system consisting of two components 
could be specified, in a CCS/CSP like syntax, as follows: 

Sat  = newprg  ? x. (x I(int ?. Sat  + error ?. Sa t  + end ?. Sat)) 

Ear th  = newprg  ! Job1 .  newprg  ! J o b 2 . . .  

The satellite is ready to receive a new job on the newprg  channel. After reception 
it acts according to this job until it is " interrupted" either by a new job or 
because a program error has occurred or because the job has finished. In this 
example we are beyond CCS/CSP because of ne wprg?x . ( x ] . . . ) ,  what we receive 
on the newprg  channel is a program (a process), we then run this program 
in parallel with the rest of the system. 

In [-Tho89] we showed how to extend CCS with processes as first class 
objects and we presented a calculus of higher order communicating systems 
(CHOCS) allowing processes to be sent and received in communication. Several 
examples showed the usefulness of this calculus. One result of the approach 
taken in [Tho89] was that almost all the algebraic laws for CCS carried over 
unchanged and only obvious new laws for process passing were introduced. 
A major result was the simulation of the (Lazy) 2-Calculus showing that rather 
important computational phenomena could be modelled. 

But some peculiarities may arise due to the dynamic binding of port names 
in processes sent and received. Port names that intuitively would be considered 
restricted or bound can become unbound and vice versa as e.g. 

(~) (b?x . ( x lq ) ) l ( (b !p ' . p ) \a )  ~---' p ' t q ] (p \a )  

(2) (b?x . ( (x lq ) \a ) ) [ (b[p ' .p )  , ( (p ' lq) \a)[p .  

In (1) any occurrence of a in p' becomes unbound after the communication 
even though we would expect them to be bound if we analyse the system before 
the communication. In (2) we have the opposite situation. Now any occurrence 
of a in p' unbound before the communication would be bound after the commu- 
nication. These examples show that sending the process p' amounts to passing 
the text of p'. This is closely related to the treatment of function parameters 
in LISP as originally defined by McCarthy and often referred to as dynamic 
binding. This parameter mechanism is complicated to work with when analysing 
the behaviour of programs from their text. 
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The approach in [Tho89] was chosen because the semantics of CHOCS 
could be given as a straightforward extension of the CCS semantics and because 
it yielded simple algebraic laws. However, some of the laws included reference 
to the sort of the process (i.e. the set of port  names the process might use). 
The calculation of the sort is either a costly calculation needing to run the 
process (or even worse needing all possible runs of the process) or a very rough 
approximat ion to the actual sort. This approximat ion often yields infinite sort 
for processes intuitively having finite sort. 

Inspired by the idea presented in [EngNie86; MilParWa189] of the restriction 
operator  p \ a  being a scope binder, which intuitively should bind all occurrences 
of a in p, we now present a calculus of higher order communicating systems 
with static binding of port  names by restriction. We call this calculus Plain 
CHOCS. 

We are looking for a calculus which has the property that scope extrusion, 
as we call the technique to take care of the problem in (1) above, will automati-  
cally take care of a static binding mechanism for the restriction operator. For  
example (1) becomes: 

(3) (b?x.(xrq))l((b!p' .p)\a) ~ , (p'{c/a} Iq]p{c/a}) \c ,  

where {c/a} is a name substitution such that c does not belong to the set of 
free names in q and the restriction will therefore not bind any port  in q, only 
in p and p'. Also scope intrusion, as we call the problem in (2), will be taken 
care of by a new definition of process substitution which takes the static nature 
of the restriction operator  into account. Therefore (2) above becomes: 

(4) (b ?x. ((xlq)\a))l(b!p' .p) ~ , ( (x lq) \a)  [p'/x]lp = ((P'I q {c/a})\c)l  p, 

where {c/a} is a name substitution such that c does not belong to the set of 
free names in p' and the restriction will therefore not bind any port  in p' only 
in q. To support  the linking of processes received in communicat ion with pro- 
cesses in the receiving environment it turns out that it is interesting to have 
the capability of describing a kind of dynamic binding of port  names of processes 
received in communication.  This is obtained by allowing free names to be re- 
named to bound names upon reception of a process a : 

(5) (b ? x. ((x [a ~ a']]{a'/a} q)\a'))l(b !p'. p) , ((p' [a~---~a'][{a'/a} q)\a')] p, 

where a'  does not belong to the set of free names of p' and q. This construction 
simulates the behaviour described in (2). However, we can not p rogram the 
behaviour described in (1) since in Plain CHOCS a bound name remains bound 
and can never become unbound again. 

To illustrate these concepts, before presenting a formal syntax and semantics 
of the Plain CHOCS calculus, we first study a small example. 

1 Recently Milner [Mil91] and Sangiorgi [San92] have approached this by allowing 2-abstrac- 
tions over port names 
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Example 1.1 The example consists of a simple user/resource system similar to 
the system studied in [EngNie86]. The system is constructed from a number of 
users, a resource manager and a resource. In this example the resource is a process 
which takes in a number and multiplies it by 2. A resource is obtained on the 
c channel, then put into use in parallel with the user process. Note how free 
names of the resource are renamed and bound when received by the user process. 

U1 =c ? x.(x[b~-~a] la! 8.a ? y.dl ! y.nil)\a 

U2 =c ? x.(x[b~-~a]la! 5.a? y.d2 ! y.nil)\a 

R M  = (c !(R). fin ?. R M ) \  fin 

R=b?x .b!  E2* x]. fin!.nil 

SYS=(Ul lU2]RM)\c .  

The fin! signal from the resource R tells the resource manager R M  when the 
resource has finished its task for a user. The resource manager can then (recursive- 
Iy) restore itself and thus provide a resource for other users�9 The restriction of 
fin ensures that there is a private communication channel between resource and 
resource manager which can not be interfered by any user process. 

It is interesting to observe how the system executes and how scope extrusion 
takes care of preserving private links with the sending process. We give an example 
of one execution sequence where U2 gets the resource first. 

SYS--(Ull  U21RM)\c 

l Since U2 - c? x , > U~=(xEb~--*a]la!5.a?y.dz!y.niI)\a and 
"C 

~ o,(yi,,~ RM'  =fin?. R M  

(U1 I((R [b ~ all a ! 5. a ? y. d2 ! y. nil)\a[ fin ?. R M ) \  f in) \c  

a? x 
Since REb~--~a] , (b! E2,x].fin!.nil) [bF--~a] and 

z 
~V5.a?y.d2!y.nil a!5 �9 ~ a?y.d2!y.nil 

(U1 I(((b ! [-2, 53. fin !. nil) [b ~ a]l a ? y. d2 ! y. nil)\al fin ?. R M ) \  f in) \c  

a! 10  
I Since (b! [2,5].fin!.nil) Eb~--~a] ~ (fin!.nil) [-b~---~a] and 

~?y.d2!y.nil a?y d2 ! y.nil 

(UI I((( fin !. nil) [b ~ a]ld2 ! 10. nil)\a I fin ?. R M ) \  f in) \c  

$d2!10 Sinced2!lO.nil ~ 2 t l ~  

(Ut ](((fin !. nil) Eb ~ a][ nil)\a I fin ?. R M ) \  f in) \c  
f i M  f in?  

~ z Since ( fin!.niI) [b~-~a] ~ nil[b~--~a] and f i n ? . R M -  ~ R M  

(U1 l((nil [b ~-~ a][ nil)\a I R M ) \  f in) \c  
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This derivation of transitions illustrates how the system may evolve. However, 
the linear representation of the system in the Plain CHOCS syntax does not 
show very well how the underlying process network dynamically reco~figures itself. 

As an attempt to illustrate this the following cartoon is intended to show how 
the system evolves spatially when going through the first of the above transitions: 

gl U2 

RM 

cr 1 cr~ n[a/b] 

da 

RM I 

Fig. 1. Dynamic reconfiguration of user/resource system 

We have adopted the convention from the process diagrams in [-MilParWa189] 
and displayed private links inside the circles representing processes and public 
links along the edges of the connections. The box around the resource R is symbolis- 
ing the renaming of the public name b to the private name a. 

Note that the number of users and resources is not hard wired into the system. 
As for the system studied in [-EngNie86] we may add any number of users or 
resources without changing the structure of the overall system e.g.: 

SYS1 = (Ull ... [U, IRM11... RMm)\C. 

The above system is very simple, but it easily generalises to systems with a queue 
system for resource requests from users, multiple resources or even systems where 
the resource is returned to the resource manager instead of just stopping and 
allowing a new copy to be used. Some quite elaborate examples of user~resource 
systems with the above facilities which use process passing have been studied 
by Cozens in [Coz90]. This work presents a promising motivation for the use 
of process passing in system description. 

The paper is organised as follows: In Sect. 2 we present the calculus. The syntax 
is essentially that of CHOCS, but with the renaming construct restricted to 
the form [b~--~a] meaning b is renamed to a and all other names are not affected. 
We introduce the notion of free names, free variables and substitution, and 
the operational semantics is given in terms of a labelled transition system. 

In Sect. 3 we present an abstracting equivalence between Plain CHOCS pro- 
cesses. This equivalence resembles a merge between the applicative bisimulation 
of [Abr90], the higher order bisimulation of [Tho89] and the strong ground 
bisimulation of [MilParWa189]. We also present the algebraic properties of 
Plain CHOCS with respect to this equivalence. 
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The connection to Mobile Processes [MilParWal89] is made explicit in 
Sect. 4. Here we present two translations, one from Plain CHOCS to Mobile 
Processes and one in the reverse direction. 

Object-oriented programming is drawing a lot of interest from practical pro- 
gramming. Object-oriented programming languages pose a lot of interesting 
questions, also from a theoretical point of view. One such question is finding 
appropriate formal semantics for such languages. In Sect. 5 we apply the Plain 
CHOCS formalism to the semantic study of a toy object-oriented programming 
language O. 

Finally in Sect. 6 we round off the discussion of process passing in calculi 
for communicating systems. We present a brief view of alternatives to the theory 
presented in this paper, and we give some directions for further studies. 

2 Syntax and semantics 

The syntax of Plain CHOCS is essentially that of "dynamic"  CHOCS, but 
with the renaming construct restricted to the form [b ~-~ a] meaning b is renamed 
to a and all other names are not affected. 

Processes are built from the inactive process nil, three types of action prefix- 
ing, often referred to as input, output and tau prefix, (nondeterministic) choice, 
parallel composition, restriction, renaming and variables to be bound by input 
prefix. We presuppose an infinite set Names (the set of port  names) ranged 
over by a, b, c . . . .  and an infinite set V of process variables ranged over by 
x, y, z, . . . .  We denote by Pr the set of expressions built according to the following 
syntax: 

p: :=nilla? x.pl a! p'.plz.p] P+ P'I PIP' IP\alp[a~--~b]l x. 

To avoid heavy use of brackets we adopt the following precedence of operators: 
restriction or renaming > prefix > parallel composition > choice. 

We shall write p [S] for p[a~--~b] where S=a~--~b and let Dora(S)= {a} and 
Ira(S) = {b}. The operator \ a  acts as a kind of 2-binder for port names (elements 
of Names) in a sense to be formalised later, e.g. we have a notion of e-convertibil- 
ity of restricted names. To formalise this we define the set of free names fn(p) 
of a process p. 

Definition 2.1 We define free names fn(p) structurally on p: 

fn  (nil) = 0 

fn(a? x.p)= {a} w fn(p) 

fn(a! p'.p)= {a} w fn(p')w fn(p) 

fn(~.p) =fn(p) 

fn(p + p')= fn(p) w fn(p') 

fn(p l p') -- fn(p) w fn(p') 

fn(p\a) = fn(p)\{a} 
fn(p [S]) =-fn(p) w Dom(S) w Ira(S) 

fn  (x) = O. 
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Intuitively one might expect the clause for renaming to be fn(p[S]) 
=(fn(p)\Dom(S)) • Im(S) since process p can not interact with its environment 
over names in Dora(S). However, the renaming construct can interact with pro- 
cesses having ports in Dora(S), so in order to be on the safe side we let the 
set of free names of processes constructed using the renaming construct carry 
a potential overhead since it is not necessarily the case that the names in 
Dom(S)~Im(S) are going to be used, but the overhead is necessary since we 
may receive processes in communication with free names which will be renamed 
by S. The free names of Plain CHOCS processes are going to play an important 
r61e in the definition of the semantics of the language and as we shall see 
in the next section, where we define a notion of equivalence, the free names 
are the windows through which we can observe the processes. As opposed to 
the static sort of "dynamic"  CHOCS we point out that processes to be sent 
contribute to the free names of the overall system, whereas the empty set of 
free names is ascribed to process variables. 

We may need to syntactically substitute one port name for another. Using 
the above definition we may now define a name substitution. 

Definition 2.2 First for a, b, c ~ Names let 

{ b a i f C = a  
{b/c} a = otherwise 

Then name substitution {b/c} p is defined structurally on p: 

{b/c} nil =- nil 
{b/c} (a? x.p) - ({b/e} a)? x.({b/c} p) 
{b/c} (a ! p'. p) =- ({b/c} a)!({b/c} p'). ({b/c} p) 

{b/e} - p) 
{b/c} (1) + p') -- ({b/c} p) + ({b/c} p') 

{b/c} (PlP')-({b/c} p) l({b/c} p') 

{b/c} (p\a) - { p \ a  if a = c 
({b/c}({d/a} p))\d otherwise for some d(~fn(p\a) u {b} 

{b/c} (p [a ~-* a']) -({b/c} p) [({b/c} a ) ~  ({b/c} a')] 

{b /c}(x) -x .  

Input prefix is a variable binder. This implies a notion of free and bound vari- 
ables. 

Definition 2.3 We define the set of free variables FV(p) structurally on p: 

FV(nil)=O 
eV(a? x .p)=FV(p) \ {x}  
FV(a! p'.p) = FV(p) u FV(p') 

FV(~.p)=FV(p) 
FV(p + p') = FV(p) w fV(p')  

FV(plp') = FV(p) ~ fV(p')  
F V(p\a) = F V(p) 

VV(p [ s ] )  = FV(p) 
FV( ) = 
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A variable which is not free i.e. does not belong to FV(p) is said to be bound 
in p. An expression p is closed if FV(p)=~. Closed expressions are referred 
to as processes. The set of closed expressions is denoted by CPr. We shall 
also talk about  processes with at most  one free variable. We denote this set 
by Pr  Fx]. Elements of P r [ x ]  may be thought  of as functions from processes 
to processes i.e. belonging to CPr --, CPr. 

To allow processes received in communicat ion to be used we need a way 
of substituting the received processes for bound variables. We shall use the 
definition of name substitution to avoid unintentional binding of free names 
when processes are substituted. 

Definition 2.4 The substitution p [q/x] is defined structurally on p: 

nil [q/x] -- nil 
(a?y.(p[q/x])  if y 4 x  and y~FV(q) 

(a ? y. p) [q/x] - ~ a ? z. ((p [z/y]) [q/x]) otherwise 

t z4FV(p)w  FV(q)~  {x, y} 
(a! p'.p) [q/x] - a! (p' [q/x]).(p [q/x]) 

(z. p) [q/x3 = z. (p [q/x]) 
(p + p') [q/x] - (p [q/x]) + (p' [q/x]) 

(PIP') [q/x] - (p [q/x])l(p' [q/x]) 
(p\a)[q/x] -(({d/a} p) [q/x])\d for some d~ ( fn(p\a)  u fn(q)) 

(p [s]) [q /x ]  - (p [q /x] )  IS] 
y[q/x] -{qy  if x = y  

otherwise. 

The only difference between the above definition of substitution and the one 
given for "dynamic"  CHOCS in [Tho89] is in the clause for restriction. In 
the above definition we ensure that we do not restrict names in q. We shall 
consider p -  q if p and q only differ up to change of bound names and/or  bound 
variables. 

Here are a few useful properties of substitution: 

Proposition 2.5 

1. I f  x 4 = y then p [p'/x] [p"/y] - p [p"/y] [p' [p"/y]/x]. 
2. p [ p ' / x ] - p  if x~FV(p).  

Proof: Easily established by structural induction on p. []  

With the above machinery in hand we may now give the operational semantics 
for Plain CHOCS. The operational semantics is given in terms of a labelled 
transition system in the style of [Plo81]. 

Definition 2.6 The transition relation ~ is a family of binary labelled 

relations -L* r between elements of CPr  (processes) and Pr [x] of the form p ~ p'. 

The action F may have one of the following forms: a ? x, a !B P, r, where a s Names,  
B_c Names,  x ~ V and p ~ CPr. Let the bound names b n of an action be defined 
a s ;  

b n ( F ) = { ~  if F=a!Bp'  
otherwise. 
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Table 1. Operational semantics for Plain CHOCS. The choice, par, corn-close rules have sym- 
metric counterparts 

input a ? x . p  a~.x p 

outputa!p ' .p  ,~op' ~P 

tauv.p ~ ~p 

choice P r ~p" 
p + q  r ~ p,, 

p r ,p,, , bn(F)c~fn(q)=O par 
p]q r ~ p,,]q 

p a?x)p,, 
r e d  

p [$3 s(,)? x p,, [S] 

P a~Bp' ,p,, , Bc~(Dom(S)wlm(S) )=O 

p [S] s~)~,, p,, [S] 

p * ~ p "  

p [S] ~ , p" [S] 

res p ~7~ p,, , a , b  

p \ b  .Tx p " \ b  

P "'~P' ~P" , a~=b, bCfn(p')  

p \ b  .lBp, ~ p " \ b  

p " ~ p" 

p \ b  ~ , p " \ b  

aIBp' pH 
P ' , a4=c, dq~fn(p\c), c~fn(p ' )  open 

p \ c  ~! . . . . .  ~d/~p') , (d/c} p" 

com-close p ,TX,p, q ,~Br ,q,, , B c ~ f n ( p ' ) = O  

p] q ~ , (p'Eq'/x] ] q ' ) \ B  

non-struct p ~ P '  ' p'' , B ~  ( fn  (p' f n  (p"))= Bn' ( f n  (p' f n  (p")) 

P a!B,p' ~ p .  

In  the def ini t ion of  the semant ics  of  Pla in  C H O C S  it is convenien t  to wri te  
p \ B  where  B__Names  is a finite set: p \ B  is s h o r t h a n d  for p \ b  1 . . . \ b ,  where  
B = {b l,  . . . ,  b,} and  p if B = 0. W e  let ~ be the smal les t  t r ans i t ion  re la t ion  closed 
under  the rules of  Tab le  1. 
The  s t ruc ture  of this t r ans i t ion  sys tem is t a i lo red  to cater  for the b e h a v i o u r  
we have in m i n d  for systems like those  descr ibed  by  (3) and  (4) in the i n t r o d u c t i o n  
to this paper ,  bu t  it  also carr ies  some p h i l o s o p h y  of  its own. The  three k inds  
of  ac t ions  yield the fol lowing types  of  t r ans i t ions  or  obse rva t ions :  
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a ? x  t Input action p , p, this kind of transitions may be interpreted as, "the process 
p is capable of receiving on channel a". We only allow transitions of this 
kind where p~CPr and p'~PrEx]. We want to model input transitions in 
such a way that no further observations are possible until a value is supplied. 
The reason for this is both technical and philosophical. Technically it ensures 
that we do not "rewri te"  to open terms which, without care, could lead to 

b ? x  o f a ? x  confusion of free variables e.g.: a?x .x lb?x .x  ~a:x .x lx  ~xlx. Philo- 
sophically it follows a point of view of only observing systems by atomic 
observations or combinations of atomic observations. The input observations 
consist of observing that input on channel a is possible and the systems 
readiness to accept a value. To make further observations about  this process 
we have to supply a value say q~CPr and observe the system p'[q/x] with 

a?  
this value. A more suggestive notat ion would perhaps be p ,2x.p', but 
it is not essential in the present calculus since x only acts as a place holder. 

We have chosen the notat ion p ~?Xp, since p' is describable in the Plain 
CHOCS syntax. We could extend the above transition system to open expres- 
sions. To avoid confusion of variables introduced by the input-rule we would 
have to ascribe the par-rule by the additional constraint FV(p")r~ FV(q)=O. 
We have not done this since the theory of equivalence will be defined in 
terms of closed expressions and extended to open expressions using the defini- 
tion for closed expressions. 

Output actions (with scope extrusion) p ~P'~p". We refer to p' as the emitted 
process and p as the emitting process or rather p" since this is the state 
of the system after emitting p'. If  B = 0 this kind of transitions may be interpret- 
ed as, "the process p can output the process p' on channel a and in d o i n g  
so become p"". To observe this action we observe that output  on channel 
a is possible, to make further observations we have to observe both the value 
p' and the resulting state p ' .  If  p' and p" share some private channels these 
will be in the set B and a scope extrusion is necessary. We observe this 
by the combined observation as for normal  output  actions together with 
the additional observation of the scope extrusion. A more suggestive notation 

o~ p,,). for output  transitions might be p ~ (B, p', 

Silent actions p ~ ~ p', this kind of transitions may be interpreted as, "the process 
p can do an internal or silent move and in doing so become the process 
p' ". Silent actions arise from communicat ions between two processes. Since 
communicat ions are the only computat ions in our calculus these are in a 
sense the real computat ions of the system, z-transitions may of course arise 
from processes of the form T.p as well. 

The input, output  and com-close rules form the basis for inferring a communica-  
tion between two agents. In the rules of Table 1 all transitions of the form 

p ~?X~p' have the property that p~CPr and p'~Pr[x] and all transitions of 
the form p "~'~P')p" have the property p,p', p"~CPr, therefore p'[q'/x]eCPr 
in the com-close rule. This set of rules gives an operational description where 
input is modelled as a function and communicat ion acts as a generalised applica- 
tion. This is very different from the nature of inferring communicat ion in "dy- 
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namic" CHOCS (or in CCS with value passing [-Mil80]). In "dynamic"  CHOCS 
we have the following three rules as the basis for inferring communication" 

a?p' pt, a!p' ,q" 
a?x.p "?P'~p[p'/x] a!p'.p a!p',p p ~ q . 

p]q ~,p"]q" 

Note that in these rules the transition relation is always between elements of 
CPr. One way of interpreting the above rules is to say that the process with 
input prefix knows all the possible values it can receive. What it does is to 
offer a (an infinite) choice between all the possible new states and when the 
communication takes place it is only a signal from the output  process to the 
input process telling which value to use (choose). This viewpoint is further 
strengthened by the (elegant) way of encoding value passing in SCCS as described 
in [Mi183]. In [MilParWa189] a scheme similar to the above for inferring com- 
munication has been termed early instantiation, referring to the fact that the 
instantiation of the free variable takes place in the axiom for input prefix as 
opposed to the scheme used in Table 1. The scheme we are using has been 
termed late instantiation, though in their case there is a difference since processes 
are allowed to offer new transitions after an input transition. This calls for 
some machinery to ensure that free variables are not confused. We have chosen 

the late instantiation scheme with the restriction that p'~Pr[x] in p a?Xp, 
for the reasons given above; late instantiation also seems necessary for the 
scope opening and closing rules for the restriction operator. The rules concerning 
the restriction operator  have several alternatives, e.g. in "dynamic"  CHOCS 
this operator does not bind names in the process emitted but only in the emitting 
process as the examples in the introduction show. Another possibility would 
be the following rule 

a~p, p ,  
p 

a4=b. 
p\b "! (p'\b) p" \b '  

This approach would ensure that bound names would be bound both in the 
emitted process and in the emitting process, but it is too restrictive since they 
can not use the local channel to communicate with one another since the \ b  
encapsulates the process. To elaborate on this we follow the ideas of [EngNie86; 
MilParWa189] and adopt a restriction rule with the side condition that p' can 
escape the restriction only if b(~fn(p'). In [-Tho89a; Tho90] and previous versions 
of this paper the following rule was adopted: 

p a!Bp', p" 

p\b "~P'\~ p"\b ' 
a:# b, b(~(fn(p')~ fn(p')). 

It was pointed out to me by Crasemann that this rule will imply that Proposition 
3.14 does not hold. The reason is that although the emitted process does not 
share the restricted name with the emitting process, the emitted process may 
be copied upon reception and each copy may share the restricted name. With 
the above rule each copy will be encapsulated by the restriction and the sharing 
of the name is therefore broken. Originally this rule was intended to allow 
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processes embraced by a restriction to emit processes with the restriction if 
they are not sharing the restricted name. This was intended to save doing a 
scope extrusion in this situation. However, the non-struct rule will suffice in 
this case since if the restricted name does not occur free in the emitted process 
it may be eliminated using the non-struct rule. In general we may use the non- 
struct rule for adding or deleting names in the set of bound names in scope 
extrusion if these names are not shared by the emitting and emitted processes. 

We also introduce two new rules; open and com-close. The opening rule 
signals that in the emitted process there are some bound names, names which 
are shared with the emitting process. The corn-close rule ensures that exported 
restrictions are reintroduced upon reception. The condition on this rule ensures 
that we do not bind free names in the receiving process. When B = 0 this rule 
is just a communicat ion rule. 

We conclude this section by listing a few useful properties of the transition 
system defined in Table 1. 

Proposition 2.7 

1. I f  p ,!,~p' p,, and bf~ fn(p) ~ B then p a!((B\lcD~(b}){b/c}P') {b/c} i f ' for any cEB. 

2. I f  p "!~P'>p" then p a!~,p' p,, for some B' with Bc~( fn(p ' )wfn(p"))=B'~ 
(fn (p') u fn  (p")) and B' ~ fn  (p') ~ fn  (p") and B' ~ fn  (p) = O. 

3. I f  p ~?X p, then fn(p ' )~ fn(p). 

4. I f  p a~"P'> p" then fn(p') ~ fn(p) u B and fn(p") ~_fn(p) ~ B 

5. I f  p ' ,p' then fn(p ' )~  fn(p). 

Proof. By induction on the length of the inference used to establish the transition 
and cases of the structure ofp.  []  

3 Bisimulation equivalence and laws 

In the previous section we presented the operational semantics for Plain CHOCS 
in terms of a labelled transition system. The structure of this transition system 
resembles a merge between the applicative transition systems of [Abrg0] and 
the higher order communicat ion trees used in the semantics for CHOCS in 
[Tho89]. The transition relation--+ forms the basis for the observations we can 
make about  processes, but it is in itself too shallow to use as a distinguishing 
equivalence. Instead we use the notion of (bi)simulation [Par81, Mi183] redefined 
to the kind of observations the transition allows: 

Definition 3.1 An applicative higher order simulation R is a binary relation 
on CPr such that whenever pRq and aENames then: 

a?x t a?y ql  (i) Whenever p ~ p ,  then q > for some q', y and p'[r/x] Rq'[r/y] for 
all r ~ CPr 

(ii) Whenever p a ~ p ,  p ,  with B c~(fn(p)~fn(q))=O, then q a~,p' q,, for some 
q', q" with p'Rq' and p"Rq" 

(iii) Whenever p ~ , p', then q ~ > q' for some q' with p' Rq' 
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all r E CPr 

A relation R is an applicative higher order bisimulation if both it and its inverse 
are applicative higher order simulations. 

Two processes p and q are said to be bisimulation equivalent iff there exists 
an applicative higher order bisimulation R containing (p, q). In this case we 
write p,L q. 

The first clause of this predicate is essentially the clause for applicative 
(bi)simulation in the Lazy-2-Calculus as defined in [-Abr90]. It can be interpreted 
as saying that if p can do an input on channel a and become the function 
p', then q must match this by being able to input on channel a and become 
the function q' and for all values (arguments) we can receive on this channel 
the resulting process together with this value should continue to simulate each 
other. The second clause with B = 0  and the third clause are similar to the 
clauses of higher order bisimulation defined in [Tho89]. The second clause 
supports a kind of black box view of the processes being sent. If  p can output  
a process p' on channel a and in doing so become p", then q should be able 
to output some q' on channel a and in doing so become q" and p' and q', 
as well as p" and q", should be equivalent. The second clause with B #  0 is 
a generalisation of the clause for scope extrusion in the strong ground bisimula- 
tion defined in [-MilParWa189]. B is a set of private channels between p' and 
p". These channels are exported from their original scope and are intended 
to become restricted upon reception. 

Proposition 3.2 " is an equivalence 
Before relating the process constructions of Plain CHOCS to the underlying 
semantic equivalence ' we present a technical construction called an applicative 
higher order bisimulation up to restriction. This construction resembles the 
bisimulation up to ~ presented in [Mi1893 and it is an adaptat ion to the Plain 
CHOCS setting of the notion of strong ground bisimulation up to restriction 
presented in [MilParWa189b]. 

Definition 3.3 An applicative higher order simulation up to restriction R is 
a binary relation on CPr such that whenever pRq and asNames then: 

(i) If b(~fn(p) w fn(q) then {b/a} pR {b/a} q 

(ii) Whenever p a?Xp,, then q ~?Y~q' for some q',y and p'[r/x]Rq'[r/y] for 

(iii) Whenever p ~!~P',p" with B c~(fn(p)ufn(q))=O, then q a!~q, q,, for some 
q', q" with p' Rq' and p" Rq" 

(iv) Whenever p ~ ~p', then q ~ ~q' for some q' and either p'Rq' or for some 
p", q" and b: p ' - p " \ b ,  q '=q" \b  and p"Rq" 

A relation R is an applicative higher order bisimulation up to restriction if 
both  it and its inverse are applicative higher order simulations up to restriction. 

Lemma 3.4 I f  R is an applicative higher order bisimulation up to restriction 
then R ~_ " 

Proof. We show that the relation R \ = ~ R n where 
n ~ r  

Ro=R 
Rn+ 1= {(p\b, q\b):(p, q)~Rn, bENames} 

is an applicative higher order bisimulation. 
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First we show by induction on n that if pR,q and cr  then 
{c/a}pR,{c/a} q. For  n = 0  this is immediate from the definition of applicative 
higher order bisimulation up to restriction. Suppose n > 0  and p \ b R ,  q \ b  
where p e , _ l q  and c C f n ( p \ b ) ~ f n ( q \ b ) .  If a=-b then {c/a}(p\b) 
=- p \ b R \ q \ b  =- {c/a} (q\b). If a 4= b then {c/a} (p\b) = ({c/a}({bt/b} p))\bl R\({c/a} 
(bl/b} q))\b I =-{c/a} (q\b). Next we show by induction on n that if pR, q then 

(i) Whenever p a?~ ~ p,, then q a?y, q, for some q', y and p' [r/x] R\q ' [r/y] for 
all r ~ CPr 

(ii) Whenever p a!,p, p,, with B c~ (fn(p)wfn(q))=-0, then q , ! B e  q,, for some 
q', q" with p' R \ q' and p" R \ q" 

(iii) Whenever p ~ ,p ' ,  then q ~, q' for some q' and p'R\q ' 

The details can be found in Appendix A. []  

Lemma  3.5 / f  p Z q  and bC~ fn (p )u  fn(q) then {b/a} p " {b/a} q. 

Proof. An easy corollary of Lemma 3.4 and Definition 3.3. [] 

Let 2 = ( x t ,  ..., x,) be a vector of variables of length n and x i+x j  if i4:j. 
We also consider ~ as a set of variables {x~, ..., x,} and we write Y~_FV(p) 
which means that the set ~ is a subset of FV(p). Let p[gl/'2] mean 
(... (p[q~/x~])...)[q,/x,,]. We only consider substitutions of compatible vectors, 
i.e. of vectors of the same length. Let c~ ~ Z ~/2 mean q b .Z q2~ for all q~j ~c7~, i e 1, 2 
and let cii~ CPr mean q~je CPr for all qi~gti. 

Proposition 3.6 Z is a congruence relation on processes (closed expressions). 

1, p [ql/3~] :,4.~p [q2/2~] /f ql "~ 1~/2 and ,2 ~_ FV(p) 
2. a ? x . p Z a ? x . q  if p [ r / x ]Zq[r / x ]  for all r 
3. a ! p ' . p Z a ! q ' . q i f  p Z q a n d  ~. p , ' q ,  

4. z . p Z z . q  if  p Z q  
5. p + p' ~L q + q' if  p Z q and p' ~L q' 
6. PlP' Zq lq '  if p Z q  and p' Zq '  
7. p \ a Z q \ a  if p Z q  
8. p [ S ] Z q [ S ]  if  p Z q .  

The proof  of this proposit ion is quite involved. The reason for this is that  
we can not prove the congruence properties for Plain CHOCS using the "s tan-  
dard"  process calculus technique; i.e. prove that  for each operator  op in the 
process language the relation Rop={op(pl), o p ( ~ z ) : p l ~ 2 }  is a bisimulation 
and then prove the substitution property (i.e. that if c~c~2  then p[~h/2] 
~P[glz/Y~]) by structural induction on p. This approach fails for Plain CHOCS 
in the case of parallel composit ion since we need to know the substitution 
property to prove that the relation R I is a higher order bisimulation and we 
thus end up with a circular argument.  This may at first seem surprising, but 
the "funct ional"  nature of Plain CHOCS may indicate that this property should 
be hard to prove: e.g. Abramsky  has to give quite an argument  to prove con- 
gruence properties of the Lazy-2-Calculus in [Abr90]. 
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Proof. 1. We prove this by showing that the relation ACR*, the reflexive and 
transitive closure of ACR, where 

ACR= {(p[q,/2], p[qz/Y~]): pmPr & "2~FV(p) & q~ " q2 & q~CPr}, 

is an applicative higher order bisimulation up to restriction. 
Note  if ql Z q2 then (x [ql/x], x [q2/x])~ACR* and we write (ql, q2) eACR*. 
We only show that ACR* is an applicative higher order simulation up to 

restriction, symmetry of ACR* then yields the results. To see that ACR* is 
an applicative higher order simulation up to restriction we show that if 
(Pl, P2) EACR then p~ =- p [gh/X] and: 

(i) If b (~fn(p [tTh/2]) u fn(p [s then {b/a} (p [c7~/2]) ACR* {b/a} (p [ci2/2]) 

(ii) Whenever p[ql/2] aTx ,p,, then p[c12/2] a?Y ,q' for some q',y and 
p' [r/x] ACR* q' Jr/y] for all re CPr 

(iii) Whenever p [Ch/2] atB p' p,, with B c~ (fn(p) ufn(q)) = 0, then 

p [02/~] SBq ' ,  q" for some q', q" with p'ACR*q' and p"ACR*q" 

(iv) Whenever p[gh/~] ~>p', then p[gt2/f]-2-~q ' for some q' and either 
p'ACR*q' or for some p", q" and b: p ' -p" \b ,  q ' - q " \ b  and p"ACR*q" 

If (p, q)eACR* then there is a sequence Pl...Pn such that (p, pOeACR, 
(Pi, Pi+~) eACR for 1 <i<n and (p,, q)eACR. The result then follows by induc- 
tion on the length of the transitive sequence p, ... p, of ACR*. 

First (i) is easily proved by structural induction on p using Lemma 3.5 in 
the case p-= y. 

Next  we show (ii) (iv) simultaneously. We proceed by induction on the length 
of the inference used to establish the transitions of p [c71/2] and cases of the 
structure of p. We only need to consider transitions inferred by use of the struc- 
tural rules since we may transform any derivation of a transitions into an equiva- 
lent one where we use the non-struct-rule exactly once after each application 
of a structural rule. (The full details are given in Appendix A). 
2. This is proved by showing that the relation Ra = R u Z ,  where: 

R= {(a? x.p, a? x.q): FV(p)= FV (q)~ {x} & greCPr.p[r/x] Zq [r/x]} 

is an applicative higher order bisimulation. Note  that the relation R 1 consists 
of two parts;  one part  covers the structure we are interested in and the second 
component  is a kind of closure to cover the processes sent and received. The 
second component  is necessary since the processes sent and received do not 
necessarily have the structure of the first part. 

That  the above relation is indeed an applicative higher order bisimulation 
is easily established. (The full details are given in Appendix A). 
3. follows from ((a! x.y)[(p, p')/(x, y)], (a! x.y)[(q, q')/(x, y)])~ACR if p.Lq and 

p'Zq' and x+y.  
4. follows from ((z. x) [p/x], (~. x) [q/x]) ~ A CR if p .Z q. 
5. follows from ((x + y)[(p, p')/(x, y)l, (x + y)[(q, q')/(x, y)])eACR if p Zq and 

p'Zq' and x+y.  
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6. follows from ((xly)[(p, p')/(x, y)], (xly)[q, q')/(x, y)])~ACR if p,Lq and p',Lq' 
and x ~ y. 

7. follows from (x[p/x-l, x[q/xJ)~ACR if pZq  and the fact that ACR* is an 
applicative bisimulation up to restriction. 

8. follows from ((xESJ)[p/x], (x[S])[q/x])~ACR i f p Zq .  [] 

The congruence result easily generalises to open terms by standard techniques 
by defining p,Lq iff gr l . . . r , . p [ r l . . . r , / x l . . . x , ]Zq[r l . . . r , / x l . . . x , J  where 
x~ ... x, are the free variables of p and q and r l . . .  r, are closed terms. This 
is equivalent to the following definition: p :,L q iff a? x~ ... a ? x, .  p Z a ? xl ..- a ? x,. q. 

From establishing bisimulations between Plain CHOCS processes we may 
show that two processes are equivalent, but this technique often involves quite 
an amount  of ingenuity in the construction of a bisimulation relation. Instead 
we may prefer the more well known techniques of algebraic reasoning. A lot 
of interesting properties of Plain CHOCS may be inferred from equational rea- 
soning. This kind of reasoning may of course be combined with establishing 
bisimulations directly. 

The first set of laws concerns the choice operator and shows that nit is 
a zero for + and that + is idempotent, commutative and associative. 

Proposition 3.7 

p+ni lZp 
p + p Z p  
p+p',Lp' +p 

p +(p' + p'),L(p+ p')+ p'. 

Proof This follows from showing that the following relations are higher order 
applicative bisimulations: 

R~ = {(p + nil, p)} u Id 

R2 = {(p + p, p)) ~ td  

Ra={(p+p', p'+p)}wld 
R,~= {(p+(p' + p"), (p+ p')+ p')} w ld. 

To see this observe that for (r, q)~R i, i~{1, 2, 3, 4} we have either (r, q)~Id and 
i f r  r , r ,  then r = q  r , q , = r ,  and we have a matching move or (r,q) belongs 

to the first part of Ri and if r r ~ r ,  then this must have been inferred by the 

rules for choice. Then also q r ~ r' which is a matching move. []  

We now proceed with some properties of the restriction operator and its 
interplay with the other operators. To smooth the presentation of equations 
we introduce a fourth (derived) prefix; an output prefix with scope extrusion: 
a !B P'. Thus a !B P" P is shorthand notation for (a ! p'. p)\B with the obvious opera- 
tional semantics: a !n P'.P ax~p'p. We shall always assume that B ~_fn(p')c~fn(p). 
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Proposition 3.8 

p\a ,Lp  if aCfn(p) 
p \ a \ b Z p \ b \ a  

(p + p')\a,L p \a  + p ' \a  

(a?x .p) \bZa?x . (p \b)  if a#:b 

(a?x.p)\b,Lnil if a=b 

(z. p)\b Z ~. (p\b) 

(a!Bp'.p)\bZa!Bp'.(p\b) if a=~b and br 

(a!Bp'.p)\b,La!Bu~b~p'. p if ae:b and befn(p') 

(a!Bp'.p)\b,LniI if a=b.  

Proof The proposition follows from showing that the following relations are 
applicative higher order bisimulations: 

R1 = {(p\a, p): p~CPr, aq~ fn(p)} 

R2 = {(p\a\b,  p \b\a):  pE CPr} ~ Id 

R 3 = {((p + p')\a, p \a  + p'\a): Pie CPr} u Id 

R 4 = {((a ? X. p)\b, a ? x. (p\b)): a ? x. p E CPr, a 4= b} w Id 

R5 = {((a? x.p)\b,  nil): a? x .psCPr,  a=b} 

R 6 = {((z.p)\b, z.(p\b)): p~ CPr} u Id 

e 7 =  {((a!~p'.p)\b, a!~p'i(p\b)): p, p' sCPr, a , b ,  br ~ Id 

R s =  {((a!Bp'.p)\b, a!Bu{b~P'.P): P, p' ~CPr, a=t=b, be fn(p')} w ld 

e 9 =  {((a!~p',p)\b, nil): p, p' ~CPr, a=b}.  

We must include Id in relation R2 to R 4 and R 6 to Rs. For  relation R3, R 4 
and R6 to R a this is clear since if (p, q)ERi, i~{3, 4, 6, 7, 8} then after the first 
transition p r p, and a first matching transition q r_~ q, we will have (p', q') ~ Id. 
For  R 2 it is necessary to include Id since the restrictions may disappear due 
to applications of the open-rule. [] 

The following theorem states an expected property of restriction, namely 
that the restricted name may be e-converted without affecting the behaviour 
of the process involved. 

Theorem 3.9 p\a,L({b/a} p)\b if bq!fn(p) 

Proof This theorem follows by showing that the relation 

R =- {(p\a, ({b/a} p)\b): p E CPr, b (~fn (p)} t3 Id 

is an applicative higher order bisimulation. 
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The Id component  of this relation is necessary in case of scope extrusion 
due to an application of the open-rule in which case the restrictions will disap- 
pear and a respectively b will be substituted with a new name cr 
The matching moves are easily established by appealing to Proposit ion 2.7. [] 

Before presenting any additional laws we need to introduce a concept related 
to the concept of an applicative higher order bisimulation up to restriction. 
The new concept is called an applicative higher order bisimulation up to :Z 
and allows a relaxation of applicative higher order bisimulation in the sense 
that the relation only has to satisfy the applicative higher order bisimulation 
properties up to the closure property of Z .  This is an adaptat ion of the notion 
of bisimulation up to ~ [Mi189] to the Plain CHOCS setting: 

Definition 3.10 An applicative higher order simulation up to Z is a binary 
relation R on CPr such that whenever pRq and a ~ N a m e s  then: 

(i) Whenever p o:x p,, then q ~:Y,q' for some q',y and p'[r /x]ZR,Lq'[r /y]  
for all reCPr 

(ii) Whenever p a~Bp' p,, with B n( fn(p)ufn(q))=O,  then q ~!Bo' q,, for some 
q', q" with p' Z R Z q' and p" Z R Z q" 

, q, q' (iii) Whenever p ~ p ,  then q ~ ~ for some with p',L R,L q'. 

A relation R is an applicative higher order bisimulation up to " if both it 
and its inverse are applicative higher order simulations up to " 

Lemma 3.11 I f  R is an applicative higher order bisimulation up to " then R_~ " 

Proof. Follows by arguments very similar to the arguments given for Lemma 
3.4. []  

The following definition is an adaptat ion to the Plain CHOCS setting of 
the notion of strong ground bisimulation up to " and restriction from [MilPar- 
Wa189b] : 

Definition 3.12 An applicative higher order simulation up to ' and restriction 
R is a binary relation on CPr such that whenever pRq and a~Names  then: 

(i) If b~fn(p) u fn(q) then {b/a} p Z R,L {b/a} q 

a?y qr (ii) Whenever p a: x ~ p,, then q ~ for some q', y and p' [r/x] ,L R,L q' Jr~y] 
for all reCPr 

(iii) Whenever p ,~Bp' p,, with B n ( f n ( p ) u f n ( q ) ) = O ,  then q ~tBq', q" for some 
q', q" with p' ,L R Z q' and p" Z R Z q" 

(iv) Whenever p ~ ~p', then q ~ ~q' for some q' and either p ' Z R Z q '  or for 
some p", q" and b: p',Lp"\b, q' ,Lq"\b and p"Rq". 

A relation R is an application higher order bisimulation up to Z and restriction 
if both it and its inverse are applicative higher order simulations up to .Z 
and restriction. 
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Lemma 3.13 I f  R is an applicative higher order bisimulation up to Z and restric- 
tion then R ~_ ,L. 

Proof. Let R \ - = [J R, where 
n ~ c o  

R0= .,LRZ 

R,+ 1 = Z {(p\a, q\a): (p, q)eR, ,  aeNames} Z 

The argument that R \ - is an applicative higher order bisimulation follows 
the same pattern as the proof of Lemma 3.4. [] 

With this machinery in hand we may now prove the following interplay 
between the restriction operator and parallel composition: 

Proposition 3.14 P~\alp2 -Z (Pl ]p2)\a if a Cfn(p2) 

Proof This proposition is proved by showing that the relation 

R = {(Pl \ a l p z ,  (Pl I p2)\a): Pi ~ CPr, a (~fn (p2)} u Id 

is an applicative higher order bisimulation up to Z and restriction. (The full 
proof is presented in Appendix A). []  

The next set of laws shows some expected properties of the parallel operator. 
It would perhaps have been more natural to present these laws before the laws 
of restriction and its interplay with other operators, but to prove the law of 
associativity for the parallel operator we need some of the above properties. 

Proposition 3.15 
p ln i lZp  

p l lp2Zp2 lp l  

pl I(p21p3),L(pl [p2)lp3 �9 

Proof. This proposition is proved by showing that the first two of the following 
relations are applicative higher order bisimulations and that the last relation 
is an applicative higher order bisimulation up to .~ and restriction: 

R 1 = {(p]nil, p): pc CPr} • Id 

R2 = {(pz ]P2, P2 ]P,): p ~ C P r }  u Id 

R3 = {(Pl I(P2 IP3), (Pl ]P2)lP3): pieCPr} u I d .  

The Id component in each of the above relations is necessary to cover the 
cases when processes are communicated since these processes might not have 
the structure of the first part of the relation. (The full proof  is presented in 
Appendix A). []  
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Using the above properties we may now present a law of interplay between 
parallel composition and restriction which will look more familiar to readers 
with knowledge of CCS. 

Theorem 3.16 (Pt I p 2 ) \ a Z p l \ a l p 2 \ a  if aq~fn(pl)~ fn(p2) 

Proof. If aq~fn(pl)~fn(p2) then a can not be a free name in both Pl and Pz. 
Suppose a~fn(p2). Then by Proposition 3.14 and Proposition 3.8 we have 
(Pl I p 2 ) \ a Z p l \ a l p 2 , L p l \ a l p 2 \ a .  The other case where aq~fn(pO follows by a 
similar argument after commuting p~ and P2 using Proposition 3.15. []  

We now present some expected properties of renaming: 

Proposition 3.17 

nil I-S] .Z nil 

p IS] Z, p IS] IS] 

p[S] \bZ ,  pLb[S] if bCDom(S)wIm(S)  

(Pl + P2) IS] .Z p~ ES] + P2 IS] 

(Pt I P 2) [S] Z P a IS] ]Pa [S] if Dora(S) n ( fn  (p l) w fn  (p 2)) = 0 

(a ? x. p) IS] :,L S (a) ? x. (p ES]) 

(~.p) [s] 2. ~.(p [s]) 
(a!8 p'. p) ES] .2, S (a)!B p'. (p IS]) if B n (Dora(S) w Ira(S)) = 0 

Proof. The proposition follows from showing that the following relations are 
applicative higher order bisimulations: 

R~ = {(nil [S], nil)} 

R 2 = {(p [S], p [S] IS]): p ~ CPr} u Id 

R 3 = {(p[SJ\b, p \b[S]):  p~CPr, br uIm(S)}  u I d  

R4 = {((Pl -}- P2) IS], P l [S] q- P2 IS]): p ~  CPr} ~ Id 

e s  = {((Pl [P2) IS], Pt [S] I P2 [S]): Dom(S) n (Jh(p0 u f n  (P2)) = 0} u Id 

R 6 = {((a ? x. p) IS], S (a) ? x. (p IS])): a ? x. p ~ CPr} u Id 

R7 = {((~. p) [s], ~.(p [s])): pi ~ Cer}  u Xd 

R s = {((a [B P'. P) [S], S (a)!B P'. (P [S])): 
p, p' ~ CPr, B n (Dora(S) u Im(S)) =0} u Id. 

The Id component in the above relations serves to cover processes being sent. 
In addition the ld component of relation R 3 covers the case when the restriction 
disappears due to an application of the open-rule. It is relatively straightforward 
to find matching moves for each relation and we omit the details. (The proof  
for relation R 5 relies on the fact that p [S] :,g p IS] [S] and this is easily established 
since S = [av--~b] and either a = b in which case p IS] Z p or a 4: b in which case 
the second renaming will have no effect.) [] 

We have not listed any immediate interplay between (nondeterministic) 
choice and parallel composition. This is due to the fact that the two operators 
in general do not commute, but there is a restricted interplay between them: 
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Proposition 3.18 Let 2 = { x l . . . x,},  y =  { Y l . . . Y,} and ,2 c~ y :# O and A j c~ f n( q) = 0 
and B t n f n ( p ) = 0  then 

if p = S i a i ? x i . P i +  Sjaj!AjP).pj  

and q=Skbk?yk.qk+Xibz!Bzq}.qt  

then p[q Z Zi ai? xi.(pilq) + Sj aj[As P).(PJlq) 

+ Sk bk 9. Yk. (Plqk) -I- St bt !Bz q'l. (P I qt) 

d- Z(i '/)e{(i, l): ai = bz} Z. (Pi [q'l/Xi] ] qt)\Bt 

+ Z( j ,  k)~{(j, k): aj = bk} "C. (Pjlqk [P)/Yk])\Aj,  

where ZiFii.Pi describes the sum Fl.pl  + . . . +  F,.p, when n > 0  and nil if  n=0 ,  
knowing this notation is unambiguous because of Proposition 3.7. 

Proof  (Given in Appendix A). []  

We can not hope that these equations form a basis for a sound and complete 
proof  system for Plain CHOCS. One reason for this is hinted in the translation 
given in the next section from Plain CHOCS into Mobile Processes [MilPar- 
Wa189]. This translation needs parallel composition under the scope of recursion 
to work. In [Mi183] Milner shows how this combination could be used to 
simulate a Turing machine. Another  reason is that we may encode recursion 
using the constructs of Plain CHOCS. 

Definition 3.19 Let Wx [ ] be the context: 

a ? x. ([ ] [(xl a ! x.  nil) [a ~ b] \ b / x ] )  

and let Yx [- ] be the context: 

(W~[ ] I a!(W~[ ]).nil)[a~-~b]\b. 

To a certain extent this construct resembles the Curry paradoxical combinator 
Y[ ] = ( 2 x . [  ] ( xx ) ) (2x . [  ](xx)) which is often referred to as the Y combinator  
in the 2-Calculus. 

Note that if FV(p) ~_ {x} then 

gx[p] , (p [(x I a ! x .  nil) [a ~ b] \ b / x ]  [ Wx [pl/x] I nil) [a ~ b] \ b  

- (P [ Yx [p~/x] I nil) [a ~ b] \ b  2 (p [ Y~ [p]/x]) [a ~ b] \ b  

- (p [a~--~b]\b) [Y~ [p]/x]. 

By Proposition 3.8 and Proposition 3.17 we have (p[a~-~b]\b)[Y~[p]/x] 
Z p [ Y~ [p]/x] if a, b (~fn (p). 

Note how Yx[ ] needs a z-transition to unwind the "recursion ' .  This resem- 
bles the unwinding of recursion in the inference rule of recursion in TCCS 

[HenNic87] : r e  c x.p~.*p [ r e  e x .p /x] ,  where ~ ,  may be read as ~ , . 
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As in CCS we may introduce a recursion operator  r e  c x .p  with the following 
operational semantics: 

p [ r e c  x.p/x] r p, 
r p, 

recx.p > 

The inference rule basically says that a recursive process has the same derivations 
as its unfoldings, r e c x .  is a variable binder and fn, {/}, FV and [/] have to 
be extended to cater for the new operator. 

Theorem 3.20 Y~[p] " r e c  x.z.(p[a~-+b]\b). 

Proof. For  this proof  we need the following property of substitution'  

if x # y  then p[p' /x][p"/y]~p[p"/y][p'[p"/y]/x] 

and a simple corollary: 

if x # y and p', p" are closed then p [p'/x] [p"/y] - p [p"/y] [p'/x] 

which is easily established by structural induction on p. (They are not corollaries 
of Proposit ion 2.5 since we have to take recursive processes into account.) 

Then the relation: 

R = {(q [ r  e e x . z .  (p [a ~ b] \b)/x],  q [ Yx [p]/x]): F V(q) ~ {x} } 

is an applicative higher order simulation up to " and restriction. To prove 
this we show that: 

If c(~fn(q [ r e  c x. z. (p [a~--~b]\b)/x]) u fn(q [Yx [p]/x]) then 
{c/d} (q [ r e  e x. r. (p [a ~ b ] \ b)/x]) Z R Z { c/d} (q [ Yx [p]/x]). 

Whenever q [r e e x. ~. (p [a ~ b] \b)/x] ~ ~, p', then q [ Yx[p]/x] ~? Y, q' for some 
q', y and p' [r/x] Z R Z q' [r/y] for all r ~ CPr. 

Whenever q I r e  e x.r .(p [ a ~ b ] \ b ) / x ]  a!Bp' p,,, then q [Yx [p]/x] aB!q', q" for 
some q',q" with B~(fn(q[reex .z . (p[a~-+b]\b) /x])wfn(q[Yx[p] /x]) )=O,  
p ' Z R Z q '  and p " Z R Z q " .  

Whenever q [r e c x. ~. (p [a ~ b] \b)/x] ~ , p', then q [- Yx [P]/X] ~ , q' for some q' 
and either p ' Z R Z q '  or for some p", q" and b: p 'Zp" \b ,  q ' Z q " \ b  and p"Rq". 

We prove this by induction on the length of the inference used to establish 

the transition q [ r e c  x.~.(p\a)/x] r '  q, and cases of the structure of q. In the 
case where q has the form a?y.q' or r e e y . q '  we need the above properties 
of substitution. The theorem then follows by choosing q -  x. (The proof  follows 
the pattern of the proof  of Proposit ion 4.6 of [Mi183]). []  
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This proof  is limited to the case where at most x is free in q. The extension 
to the case where there are other free variables is now routine. 

With the Y-context of Definition 3.19 we may program systems which recur- 
sively send out copies of themselves. 

Example 3.21 Let p -  c ! x .x  then according to the inference rules of Definition 
2.6 Yx [P] has the following derivations: 

Y~ [p] 

(c! x. x [ Yx [p]/x] I nil) [a ~ b ] \ b  

c!  Y ~ [ p ]  

(Y~ [p-11 nil) [a ~ b] \ b  

((c ! x .  x [ Yx [p]/x] I nil) [a ~ b] \ b  I nil) [a ~-~ b] \ b  

l c!  Y x [ P ]  

This is almost a specification of a computer virus. Think of the behaviour of 
Yx [P] where p = ethernet!x.(xldelete _all_files!.nil) and the consequences such 
a program could have in a network of computers connected via an ethernet. 

In [Tho89] the following alternative Y-context was presented: 

Y~ [ ] = (a? x. ( [  ] la!  x.nil)l a! (a?x. ([  ] ]a! x .ni l ) ) .ni l ) \a .  

For  "dynamic"  CHOCS [Tho89] this context is limited to processes where 
x does not occur free in a sending position (i.e. does not occur free in any 
subsubexpression p' of the form q = c!p ' .p"  where q is a subexpression of p). 

However, for Plain CHOCS it also simulates recursion for processes where 
x occurs in a sending position due to the static nature of the restriction operator. 

Example 3.22 Let p = - c ! x . x  then according to the inference rules of Defini- 
tion 2.6 Yj [p] has the following derivations: 

Y~ [p] -= (a ? x.  (c ! x.  x I a ! x .  nil) I a ! (a ? x.  (c ! x.  x ] a ! x.  nil)), n i l ) \a  

(c!(a? x.(c! x . x  [ a! x.nil)).(a? x.(c! x . x  l a! x.nil)) l 
a!(a? x.(c! x . x  I a! x.  nil)).nill n i l ) \a  

lc '~ } ( a ' ~ x  ( c ~ x . x l a ! x . n i l ) )  a " " " 

(a? x.(c  !.x l a! x.nil) l a! (a? x . ( c ! . x  l a! x.nil)).nil l nil) 
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After this transition we have a scope extrusion on a, but when the ~ 
(a? x .  ( c ! x .  x f a ! x .  nil)) is received the com-close-rule will ensure that this ~176 copy"  
can communicate with a ! (a ? x .  (c !. x I a ! x .  nil)), nil and thus continue the "recur- 
sive unfolding" of p. 

However, we can not prove a simulation of recursion theorem for this context 
as directly as Theorem 3.20. This is because when we send out copies of the 
recursive process we have to do a scope extrusion for a in the Y'  construct 
to keep a connection to the remaining part  and keep the "recursion" going, 
and the two terms are incomparable until they are received and we have closed 
the scope in the Y' construct. It would be interesting to formulate an equivalence 
theory where the kind of distributed property of a system linked by internal 
channels such as the above Y'  construct is taken into account. I imagine that 
such a theory could be based on the ideas of context dependent bisimulation 
described by Larsen in [Lar86].  Recently Milner and Sangiorgi have proposed 
a notion of barbed bisimulation [MilSan92], which also seems to be a promising 
avenue to explore. 

4 Plain CHOCS and mobile processes 

In this section we compare  the approach taken in this paper  of sending processes 
to that of sending names as described in [EngNie86; MilParWa189]. We shall 
not embark  on a discussion of which is the best or the correct way of expressing 
mobility in concurrent systems, since we feel that both approaches have their 
justifications. This is further strengthened by showing that the calculi may simu- 
late each other. 

The description of Plain CHOCS in Mobile Processes uses the capability 
of changing the interconnection structure of processes describable in Mobile 
Processes in a very disciplined way. Whenever a process is sent in Plain CHOCS 
a link to a trigger construct (which provides copies of the process to be sent) 
is sent in the Mobile Processes translation. To a certain extent this resembles 
invocations of procedures in conventional programming languages. The trigger- 
ing of a copy of the process to be sent and the instantiation of its names could 
correspond to a new activation record for a procedure and instantiations of 
its parameters.  

The description of Mobile Processes in Plain CHOCS is done by passing 
very small processes around. These small processes are essentially one element 
buffers which simulate the behaviour of channels. 

This section is not self-contained. We shall not give a review of the calculus 
of Mobile Processes (~-Calculus) in this section, but a short review is included 
in Appendix B. For  motivat ion of the constructs and exposure of the expressive 
power we refer to the excellent presentation given in [MilParWa189]. In the 
following we shall use upper case letters such as P and (2 (possibly primed 
or indexed) to stand for Mobile Processes and lower case letters such as p 
and q to stand for Plain CHOCS processes. To compare terms in the K-Calculus 
we use a generalisation of the notion of bisimulation called strong ground 
bisimulation ~ .  

Before turning to translations between the ~-Calculus and Plain CHOCS 
we present a useful construct and show a few facts about  this. We shall need 
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communications in the n-Calculus which carry no parameters. This could be 
modelled by presupposing a special name e which is never bound and we write 
:~.p in place o f f e .p  and x.p in place ofx(y).p, where y is not free in p. 

Definition 4.1 Let 

b ~  P= ree  X.b.(PIX) 

where bd~n(P) and X~FV(P). 
This construction is intended to provide copies of P when triggered by E 

actions e.g.: 

(b) (6. nil l b. nil l b ~ P) ~ - ~  (b)(nill nil [ P E P [ b ~ P) ,c p I P. 

This construct satisfies several interesting properties: 

Lemma 4.2 I f  b(~n(Q) then 

(b)(P~lb~Q)+(b)(P2lb~Q)~(b)((P~ + P2) I b=>Q). 

Proof (Given in Appendix B). [] 

Lemma 4.3 I f  P/ /b, for all derivatives P/ of Pi, ie{1, 2} and br then 

(b)(P~ l b ~ Q )  l (b)(P2 l b~Q)~(b)((P~ l Pz) l b~Q) .  

Proof (Given in Appendix B). [] 

Lemma 4.4 I f  P//b>for all derivatives Pi' of Pi, ie{1, 2} and bigfn(Q) and 
cr fn(PO u fn(P2) w fn(Q) then 

(c~(b)(Pl l b~Q))  (b)(P2 t b~Q)~(b)(c=~ P~ l P21b~Q). 

Proof (Given in Appendix B). [] 

We now turn to the question of translations between Plain CHOCS and 
Mobile Processes. First we give a translation of Plain CHOCS without the 
renaming construct into Mobile Processes. This subset of Plain CHOCS corre- 
sponds very closely to the idea of encoding process passing in Mobile Processes 
described in [MilParWa189]. This translation carries no additional parameters 
which shows that Plain CHOCS programs can be viewed as a set of derived 
operators in Mobile Processes. 

Definition 4.5 ~ ~ : Plain CHOCS --, MP 

~nil~ =0 
~a? x.p~ = a(x). ~p~ 
~a! p'.p~ = (b)(db.(~p~ l b ~  ~p'~)), bCfn(p) ~ fn(p')u {a} 

~p+p'~--Ep~+~p'~ 

~p\a~=(a)Ep~ 
[x]=x.0. 
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Note how a process variable in Plain CHOCS is translated into a process which 
is only capable of synchronising on the x channel and then stop. This is exactly 
the idea described in [-MilParWa189] of an executor to trigger the start of the 
process. 

An interesting point to note about the above translation is that only a 
rather special kind of recursion is needed. We only need a construction which 
provides "copies" of the process to be sent. This construction resembles a 
Kleene-star operator. Combining this with Theorem 3.20 (which shows that 
general recursion may be simulated in Plain CHOCS) we see that using this 
Kleene-star operator and the dynamic interconnection mechanism provided by 
Mobile Processes we may simulate recursion in e.g. CCS. In fact we do not 
need to appeal to Theorem 3.20 to show this; The lemmas above suffice to 
prove (z) (~. 0 [ z ~ P [-~. 0/X]) ~ r e e X. ~. P if z ~ fn  (P). 

Note that this translation ensures static scope for the restriction operator 
since the process p' being "sent"  stays in the "sending" environment e.g.: 

~a ? x. (x [ x) I (a ! p'. p)\c} = a (x). (2.012.0)l (c)((b)(d b.((b ~ ]~p'~) [ ~p~))) 

(b) (H. 0 ] ~. 01 (c)((b => ~P'~) I ~P~)) 

(b)(G. O l O l (c)([[p']] l ( b ~  [~P'~]) I [~P~)) 

(b)(O[Ol(c)(~p'~ I HP'~] [ ( b ~  EP'~) I EP~)) 

(c)([Ip'l] l [[p'~ l [[pl]). 

In this example we see how the recursion in the translation of the output prefix 
ensures that a sufficient number of copies of the process to be passed is provided. 

As we can see from the above example the translated terms need an addition- 
al r-move to simulate the substitution. Let us specify this on the Plain CHOCS 
level by introducing a notion we call z-substitution [/]~. This substitution is 
defined as [p/x]~= [z.p/x]. In the following two propositions let --+ be a transi- 
tion relation defined as the transition relation of Definition 2.6, but with [/]~ 
instead of [/] in the corn-close-rule. Let .Z~ be the appliCative higher order 
bisimulation equivalence defined as in Definition 3.1 relative to the new transi- 
tion system with r-substitution instead of the usual substitution in clause (i). 
Using these definitions we can now formally relate the two calculi. In the follow- 
ing ~ is the strong ground bisimulation defined in [-MilParWa189]. 

Proposition 4.6 ~p [q/x]~ ~ (b)(~p~ {b/x} [ b ~ [~q~) where b ~ fn  (p) u f n  (q). 

Proof. By structural induction on p using Lemma 4.2 to Lemma 4.4. [] 

Proposition 4.7 

1. if p a?x p, then ~p~ ~ ~p'~ 



Plain CHOCS 27 

2. if p ~"P', p" then ~p~ a(b), Q ~(b0 . . . (b , ) (b  ~p ~[ ~p ~1 where B =  {bt, ..., b,,} 
for some Q. 

3. if p ~ , p' then ~p~ ~ ~p'~ 

4. if Q,c ~p~ and Q ~(~), Q' then p ~?~, p' for some p' with Q' {b/x} ~ ~p'~ {b/x} 
for all b e Names. 

/ ~ b  5. if then Q , , .  

6. if Q ~ p ~  and Q a(b),Q, then p ,,,v' p,, with Q' ,c(bO.. . (b,)(b~p'~l~p" ~) 
for some B, p', p" where B = {bl, ..., b,}. 

7. if Q ~ ~p~ and Q ~ Q' then p ~ ) p' with Q'~ [p'~ for some p'. 

Proof. By induction on the length of the inference used to establish the transitions 
observing the structure of the process p. []  

The above proposition shows a strong connection between transitions of 
processes in Plain CHOCS and their translations into Mobile Processes. We 
have so far been unsuccessful in proving that the translation preserves equiva- 
lence but we conjecture that this holds under certain restrictions on the observa- 
tions we allow ourselves i.e.: 

Co.ject.re 4.8 
An immediate attempt to prove the above conjecture is to show that the relation: 

R1 = {(Q1, Q2): 3Pl, P2. Q, ~ ~Pl~, Q2 ~ ~p2~, pl "Z~p2} 

is a strong ground bisimulation and that the relation 

R 2  = ( ( P ~ ,  P 2 ) :  ~ P I ~  ,4. ~ P 2 ~ }  

is an applicative higher order bisimulation w.r.t. [/]~. Unfortunately this attempt 
has so far been unsuccessful. The reason for this is that for relation Ra I have 

been unable to prove that if Q~ a(~), (2, then Q2 ac~), Qi and Q'~ {b/x} ~ Qi {b/x} 
for all baNames from Pl , ? x  p, and P2 a?x , p~ and P'I [r/xJ~ Z~ P2 [r/x]~ for all r. 

~p'~ [r/xJ~ ~p'2[r/x],~ does not seem to imply ~p'~ {b/x} ~ P i ?  {b/x} for all 
�9 a . B P ' I )  H b~Names. For  relation R 2 I have been unable to prove that if p~ p~ then 

P2 a"~P~)P~ and p'~ -Z,p2 and p'~Z~p'~ from Q~ a(b), Q, ~,(b~)... (b~)(b~p'~L~p'~'~) 
~(b) :, ' ' :::==I> ~ 1 " t and Q2 Q2~(bO...(b,)(b ~P2 I~P2~) and Q ' ~ Q a -  It does not seem to 

be possible to refer from (b ~P,~I p~)~(b~p'z~][pa~)  that ~P',~[P'2~ and 

The above only applies to the sublanguage of Plain CHOCS where the 
renaming operator has been omitted. The type of systems we can describe in 
this language is limited in the sense that there is no real need for passing the 
process in the communication since the receiving process can do no more than 
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copy it and start each copy at different times. This is reflected in the above 
translation in the sense that the process to be "sent"  stays in the sending environ- 
ment and the "receiving" process only receives a link which can be used to 
trigger copies of the '"received" process. The renaming construct allows us to 
change the way we communicate  with each copy by renaming some of the 
free names to locally bound names. This may be incorporated into the translation 
by extending the translation function by a list of names L i.e.: 

Definition 4.9 ~ ~: Plain CHOCS ~ Names* --, MP 

~nil~L=O 
~a? x.p~ L = a(x). ~p~ L 

~a ! p'. p~ L = (b)(e b. ([p~ L I b (L) => ~p'~ L)), b (~ f n  (p) u fn  (p') u {a} ~ L 

~p+p '~L=~p?L+~p '~L  

~PlP'? g = ~P~ g J ~p'~ g 
~p\a~ L = (d)~{d/a} p~ L where d~fn(p \a )  u L 

~p [a ~ hi? L = {b/a} (~p~ I3 

where b(L).p means b(Id...b(I,,).p and ffL.p means Gll...61,,.p for L 
= {11 . . . .  , l,). 

When translating a Plain CHOCS expression p we then instantiate L to 
a list consisting of the elements of fn(p)  to obtain the desired effect. 

Let us consider the following small example to give an idea about  how 
the above translation works: Assume { a , b } = f n ( p ) u f n ( p ' ) u f n ( p " )  and 
b'r 

~a? x.(x[b~~'b'] l b'? x .p ) \b '  l a! P'.P"~La, b~ 

a (x). (b')(2 a b'. 0 ] b'(x). ~p~La, bl) ] (C)(a C. ((C (a)(b) =~ ~p'~ t,~, bl) [ ~P"~r,,, bl)) 

(c) ((b')(e a b'. 0 ] b' (x). ~p~Ea, b3) ] (C (a)(b) =~ ~p'~t,, bl) [ ~P"~E,~, bl) 

(c)((b')(O l b' (x). ~P~t,, b~ l ( {a/a} { b'/b } (~P'~e,:,, b~))) l (c(a)(b)=*" [P'~eo, b~) l ~P"~,,, b~) 

(b') (b' (x). ~p~ ta, b~ l ( { a/a} { b'/b } (~P'~Ea, b~)))I ~P"~t,, b~' 

Note  that if p' has any b-ports they will be renamed to b' and thus be private 
between b'(x).~p~Ea, b3 and ~P'~E,,,b3" The translated terms need a sequence of t-  
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transitions to establish the connection between the "receiving" process and the 
" c o p y "  it is "receiving". This sequence has the same length as the parameter  
L. In the above example we needed two r-transitions and in general we will 
need as many  T-transitions as the cardinality of the set fn(p). 

We now turn to the question of encoding label passing using process passing. 
This may  seem as an artificial question, but as a theoretical result it is of interest 
since it will provide a basis for discussion of the expressive power of the two 
approaches. 

The idea in the translation below is that instead of sending a channel a 
we send a wire (a-chan) defined as i?.a?x.c! x .ni l+o?.c?x.a!  x.nil. This wire 
has a multi-purpose plug c and a switch to indicate in which direction the 
wire is to be used. We assume c, i, o are distinct names not used in the Mobile 
Processes expression being translated. When this wire is received it is plugged 
into the receiving process by the localising constructions: (... [c ~ c'] [ i ~  i'] [o ~-~ 
o'] . . . ) \c ' \ i ' \o ' .  The receiving process will choose in which direction to use 
this wire by sending an o' signal for output  or an i' signal for input. The wire 
will be private to the sending and receiving processes in the case of a bound 
name in the Mobile Processes expression. This is ensured by a scope extrusion 
caused by the static restriction operator.  

Mobile Processes [MilParWa189] was developed from ECCS [EngNie86] 
by simplifying the notions of values, labels and variables into one concept called 
names. This, however, presents a problem when translating Mobile Processes 
into Plain CHOCS since a name in a process P may act as a name of a link 
(as e.g. y in y(x).P) or it may act as a variable (as e.g. x in y(x).P) or it may  
act as a local link name (as e.g. x in (x)P). To overcome this difficulty we 
first translate all free names and all names bound by input prefix into process 
variables. Then we instantiate the process variables corresponding to free names 
in the Mobile Processes expression to names in Plain CHOCS. Names  bound 
by restriction will be allocated names in Plain CHOCS in the first translation 
step. 

Definition 4.10 E ~1: MP ~ Plain CHOCS is defined structurally: 

~0~1 =nil 
~x (y). P~I = (x [c ~ c'] [i ~ i'] [o ~, o'] l i'!. c'? y. ~P~ 1)\c ' \ i ' \o '  

~2y.P~x =(x[c~-+c'l [i~---~i'] [o~-~o'] [ o'! .c'[ y. ~P~l)\c ' \ i ' \o '  

+ P'l  = + EP'I 
 PLe'I =EPIll  e'l, 

~(x)(P)~l = (~P~1 [ ( a -  chan)/x])\a, where a Cfn (P). 

~ 2 :  MP ~ Plain CHOCS is defined as: 

~P~2 = (---(~P~a [(a~ - chan)/xl])...) [ ( a , -  chan)/x,], 

where FV(~_P~]O= {xz, ..., x,} and aa ... a,  are allocated by some 1 - 1  mapping 
between Vand  Names (usually established by the 1 - 1  mapping between fn(P) 
and FV(~P~ 1)). 



30 B. Thomsen 

We have omitted the match construct of Mobile Processes. This can be 
eliminated in the Mobile Processes expression according to Example 9 in Sect. 4 
of [MilParWa189]. Recursion could be translated using the Y~ [-] construction 
from the previous section. 

It is easy to see from the above definition that name passing in the Mobile 
Processes is mimicked by the translation only requiring two additional commu- 
nications for each use of the wire, i.e.: 

~a(x).P~2 Z z .a?  x.'c. ~P~2 
. 

We may state this more precisely: 

Proposition 4.11 

i i f P  ,(x),p, then ~P~2 r a?~ ~ _ ~ p , ~ 2  

2. i f  P ab p, then ~P~2 ~ ' ~ ' a!~ ~P'~2 

3. i f  n a(b), p, then EP~2 ~ ) ~ ) a,~b~(b-chan)) Ep,~2 

4. if  P r ) P' thenEP~2--!-*~P'~2or~P~2 ~ ' ~ ~ ~ ~ ~ ' r ~P '~2 .  

Proo f  By induction on the length of the inference used to establish the transition 
of P observing the structure of P. []  

We conjecture the following relationship between Mobile Processes and their 
translations into Plain CHOCS: 

Conjecture 4.12 I f  P ~ Q  then EP~2~ ~Q~2, where ,~ is a suitable formulation 
o f  weak higher order applicative bisimulation. 

We can not hope for the implication to hold in the opposite direction since 
the translation may introduce non-determinism not present in the original term 
e.g.: Consider the following term P = (a) (b) (a (x). c (x). 0 + b (x). 0 ] d c. 0) then P 
z .c(x) .O q~P + r.O whereas ~ P ~ 2 , L z . z . z . z . z . z . c ? x . z . n i l +  z . O Z  ~P+z.0~2. 

To see how the translation works we study the following small system consist- 
ing of two components. Initially the first component is ready to receive a channel 
on a and the second component  is ready to send the b-channel on a. Upon 
receiving a channel the first component is ready to send a bound channel d 
on the newly received channel. The second component is ready to receive this 
channel. The end result is that the second component receives a private d-channel 
from the first component.  

~a (x). (d)(2 d. n) J d b. b (x). Q~ 2 
Z 

z .a  ? x .  ~. ~(d)(X d. P)~ 2 [ z. z .a  ! (b - ehan). ~b (x). Q~ 2 

(~ (d)(~ d. P)~ 2 [(b - chan)/xJ ] ~b (x). Q~ 2) 

((~. r. b ! ( d -  chan). WP~ 2 [(b - chan)/x]) \ d [ r. b ? x .  z. ~Q~2) 

~ ) v )_______+ ) 

((~n~2 [(b - chan)/x] I ~Q~2 [ ( d -  chan)/xJ) \d) .  
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Comparing the two translations presented in this section we see that the two 
caluli Mobile Processes and Plain CHOCS are equally expressive in the sense 
that they may simulate one another. However, the translations are rather ad 
hoc. It would be of interest if this comparison could be formulated in a more 
general framework for comparison. One such study has recently been undertaken 
by Sangiorgi. Based on the notion of barbed bisimulation [MilSan92] he shows 
in his forthcoming thesis [-San92] how higher order processes can be simulated 
in the ~c-Calculus. 

5 Plain CHOCS and object-oriented programming 

Over the past two decades object-oriented programming has grown into a strong 
discipline in the world of industrial programming. One reason for the success 
of this programming notion is the link with ideas of structured programming. 
Object oriented programming allows problems to be broken down into "objects" 
of manageable size. There is to date no unifying definition of what exactly 
an object is and what an object does, although over the years much effort 
has been devoted to finding such definitions. It seems as if each object-oriented 
programming language (and even each object oriented programmer) has its 
(his/her) own definition of an object. 

This having been said, there seems to be a consensus that an object is 
regarded as an encapsulating entity and there are strong analogies to the ideas 
of abstract data types. Thus objects encapsulate "things" and users access these 
"things" via "methods". The idea behind the method paradigm is to present 
the user with an interface through which objects can be accessed and at the 
same time hide the way the objects are implemented. Most present day object- 
oriented programming languages have roots in ideas presented in the SIMULA 
language [DahMyhNyg68] designed in the late sixties, and ideas presented in 
the Smalltalk language [GolRob83] have had substantial influence. 

The object-oriented approach has mostly grown out of an imperative sequen- 
tial programming discipline as a structuring device for large scale programs, 
but recently it has been recognised as a useful tool in the description and con- 
struction of distributed and concurrent systems [Atk89]. As we shall see in 
this section there seems to be a strong analogy between the idea of objects 
and processes, encapsulation and restriction, method call and communication 
via named channels. We shall also see that it is possible to make connections 
between concurrency theory and inheritance, which for many object-oriented 
programmers seems to be a vital part of the definition of what can be character- 
ised as object-oriented programming. 

Many object oriented programming languages do not have a formal seman- 
tics but rely on (thorough) verbal descriptions of the semantics. Recently some 
more thorough studies of semantics foundations of object-oriented programming 
languages have emerged, POOL lAme87] and Dragoon [-Atk89] are very good 
examples of how far the current state of affairs for real life programming lan- 
guages has reached. 

In this section we study the connection between concurrency and object 
oriented programming in more detail. We do this via a small toy language 
O. We may consider O as a prototype core of most imperative concurrent object 
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oriented programming languages. In O we may define a class of objects and 
instantiate objects to be of a defined class. In each class we may define a number 
of methods and a thread of control. This thread of control is the primary means 
for concurrency since objects may be started and executed in parallel. The paral- 
lelism is asynchronous, and synchronisation is obtained by method calls. O 
was inspired by the toy language P studied in [MilS0] and in [Tho89], and 
the thread of control in each object is similar to the sequential part of P. Expres- 
sions in the language O are untyped, but for the cause of simplicity we only 
consider type meaningful programs. We assume that objects are declared before 
they are created, that all objects are created before started and that all objects 
are started only once. 

The semantics of O is described in Plain CHOCS in a phrase-by-phrase 
style resembling a denotational semantics, However, we do not give any semantic 
domains. Instead we may view the O semantics as a set of derived operators 
in Plain CHOCS since the translation carries no parameters. Plain CHOCS 
only caters for process values in communication. To allow for other values 
in Plain CHOCS than process values we use the technique of [Mi183] and 
introduce a N-indexed family of actions a?e, a!d, d E ~  for each value domain 
9 .  Due to the fact that only finite sums of processes can be handled in Plain 
CHOCS we restrict our attention to finite value domains as e.g. the set of 
booleans and finite subsets of the integers. We let e?x.P abbreviate 
SdeD~?d.p{d/x } where {d/x} means exchanging all occurrences of x in p by 
d as e.g. a ?~. fl !~. nit {d/x} - Zd~1) ~ ?~. fl !~. nil. We shall use the following construct 
from [Mi183]: If b is a boolean valued expression in ~ then let e?x.(/f b then 
p else p') be encoded by Ze~O~be?e.p+Zd~D&~bC~?d.p'. We should not confuse 
e?x.p with ~?x .p  since the first is a convenient shorthand notation and the 
latter is part of the Plain CHOCS syntax. 

The language 0 

Programs in O are built from declarations D, expressions E and commands 
C. In declarations we may declare program variables ranged over by X, object 
variables Y, methods P with parameter X to be instantiated by reference in 
the command body C, and we may declare a class Z with local declarations 
D and command body C. Some set of functions F is assumed and for the 
cause of simplicity we do not consider types of expressions. Commands are 
assignments to program variables, sequencing, conditionals, while loops, skip 
statements, blocks with local declarations and three commands for creating 
an object of class Z bound to the object variable Y, a command for triggering 
the start of the command body of object Yand a command for calling method 
P of object Y with X as parameter. O has the following abstract syntax: 

Table 2. Syntax of 0 

Declarations: 

Expressions: 
Commands: 

D : : = v a r X ] o b j  Y]D;D] 
methodP(refX) is C] class Z is D body C 

E: : =XIF(Et .. . .  , E.) 
C:: =X:=EIC; C I i f  E then  C e l s e  C'I 

while E do CI skip ]begim D; C end[ 
Y. create ZI Y. start I Y. callP(X) 
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We do not put restrictions on how often a variable, object, method or class 
is declared in the same scope. To ensure a deterministic semantics one could 
require that variables, objects, methods or classes are only defined once in the 
same scope. The semantics presented below will yield a nondeterministic choice 
between two declarations of the same name. 

To give a smooth definition of the semantics of O we need some auxiliary 
definitions. 

To each variable X we associate a register Reg x. Generally it follows the 
pattern: 

Loc = ~ ?~. Reg (x) 

Reg (y) = c~ ?~. Reg (x) + 7 !y. Reg (y) 

and thus for X we will have L o c x = L o c [ ~ - - , ~ x ]  [-7~--~7x]. Initially we write in 
a value, thereupon we can read this value on 7 or overwrite the contents of 
Loc via ct. We have written the above definition in an equation style to make 
it more  readable, The proper  Plain CHOCS definition is: 

where 

Loc = (c~ ?x. h !x. nil lReg ) \h  

R e g =  YReg[h?x.(c~?x.h!x.Reg + 7!x.h!x.Reg)] I YKeep[h?x.h!x. Keep]. 

The second component  of this process takes care of the parameters  in the recur- 
sion of the above equations. (This is in fact a general technique for simulating 
the parameterised recursion of [-Mi183]). We also associate a register to each 
class Z, each object Y and each method P. It may be defined in the same 
way as above with x substituted with x. 

To each n-ary function symbol F we associate a function f which is repre- 
sented by: 

b f :  p 19.xl... Pn ?x,,. P !f( . . . . . . .  ). nil. 

Constants will thus be represented as e.g. bt,.u~ = p  !,r,e" nil. The result of evaluating 
an expression is always communicated via p. It is therefore useful do define: 

p result p' = (p lp ' ) \p .  

We adopt  the protocol  of signaling successful termination of commands  via 
6 and it is therefore convenient to define: 

done = 6 !.nil 

p before p' = (p [6 ~-* fl] ] f i?.p')\ f l ,  fl (~fn (p) u f n  (p'). 

We now give the semantics of O by the translation into Plain CHOCS shown 
in Table 3. 
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Table 3. Semantics of O 

B. Thomsen 

Declarations: 
[var X] : L o c  x 
~obj Y~=Locr 
~D; D'~ = [D~I[D' ~ 

[rn e tho d P (r e f X) • s C~ = ((LocpI ap ! (method process), nil)\~p) 
el  as s Z i s D b o dy C] = ((Loczl r ! (class process), nil)\~z) 

where method process = I C~I [ex~-~ee ] [7 x~--~ ?e ] 
and class process = ([D~ [c~eo ~ ~zj] [~e~ ~ yz ] ~.. [me~, e-+ az.] [7~ ~ ?ZP~] [ ~C~)\ V D. 

Expressions: 
~X~ = ?x?~. p !~. nil 

[F(E~ . . . . .  E,)] = (IE,] [P~/P]I ... I[E,] [po/p][ b jkp~ ... \p, 
Commands: 

Ix 

ELf E t h e n  C e l s e  C'~ 

~while E do C~ 
[s ip  

[beg in  D; C end~ 
Ig. c r e a t e  Z~ 

[Y, sta t  
[Y. call P(X)] 

= ~E~ result (p?x.ex!~.done) 
= [C~ before IC'~ 
= ~E~ result p?x.(/f ~ then ~C~ else ~C'~) 
= Yw[~E~ result p?~.(/f~ then ([C~, before w) else done)] 

d o n e  

= ([D~I~C~)\L m 
9 t z Y Z z = 7z- x. a r . (x [~v= ~ ~vo] [?n~ ~ ?e J)" done 

= ~r ? x. (x [b }-+ fi] I fi ?. nil] done)\f l  
Y9  Y Y 

In  the definition of  c lass  p r o c e s s  we let \VD abbreviate restrictions with 
respect to all variables and objects declared in D, and [-~e~-+~pZ~] [?pj~--~yz,] ... 

z [?e,,~-~?p~,] is a renaming for each me thod  (assumed to be named 
p1 . . . .  , P") defined in D. In  the equat ion for ~ b e g i n D ;  C end~ we let \ L  D 
abbreviate restriction with respect to c~ and ? channels for all variables, objects, 
classes and methods  declared in D. The me thod  and class definitions each create 
a locat ion to store the me thod  process respectively the class process. The restric- 
tions \ ~ p  respectively \ e z  ensure that  these processes can not  be overwri t ten 
after their definitions. 

N o t e  that  if we disregard the object oriented par t  of  O we have essentially 
a language definition similar to the definition of P f rom [Tho89] .  However ,  
if we compare  the semantic definition of  procedures  in P with the semantic 
definition of methods  in O we note that  the T r a n s f o r m  process needed to ensure 
static binding of  variables in the P semantics is no  longer present in the O 
semantics. This is not  because we advocate  dynamic  binding for variables in 
the object oriented paradigm. It is because the static nature  of  the restriction 
opera tor  in Plain C H O C S  will ensure that  static binding is obtained. The static 
nature will ensure (by a scope extrusion) that  any variable reference is kept  
with the defining environment .  Assignments  to variables may  be nondeterminis-  
tic since two or more  methods  may  refer to the same variable, and we can 
have situations where one method  reads the value currently stored then another  
me thod  writes a new value before the first me thod  overwrites the current  value. 
As for the semantic description of  P we can avoid this problem by sur rounding  
each variable with a semaphore  construct.  
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A class is defined as a process stored in a register. The class process behaves 
like a block except that we can invoke the methods defined in the declaration 
part. These will execute concurrently with the thread defined by the command 
part of the class process. A class is a passive entity in the sense that is stored 
in a register. An object Y of class Z is just a copy of the class process stored 
in another register. It becomes active when started by the Y. s t a r t  command 
which reads the register and activates the process by the 
~r? x.(x [6 ~-~fl] [ fl?. nil ldone)\ f i  construct. The finish signal 6 from the activated 
process is renamed into fl which is going to synchronise with fi?.nil when the 
process terminates. The object which started Y continues its execution since 
as soon as the register has been read the done part may issue a 6 signal. The 
object which starts Y could be forced to wait until Y terminates by defining 
~Y. start~ = T r ? x . x  since then the 6 signal to indicate the end of the Y. start 
command would have to come from Y. Each method is also just a process 
stored in a register. When a method is called the register is read and a copy 
of the method process is activated. The renaming surrounding the variable x 
ensures a call-by-reference parameter mechanism in the method call. This param- 
eter mechanism seems to be most in line with current trends in object oriented 
programming, but we can also define call-by-value, call-by-name and lazy pa- 
rameter mechanisms for method calls in O using the same approach as in the 
definition of parameter mechanisms in P discussed in [Tho89]. 

The semantic definition of O has not taken the object oriented paradigm 
to its extreme where everything is an object. We have kept a distinction between 
objects, values and methods. We can go a bit further and describe how objects 
can be passed in method call. To some object oriented programmers this is 
the true spirit of the object oriented paradigm. Let us see how object passing 
in method call can be described semantically: 

~me t h o d P (obj Y) i s C~ = ((Loce ] ~e ! (method process), nil)\~p), 

where method process = ~C] [@o ~--~ %,] Y 

[~po~J) before done. 

Passing an object in a method call works very similar to the call-by-reference 
parameter mechanism for normal method calls. We simply rename the method 
calls of the formal parameter to method calls of the actual parameter. It should 
be mentioned that this mechanism does not allow for arbitrary assignment of 
objects among variables (which is also often considered to be part of the true 
spirit of the object oriented paradigm). This is left for future studies, but it 
is envisioned that an easy adaptation of assignment to program variables may 
facilitate this. 

Another phenomenon often connected with object oriented programming 
languages is the concept of inheritance. This is often considered the main struc- 
turing mechanism. We may describe this semantically as follows: 

[c 1 a s s Z i nhe  r i t s Z' i s D b o dy  C~ = ((Locz i ~z ! (class process), n i t ) \%)  

and 
class process = (Yz' ? x z' z z' z .(x [%~ ~ c%] [~ .  ~ ~] 

before ([D] [%vw-, ~zJ [7, ~--~Tzv] I [C ] ) \  VD). 
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This describes that the class Z inherits the methods and the thread of control 
of class Z'. All methods of Z' are renamed to methods of Z and the thread 
of control of Z' is sequentially composed with that of Z. It is easy to generalise 
this to multiple inheritance simply by sequentially composing each inheritance 
class. In some object oriented programming languages programmers are allowed 
to redefine inherited methods. This is easily obtained by restricting the c~ and 
7 channels of the redefined method from the inheritance class and redefining 
it in the declaration part of the class. 

This section represents a small step towards a semantic description of object- 
oriented programming in Plain CHOCS. Syntactically O is very similar to the 
core of POOL [-Ame87]. The main difference is that O contains one construct 
for creating an object and another one for starting it, whereas in POOL objects 
are started as soon as they are created. Furthermore method calls in POOL 
are only answered through an explicit command, whereas in O they are processed 
concurrently with the sequential part of the object. However, the two languages 
are rather different semantically since O has a copy semantics, where the code 
of the object is copied when assigned to an object variable. POOL has a reference 
semantics, where a reference to the object is copied when assigned to an object 
variable. This is very well illustrated by the semantics cast in the ~-Calculus 
for core POOL given in [Walgl] .  Through the translation of the ~-Calculus 
we may claim that we can use Walker's translation and obtain a Plain CHOCS 
semantics for core POOL. However, this would be rather unnatural. Studying 
the (very elegant) presentation of the POOL semantics in [Wal91] there are 
a few points, such as class definitions and method declarations, where the 
semantic description could benefit from using higher order processes. This seems 
to call for a notion where name passing can be mixed with process passing. 
This is provided by the recently developed Polyadic ~-Calculus [Mil91]. These 
prospects are left for future studies. 

6 Concluding remarks 

The presentation in this paper has focused on the theoretical aspects of introduc- 
ing process passing in a CCS like language. Higher order constructs arise in 
almost any branch of theoretical computer science, since they yield elegant and 
powerful abstraction techniques. In this paper and in [Tho89] we have studied 
how to extend CCS with processes as first class objects. We have seen that 
the operations of prefix, (nondeterministic) choice and parallel composition are 
equally fundamental and do not allow much variation. But there seems to be 
room for various constructs of the "restriction\renaming nature. In this paper 
we have followed the ideas of [EngNie86; MilParWa189]. We have described 
how a restriction operator with static scope could be introduced and how this 
calls for an interplay with the parallel operator. In [Tho89] we showed the 
usefulness of such an operator, together with a renaming operator, where both 
had a dynamic nature. 

Section 4 shows that the distinction between process passing and name pass- 
ing is more on the level of abstraction than on the level of expressive power. 
The translation from Plain CHOCS into Mobile Processes resembles an imple- 
mentation of a procedural imperative programming language in a more primitive 
language using Goto's. In the given translation the sending of the name plays 
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the r61e of the Goto  and the recursion construction resembles an activation 
stack (with all entries active). It is an interesting path to pursue for further 
research how CHOCS could act as a high level specification language and 
Mobile Processes as an implementation language. The equational theories on 
both levels open possibilities for program transformations on both the specifica- 
tion and on the implementation level. 

The study of Plain CHOCS as a metalanguage for the specification of pro- 
gramming languages has only just begun by the application of Plain CHOCS 
in giving a semantics to the object-oriented programming language O presented 
in Sect. 5. However, in this section we have seen that quite complex notions 
such as concurrent method invocations, object passing in method calls and 
inheritance can easily be described and investigated using Plain CHOCS. It 
is a major challenge to the theory to apply it to larger examples. 

In this paper and in [Tho89] we have taken the stand that the processes 
sent are inactive until they are received and put into use by the receiving process. 
The underlying idea behind this is that it is a process description, either the 
text as in [Tho89] or a semantic description as in this paper�9 A different view- 
point was taken by Kennaway and Sleep in [KenSle83]. They chose to send 
a running process (script) to describe an SKI-reduction algorithm in an Actor  
language. Unfortunately it is hard to see how to formalise this idea from the 
informal operational semantics they gave. An interesting idea may be found 
in [Bou89]. Here internal activity is allowed for the process to be sent. This 
could be described by the rule: 

p, ~ ~ p" 

a!p'.p ~ a ! p " . p  

In [Bou89] Boudol presents a translation of the 2-Calculus similar to the one 
given in [Tho89]. But the evaluation strategy becomes more "eager"  due to 
the above rule. This brings the reduction strategy closer to full /?-reduction, 
whereas the strategy in [Tho89] coincides with the Lazy-2-Calculus as described 
in [-Abr90]. In [Nie89] Nielson has a similar rule to the above in addition 
with the following rule: 

p _2~ p,, 

a! p'.p-L~ a! p'.p" 

Both these rules seem to violate the idea that the prefix operators are primitives 
for sequentiality. If one accepts to abandon this principle then the processes 
should be allowed external activity as well, but then it is hard to see what 
effect this will have on the equational theory. 

We have not embarked on a discussion of a theory where r-transitions are 
interpreted as unobservable. But we conjecture that an easy generalisation of 
the bisimulation predicate may yield a notion of observational equivalence. For  

technical reasons we would have to define a~x:- o-= ~ *  a?x since ~ _~ CPr 
x P r [ x ]  (intuitively C P r x [ C P r ~ C P r ] )  and it would not make sense 
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to write a? x ~ r : .= , ,  a?x ~*. We could define the output transitions as 

,._qsv~. = ~ ~, a~v' ~ ~* but this would introduce an unnecessary asymmetry. It 
is interesting to note that in [Wa188], where bisimulation and divergence is 
studied in the context of CCS, the equivalence relation generated using =~ is 
stronger than the one using ~ o -  In "dynamic"  CHOCS [Tho89] the observa- 
tional equivalence ~ does not enjoy the property of being a congruence with 
respect to the operators of CHOCS. As for CCS, it is the (nondeterministic) 
choice operator which gives the problem and this may be seen from the following 
counter example first presented in [Mil80]: ~.n i I~n i l  but a ! p . n i l + r . n i I @  
a [ p. nil + nil. We may obtain a congruence using techniques presented in [Mil80] 
by defining p ~ q  iff V C . C [ p ]  ~ C [ q ] ,  where C is a context. It is an interesting 
problem to study how to extend the theory presented here to a theory of observa- 
tional equivalence. 

Another major challenge is to establish a denotational theory. The operation- 
al modelling of input suggests that input should be modelled by function space 
D -o D, but the behaviour is also dependent on the set of bound names exported 
in scope extrusion, thus one suggestion for a denotation domain worth investi- 
gating is: 

D ~ p O [ S a e N  . . . .  [Names  ~ D] ---~ D +  ~aa N . . . .  Names  x D x D +  D], 

where pO is the Plotkin Power Domain with the empty set adjoined as defined 
in [-Abr91]. 

In the context of Plain CHOCS there is a very interesting variant of the 
applicative higher order bisimulation which deserves to be explored: 

Definition 6.1 A variant applicative higher order simulation R is a binary rela- 
tion on CPr such that whenever pRq and a e N a m e s  then: 

(i) Whenever p a.~ x ~ p,, then for all r E CPr there is some q', y such that q a? y ~ q, 
and p' [r/x] Rq' [r/y] 

(ii) Whenever p a~p;p,,  with B c ~ ( f n ( p ) u f n ( q ) ) = O ,  then q a!Bq;q '' for some 
q', q" with p' Rq'  and p" Rq" 

(iii) Whenever p ~ ~ p', then q ~ ~ q' for some q' with p' Rq'  

A relation R is a variant applicative higher order bisimulation if both it and 
its inverse are applicative higher order simulations. 

If there exists a variant applicative higher order bisimulation R containing 
(p, q) we write p Z ' q .  

This relation is obtained by commuting the quantifiers in the first clause 
of Definition 3.1. The relation -Z' is interesting since it is stronger than the 
applicative higher order bisimulation relation. A similar variation of strong 
ground bisimulation was suggested in [MilParWa189] and it was shown that 
in the context of Mobile Processes the variant relation is strictly stronger. It 
is an open question if the inclusion is strict in the context of Plain CHOCS. 
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Appendix A 

L e m m a  A.1 ( L e m m a  3.4) I f  R is an applicative higher order bisimuIation up to 
restriction then R ~= ~ .  

Proof. W e  show tha t  the re la t ion  R \ =  U R n  where  
n ~ o  

Ro=R 
R,+ I = {(p\b, q\b): (p, q)eR~, b~Names} 

is an  appl ica t ive  h igher  o rde r  b i s imula t ion .  
F i r s t  we show by induc t ion  on  n tha t  if pR, q and  c~ fn (p )u fn (q )  then 

{c/a} pR. {c/a} q. 
F o r  n = 0  this is immed ia t e  f rom the def ini t ion of  app l ica t ive  h igher  o rde r  

b i s imu la t ion  up  to restr ic t ion.  Suppose  n > 0  and  p \ b R ,  q \b  where  pRn_ 1 q 
and  c (~fn(p\b) u f n ( q \ b ) .  If  a = b then {c/a} ( p \ b ) -  p \ b R  \ q \b  =- {c/a} (q\b). If 
a =~ b then  {c/a} ( p \ b ) -  ({c/a} ({bl/b} p))\bl R \({c/a} ({bl/b} q))\bl - {c/a} (q\b). 
Next  we show by induc t ion  on n tha t  if pR~ q then 
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a ? x  ~ a ? y  q, , 
(i) Whenever  p ~ p ,  then q ~ for some q ,  y and  p' [r/x] R \q' [r/y] 

for all r e CPr 
(ii) Wheneve r  p a,Bp ~p,, with Bc~(fn(p)wfn(q))=O, then q a~"q~q" for 

some q', q" with p'R\q ' and p"R\q  '' 
(iii) Whenever  p ~ ~ p', then q ~ ~ q' for some q' and p' R \ q' 

n = 0  This case is immedia te  f rom the fact tha t  R o is an appl icat ive higher 
order  b is imula t ion  up to restr ict ion and  f rom the definit ion of R \. 

n > 0  Suppose  pR,  q where p=-pl \b  and q=-ql\b.  
a ? x  p r  a ? x  

1. If  p ~ this must  have  been inferred by the res-rule and  p l ~ P'I 

with a4=b and p' -p '~ \b .  Then  for some q'~, y we have  ql a?y ~q] and  

P'I [r/x] R \ q'a [ r /y]  for all re CPr. Then  q ~?y , qr= q'l\b and for all re CPr 
and some c(~fn(p ' l \b)u fn(q ' l \b)wfn(r )  we have  

p' [r/x] = (({c/b} p'~) [r/x])\cR\(({c/b} q'~)[r/x])\c-  q' [r/xl. 

2. Suppose  B ~ (fn(p) ~ fn(q) )= 0. If  p a ! ,p ,  p,, and this has been inferred 

by the res-rule then p~ "t'P~,p]' with a4=b and bq~Bwfn(p'l) and p'=-p'~ 
,'t a!Bq' l  ,,t and p"=p~\b .  So for some q'l, qz we have qa ' q l  and  p'~R\q'~ and 

p'; R\q~. Thus  q a!Bq' q,, with q'=-q'~ and q"-q~_\b and p'R\q r and 
p" R \ q". 
If  p "~'~P'~p" and this has been inferred by the open-rule  then p~ "~'~"~ p'; 
with a 4= b, B = B ' u  {c} and  b ~fn(frO and c (Efn (p~\b)~ B' and p ' - {c /b}  p'a 
and p"={c/b}p~.  So for some q'l, q'~ we have  ql a!~,q'~q,, and p'~R\q '~ 
and p';R\q';. Thus  q ,,~Bq' q,, with q'={c/b} q'~ and q"={c/b} q'~ and  
p 'R \q '  and p"R\q  ''. 
If p "~P',p" and this has been inferred by the non-s t ruct - ru le  then 

P a!~,p' p,, with B' ~ (fn(p') wfn(p")) = B ~ (fn(p') wfn(p")). So for some qr 

q" we have q a~,q' q, and p'R\q ' and p"R\q  ''. Thus  B' c~(fn(q')~fn(q")) 
= B ~ ( f n ( q ' ) ~ f n ( q " ) )  and q a!Bq, q,, and we a l ready k n o w  p'R\q ' and 
p"R\q". 

3. I f p  ~,p'  then p~ ~,p'~ and p'=p'~\b. Then  q~ ~ ,q'~ and  p'~R\q'~. 
T h u s q  ~ ~q'=q'~ and p'R \q'. [] 

Proposi t ion A.2 (Proposition 3.6) " is a congruence relation on processes (closed 
expressions). 

1. p[Ftl/2]Zp[Flz/X] ifY71ZFt2 and 2~_FV(p) 
2. a?x .p ,La?x .q  if p [ r /xJZq[r /x]  for allr 

3. a!p' .p~La!q' .q if  p,Lq and p',Lq' 

4. "c.pZz.q if p Z q  
5. p + p ' Z q + q '  if p Z q a n d p ' Z q '  
6. p[p',Lq]q' if p,Lq and p',Lq' 

7. p \ a , L q \ a  if p,Lq 
8. p[S],.Lq[S] if  p,.Lq. 
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Proof. 1. We prove this by showing that the relation ACR*, the reflexive and 
transitive closure of ACR, where 

ACR = {(p [(1~/2], p [(12/2]): p6Pr & 2 ~_ F V(p) & (1~ Z (12 & (1~ CPr}, 

is an applicative higher order bisimulation up to restriction. 
Note if q~ "Zq2 then (x[ql/xl,  x[q2/x])~ACR* and we write (ql, q2) ~ACR*. 
First we show a few useful lemmas about ACR and ACR*" 

Lemma A.3 I f  (P'I, p'~)eACR and (P'2, p'~)~ACR then (P'I [P'2, P'~IPJ) 6ACR 

Proof. Since (p'~,p~)eACR there exist P3, (1~, (11 and 2 ~ such that p'~ 
- P 3  [(11/2~l and p7 - Pa [(1~/2~] with FV(P3) ~ 21 and (11 Z (1~2. Also, since (Pl, P~) 
~ACR there exist P4, (1~, (122 and 2 ~ such that Pl = P~ [(12/22] and p'~ =-p4 [(122/22] 
with FV(p~)=Y~ 2 and (12 :,L(12. We may assume 2 ~ c~22=0 since if 21~x2=t=0 
we proceed by choosing 35 such that 35~(FV(p3)wFV(p4)w2aw2z)=O 
and we have pa[(1~/21]=(p3135/21])[(1~/35] by Proposition 2.5. Therefore 
we have P'z ]P~ -- (P3 F(11/2I])I(P4 [(12/~2])_ (P3 ]P~) [-(11 ~ (1~z/21 ~ )~21 and p'~lp'~ 
-(p3[(1~/21])[(p4[(1~/22])-(p3]p4)F(1~2 ~(12/~ 1 ~ 2  2] and (p'~ Ip'2,P'~ lp~)~ACR. 
(Note that if we have introduce a "new"  )5 it is because two or more occurrences 
of the same x~ refer to different q~'s after the transition.) []  

Lemma A.4 I f  (fit, p'~)eACR* and (P'2, p'~)eACR then (Pl IP'2, P'~ [p~)eACR* 

Proof. Since (p'~, p';)eACR* there is a sequence ql .-. q, such that (q~, q~+ 1)~/tCR 
for l < i < n  with P'~-ql and p'~-q,. Thus for each pair (qi, q~+I)~ACR we 
may apply Lemma A.3 and conclude (qilP'2, q~+ ~Ip~)eACR thus (p'~ [p~, P'~lP~) 
eACR*. [] 

Lemma A.5 I f  (P'x, Pl) ~ACR* and (P'2, p~)~ACR* then ([~ IP'2, p'~Ip'~)6ACR* 

Proof. " ' " * Since (P2, P2) EACR there is a sequence ql .-- q, such that (ql, qi+ 1)~ACR 
for l < i < n  with p'2=ql and p'd=q,. Thus for each pair (qi, qi+l)6ACR we 
may apply Lemma A.4 and conclude (P'llqi, P~]qi+Or thus 

! I t  tr  , (p'~]p2,pl]pz)~ACR. [] 

Lemma A.6 I f  (r', r")~ACR then (p~ [r'/z], P'I' [r"/z])~ACR. 

Proof. If (r',r")~ACR then r ' -ra[fh/2]  and r"==-rl[(12/~2] for some rl with 
FV(rx)~_2 and (11Z(12 for some closed (1i-Then p'1'[r'/z]--p';[rx[(11/Y]/z ] 
- (P'I' [rl/z]) [(11/2] and p'; [r"/z] - p'; Erl [(1S2]/z] -- (P7 [rl/z]) [-(12/~] since 
FV(p';)={z} and FV(r l )=2 we have FV(p'~(rl/z])=X and ((pT[r~/z])[(11/2], 
(p'; [rdy-I) [(1z/2])~ACR. Thus (p'; [r'/z], P7 [r"/z-I)EACR. [] 

Lemma A.7 I f  (r', r ' )~ACR* then (p'; [r'/z], p~ [r"/z])~ACR*. 

Proof. Since (r', r")~ACR* there is a sequence ql --. q, such that (qi, qi+I)~ACR 
for 1 < i < n  with r '=ql  and r " - q , .  Thus for each pair (ql, qi+~) ~ACR we may 
apply LemmaA.7  and conclude (p';[qi/z], p~[qi+lz])~ACR thus (p~[_r'/z~], 
p'~i[r"/z])eACR*. [] 

Lemma A.8 I f  (P'l, p'z)~ACR then (p'l\b, p'2\b)~ACR. 
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Proof. Since (P'I, p'2)EACR there exist P3, 41, q2 and 2 for each r such that 
p ' l -p3[ fh /2]  and ff2-=P3142/'2] with FV(p3)~_2 and qt 'Z42 and (p'l\b) 
- (p3\b) [fh/2] and (p'2\b) =- (p3\b) [42/i]  thus (p'~\b, p'2\b)~ACR. [] 

Lemma A.9 I f  (P'I, p'2)eACR* then (fit \b, p'a\b)~ACR*. 

Proof. Follows the pattern of the proof of Lemma A.7. [] 

We now return to the main proof. We only show that ACR* is an applicative 
higher order simulation up to restriction, symmetry of ACR* then yields the 
result. To see that ACR* is an applicative higher order simulation up to restric- 
tion we show that if (P l,  P2)~ACR then P i - P  F41/2~] and: 

(i) If b (~fn (p [41/3~1) k.)fn(p [42/2]) then {b/a} (p [qx/x]) ACR* {b/a} (p [q2/2]) 

(ii) Whenever p [41/2] o?x p,, then p [42/2] a?y, q, for some q', y and 
p' Jr/x] ACR* q' [r/y] for all re CPr 

(iii) Whenever p [41/2] a~Bp' p,, with B n (fn(p) w fn(q)) = O, then 

P[42/x] "~Bq'~ q" for some q', q" with p'ACR*q'  and p"ACR*q"  

(iv) Whenever p[gh/2] ~,p', then P[42/2] ~,q '  for some q' and either 
p' ACR* q' or for some p", q" and b: p' =- p" \b ,  q' - q " \b  and p" ACR* q". 

If (p ,q)sACR* then there is a sequence Pl . . -P,  such that (p, p l )EACR, 
(Pi, Pi § 1) ~ ACR for 1 < i < n and (Pn, q) ~ ACR. The result then follows by induc- 
tion on the length of the transitive sequence Pl ..- P, of ACR*. 

First (i) is easily proved by structural induction on p using Lemma 3.5 in 
the case p -  y. 

Next we show (ii)-(iv) simultaneously. We proceed by induction on the length 
of the inference used to establish the transitions of p [q l /x ]  and cases of the 
structure of p. We only need to consider transitions inferred by use of the struc- 
tural rules since we may transform any derivation of a transition into an equiva- 

lent one where we use the non-struct-rule exactly once after each application 
of a structural rule. 
p -  nil Trivial since p [4i/2] ~ .  
p - a ? y . p l  Assume yd~2 (otherwise use e-conversion on y). Then p[4i/x] 

- a?y.(pa [qi/2]) and p [41/x] a?, Pl [4i/X]. Since FV(pl)_~ (2 w {y}) and 
y r 2 we have 

(Pl [41/2])Jr/y] - P l  [41, r/if, y] ACR* Pl [42, r/2, y] - ( p l  [42/2])[r/y] 

for all r~CPr, since r Z r  and 4~ are closed. 

P =- a!pl.P2 Then p [4i/2] ~!~ {~/~1) (P2 [4i/X]) 
and P2 [41/2] ACR*p2 [42/2] and Pl [gh/2] ACR*pl  [42/2] 

p - z . p ~  An argument similar to the argument given in the case above yields 
this case. 

P=-Pl+P2 I f p [ q l / 2 ]  r , p ,  then 

either p1[-41/2] r ,p, by a shorter inference. There are three cases 
depending on the structure of F. We show the case when F = a ? x :  
By induction P1142/2] ~?:'p" and p '[r /x]ACR*p"[r /z]  for all 
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r eCPr.  By the operational semantics for choice we have 
(P~ +P2)[02/2] ":5 p" which is a matching move. 

or P2 1-772/2] F p, and we may argue as above. 

P=-PlIP2 IfP[771/2] r~p, then 

either PI [771/2] r P'I by a shorter inference and p ' -P ' I  ]P2 [771/X] - There 
are three cases depending on the structure of F: 

F = a ? x  Then by induction P11-612/3~] a ? z  , ,  P'I' ---~Pl and (P'I [r/x], Jr~z]) 
eACR* for all re CPr. Then by the operational semantics for paral- 
lel we have (p~ [ p2)[-772/3~] ~ 091 [772/2])1(p2 [q2/2"1) "?~, P'~lP21772/2]. We 
have (/)'1 I P2 [772/f]) Jr~x] =- p'a [r/x] IP2 [77~/2] and (P'I' ] P2 [772/2]) Jr~z] 
=-p~ [r/z] [P2 [772/2] for each reCPr by Proposition 2.5 since r and 
ql, and q{ are all closed. Since (P'I Jr~x], p'~[r/z])eACR* for all 
re  CPr and P2 [772/2], P2 [77~/2] e A CR* we may apply Lemma A.5 
and conclude ((Pl ]P2 [772/2]) [r/x], (P't'lP2 [qz/f])  [r/z]) e ACR* for 
all re CPr. 

F = a !~ p' Then B c~fn (pa [-77~/2]) = 0. By induction p~ [772/2] ,~,v'; P7 
with (p',p")eACR* and (P'I,P'~)eACR* and Bc~(fn(p~ [77~/2]) 
wfn(Pl  [772/2]))=0. Thus B ~fn(p2  [772/2])=0 and by the opera- 
tional semantics for parallel p~ [q2/2] IP2 [~/2]  ~"P"~ P'~IP2 [772/2]. 

-22  [77~/2]eACR* we may Since (p'~,p'~)eACR* and P2[q2/ ], P2 
apply LemmaA.5  and conclude ((pilp2177~/2]), (P';[p2177~/2])) 
eACR*.  

F = z and we may argue as above. 

or P2 [77~/2] r p, and we may argue as above. 

a ! B r '  t or F = r  and w.l.o.g. P11771/x] "?X~p'x and P21771/X] ~P2 by shorter 
inferences and p'-(p'l  [r'/x] [p'2)\B and B ~fn(p'l)=O. By induction 

p2 [772/2]  ~,~r,,> . . . . .  , P2 with (r ' , r")eACR* and (P2,P2)eACR and 
PI [772/2] ~?z P'I' with (P'I [r/x], P'i [r/z])eACR* for all reCPr. By prop- 
osition 2.7 we may assume that B~fn(p'~)=O. By the operational 
semantics for parallel (Pl ]P2)[772/2] ~> (p'; [r"/z] [p'~)\B. To see that 

~. t t  t !  t !  p'a[r'/x]Ip'zACR pl[r /z]lp2 and thus showing that ACR* is an 
applicative higher order bisimulation up to restriction we observe 
that (p'~ Jr~x], p~[r/z])eACR* for all reCPr, in particular this is true 
for r'. By Lemma A.7 we have p~ It'~z] ACR*p~ [r"/z] since r'ACR*r". 
Thus (P'I [r'/x], p~[r"/z])eACR*. Since also (p'2,p~)eACR* we may 

t t t  t~ I t  :~ apply Lemma A.5 and conclude (P'I [r'/x] [P2, P l  [ r  /z][pz)eACR . 

p =- p~Lb Then p [77i/2] - (({dJb} p~) [77~/2])\d~ for some d~ (~fn(p ~\b) wfn(770. By 
(i) we may assume b=dl=d2r If 
p[qa/2] r ~p,, then if 

F = a ? x  Then Pl [771/2] "?~P'I by a shorter inference and p'=-p'l\b and 
a =# b. By induction p~ [772/2] o:~ P'z and (p'~ [r/x], P'2 [r/z])e ACR* for 
all reCPr. By the operational semantics for restriction 
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(pa\b) [q2/2]- ,2= p'2\b. Since (p'~ [r/x], P'2 [r/z])eACR* for all rmCPr 
we may apply Lemma A.9 and conclude ((p'~\b) [r/x], 
(p'~\b) [r/z])eACR* assuming r(~fn(r) (otherwise use ~-conversion). 

Y = a !~p' Then 

either Pl [Ch/2] ~ P~ by a shorter inference and p' =- p], p" ~ p'[\b, b + a, 
bCB, bCfn(p' O. Then by induction p~[c~2/2 ] ~P~,p~ with 
(p], p'z)~ACR* and (p'[, p'~)~ACR* and B c~ (fn(pl [c~/2]) 
wfn(p~[E12/'2]))=O. Then by the res-rule we have (pl[~tz/~Y])\b 
a~,p~ p2\b and we may  argue as above that (p]'\b, p~\b)eACR*.  

or Pl [Eh/2] ":"'Pi p~ by a shorter inference and p ' -  {d/b} p'~, p"=- {d/b} p'~', 
b *  a, b(~B', b~fn(p'~), B = B' u {d}, dr wfn((p~ [~jff])\b).  Then by 

induction p, [c~2/2 ] "~'P~, p~ with (p'~, p'2)eACR* and (p'~, p'~)eACR* 
and B' c~ (fn (Pl [q 1/2]) u fn  (Pl [~2/2])) = 0. If b e fn  (P'2) n fn  (p'~) then 
by the open-rule we have (pt[Eh/2])\b ,~,{e/b}vl {d/b} pj and by (i) 
we have ({d/b} p'~, {d/b} p'2)eACR* and ({d/b} p'~, {d/b} p~)eACR*. 
If b~fn(p'2) c~fn(p'~) then by the non-struct-rule we have 
(Pl [ g12/2]) \ b ~ p~ and P'2 - { d/b } P'2 and p'~ - { d/b } p'~ and by (i) we 
have ({d/b} p'~, {d/b} p'2)eACR* and ({d/b} p~, {d/b} p~)eACR*. 

F = z and we may argue as above. 

P -  Pl [S] If p [01/2] - (p~ [c~/2]) [S] r p,, then if 

F= a?x we have p~ [ ~ / ~ ]  b?5 p,[ by a shorter inference and a =  S(b) and 

p " -  p'~' IS]. By induction p~ [c/2/x] ~75 p~ and P'I [r/x] ACR*p~ [r/z] 
for all r~CPr. Then (px[Eh/Y])[S] "75p2[S ] with (p~[r/x])[S] 
- (p]' IS]) [r/x] ACR* (p'~ IS]) Jr/z] - (p'~ [r/z]) IS] for all r ~ CPr. 

/ b B ~ I  I,' r = a ! ~ p  we have p ~ [ g t l / 2 ] ~ p a  by a shorter inference and a=S(b) 
and B c~ (Dom(S) ~ Im(S)) = 0 and p' = p', and p" ~ p'~ IS]. By induction 

--  - -  b .  B p ' 2  I t  t :~ ! I t  ~ t t  Pl [q2/x] > P2 and p, ACR P2 and Pl ACR P2. Then 
a ! ~ p ' 2  I I  r - o ~  

(Pl [c~/2])I-S] ~ P2 [_a3 with p'~ ACR* p'~ and p;' IS] ACR* p~ [S]. 
F = z this case is similar to the above. 

p=-y 

. 

By assumption FV(p)~_ ,2 thus 2 = (y) and if p [c~1/2]----ql r ~ q, then if 

F = a ? x  we have p[E12/2]-q2 aT~,q' 2 for some q~ and z. Since qlZq2  
we have (q'l[r/x], q'2[r/z])~Z for all r ~ C P r  and thus 
(ql [~/x], q2 [r/z])eACR for all reCPr 

F=a!Bp' we have p[~2/2] - q 2  at,o~' q~ for some q~ and q~. Since ql Zq2 
we have (q'l,q~)~" and (q';,q~)E" and thus (q'l,q'2)eACR* and 

t !  l !  (ql, q2) ~ACR 
Y = z A similar argument  as above applies. 

Thus in each case we have a matching move for p [c~2/2 ]. 

This is proved by showing that the relation R a = R vo Z ,  where: 

R = {(a?x.p, a? x. q): rV(p) = FV(q) c_ {x} & Vre CPr. p [r/x] Z q [r/x]} 
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p' Z q' and 

4. follows 

5. follows 
p' Zq '  and 

6. follows 
and x # y. 

is an applicative higher order bisimulation. Note  that the relation R~ consists 
of two parts; one part  covers the structure we are interested in and the second 
component  is a kind of closure to cover the processes sent and received. The 
second component  is necessary since the processes sent and received do not 
necessarily have the structure of the first part. 

That  the above relation is indeed an applicative higher order bisimulation 
is easily established. Assume (p, q)eR~. Then 

either p Z q  and we are done since if p r p, then q r '  q, for some q' ,F ' .  If  
F = a?x then F ' =  a?y and for all re CPr we have (p' [r/x], q' [r/y])e Z ~ R 1 . 

If F=a!Bp"  then F'=a!Bq" and we have Bc~(fn(p)ufn(q))=O and 
(p" ,q" ) /~_R  1 and (p',q')Z~_R~. If F = z  then F ' = z  and we have 
(p', q')Z ~_R~. 

or p - a ? x . p '  and q - a ? x . q ' .  If a?x.p'  r p, then F=a?x .  Then a?x.q, a?x q, 
and by assumption p'[r /x]Zq '[r /x]  for all reCPr  which implies 
(p' [r/x], q' [r/x])e R 1 . 

3. follows from ((a!x.y)[(p,p')/(x,y)], (a!x.y)[(q,q')/(x,y)])eACR if p Z q  and 
x+y .  
from ((z. x) [p/x], (z. x) [q/x]) e A C R  if p .Z q. 

from ((x + y) [(p, p')/(x, y)], (x + y) [-(q, q')/(x, y)]) e ACR if p .Z q and 
x # y .  
from ((xly)[(p,p')/(x, y)], (xly)[(q, q')/(x, y)])eACR if p Z q  and p' Zq '  

7. follows from ( x [p /x] , x [q /x] )eACR if p Z q  and the fact that ACR* is an 
applicative bisimulation up to restriction. 

8. follows from ((x[Sl)[p/x], (x[S])[q/x])eACR if p,Lq. [] 

Proposition A.10 (Proposition 3.14) pa\alp2 Z (Pl l P2)\ a / f  a(~fn(p2) 

Proof. This proposit ion is proved by showing that the relation 

R = {(pl \a]pz,(pl  Ipa)\a):  pieCPr, a(~fn(pa) ~ I d  

is an applicative higher order bisimulation up to Z and restriction. To see 

this we show that when (p, q)eR and p r ~p, then qr--2~q ' with a move which 
satisfies the conditions of applicative higher order bisimulation up to .Z and 
restriction. If (p, q)eId  the case is obvious so assume that P - p I \ a l p 2  and q 
---(Pl IP2)\ a and a(~fn(p2). 

If  p r ,  p, this transition must have been inferred in the following way: 

either this has been inferred from the par-rule and P2 r ~p~ and p'=-pl\alp~.  
There are three cases: 
F = b ? x  then b4=a since ar Then by the par-rule and the res-rule 

we have (p 1 ]P2)\ a b?x (p 1 }p'~)\a and for all r e CPr we have (p 1 \ a  ]p~) [r/x] 
,L ({d/a} p 1)\b]p~ Jr~x] R ({d/a} P l ]P'~ [r/x])\d,L ((Pl [p~)\a) [r/x] for 
some dCfn(pl) ~ fn(p2) ~ fn(r). 
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F=b!~p'2 then b4=a and we may assume Bc~({a} ~ f n ( p l ) ) = 0 .  Then by the 
par-rule and the res-rule we have (pllpa)\a bBP~-,(pllp~)\a which is a 
matching move. 

F = ~ and we may argue as in the above case. 

or this transition has been inferred by the par-rule and pl\arS-~p'~ and this 

has been inferred from the res-rule and Pl r-L+P'; ' and P'=-P'llP2. There are 
three cases: 
F=b?x then p~-p~ ' \a  and b+-a. Then by the par-rule and the res-rule 

we have (Pl I p2) \a  b?~ (p,;,[p2)\a. This is a matching move since for all 
r e  CPr  we have 
(p'~"\a[p2) [r/x] Z (({d/a} p'~") [r/x])\blP2 R (((d/a} p'~') [r/x]lp2)\d 
Z ((p';'lp2)\a) [r/x] for some d (~fn(pl) wfn(p2) w fn  (r). 

F=b!Bp'I then Pl b:Bp~"~ p~,, and b4=a and 
either ag~fn(p'~") in which case P'I-~F~" and p~-p'~'\a. Then by the par- 
rule and the res-rule we have (PlIP2)\a bt~P'~'(P~'IP2)\a which is a 
matching move. 
or aefn(p'l'") in which case P'I - P'I'" and p7 - p~' and B = B' w {a} for some 
B' with a(~B'. We may  assume B'c~fn(p2)=O. Then by the par-rule and 
the open-rule we have (pl IP2)\a b~Bp'~ p~,tp2 which is a matching move. 

F = z and we may argue as in the above case. 
or F = r  and the transition has been inferred by the corn-close-rule and 

pl \a  b?~ , p,l\ a which has been inferred by the res-rule and Pl b'-~-~P'l with 

b4=a and P2 b:Bplp,~ and p'-((p't\a)[p'2/x]lp'~)\B. We may assume 
Bwfn(pO=O and a(~fn(p'2). Thus by the corn-close-rule and the res-rule 
we may infer that (p~lp2)\a ~ ~ (p'~ [p'2/x]lp~)\B\a which is a matching move 
since (I)'1 [p2/x][p~)\B\a Z (p'~ [p'2/x]lp~)\a\B by Proposit ion 3.8 and 
((p'~ \a) [p'2/x]] p~) R (P'I [p'2/x] ]p~)\a. 

or F=z  and the transition has been inferred by the corn-close-rule and 

pl \a  b~pl  P'i which has been inferred by the res-rule and P1 b!~i";p,,, and 
b+a and aq~fn(p~") and p'~-p';" and p';=-p';'\a and P2 ~?~'P'~ and p' 
-(p'~'[p~[p't/x])\B. We assume Bc)fn(p~)=O. Then by the corn-close-rule 

and the res-rule we have (p~]p2)\a ~ , (P'I'[PJ [p~"/x])\B\a which is a match- 
ing move since (p';'lp~ [p]'"/x])\B\a,L (P'['IP~ [p'ff'/x])\a\B by Proposit ion 
3.8 and p~ ]p~ [p'~/x] R(p';' [p~ [p~"/x])\a. 

or F = r  and the transition has been inferred by the corn-close-rule and 
p~\a b!~v~ p,, which has been inferred by the open-rule and p~ b~,pi"; p],, and 
b4=a and a~fn(p'~")cafn(p'~") and Pl =-P'~" and p~=p'~' and B=B'w{a} for 

some B' with a(~B' and P2 b?x>p,~ and p'--(p'~]p~[p'~/x])\B. We assume 
B'c~fn(p'~)=O. Then by the com-close-rule and the res-rule we have 

(pl]p2)\a ~,(p';'lp'~[p';"/x])\B'\a which is a matching move since 
(p'ff[p~ [p'ff'/x])\B'\a ,L (P't"IP'~ [p't'"/x])\B by Proposit ion 3.8 and 
p~lp'~ [p'~/x] ep';'lp'~ [p'~"/x]. 

We omit the proof  for the cases showing R-~ is an applicative higher order 
simulation up to :,L and restriction. The arguments in these cases are very 
similar to the above and follow almost from symmetry. []  
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Proposition A.11 (Proposition 3.15) 

p l nil ,L p 

Pl Ip2,Lp21pl 

Pl I(P21P3)~L(Pl IPz)IP3- 

Proof. This proposition is proved by showing that the first two of the following 
relations are applicative higher order bisimulations and that the last relation 
is an applicative higher order bisimulation up to :,L and restriction: 

R l = {(P I nil, p): p ~ CPr} w I d 

R2 = {(Pl I P2, P2 I Pl): Pie CPr} u I d 

R3 = {(p, ](P2 IP3), (Pl IP2)[P3): pi@CPr} u Id. 

The I d component in each of the above relations is necessary to cover the 
cases when processes are communicated since these processes might not have 
the structure of the first part of the relation. To see that the above relations 
are indeed applicative higher order bisimulations respectively applicative higher 
order bisimulations up to ,Z and restriction we analyse each relation in turn. 
(The Id  part of the above relations is obvious.) 

R1 Any transitions of p fnil must have been inferred from a transition of p 
and the rule for parallel composition since nil has no transitions, thus p 
has a matching move for each move of p lnil and vice versa. 

R 2 This is easily established by noting that both rules (par and corn-close) 
involving the parallel operator are symmetric. 

R 3 The proof that this relation is an applicative higher order bisimulation up 
to .Z and restriction is surprisingly complicated. This is due to the fact  
that the communication of processes may introduce restrictions and thus 
alter the structure of the term. To illustrate this point we show the case 

when PlI(Pz[P3)_2~ p, and this transition has been inferred by the corn-close- 

rule and Pl b~X~P'l and (p21p3)-bt"P'~p ''' and this is due to an application 
b ! B P t t  t 

of the par-rule and pz------~pz with Bc~fn(p3)=O and P'"=P'zlP3 and p '=  

(p'~ [p"/x] [(p~ I p3))\B. Then by the corn-close-rule pl ]Pz ~ ' (P'~ [p'/x] [p'z)\B 

and by the par-rule (Pl i P2)IP3-!--~(P'1 [p"/x] I p'z)\Blp 3. Since B c~fn(p3)=O 
we can apply Proposition 3.8 and (p'~ [p'/x]lp'z)\BIp3 Z ((p'~ [p"/x]lp'2)l P3)LB 
and we have established a matching move which satisfies the conditions 
of an applicative higher order bisimulation up to Z and restriction. There 
are five other similar cases: one when Pa does an output transition and 
P2 does an input transition, two when P l and P3 communicate and two 
when P2 and P3 communicate. These cases follow the same pattern of argu- 
ment as above. The only three remaining cases are when either of the three 
components does a transition on its own but in each case a matching move 
can be established by two applications of the par-rule. [] 
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Proposition A.12 (Proposition 3.18). Let 2 = {x~ ... x,}, ~ = {Y l-.-Yn} and ~ ~ ~ ~: 0 
and Ajc~ fn(q)=O and Bt~  fn(p)=O then 

if p=~iai?xi .p i+2jaj IAjp) .p j  
and q=Xkbk?Yk.qk+Zzbl!B~q'z.qz 

then p I q Z 2i ai? xi. (Pi I q) + Sv aj!A~ P). (Pyl q) 
+ S,k bg ? yk.(plq~) + Zt bt[B~ q'z.(Plq~) 
-~- Z(i,1)r =b,} 75. (Pi [ q'l/Xi] l qz) \ BI 
+ Z(j,k)~(;,k):,j =b,~ z. (Pj[qk [p)/yk])\A: 

where ZiFi.pi describes the sum Fl.pl + ... +F~.p, when n > 0  and nil if n = 0 ,  
knowing this notation is unambiguous because of Proposition 3.7. 

Proof. Assume the premises of the proposition. Let rhs denote the right hand 
side of the above equation. Let 

R =  {(Plq, rhs)} u Id. 

Then R is an applicative higher order bisimulation. For  each transition of P lq 
we may find a matching transition of rhs and vice versa. 

If p l q ~ r then 

either p r p, and r - p ' l q .  If F = a i ? x  i then p'=p~ for some i and rhs r p~lq 
which is a matching move since xi4FV(q ). If F=aj!Aj p) then p ' - p j  for some 

j and r hs r > p2] q which is a matching move. 

or q r > q, and r--plq' .  Then similar arguments as above apply. 
or F = z. Then 

ai? xi) bl !B I qi> 
either p Pi and q ql and r-(pi[q 'z /xJlql) \B z and ai=bt. Then 

rhs ~ > r which is a matching move. 

ajtAjP'j 
or q b~?x~ qk and p > pj and r--(pjlqk[p)/yk]lqk)\A ~ and a~=bk. Again 

rhs ~ , r which is a matching move. 

If rhs  r r then a similar case analysis as above will yield matching moves 
for plq. [] 

A p p e n d i x  B 

We briefly review the 7r-Calculus as presented in [MilParWa189]. This calculus 
is a description tool for Mobile Processes with link passing as a means for 
expressing process networks with dynamically changing interconnection struc- 
ture. 

Processes are built from the following range of constructs: The inactive pro- 
cess 0, three types of prefixes; input prefix x(y), output  prefix )~y and z prefix, 
(non-deterministic) choice, parallel composition, restriction, match and recur- 
sion. 

This is summarised by the syntax of the 7z-Calculus: 

P : : = O l x ( z ) . P I ~ y . P I z . P I P + P ' ]  PIP' I ( y ) P l [ x = y l P l r e e  X . P [ X .  
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Here X~Var (a set of variables to be bound by the recursion construct). In 
[-MilParWa189] agent identifiers are used to express recursion, but we prefer 
the equivalent but more explicit recursion construct above. We shall use the 
notation ~(y).P as shorthand for (y)(Yy.P) for y#:x. This construct creates 
a new name and sends it out immediately. 

In the 7c-Calculus the communicable values are links or rather names of 
links, thus x, y above belong to the set Names of port  names. The constructs 
of input prefix and restriction bind port  names in their scope. The set of free 
names of a process is denoted by fn(P), the set of bound names of a process 
is denoted by b n(P) and the set of names of a process is n(P)= b n(P)w fn(P). 

We may substitute one name for another  and name substitution in the To- 
Calculus follows the pat tern of name substitution in Plain CHOCS. We have 
to take care not to bind free names by input prefix or restriction. If the names 
coincide we do e-conversion: 

{z'/z}(x(y).P)-{z'/z} x(y').({z'/z}({y'/y} P)) where y'(~fn((y)P)u{z'} 
{z'/z}((y)P)-(y')({z'/z}({y'/y} P)) where y'(~fn((y)P)w{z'}. 

Free and bound (recursion) variables are defined as usual and substitution of 
processes is the usual one taking care of not accidentally binding free names 
by restriction and free recursion variables by the recursion construct. 

The dynamic behaviour of processes is defined in terms of an operational 
semantics given as a labelled transition system. Processes may evolve by perform- 
ing actions of the following kind: input actions x(y), free output  actions ciy, 
actions and bound output  actions 2(y). Actions are ranged over by ~. A name 
occurring in brackets in an action is said to be a bound name and the set 
of bound names of an action is denoted by bn(~), fn(~) denotes the set of 
free names of an action and n(c 0 denotes the set of all names of an action. 
c(~) denotes x in ct=x(y) and ~=2(y) .  

In the following we give the operational semantics for the 7c-Calculus as 
presented in [MilParWa189]. Formally the operational semantics is given as 
the smallest relation ~ satisfying the following rules: 

Table 4. Opera t iona l  semant ics  for the 7r-Calculus. Rules  involving the  
b inary  opera tors  + and  [ addi t ional ly  have  symmet r i c  forms 

T A U - A C T :  z . P  ~ , P 

O U T P U T - A C T :  2 y . P  eY > P 

I N P U T - A C T  : x (z). P ~(w), {w/z} P, w (~fn ((z) P)  

p ~ p '  
S U M :  

p + Q  ~ , p ,  

p ~ p '  
M A T C H :  

[ x = x ] P  ~ , P '  

R E C :  P [ r e o  X . P / X ]  ~ ~ P' 

r e c X . P  ~ ~P' 

P ~ ' P '  , b n ( e ) ~ f n ( Q ) = O  P A R  : 
PIQ ~ ,P'IQ 
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Table 1 (continued) 

COM: 

CLOSE: 

RES: 

OPEN: 

p ~r ,p,Q x(,),Q, 

P[Q ~ 'P'IQ'{y/z} 

p x(~, p, Q ~(wl, Q, 

PIQ ~ ,(w)(P'IQ') 

P ~ ,P" ,y~n(a) 

(y) P ~ , (y) p, 

P XY,P' ,y:#x,wr 

(y) n ~'~, {w/y}n' 
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To compare  terms in the re-Calculus we use a generalisation of the notion 
of bisimulation called strong ground bisimulation: 

Definition B.1 A strong ground simulation R is a binary relation on CPr such 
that whenever (P, Q)eR then: 

(i) Whenever P~('),P' and y(~n(P)wn(Q), then Q X(y~Q, for some Q' and 
({w/y} P', {w/y} Q')~R for all w e N a m e s  

(ii) Whenever P ~Y, P', then Q xy Q, for some Q' and P'RQ' 

(iii) Whenever P ~tY),P' and y(~(n(P)un(Q)), then Q ~tr) Q, for some Q' with 
P'RQ' 

(iv) Whenever P ~ ~ P', then Q ~ , Q' for some Q' with P'RQ' 

A relation R is a strong ground bisimulation if both it and its inverse are 
strong ground simulations. Two processes P and Q are said to be strong ground 
bisimulation equivalent iff there exists a strong ground bisimulation R containing 
(P, Q). In this case we write P ~ Q. 

In [MilParWa189] the relation ~c is shown to be an equivalence relation 
and it has the expected congruence properties with respect to the constructs 
of the ~-Calculus. It also satisfies a set of expected properties. 

P +O,~ P 

P + P , ~ P  
p + Q . c Q + p  

P + ( Q + R ) , c ( P + Q ) + R  

(x) n .c  n if x~ fn (n)  
(x) (y) P,~ (y) (x) n 

(x) (P + O) ~ (x) P + (x) Q 
(x) c~. P-c  a. (x) P if x q~ n (a) 

(x) a.P ~O if x=c(cQ 

PIO~P 
P[Q,~QIP 

(x) (PI Q)-c (x) P I Q if x ~fn (Q) 
P](Q[R).c(P[Q)[R. 
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The  relat ion ~ is however  not  preserved by arb i t ra ry  name  substi tutions.  A 
not ion  of s t rong bis imulat ion equivalence ~ is in t roduced  in [MilParWa189] 
as P ~ Q  iff {a/b} P ~ { a / b }  Q for all name  subst i tut ions {a/b}. We shall not  
concern ourselves with this relat ion since the s t rong g round  bis imula t ion  relat ion 
suffices for the presenta t ion  in this paper.  

Before turning to t ransla t ions  between the ~z-Calculus and Plain C H O C S  
we present  a useful const ruct  and show a few facts abou t  this. We shall need 
communica t ions  which carry  no parameters .  This could be model led  by presup-  
posing a special name  s which is never  bound  and we write 2 . P  in place of  
2 ~ . P  and  x . P  in Place o f x ( y ) . P  where y is not  free in P. 

Definition B.2 Let 

b ~ P = r e e  X . b . ( P I X )  

where br  and X ~FV(P) .  

This cons t ruc t ion  is in tended to provide  copies of  P when tr iggered by E act ions 
e.g.: 

(b)(b.nill6.niI] b ~  P) ~ , ~ , (b)(nil l nil lP I Pl b ~  P),.~ P [ P. 

This const ruct  satisfies several interesting propert ies" 

L e m m a  B.3 ( L e m m a  4.2) I f  b~n(Q) then 

(b) (P1 I b ~ Q) + (b) (P21 b ~ Q) ,~ (b) ((P~ + P2)[ b ~ (2) 

Proof. Let L H S  denote  the left hand  side and R H S  denote  the right hand  
side of the above  equat ion.  Firs t  note  tha t  the P~'s are al lowed to tr igger b ~ Q, 
but  we assume tha t  only  b ~ Q b Q Ib ~ Q. We use b as a pr ivate  name  
in bo th  s u m m a n d s  of L H S  and in RHS,  this is convenient  and ob ta inab le  by 
a suitable e -convers ion  on the pr ivate  names.  

To  prove  the l e m m a  we show that  the relat ion:  

R = {(LHS, RHS)}  ~ I d  

is a s t rong g round  bisimulat ion.  

To  see this observe that  if L H S  ~ > R then 

either (b)(P1 ]b ~ Q) ~ > R and this is because 

either P~ ~ , P~' with ct 4= b-and R = (b)(P[ E b ~ Q). Then  R H S  ~ , (b)(P~' ] b ~ Q) 
which is a ma tch ing  move.  

or P~ b, PI' with ct = z and  R = (b) (P( ]Q] b ~ Q). Then  

R H S  ~ , ( b ) ( P ; I Q I b ~ Q )  which is a ma tch ing  move.  

or (b)(P2 [b ~ Q) ~ , R and an a rgumen t  as above  applies. 

Also if R H S  ~ R then 
either P1 ~' '  PI' with 
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either ~' = ~ =# ~ and  R -= (b) (PI' t b ~ Q). Then  LHS ~, (b) (P~ I b ~ Q) which is 
a ma tch ing  move.  

or e' = b and  ~ = z and  R - (b) (P~' I QI b ~ Q). Then  LHS ~, (b) (P[ ]QI b ~ Q) 
which is a ma tch ing  move.  

or P2 ~'> PJ and  an a rgumen t  as above  applies. 

We have  abused the no ta t ion  slightly when c~ 4:b-in the above  p r o o f  since we 
should analyse each case of  c~: a(x), ?tb, d(c) or z. We  shall no t  do so since 
it is not  hard  (only elaborate)  and each case follows the general  pat tern.  [ ]  

Lemma B.4 (Lemma 4.3) I f  P/ / b , for all derivatives P/ of Pi, ie{1,2} and 
b~fn(Q) then 

(b) (P~ I b ~ (2)1 (b) (P2 ] b ~ Q) .~ (b)((/'l I P2)I b ~ Q). 

Proof. Let LHS denote  the left hand  side and  RHS denote  the right hand  
side of the above  equat ion.  To  p rove  the l e m m a  we show tha t  the relat ion:  

R = {(LHS, RHS)} 

is a s t rong g round  bis imulat ion.  

T o  see this observe  tha t  if LHS ~ , R then 

either (b)(P, I b ~ Q) ~ > R'  and  R ~ R'  I(b)(P2 h b ==> (2) and  this is because 

either P1 ~ ' P [  with ~=t=E and R' - (b ) (P~Ib~Q) .  Then  

RHS ~' ' (b)(P; IP21 b ~ Q) which is a ma tch ing  move.  

or P1 ~, P,' with ~ = ~ and  R'  --= (b) (P[ I Q] b ~ Q). Then  

RHS ~, (b) (P; I P2 I QI b ~ Q) which is a ma tch ing  move.  

or (b)(P21b ~ Q) ~, R'  and an a rgumen t  as above  applies. 

or P1 ~ 'PI '  and  P2 ~ 'P~ and c~=r and R-(b)(P21b~Q)I(b)(P~Ib~Q),  where 
is an act ion with oppos i te  polar i ty  of  ~ [MilParWa189].  Then  

RHS ~ , (b) (P; leVI b =~ (2) which is a ma tch ing  move.  

Also if RHS ~ ~ R we m a y  argue  in a similar way as above.  [ ]  

Lemma B.5 (Lemma 4.4) I f  Pi' / b > for all derivatives P~' of Pi, i~{1, 2} and 
br fn(Q) and cr fn (P  0 w fn(P2)u fn(Q) then 

(e :=> (b) (Pt I b ~ Q))I (b) (P21 b ~ Q) ~ (b) (c =*- P, l P21 b ~ Q) 

Proof. Let  LHS denote  the left hand  side and RHS denote  the right hand  
side of  the above  equat ion.  To  p rove  the l e m m a  we show tha t  the relat ion:  

R = {(LHS, RHS)} 

is a s t rong g round  bis imula t ion  up to ~ (strong g round  bis imula t ion  up to 
is defined similarly to the definit ion of b is imula t ion  up to ~ in [Mi189]). 
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To see this observe that  if LHS ~ ~ R then 

e i ther  e = c a n d  R --- (b) (P~ I b ~ Q)[(c => (b)(P~ I b ~ Q))I (b)(P2 I b ~ Q) 
:~ (c ~ (b) (PI ] b ~ Q))I (b) (P1 [P2 [ b ~ Q) which follows by Lemma 4.3. Then 
RHS ~ , (b) (P1 ] c ~ P~ I P21 b ~ Q) which is a matching move. 

or ~ # c  and (b) (Pz lb~Q)-5~R ' and R - c ~ ( b ) ( P 1 ,  b~Q)IR '  and this is because 
either P2 ~'' P~ with c~ = c( :t: b- and R' - (b) (P~ [ b ~ Q). Then 
RHS ~ ( b ) ( c ~ P ~  I P~ I b ~  Q) which is a matching move. 
or  Pz ~> Pz' with ~ = ~ and R' - (b) (P2 ]Q[ b ~ Q). Then 
RHS ~ (b) (c ~ P1 [ Pz I Q I b ~ Q) which is a matching move. 

Also if RHS ~ ~ R we may  argue in a similar way as above. []  

P r o p o s i t i o n  B . 6  ( P r o p o s i t i o n  4.6) ~p[q/x],~,~(b)(~p~{b/x}lb~q~) 
b (~fn(p) •fn(q) 

Proof. By structural induction on p using Lemma 4.2 to Lemma 4.4. 
p - n i l  ~nil[q/x]~ =- 

 .iq 
0 :~ 

(b) (0 { b/x}[ (b ~ ~q~)) 
(b)(~nil~ {b/x}](b2~ ~q~)) 

p=-a?y.pl Assume y + x  and y(~FV(q) 
[(a?y.pO[q/x]~ 
~a ? y. (Pl [q/x] ~)~ = 
a (y). ~(Pl [q/x]~)~ ~c 
a(y) .(b)(~p~{b/x}l(b~q~)) .c 
(b)(a(y).([pl~{b/x}l(b~q~))) :c 
(b)((a(y). ~p~) {b/x} l (b~ ~q~)) = 
(b)(@ ? y.pa~) {b/x}l ( b ~  ~q~)) 

p=-a[pl .P2 ~(a!pl .p2)[q/x]~ 
- by definition of [- / ]~ 
~a!(Pl [q/x]O. (P2 [q/x]~)~ 
by definition of ~ 
(b) (a b. ((b ~ ~p~ [q/x] ~)] [P2 [q/x] ~)) 

by I.H. (bCfn(pO u fn(p2) w fn(q)) 
(b) (a b. ((c)((b ~ (c)(~p~ ~ {c/x}l(c ~ ~q~))) 
](c) (~P27 {c/x}](c ~ ~q~))))) 
~. by Lemma 4.4. 
(b) (d b. (c)((b ~ ~p~ {c/x})[ ~P2~ {c/x}l( c ~ ~q~))) 
:~ since c ~= a and c =~ b, otherwise use a-conversion on c 
(c) (b) (~ b. ((b ~ ~p~ ~ {c/x})l ~P2~ { c/x} I(c ~ [q~))) 
- by definition of { / } 
(O(b)(ab.(((b EP11)I 

, .4.a 

(c)((b)(ab.(((b~ [~P~)I~P2~){c/x})l(c~ ~q~))) 
:c since b C fn  (q) 

where 

by definition of [ / ]~ 
by definition of ~ 
by algebraic laws 
by definition of ~ 

(otherwise use c~-conversion) 
by definition of E/3~ 
by definition of ~ 
by I.H. 
since b(~ fn(p) 
since y (~ F V(q) and y :# x 
by definition of ~ 
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P=--P1+ Pz 

P=-Pl[P2 

p=-pl\a 

p=-y 

~(Pl -[-/)2) [q/x],~ 
by definition of [ / ]~ and by definition of ~ 

[Pl [q/x],~ + ~P2 [q/x]~ 
by I.H. 

(b) (~p~ ~ { b/x}[(b =~ [q~)) + (b)(~P2~ {b/x}[(b ~ ~q~)) 
.c by Lemma 4.2. 
(b)((~p: ~ {b/x} + ~P2~ {b/x})] ( b ~  ~q~)) 
= by definition of { / } 
(b) (~Pt + P2~ {h/x}l(b =~ ~q~)) 
~(Pl ]P2)[q/x]~ 
=- by definition of [ / ]~ and by definition of ~ 
~P t [ q/x]d[~pz [ q/x] ~ 
~ b y  I.H. 
(b)(~p~ ~ { b/x}l(b=~ ~ q~))[(b)(~p2~ { b/x}l(b=* ~ q~)) 
.cby Lemma 4.3. 
(b)((~p~ {b/x} l ~p2~ {b/x})l(b=~ ~q~)) 
~- by definition of { / } 
(b)(~pl IP2~ {b/x) [(b~ ~q~)) 
Assume a~fn(q) otherwise use ~-conversion. 

f (pl\a)Eq/x]~ --- by definition of [ / ]~  
(Pl [q/x]~)\all = by definition of ~ 

(a)(~pl [q/x-l~ ~ by I.H. 
(a)(b)([pa~{b/x}l(b=~q~)) ~ since a(~fn(q) 
(b)((a)(~p~{b/x})l(b~q~)) =- by definition of { / } 
(b)(~p~ \ a  N {b/x}l(b~ ~q~)) 
if y 4= x then 
~_y[q/x]~ 

y.O ,~ 
(b) ((y. O) { b/x} [(b =~ ~ q~)) 
if y = x then 
~y[q/x]r =- 

-c.~q~ ,~ 
(b)((y.O){b/x}](b~q~)) [2 

Proposition B.7 (Proposition 4.7) 

1. if p ~ p' then ~p~ ~(x), ~p,} 

2. if p a~,~p, p,, then [p~ a(b),Q~(bl) ,  .(b,)(b ~p ~I~P ~) where B={bl  . . . .  , b,,} 
for some Q. 

3. if p ~, p' then [p~ --~ ~p'~ 
4. if Q ~ ~p~ and Q "(~)> Q' then p ,7~p, for some p' with Q' {b/x}.c ~p'~ (b/x} 

for all beNames, ab 
5. if (2 ~ ~P~ then (2 - - / - * .  
6. if ( 2~p~  and Q a(b), Q, then p ~"P', p" with (2'.,~(bO...(b,)(b=>~p'l]L~p"~) for 

some B, p', p" where B = {bl . . . .  , b,}. 
7. if (2 ~ ~p~ and Q ~ , Q' then p ~ , p' with Q' ~ ~p'~ for some p'. 
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Proof. 1. By induction on the length of the inference used to establish p a?5, p, 
observing the structure of the process p. The cases when p~nil, p-a!pa.p2 

a?x 

and p -- z.pl are trivial since p -/---,. 
p - a ? x . p l  Then a?x.pl aTx ~Pl by the input-rule and P'=-Pl. Also ~a?x.pl~ 

--a(x).[pl~ ,(x), [pl~ by the INPUT-ACT-rule.  

P-Pl+P2 I fp  aTx p, then 

either p~ a?Xp, by a shorter inference, and by induction we have 
~p~ ~ ~p'~ and by the SUM-rule we have ~Pl + Pa~ ~ ~P'~. 

or P2 ~?X'P' by a shorter inference, and by induction we have 
[P2~ ~ ~P'~ and by the SUM-rule we have ~Pl + P2~ ~ ~P'~. 

P=P~IP2 I fp  ~X>p'then 

either p~ ~?~,p'~ and P'=-P'I IP2 by a shorter inference, and by induction 
we have ~p,~ ~ ~Pi~ and by the PAR-rule we have ~Pl ]P2~ ~ ~P'~. 

a?x , p, or P2- >P2 and - P l  ]P~ by a shorter inference, and by induction we 
have EP~ ~ [Pi~ and by the PAR-rule we have EP~ [P:~ ~ ~P'~. 

p - p ~ \ b  Ifp-O?~p ' then p~ a?~p'~ with a+b and p'=-p't\b by a shorter infer- 
ence, and by induction we have ~p~ a(~), ,~p,~ and by the RES-rule we 
have ~p,\b~ ~(~', ~p'~. 

2. By induction on the length of the inference used to establish p ~"P', p" observ- 
ing the structure of the process p. The cases when p =-nil, p =-a?x. Pl and p -  z. pl 

a!Bp" 

are trivial since p />. 
a!oPl 

P~a!pl  .P2 Then a!px .P2 -----~P2 by the output-rule. Also 
~a !Pl-P2~ a(b), (b ~ ~p I~)I~P~ by the INPUT-ACT-rule.  

P=-Pl +Pa I fp  "!~P'~ p" then 

either p~ ~P' ,p"  by a shorter inference, and by induction we have 
[p~ dt-YRL~ ~) P'",~(b~)... (b,)((b~ ~p'~)]~p"~) and by the SUM-rule we have 
~P~ + P2~ ,(b), p,,,,~(b~)... (b,)((b~ ~p'~)[~p"~) 

or p2S'~P',p '' by a shorter inference, and by induction we have 
~P2~ ,(b~, P'".~(bl)...(b,)((b ~p ~)]~p }) and by the SUM-rule we have 

~P~ +P2~ ~ P'""~(b0. . .  (b,,)((b~ ~p'~)]~p"~) 
P=-P~[P2 If p ~ p "  then 

either p~ "~P'~ p'~ and p"=-P'~'IP2 by a shorter inference, and by induction 
we have [pl~ ,(b), p,,,.~(bO... (b,)((b~ ~p'~)][p'~'~) and by the PAR-rule 
we have ~p~ [P2~ ~(b) p,,,.~(b~)...(b,)((b ~P ~)I~P~)][P2~ .c 
(bO... (b,)((b~ ~p'~)]~p"~)(using a suitable c~-conversion). 

or P2 ":~P"P'd and P"-Pl]P~ by a shorter inference, and by induction 
we have [P2~ ,(b), I'd",~(bO... (b,)((b~ [p'~)]~p~) and by the PaR-ru le  
we have ~p~ I P2~ .(b), p, , ,~ ~p~?l(b~)... (b.)((b~ ~P'~)I~P~) ~c 
(bO... (b,)((b~p'~)]~p"~)(using a suitable c~-conversion). 
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p=p~ \d  I fp  "!~P',p" then 

either Pl '~B'C'P'~ by a shorter inference and dafn(p') and B = B ' u  {d} 
and a 4: d and p" = p';. By induction we have 
~_pl~ ~(b), p';' ~(bd. . . (b~)((b~ ~_P'~)I~P';) and by the RES-rule we have 
~pl\d~ =(d)(~pa~) a(b), p,,, (d)(bl)...(b,)((b~p,~)l~p,a,~). 

or Pl a~Bpl p,, by shorter inference and d(~fn(p') and a4:d and P'=-P'a 
and p" - p'I'\d. By induction we have 
~Pl~ a(b,, p,,,,~(bl)... (bk)((b~ ~p'~)]~p'~'~ and by the RES-rule we have 
~p~\d~ = (d)(~p~) a(b), p,,, ~ (d)(bl)... (b,)((b~ ~p'})]~p'~'~),~ 

(bO...(b,)((b~ ~p'~)[(d) ~p'~). 

3. By induction on the length of the inference used to establish p - ~  p' observing 
the structure of the process p. The cases when p=niI, p=a?x .p l  and p=-a!pl .P2 
are trivial since p )/+. 

p=-z.pl Then p ~ 'P l  by the tau-rule and p ' - p l .  Also ~P~=z.~Pl~ ~'~Pl~ 
by the TAU-ACT-rule. 

P - P l + P 2  I fp  ~ p ' t h e n  
either p l o p '  by a shorter inference, and by induction we have 

~Pl~ ~ ~P'~ and by the SUM-rule we have ~Pl + P2~ - -~  ~P'~. 

or P2 ~' P' by a shorter inference, and by induction we have ~p;~ ~ ~p'~ 
and by the SUM-rule we have [Pt + P2~ ~ +  {P'~. 

P-P~IP2 I fp  ~ p ' t h e n  

either pl ~ p ' ~  and p'--p'~ ]P2 by a shorter inference, and by induction 
we have ~Pl~ ~' ~P'I~ and by the PaR-rule  we have ~Pl IP2~ ~ [rp,~. 

or Pa ~ ~P~ and P'=PlIP'2 by a shorter inference, and by induction we 
have ~P27 ~' ~Pi~ and by the PAR-rule we have [p~ [P2~ ~ ~P'~. 

or Pl "?~P'~ and P2 a:~p~ p,~ by shorter inferences and p' 
-(P'I [p'a/x]~]p~)\B. By induction and Propositions 4.7.1 and 4.7.2 we 

�9 ~ l t t  have ~Pl~ ~ P ' I ~  and EP2~ ~ ( b , )  ..(b,)((b ~p2~)l~p2~). Then by 
the CLOSE-rule we have ~Pl[P2~ ~'(b)(~P'~,!b/x}](bl)...(b,) 
((b ~ P i ~ ) [  [P~)) ~ (b 1)... (b,)((b)(~p'~ {b/x} [(b ~ ~P2~) ] ~P2~)) 
= ~(p'~ [p'2/x], ]p~)\B~ by Proposition 4.6 and assuming B c~fn(p') = 0 
(otherwise use a-conversion). 

a?x , a!BPl) p~ or P2 )P2 and p~ and we may argue as above. 

p - p l \ b  If p ~ ~p' then p~ ~ ,p'~ by a shorter inference, and by induction we 
have ~pl~-5--~p'a~ and by the RES-rule we have ~pl\b~ 
= (b)(~pl~) ~-~ (b)(~p~)= ~p'~. 

4. Assume Q ~ p ~  and Q "(~), Q'. Then [p~ ~(~), Q" for some Q" with Q'{b/x}.,~ 
(2" {b/x} for ai1 b~Names since Q .,~ [p~. 
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We proceed by induction on the length of the inference used to establish 
~(~)~ Q" observing the structure of p. 

If ~p~ ~(~)~ Q" then p must have one of the following forms" 

p=-a?x.pl In this case ~p~ a(x))~pl~. By the input-rule we have ag.x.pl a?X>pl 
which proves the lemma in this case. 

P=-Pl +P2 In this case 
either ~Pl~ a(X),Q,, by a shorter inference and by induction Pl a?X'P'l 

and Q"{b/x}~p'l~{b/x} for all beNames. By the sum-rule we have 
Pt +P2 ~'*~' p'l and Q" {b/x} ,~ [[p'~] {b/x} for all b~Names. 

a ? x  or ~P2~ a(x))Q,, by a shorter inference and by induction P2 )P2 and 
Q"{b/x},~pi~{b/x} for all beNames. By the sum-rule we have 

P, +P2 a ~  p~ and Q" {b/x} ~c ~p'2~ {b/x} for all beNames. 
P-Pl  IP2 In this case 

either ~p~ ~(:'), Q'f by a shorter inference and Q"=  Q'~ ]~p2~. By induction 
a ? x  pt ,p'~ and Q'~{b/x}~p'~{b/x} for all beNames. By the par-rule 

we have p, IP2 "?x' P'~ IP2 and Q" {b/x} ~ ~p'~ IP2~ {b/x} for all beNames. 
or ~P2~ a(~), Q~ by a shorter inference and Q"-~pa~lQ~. By induction 

P2 "?~'P2' and Q'e~p'2~. By the par-rule we have PlIP2 a?~'P~lP'2 
and Q" {b/x} ~ ~p~ [p'2~ {b/x} for all beNames. 

p=p , \ c  In this case ~p,~ ~(X),Q,~ and a+c. By induction Pl ~VX'p'l and 
~p~{b/x},~Q'l'{b/x} for all beNames. By the res-rule we have 
p~\c ~?x p'~\c and O" {b/x} ~ [p'~\c~ {b/x} for all beNames. 

ab 

5. From the definition of ~ it is easy to see that ~p~ / , .  Since Q ~  ~p~ this 
must be true for Q. 
6. Assume Q ~ ~p~ and Q a(b), Q,. Then ~p~ a{b), Q,, with Q'~c Q", since Q ~ ~p~. 

We proceed by induction on the length of the inference used to establish 
~p~ a(b), Q,, observing the structure of p. 
If ~p~ a(b), Q,, then p must have one of the following forms: 

p-a[p~.p2 From the output-rule we have p a~m P2 and from the OUTPUT- 
ACT-rule we have ~p~ a(b),(b~pa~)l~P2~ which proves the lemma in 
this case. 

P=-P~ +Pz either ~pa~ a(b), Q,, by a shorter inference and by induction we have 
a!BP'I  t ,  , ,  t tt  a !BP' I  t ,  pl ,p~ and Q ,~(ba)...(b.)((b~p~)l~p~). Then P~+P2 'PI 

by the sum-rule and by the SUM-rule we have ~p~ a(b), Q. which 
proves the lemma in this case. 

or ~p~ e(v), Q" and an argument as above applies. 
P-P~ [Pa either ~p~ a(b), Q], by a shorter inference and Q",~ QT[~pz~. By induc- 

tion we have pl ~P~, p'~ with Q'~'.~(bO... (b,)((b~p'~)[ ~p~). By the 

par-rule we have pz [P2 a:~p'~ p,; [P2 and by the PAR-rule and RES-rule 
we have ~p~ [P2~ ~(~)' Q"~ (ha)... (b,)((b~ ~PI~)[[P~[P2~) by a suitable 
c~-conversion such that B c~fn(pz)=0. 

or ~P2~ e(b)~ Q~ and symmetric arguments as above yield the result. 
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p=-pl\d Then ~p~J a~b),Q~ by a shorter inference and a+d and Q"-(d)(Q~). 
; '  . ~ ! t !  By induction we have pa a,~,i p,~ with Q '~(b t ) . . (b , ) ( (b  ~P~)[~Px~). 

If dCfn(p'O then by the res-rule we have p~\d ~Bp; pT\d and by the 
RES-rule we have ~p~ a(b), Q,, ~ (bO... (b,)(d)((b~ ~p'~)IWp';~ ~ 
(b O ...(b,)((b ~ ~p;~)l(d) ~p'~). 
If defn(p'l) then by the open-rule we have p l \d  a! ,~p) p~ and by the 
RES-rule we have ~p~ a~b), Q , ,  (bO...(b.)(d)((b~ ~p'l~)l ~-p';~). 

7. Assume Q ~ ~p~ and Q ~, Q'. Then ~p~ ~, Q" with Q'~ Q" since Q ~ ~p~. 
We proceed by induction on the length of the inference used to establish 
~p~ _!_+ Q,, observing the structure of the process p. 
If ~p~ ~ , Q" then p must have one of the following forms: 

p=-z.p~ Then by the tau-rule we have p ~, p~ and by the TAU-rule ~p~ ~, ~p~ 
which proves the lemma in this case. 

P~Pl-I-P2 either ~pl~-L-~Q '' by a shorter inference. By induction we have 
p~ *,p]  with Q"~.~p'I~. By the sum-rule P l+P2 ~ 'P'I and by the 
SUM-rule we have ~Pl + P2~ ~ ' Q" 

or ~p2~ ~ ' Q" and a similar argument as above applies. 
P ~ Pa I P2 either ~p~ ~-~ Q7 by a shorter inference and Q"-- Q'~I ~p2~. By induc- 

tion we have p~ - ~  p'~ with Q'f ~ ~p'~. By the par-rule p, I P2 ~ ' P'I [P2 
and by the PAR-rule we have ~p~ I P2~ ~' Q~I~p2~ ~ ~p'~lp2~ 

or ~p2~ ~ ' Q~ and an argument as above applies. 
or ~Pl~ ~(~)'Q'~ and [-P2~ a(b)'Qi by shorter inferences and 

Q" ~(b)(Q'~ {b/x}l Q~) modulo the appropriate e-conversions. By Propo- 
sition 4.7.4 we have Pl a?~p, with Qi{b/x}~pi~{b /x}  for all 
beNames and by Proposition 4.7.6 we have P2 a!npSp~ with 
Qi~(bl)...(b.)((b~p'2~)l~p'~). By the corn-close-rule we have 
P~]P2 ~,(p'l[pl/x]~lp'~)\B assuming Bnfn(p'l)=O (otherwise use a 
suitable e-conversion). By the COM-rule we have 

t t ..~, b t t ,~ ~P~ I P2~ ~ Q �9 ( )(~p~ {b/x}l(bl)... (b,)((b=,. ~pi~)] ~-P~)) 
~(p'l [p'2/x]~ I p~\B~ according to Proposition 4.6. 

or ~P1~ a(b), Q, and ~P2~ "(~)' Qi which is a symmetric case to the above. 
p=-pa\b Then ~p~ * , Q'[ with Q"-(b)(Q'~) by a shorter inference. By induction 

p~ ~, p] with Q'~ ~ ~p'~. By the res-rule we have pa\b ~, p'~\b and by 
the RES-rule we have [ p l \ b ? - ~  ~p'~\b~. [] 


