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Abstract. In the paper some new fast constructions of irreducible and primitive 
polynomials are presented. For instance, it is shown, that for any Q large enough 
one can design a finite field Fq with q = Q + o(Q) elements in polynomial time 
(log Q)O(1). 
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I. Introduction 

A very important area in theory of finite fields is designing fast algorithms for 
finding irreducible and primitive polynomials over finite fields. These polynomials 
have many applications in coding theory, cryptography, complexity theory, 
computer science, computational mathematics (see the books [9], [10] and the 
recent survey papers [3], [5], [18]). 

We use the following notation: IFq is a finite field of q elements; M,(q), I,(q), and 
G,(q) are the set of all monic polynomials of degree n over Fq, the subset of all 
irreducible polynomials from M,(q), and the subset of all primitive polynomials 
from M,(q), respectively; e denotes any fixed positive number (the implied constants 
in the symbol "O" may depend on e). 

There are several classes of "explicitly given" irreducible polynomials. Un- 
fortunately, the essential deficiency of these constructions is a very sparse sequence 
of degrees of generating polynomials which strongly depends on the field's 
characteristic p and on its size q. The classical example is the Artin-Schreier 
polynomial f ( x )  = x p + x + a, where 0 < a < p, which is irreducible over Fp. A 
detailed survey of results of this type can be found in [6] and in Chap. 3 of [9]. 

It is very easy to construct a probabilistic polynomial-time algorithm for finding 
irreducible polynomials (since their density ]l,(q) l/lM,(q)l is, roughly speaking, 1/n). 

In Eli, [7], [8], [13]-[15]  some deterministic algorithms for finding 
irreducible polynomials of a given degree n were presented. 

The algorithms of [8] and [13] have computing time (np) ~ (in [13] only the 
case of p fixed was considered but, apparently, this is not essential). The currently 
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best deterministic unconditional algorithm proposed in [14], [15] uses 

T =  O(n3+~p 1/2+~ + ng+~logZp) (1) 

arithmetical operations in lip, i.e. it is exponential with respect to the size of the 
input that is (n log p) ~ 

On the other hand, for a large number of applications it is sufficient to find 
irreducible and primitive polynomials for some dense sequence of degrees n (instead 
of all ne l l )  or for some sequence of fields. This approach was suggested in [1], 
[7] for irreducible polynomials. Here we continue to develop this approach and 
extend it on primitive polynomials as well. 

2. Irreducible Polynomials 

Here we show that very simple considerations enable us to obtain an algorithm 
with polynomial computing time (plogN) ~ which for any N e N  computes an 
irreducible polynomial of degree n = N + o(N) over lip. 

Theorem 1. For any N ~  in time (plogN) ~ one can find an irreducfble 
polynomial f ~l,(/)) of degree 

n = N + O(N exp [ -  (log log N) 1/2 -~]). (2) 

Proof. Let us define 

(4,3,5), if p=2;  
(d,p~,p2)= ~(4,2,5), if p = 3 ;  

1(2,2,3), if p > 3 .  

Then in time (/)logn) ~ we choose ~Ga(/ )  ) and the nearest to N/d integer t of 
__ k m the form t -  Pl/)2 where k and m are non-negative integers. It follows from [10], 

Theorem 3.35, that the polynomial f (x )  = $(x t) of degree n = dt is irreducible. The 
bound (2) follows from [2], Chap. 1, Sect. 2. In fact, the following statement was 
proved (with the help of the A.O. Gel'fond bound fgr linear forms in two logarithms). 
Let 1/2 < O < co < 1 and primes Pl, P2 be fixed, and let M = pl~lp2 ~ where cq, 0~ 2 
are natural numbers, 

,9 log M 0 log M 
~ 1  < - - ,  0{2 < - -  

log p~ log P2 

Define A=exp[-( loglogM)~/2-~] .  Then there is a divisor t iM with 
] l o g t - c o l o g M l < A .  (This is, in fact, a somewhere relaxed version of the 
corresponding theorem of [2]). 

If we set 

l=logKl [21og l = Pl /72 , K=N/d, ~1 3 log/)1J k31og/)2]' 

then log K = 0.75 log M + O(1). Therefore, we can apply the previous statement 
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with ~9 = 2/3, co = l o g K / l o g M  = 3/4 + o(1). Hence, 

t = K exp (A) = K + O(KA) = K + 0 (N exp [-- (log log N) 1/2- ~]), 

and the proof is complete. �9 

It seems that the bound (2) can be improved with the help of contemporary 
bounds for linear forms in logarithms. Probably, one can take 1 -  e instead of 
1 / 2 -  e in the exponent in Theorem 1. 

In a number of applications of finite fields, for example, when constructing some 
combinatorial designs, in coding theory, in cryptography, we must construct a 
finite field with the size which approximately equals a given Q > 0 large enough, 
however the field's characteristic and its degree may be arbitrary. Here we show 
that it can be done in polynomial time. 

Theorem 2. Let A > 0 be some constant. Then for any large enough Q one can 
construct the field lF q of q = Q + O ( Q log - A Q ) elements in time (log Q) ~ 

Proof For the construction we define 

n = [log Q/4A log log Q] 

and let p be the nearest prime to Q~/n~log*AQ. Then (see, for example, [11], 
Chap. 14) we have 

p = Q1/, + O(Q3/4n) 

(contemporary results on the distribution of prime numbers imply a stronger 
bound, but it does not improve this theorem and Theorem 3 below, that uses the 
same considerations). 

Putting q = p" we obtain 

q =p" = Q[1 + O(nQ-1/4")] = Q + O(Qlog-aQ). 

Moreover, it follows from (1) that the field Fq can be constructed in time 
(np) ~  = (log Q)O~l~. �9 

It is easy to show that instead of the very strong bound (1) the more sifnple 
Theorem 1 could be used (with some heavier machinery). Moreover, using this 
theorem we can obtain a smaller exponent of log Q in the bound of computing time. 

3. Primitive Polynomials 

Now we are going to consider primitive polynomials f~G,,(q), i.e. polynomials 
whose roots are primitive roots of Fq, (the generators of the multiplicative group 
of this field). 

It is essentially less known about constructing primitive polynomials in finite 
fields. Particularly, for testing the primitiveness of a given f ~  M,  (q), the factorization 
of qn_ 1 must be known. But all deterministic (and even probabilistic) integer 
factoring algorithms known nowadays are exponential ones (see [12]). 

In the papers [16], [17] independently were presented two very similar 
constructions of small-sized sets M ~= M,(p), containing a primitive polynomial. 
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Moreover these sets have the size 

[m[ = (pn) ~ 

and can be constructed in time (pn) ~ For instance, in finite fields of fixed 
characteristic the search of a primitive polynomial can be restricted by a 
polynomial-sized set of polynomials. It should be noted that for a fixed p the set 
constructed in [17] has the size O(nX~ In [16] a slightly different construction 
and Iwaniec's shifted sieve method produced the set of the size O(n6+e). In fact, 
this sieve method allows to obtain the same bound for the construction of [17] 
(with some different choice of parameters). 

More exactly, let m = [ ( 6 + e ) l o g n / l o g p ] + l  and ~eiFv'" be a root of a 
polynomial f~l , , , (p) ,  i.e. 

IFp( ) -- IFpm. 

(it follows from (1) that we can find such polynomials in time (pn)~ Then the set 

gJ~ = {U = (~ + 2) (p~"- 1)/(p~ 1)12~IF., } __c IF,., (3) 

can be constructed in time (np) ~ has the size [~[  < pn 6+~ and for n > no, where 
no is some constant depending only on e, contains a primitive root of IFp, (see [16], 
[17]). 

Of course one can find a primitive polynomial among the minimal polynomials 
over IF v of elements of ~lJl. 

From this result, an analogy of Theorem 2 for primitive roots can be proved, 
i.e. one can construct a field with the size approximately equal to a given Q and 
a primitive root of this field but in time O(Q ~) only (instead of polynomial time 
in Theorem 2). 

Theorem3. For sufficiently large Q one can construct the field IFq of  
q = Q + O ( Q e x p [ - ( l o g Q ) l - ~ ] )  elements and its primitive roots O~iFq in time 
exp [O (log Q/log log log Q)]. 

Proof. Put 

N = [exp((log log Q)1/2)] 

and S = q l . . . q ~ ,  where ql . . . .  ,q,~ are all primes not exceeding 0.41ogN. Let 
n = siN~s] and p be the nearest to Q1/, prime number. Then (see [11], Chap. 14) 

p = Q1/, + O(&/4,)  

(see the remark in the proof of Theorem 2). For large enough Q, the Prime Number 
Theorem yields N 1/3 < s < N 1/2. Therefore n = N + O(NI/2). Set q -= p", then 

q = Q [1 + O(nQ- 1/4,)] = Q + O(Q exp [ - (log Q)I -~]). 

All prime divisors of q - 1 = p" - 1 do not exceed (p + 1) ~"). From the definition 
of s we obtain 

q~(n) < ~o(s)n/S = O(n/log log s) = O(n/log log n). 

Hence, all prime divisors of q - 1 can be found in time exp [O(log Q/log log log Q)]. 
The field IFq and the set gJ~ __c IFq, defined in (3), can be constructed in time (np) ~ 
The search of a primitive root among ~ill elements of ~Jl can be done in time (np) ~ 
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also (as soon the factorization of q - 1 is known). Taking into account  that 

(np) ~ = exp [O(log Q/log log log Q)], 

we get the result. �9 

If the field's characteristic is given then considerations, similar to those that 
were used in the proofs of Theorem 2 and Theorem 3, allow to find primitive roots 
in subexponential  time for a sufficiently dense sequence of the degrees of extensions 
of the field lFp. 

Theorem 4. There is some absolute constant C > 0 that for any N~IN an integer 
n = N + O(N ~) and a primitive root ~9~Fp,, can be found in time pcN/loglogN. 

Proof. For  N~IN large enough we put r = [ lO logN/ logp]  + 1, s = ql ""q~ where 
q l , . . . , q ~  are the prime numbers  not  exceeding 0.5elogN, and n = rs[N/rs]. It is 
clear that  n = N + O(N~). Let ~ l F p ,  he a root  of a polynomial  f~I , (p) .  Define 

91 = {v lv  = (~ + ;~); ,~elF~,}. 

It is easy to see that  9l contains less then pN ~~ elements and can be constructed 
in time (pN) ~ Besides, it may  be shown that 9l contains a primitive root  of ~:p. 
(completely analogously to the proof  of corresponding results for 9J/from [16] or 
[17]). 

It is clear that every prime divisor of p" - 1 does not exceed (p + 1) ~("). In the view 
of the choice of the parameters s and n we obtain ~0(n) < (o(s)n/s = O(n/log log s) = 
O(N/ log log  N). Therefore, we have the desired result. 
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