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Abstract. We associate to the plane incompressible Euler equation with 
periodic conditions the corresponding Hopf equation, as an equation for 
measures on the space of solenoidal distributions. We define equilibrium states 
as the solutions of the stationary Hopf equation. We find a class of equilibrium 
states which corresponds to a class of infinitely divisible distributions, and 
investigate the properties of gaussian and poissonian states. Equilibrium 
dynamics for a class of poissonian states is constructed by means of the 
Onsager vortex equations. 

1. Introduction 

The purpose of this paper is to exhibit a class of equilibrium states for a plane fluid 
which moves according to the incompressible Euler equation, and to study their 
main properties. Our treatment will be limited to the case of periodic boundary 
conditions, which allows an explicit use of Fourier methods. 

Equilibrium states for the plane incompressible Euler fluid have been studied 
by physicists for a long time. Among the most significant contributions we may 
mention a paper by Lee [1] in which a class of gaussian states were introduced as 
macrocanonical equilibrium states corresponding to energy and enstrophy con- 
servation, and a paper by Novikov [2] in which equilibrium states corresponding 
to poissonian distribution of vortices are studied. 

The mathematical definition of equilibrium state which we give is based on the 
Hopf equation associated to the plane incompressible Euler equation, namely we 
define equilibrium states as solutions of the stationary Hopf equation. We recall 
that the Hopf equation describes the evolution of measures on phase space 
associated to the point evolution, and is written in terms of the characteristic 
functionals. 
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The Hopf equation plays here a role similar to that of the B-B-K-G-Y 
hierarchy equations in statistical mechanics (which is not surprising since the latter 
is nothing else than the evolution equation for the generating functional). In fact, 
although in mechanics there is an independent notion of equilibrium state (that of 
Gibbs state), it turns out that the class of Gibbs states corresponds to the class of 
stationary solutions of the B-B-K-G-Y hierarchy equations [3]. 

Our main result consists in exhibiting solutions of the stationary Hopf 
equation which are associated to the law of vorticity conservation along the 
trajectory of fluid particles, which is a characteristic feature of the plane Euler 
fluid. The corresponding measures are weak limits of some natural lattice 
measures with "Gibbs factor" associated to the constants of the motion of the 
Euler flow, energy excluded. Such equilibrium states are in one to one cor- 
respondence with a family of infinitely divisible distribution laws, and are 
characterized by the fact that vorticity is distributed as a generalized random field 
with independent values at each point. The vorticity distribution can be in- 
terpreted as a superposition of a gaussian distribution and a finite or infinite 
number of Poisson distributions. 

We give an analysis of the main properties of the gaussian and poissonian 
states: we establish in particular that square summable velocity fields have zero 
measure in both cases. We also construct a further class of gaussian equilibrium 
states, associated to energy and enstrophy conservation, which are just the 
equilibrium states introduced by Lee [1]. They turn out to be absolutely 
continuous with respect to the gaussian measures previously considered. 

If an equilibrium state is physically significant, it should be possible to show 
that it is the limit of the evolution of some class of physically reasonable states. 
This problem is similar to that of founding the Gibbs postulate in statistical 
mechanics (see for example [4]) and is probably of comparable mathematical 
difficulty. There are physical grounds which suggest that such a problem is 
reasonable at least for poissonian states (cf. [2]), and for gaussian states (see for 
instance [5] where results of computer experiments are provided, and references 
therein). In order to formulate the problem at a mathematical level one should first 
construct "nonequilibrium dynamics", which in our case amounts to extending the 
existence theorem for the Euler equation to a set of initial data which is large 
enough to contain the support of the states the evolution of which is to be studied 
(including equilibrium states). In statistical mechanics this problem has been 
solved only for one-dimensional and two-dimensional system [6, 7]. In our case, 
we believe that one should, for the moment, be content with the construction of 
"equilibrium dynamics", that is, of time evolution for a set of full measure with 
respect to a fixed equilibrium state (in statistical mechanics this problem has 
already found a satisfactory solution, see [8] and references therein). We succeeded 
in constructing equilibrium dynamics for a class of poissonian equilibrium states, 
by showing that the solution of the Onsager vortex equations gives a (generalized) 
solution of the Euler equation. 

The plan of the paper is the following. In Sect. 2 we expose the main facts on 
the plane Euler equation, with particular attention to the periodic case. In Sect. 3 
we introduce the Hopf equation in a way which is convenient for measures on 
generalized function spaces (usually it is defined for measures on spaces of square 
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summable functions, which are too small for our purposed). In Sect. 4 we 
introduce the main class of equilibrium states, and show than they are solutions of 
the stationary Hopf  equation. In Sect. 5 we study gaussian and poissonian 
equilibrium states and construct gaussian equilibrium states associated to energy 
and enstrophy conservation. In Sect. 6 we construct the equilibrium dynamics for 
a class of poissonian states. Section 7 is devoted to a conclusive discussion. 

2. The Plane Incompressible Euler Equation 

a. Generalit ies 

Let f2 denote an open set of the plane, and 8Q its boundary, which we suppose at 
least of class C 1. The plane incompressible Euler equation for the velocity field 
u(x, t)= (ul(x, t), u2(x, t)) and the pressure field p(x, t), ((x, t)~O x IR1), in absence of 
external forces, is 

j /u+(u .  V)u= - Vp ( 2 . 1 )  

d i v u = 0  (2.2) 

u IV = @x~, ~x2)is the gradient, and divu = i=~1 ~ i]. Equations (2.1) and (2.2) are 

accompanied by the initial condition 

u(x, 0) = u0(x) 

and the boundary condition 

u.nlao=0, 

(2.3) 

(2.4) 

n being the outer normal on ~f2. We recall that the solenoidality condition (2.2) 
expresses incompressibility, and the boundary condition (2.4) means that the 
liquid cannot flow out of f2. 

Equations (2.1) and (2.2) can be written in terms of the vorticity field co(x, t) 

co(x, t )=rotu(x,  t)= Ou2 8u~ 
~x 1 ~x2 

(co is a scalar in dimension 2). Defining, following Kato [9], the rotation of a scalar 
field ~b(x) as the vector 

we have 

rot rot ~b = - A ~b. (2.6) 

It is easily seen that a differentiable solenoidal vector field in f2, v(x), satisfying 
the boundary condition v'nl0a=0 can be uniquely reconstructed in terms of its 
rotation : 

v(x) = ro t  G(rotv) (2.7) 
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G being the inverse of ( - A )  with zero boundary conditions on 60 [i.e. G(~b) is the 
solution of the equation A~, = -~b, ~t0~=0]. 

In place of Eqs. (2.1) and (2.2) we can write 

Ot +(u-V)co=0 (2.8) 

u =ro t  G(cg). (2.9) 

Equation (2.8) expresses the law of "vorticity conservation for any fluid particle", 
i.e. it says that the "total derivative" of the vorticity is zero. 

b. Existence, Uniqueness and Constants of  the Motion 

Existence, uniqueness [with p(x, t) determined up to an arbitrary function of time] 
and regularity for solutions of the problem (2.1)-(2.4) have been proved in various 
frameworks. For classical solutions (i.e. such that all the derivatives involved exist 
and are continuous), it is assumed that ~(2 is at least of class C z + ~0 (b > 0) and the 
main tool of the proof is Schauder's fixed point theorem (see for example [9]). For 
"weak solutions", [i.e. solutions which are not necessarily differentiable and satisfy 
(2.1) and (2.2) in a "weak sense", that is, in some space of functionals] an existence 
and uniqueness result has been proved under the assumption that u o is a square 
summable function with square summable gradient, and that ~2 is of class C 2 (cf. 
[10]). The proof is based on compactness arguments, and the solution is a 
continuous function of t with values in the space of square summable vector 
functions (L2(O)) z. All results for classical as well as for weak solutions hold for all 
times. 

We now recall some well-known properties of the Euler equations. (We limit 
our considerations to classical solutions only.) 

By "constant of the motion" we mean a functional of u, which is unchanged as 
u evolves according to the Euler equation. We have: 

Proposition 2.1. The energy 

E(t) = ½ ~ lu(x, t){Zdx 

does not depend on t if u(x, t) is a classical solution of the problem (2.1)-(2.4) (by 
"dx" we denote the Lebesgue measure on IR2), 

Proof. From the existence and uniqueness theorem for classical solutions we have 
that E(t) exists and is differentiable in t for any t. We have 

d 
dr" E(t)= - ~ u .(u. V)ndx = - ~ (u. V)½iui2dx = - ½ ~ ]u]2u.ndx = 0 .  

There are many other constants of the motion, as a consequence of the "law of 
vorticity conservation" (2.8): 

Proposition 2.2. For any continuous function f 6 C(IR) the Junctional 

I f =  S f ( ~ x ,  t)dx (2.10) 
g2 

is a constant of the motion if u is a classical solution of problem (2.1)-(2.4), 
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Proof .  If f e  C*(IR), so that t I is differentiable, we have 

d f ,  t)) ~a co(x, t )dx  Iy  = ~ (co(x, 

= - ~ f ' (co)(u.  V)codx = - ~ (gf (co) .  u )dx  
f~ f~ 

= - ~ f (co)(u,  n )dx  +.~ f(co) div u dx  = 0 ; 
0£~ Yl 

so that the result is true for f e  C 1. For f e C  it can be obtained by a density 
argument. 

A particularly important role in physics plays "enstrophy', that is 

S = ½ ~ ]co(x, t)[2dx. 
f2 

c. The  Euler  Equat ion  on the Torus. Fini te  Dimensional  Approx imat ions  

We are interested in the case in which the boundary condition (2.3) is replaced by 
periodic conditions. More precisely, we consider (2.1) and (2.2) on a flat torus T 2 
which we identify with a square of side 2n, with opposite sides glued together: 
r 2 = [ 0 ,  2~z] x [0, 2re] mod 27t. u(x, t) may be determined only up to an arbitrary 
constant, which we fix by imposing the following "zero average" condition 

u(x, t )dx  = 0 .  (2.4) 
T 2 

It would not be hard to extend to this case the results on existence, uniqueness 
and regularity described in Sect. 2a. However by an explicit use of Fourier 
transform it is possible to give a constructive proof of existence and uniqueness, 
which we shall presently outline. 

Consider the Fourier expansion of u(x, t) 

1 k ± 
u(x,t)= 27 y '  exp(ik'x)fik(t)k - (2.11) 

ke~ 2 

[here ;gz=292\(0,0), 7/2 being the plane integer lattice, k±~2U is obtained by 
k - (k 1, k2) by setting k I = (k 2, - kl), and k = [k[]. The Fourier components of u are 
proportional to k ± as a consequence of (2.2). Moreover, since u is real we have 

/~k "~ - - ~ - k "  

By formal substitution we get the Euler equations in Fourier form 

(/k( t ) = - i  2 / 'hmk/)h(t)  Urn(t) ( k E ~ 2 )  (2.12) 
h+m=k 
h,m~. 2 

with ]~hmk ---~ ( hi .  m) ( h  2 - m2)/hmk. 

The initial condition (2.3) becomes 

fit(0) = 1/[(2rc)2k] ,[ k s. Uo(X ) exp( - ik. x ) d x  = fi(u °) . (2.13) 
T 2 
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The Fourier components of p(x, t) are given by 

pk(t)=--i ~ [(h±.m)(h.m±)/hmk]f~h~m (ke~  2) (2.14) 
h + m = k  
h , l n ~  2 

so that the problem reduces to solving the system of infinite coupled ordinary 
differential equations (2.12) subject to the initial conditions (2.13). It is natural here 
to apply the method of finite dimensional approximants ("Faedo-Galerkin" 
method). 

Definition 2.1. For any set I C ~  2 such that 
i) I = - I - { k e ~ 2 l - k ~ I }  

ii) for any k e I  there is at least a pair h ,m~I  such that k = h + m ,  
we define the corresponding finite dimensional approximant (hereafter f.d.a.) as 
the system of ordinary differential equations 

(2.15) 
h + m = k  

h,m~t 

um tm - n(o) (2.16) 
k ~ l - -  ~k ' 

Since we have 

Fhm k + Fkh m + F,~kh = k 2 Fhm u + m 2 Fkh m + h 2 Fmk h = 0 

it is easily seen that 

E m= ½ ~ lu(kl)l 2 (energy) 
k~l 

S m = ½ ~ k2tu~r)[2 (enstrophy) 
keI 

are constant in time. This in its turn implies an existence and uniqueness theorem 
for the problem (2.15) and (2.16). 

A constructive existence and uniqueness theorem for the problem (2.12) and 
(2.13) can be obtained along the following lines (cf. J i l l ) .  Suppose that 
F k21~°)12 < ~ ,  and consider the sequence {u(N)(t)}~= 1 of solutions of equations 
(2.15) and (2.16) corresponding to the index sets I N = {ke :~211kl < g}. The sequence 
converges in 12, as N ~  o% uniformly for t in any finite interval. It follows that the 
corresponding sequence of Fourier antitrasforms converges in the space of square 
summable solenoidal functions on T 2 satisfying condition (2.4'), ~ a  (which is a 
closed subspace of [L2(T2)]2). The limit satisfies (in weak sense) the Euler 
equation (2.1) and (2.2), which is equivalent to the Eqs. (2.12) and (2.14) and is 
unique within the class of functions with square summable gradient. Moreover it is 
possible to estimate the error which is done by taking the N-th function of the 
sequence instead of the true solution. (We believe that a similar constructive 
theorem holds in the case of a domain with boundary as well, although it might be 
difficult to carry out the proof because of the inconvenience of the explicit Fourier 
representation.) 
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It is not hard to see that for periodic boundary conditions equations (2.6)-(2.9) 
hold unchanged, [if by G we understand the inverse of ( - A )  with periodic 
boundary conditions], as well as Propositions 2.1 and 2.2. 

Notice that although f.d.a.'s for some particular index set I may possess other 
constants of the motion independent of E (n and S (x), there is evidence that there are 
no such additional invariants which are common to an infinite sequence of f.d.a.'s 
corresponding to the index sets I N [12]. 

3. The Hopf Equation 

Periodic conditions are convenient because it is easy to work in Fourier 
representation. We begin by introducing it. 

Let ~9~(T 2) be the linear space of infinitely differentiable real functions with 
zero mean [i.e. such that ~ q~(x)dx=0,YqS~5:(T2)l ("test functions"), endowed 

T 2 
with the usual Schwartz topology generated by the seminorms II'llkl,k~ 
(k 1,k z=0 ,1  . . . .  ): 

It~llkl,k2 : maxk~T 2 ~ " 

Consider the subspace of 5:(T 2) x Y ( T  2) consisting of all solenoidal vector 
functions, which is closed in the product topology, and which we shall denote by 
5~(T2). ~ ( T  2) is of course a locally convex space, and we may take on it the family 
of seminorms [[.ll,(n=0, 1 . . . .  ): 

119[[, = (rot0, ( -  A)"- 1 rot 0)1/2 

(.,.) being the usual scalar product in LZ(T2). 
To any _0~5~(T 2) its Fourier expansion [cf. (2.11)] associates a scalar sequence 

0= {0k}k~2 such that 

g _ k  = - - O  k (3.1) 

(reality condition), and that for any positive integer m 

sup kml0kl < oe 
k ~  2 

(condition of rapid decrease). 
By setting 

(3.2) 

- k~. 0 i ~ * : :  il&l. ( ~  I~ t  (3.3) 
\k~i 2 / 

we have [[011, = II__0[I,. We denote by ~ the linear space of the sequences satisfying 
conditions (3.1) and (3.2). Definition (3.3) gives us a family of seminorms on ~ and it 
is easily seen that the following proposition holds: 

Proposition 3.1. The map 0~0 (Fourier transform) of ~(T 2) o n  g, endowed with the 
topology generated by the seminorms (3.3), is a topological isomorphism. 
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Consider the space ~'(T2), dual to ~9~(T2). We shall denote by (u,__0) the 
action of ueS~'(T 2) on 0eS~(T2). The Fourier transform on 5~'(T 2) is the map 
u ~ f i -  {Uk}k~ defined by setting 

k ± 

Since 11ff~9~'(T2), the sequence {fik}k~ satisfies the reality condition 

U-k= --fi-k (3.1') 

and is low increase, i.e. there exist positive constants c and N depending on u such 
that 

I~kl < ck N, (3.2') 

We denote by Y the space of sequences satisfying conditions (3.1') and (3.2'). ~' 
is the dual of ~ according to the duality 

(fi, 0 ) =  ~, ~k0k (fieY, 0e~). (3.4) 
kE2~ 2 

The following proposition is easily seen to be true: 

Proposition 3.2. The map u-~fi (Fourier transform) of 5~'(T 2) on ~', endowed with 
the weak topology corresponding to the duality (3.4), is a topological isomorphism. 

Y is a nice space to place measures because it is the dual of a nuclear space, and 
therefore any continuous cylindric Borel measure on it is a-continuous (cf. [13], 
Chap. 4). Moreover any such measure corresponds to a generalized random field 
(hereafter g.r.f.) (cf. [13], Chap. 3) on T 2, so that we can make use of the general 
results of the theory of g.r.f.'s. 

Before coming to the evolution of measures on 3' corresponding to the full 
Euler equation, we define the evolution associated to f.d.a.'s (Definition 2.t). 

Definition 3.1. Consider the index sets IN={ke2~2[ Ik] <N},  ( N =  1, 2 . . . .  ). For any N 
we define an evolution group in ~', T~ N), by setting: 

(Tt(N)fi)k = I? <kN,(t) keen 
[Uk k~IN 

u(km(t) being the solution of the f.d.a, corresponding to the index set I N (Definition 
2.1) with initial data u~N)(0)= Uk, kelN. 

Suppose/20 is a cylindric Borel measure on Y. For any measurable set A C ~' 
define 

/2(N)(A~--,, tT(mA~ 
t ~ 2 - - / ~ 0 \  - t  ] " 

We get a family of measures {/2}m}t~l for any N. 
Let {~b}N)(.)}t~l, be the corresponding family of characteristic functionals 

defined on ~: 

(b}N)(O) = j exp(i(~, @)d/21u)(fi). 
g, 
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Proposition 3.3. I f  ~ Ifikl2d/A0 < og,Vks ~ 2  I~)}N) iS differentiable with respect to t for 

any N and satisfies the equation 

~-- 0 (N)~ = i ¢ Ot t , - ,  ~, (B(~)(u),O)exp(i(u,O))d12}N)(u), 

where B(N)(fi)EY is the vector with components 

B~N)( a ) = - i  2 Fhmkaham (kS/N) 
h+m=k 
h,m~IN 

(3.5) 

Proof. In fact, since the sequence ~ I(F(N)(~), 0)1d12(~) converges, it is limited for 

any 0s~. Therefore (cf. [14], Theorem V.7) there exist two constants m and c such 
that: 

t(F(N)(~), 0>1d12(~1) < c [lOlt,~ 
g, 

for all N. Since (F(N)(~),0) converges in L*(d12) for any fixed 0s~, the Fourier 
components F(k N) converge in Li(d#) for any fixed k. Denoting by Fk(~) the 
corresponding limits we have for any ks2~ 2 

Ifk(~)l d "~" < c f 

Because of L 1 convergence Fk(~ ) is #-a.e. the limit of a subsequence F(kN~)(~i). By a 
diagonal procedure it is possible to find a subsequence F(k Nj) #-a.e. converging to 
F k, for all k s  ;~2. It is easily seen that the sequence Fk(~)/k m ÷" converges to 012-a.e. 
as ]k]~oo for n>2 ,  so that/~-a.e, there exist a fixed integer m', and a constant 
depending on 5 such that 

tFk(a)t < c ( a ) k  m' , 

i.e. F(~)= {Fk(~)}k~S~'. The rest is immediate. 

B~N)(~) =0 (k¢IN). 

Proof. The proof consists in a change of variables and an application of the 
Lebesgue dominated convergence theorem to ensure derivability under the 
integral sign. 

We could now introduce the Hopf  equation by passing (formally) to the limit 
N ~  co. However the limit of B(N)(fi) is unfortunately not defined everywhere in ~', 
so that we must formulate some additional assumptions on the measures. We first 
derive the following simple: 

Proposition 3.4. Suppose we have a sequence of  functions F (N)'-' " and a .S --+ S G- 

additive measure # on ~', such that (F(N)(~), 0} is a converging sequence in L 1 (d#) for 
any OeL Then there exist a function F:Y-*~' ,  and a subsequence F (N° such that 
F(N°(~) ......... ) F(~) in ~' almost everywhere with respect to I2 (hereafter 12-a.e.), and 
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Definition 3.2. We shall say that the family of cylindric Borel measures on ~' 
{#t},~ro, rl is a solution of the Hopf equation associated to the incompressible Euler 
equation on T 2 with the initial condition #(o), whenever the characteristic 

functional ~t(0)= y exp(i@, O))d#~(ft) is derivable almost everywhere with respect 

to t, q~o (0)=~b(°)(0) = ~I exp(iffi, qS))d#(°)(fi), and the following equality takes place 
g, 

almost everywhere with respect to the Lebesgue measure on [0, T] 

~ q~t(0)=i! (B(fi), 0) exp(i (fi, O))d#t((~ ) . (3.6) 

B(fi) being the Ll(d#t) - limit of B(N)(~), defined by Eq. (3.5). 
In the following we shall be intereste4 only in the stationary equation 

(B(~), 0) exp(i (~/, 0))d#(fi)=0. (3.7) 
g, 

Definition 3.3. We shall call "equilibrium state" any cylindric Borel measure on 3' 
satisfying Eq. (3.7). 

4. Equilibrium States Associated to the Vortex Conservation Law 

As we said in Sect. 2 a characteristic feature of the two-dimensional Euler fluid is 
the conservation law of vorticity for fluid particles (2.8). 

Since the "density of fluid particles" (i. e. volumes) is preserved, because of the 
solenoidality condition (2.2), we are led to the conclusion that vorticity distri- 
butions which are independent at each point should correspond to equilibrium 
states. 

According to a well known result (cf. [13], Chap. III) a general class of real 
generalized random fields with independent values at each point is identified by 
the class of characteristic functionals 

X~(~b)=exp ~ ~(qS(x))dx ( tp~J,q~ey(T2)) .  (4.1) 
T 2 

(~  is the class of complex functions which are logarithms of the characteristic 
functions of an infinitely divisible distribution law.) 

We shall presently show that the measures associated to the characteristic 
functionals (4.1) are limits of natural "statistical mechanical" lattice measures with 
"Gibbs factor" associated to the constants of the motion I~ defined by (2.10). 

A statistical mechanical measure with "Gibbs factor" associated to I f  may be 
written formally as 

d # f ( u ) = M - l e x p ( ~ f ( r ° t u ( x ) ) d x l  '' I-] d(rotu(x))" (4.2) 
\r2 - / x~T z 

(where M is some normalization constant). 
Consider the lattice 7/N C 7/2 

~;,. = {k~2g2Tk/N~ [0, 2~) x [0, 2~)} N = 1, 2 . . . .  
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set n~ = card {2gN}, denote ~(k ~) the vorticity of the point k/N, and by ~(N) the n N- 
dimensional vector {~(m} The measure k k~2~N" 

d/~N(~(N)) = 17 ~N~k~ ,~(~%~(N)j.~k 
k~ZN 

with d~.(~ ~) the Lebesgue ]R 1, nonnegative function such that m e a s l ~ e  o n  QN a 

~ ON(x)dx = 1 is a natural lattice approximation of the meanigless expression (4.2). 

For any 4~SP(T 2) consider the random variable 

~(N)(q~)= ~ q~(k/N)~(kN); (4.3) 
k ~ z ~  

the collection of all such random variables for all 4~SP(T 2) gives us a random 
linear functional, that is a g.r.f, on T 2 which we shall denote by ~(N)(.). 

Definition 4.t. We shall say that g.r.f.'s ~(N)(.) converge weakly as N ~  Go to the g.r.f. 
4(') whenever the joint distribution functions of the random variables 
~(m((bl)...~(N)(4~,) converge weakly to the joint distribution functions of 
~(4~)...~(~b,), for any choice of ~b~ . . . .  , 4 , e s e ( r  2) and of the positive integer n. 

The classical theorems on the convergence of sums of independent random 
variables allow us to find out the class of all possible weak limits of the g.r.f.'s ~(m(.), 
under the usual natural restriction that the contribution at each single term in 
the sum (4.3) is, for large N, infinitesimally small. It is easily seen that this is 
ensured by the following "infinitesimality condition" : for all e > 0 we should have 

lim ~ O~(x)dx=O. (4.4) 
N , c o  Ixl>~ 

Theorem 4.1. Let a~ N) = S xoN(x) dx (r >0). A necessary and sufficient condition in 
Ixl < 

order that the sequence oj" g.r.f.' s ~(N) subject to conditions (4.4), converge weakly to a 
limit, is that the functions 

~pN(t) = N  2 ~ (exp(itx)-  1)QN(X + a~S))dx 
- c o  

converge everywhere to a continuous limit. The set of all possible weak limits is the 
set of  g.r.f.'s the characteristic functionals of which are given by 

X~(q~)=exp S tp(d2(x))dx ~)e~(T2),  (4.5) 
T 2 

where tp~ J and has Levy-Khinchin representation of the type 

( itx  1+x2 
~p(t)= -co~ exp(i tx)-  i l + x 2] --~x ~ - d F ( x )  

F(x) being a nondecreasing limited function such that F ( -  co)=0. 

Proof. First of all note that, because of linearity, weak convergence of the g.r.f.'s 
¢{N) is equivalent to weak convergence of the distribution functions of the random 
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variables ~(N)(q~) for any fixed ~be~(T 2) [in fact the characteristic function of the 
joint distribution of the random variables {~(N)(q51) ..... ~(N)(~bN) } calculated at the 
point (t~ ..... t,) is just the characteristic function of ~(N)(t~q51 + .-. + t,q~,) calculated 
at t =  1]. Now the characteristic function of ~(N)(~) is given by 

G(¢N)(t) = I-I fN(t~(k/N)) 
ks;gN 

where fN(t)= S exp(itx)~N(x)dx. Because of condition (4.4) the functions 
- o o  

g~)(t)=logG(¢N)(t) are finite in any finite interval for N large enough, and for any 
z > 0 we have 

g(~V)(O=ita~N~ ~ q~(k/N) 
k e Z N  

g / ~  p(i qS(k/N))~ ( ~N)d 1 + ~ lo ex t N X + a  ) X . 

k e Z N  t - - o ~  ) 

Since a~ N) ~ 0 in force of condition (4.4), and since 
oo 

4)(x)dx=O we have 
T 2 

a(N) ~ q~(k/N) ~ 0 
T 

k ~ N  

Moreover by repeating the classical argument of Kolomogorov and Gnedenko 
[15] with minor modifications, it is readily seen that pointwise convergence 
of the sequence {g~N)(t)}~=~ is equivalent to pointwise convergence of the 
following sequence 

O~N)(t) = ~ ~ (exp(itO(k/N))- t)~N(x+a~N))dx, 

and that lim O~N)(t)= lim g(f,)(t). Now o(¢N)(t) is nothing else than a Riemann sum 
N - ~ c ~  -r  N - ~ o o  "r 

of the integral ~ ~pN(~(x))dx, and the first assertion of the theorem follows easily 
T 2 

by noting that we are dealing with functions for which pointwise convergence is 
equivalent to uniform convergence on any compact set. The second assertion 
follows from the fact that the limit law of a sum of independent variables subject to 
the infinitesimality condition is necessarily an infinitely divisible law and from the 
observation that if in the Levy-Khinchin representation of 

itx 
tP(t)=iTt + Soo (exp(itx)- l -  ~-~-£g) dF(x) 

we change the value of o/ the characteristic functional (4.5) does not change 
[because of the condition j dp(x)dx =0].  

T 2 

Once we have the characteristic functional Z of the vorticity distribution we 
obtain the corresponding characteristic functional of the velocity distribution ~ by 
setting 

• ( rot  ~b) = Z(qS). 
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So that the characteristic functional of the velocity distribution corresponding 
to the functional (4.5) is 

~(_0) = exp ~ ~p(G(rotO_)(x)dx (0~ ~(T2)). (4.6) 
T 2 

Any g.r.f, corresponding to such a characteristic functional possesses a 
realization on ~ ' (T  2) given by a cylindric Borel measure (which in uniquely 
determined), and therefore, by Proposition 3.2, a realization on ~' with the same 
properties (cf. [13], Chap. IV). The characteristic functional of the corresponding 
measure on ~' is obtained simply by substituting for _0 its Fourier development in 
(4.6): 

( V i o eik'xldx. (4.7) ~(0)  f~2 lp ~k~2 ~ k / 
exp  

Theorem 4.2. I f  tp(- ) is the logarithm of an infinitely divisible distribution law with 
@v(0) < co, the measure p~ on ~' ident~ied by the characteristic functional (4.7) is a 
solution of the stationary Hopf equation (3.7). 

Proof. First of all we show that the sequence (B(N)(fi), 0) converges in L2(dbql) as 
N ~ co. Setting ztN)(fi)= B (N + 1)(fi)__ B(.~)(fi) and denoting by gv{" } the average with 
respect to #~ we have (we write for short Fro, k in place of Fm,k_m,k) 

k,he/N + 1 

= 2 ~k0h E R=,m'k h + 2 ~ ~k0h 2 Rm, m ~k,h 
k, he/N m~H (N) k e l N  + 1 \ I N  m" eH~ :v} 

m'  eH(hN) h e l N  k "- m, m~IN + 1 

-}" 2 ~k0h 2 k,h Rk,h /~ ~ ;" : R m , m "  ( . . . .  ':/~m,k/~m',hr~'~tp{ mUk mUm' //h - m,}) 
k,hstN + 1 \IN k-  re,rosiN + I 

h -  m~,llI~elrN + 1 
where 

H~ N) = {me'~ 2lme lN + 1\IN, k--me/N+ 1kIN} U {me~2[me IN+ 1\IN, k - -me  lN} 

W {me ~21me I N, k - me IN+ 1\IN}. 
Since 

1 
~ {lT/k~hUrnUn} = ~ {(~/)"(0))216(k -~- h)J(m + n) + b(k + m)c~(h + m) 

+ 6(k + n)~(h + m)] + ~IV(0)c~(k + h + m + n)} 

[~(k) is theKroneckersymbol:3(k)={~ forf°r k4:0'k=0] bysubstitutionweget 

0 2 {2 rd2'k 
= 10kl 2 ( V ' ( 0 ) )  2 m2]k_m[2 

k e t N  meH(~) 

~m,k 2 ++< z } \m~H(~ N) 

rd,  k 
+ E t0kt 2 2(~"(0)) 2 2 m21k_ml 2 

k e l N  + I \ I N  meI~.  + i 

m,k 
+rYe(O) E ml~-ml • 

\mellv+ 
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(m'k ±) ~ 
Now observe that if mEH~N)(IN+ 0 SO does ~ = m - 2 ~ k  (because Ilhl=[ml 

and Ik-fill = Ik-ml)  and it is easily seen that: 

r=,k= --I~,k, (4.8) 

so that 

Z r . , ~  _ r . , ,  
mEH(~ r, mlk-ml  ~,~,~+, mlk-m~ =0 .  

Since moreover 

N 

U 
n = l  

H(k") = {me 221m, k -  m~ IN+ 1} 

we have: 

r¢ 1 (m 1. k)2(k 2 - m. k) 2 
II<z(")(~), 05 2 = _ (~,,(o))2 ~ lOkt2 tlL2(~.~) 2 k2m4[k-ml 4 

n =  1 k d ~ ¢ +  1 m ~ I N +  1 
k - r e d l y  + 1 

and, in addition, the series ~ I[(Z(")(fi), 0)[[L~(a.~) converges. 
n - - I  

Since 
N - 1  

<B~)(~), 0> = Y, <Z~")(~), 0>, 
n = l  

by applying the theorem of Beppo Levi and the dominated convergence theorem, 
it follows that the sequence <B(N)(fi), 0> converges in L2(d#0 as well as #~-a.e. 
Therefore the left hand side of the stationary Hopf equation (3.7) makes sense, the 
function B(a) which appears in it being the limit, in the sense of Proposition 3.4, of 
the functions B(N)(a), as N ~  oo. [Notice that we have shown that the sequence 
B¢N)(fi) itself converges /%-a.e.] We have 

<B(fi), 0> exp(i<fi, @)d#(fi) = lim ~ <B(m(fi), 0) exp(i(fi, 0>)dp(fi) 

= N~lim- kd~ ~ O. {k_ L~I~, F"k" T2 S ~ ' ( ~ ( x ) ) e x p ( i m . x ) / m d x  

• ~ ,y(o-(x)) exp(i(k - m). x) / lk-  mldx + ~ ~f(a(x)) exp(ik, x )dx  
T 2 T 2 

m k  0 exp, kx, 1 
Using (4.8) we see that the second term in the curly brackets gives no contribution, 
and since the remaining double series converges absolutely, we have 

} <B@, O> exp(i<a, 0))@(~) = i ~ a k rn ~ ~ tp'(a(x)) exp(im-x)dx 
s '  k e 2  2 k -  ~ 2  z T 2 

" S qY(a(x)) exp(i(k-  m). x)dx = i ~ 17V0(a(x)) . rot G(~'(a(.)))dx = O. 
T 2 T 2 
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5. Properties of  the Gaussian and Poissonian States  

a. Gaussian States 

I p ( t ) :  @ 0 " 2 t  2 ((7>0) we have a gaussian equilibrium state. For In fact its 

characteristic functional is: 

~(0)  = exp ( @  °'2~k~2 -~ - J "  10kl21 (5.1) 

Denoting by #~ the corresponding measure on 3', the measure of any cylindric set 
A is given by 

#o(A)= j" H exp(--k2l%t2/2cr2)5(~-k+fik)d2fik/(~zl/2a/k) (5.2) 
A keI  

(here I is the set of integers corresponding to the variables on which the cylindric 
set A depends. Note that A C~' implies I = - I ) .  The following proposition 
characterizes the support of #~. 

Proposition 5.1. Consider the sets : 

d ~ =  { f i ~ ' _  klim inf oo o -2 [fikl2k~ = 0} log k 2 

,imsup I,"' , '  :1} k~ oo a 2 log k 2 " 

The support of the measure #a is contained in the set d~=N_an~¢.  Moreover 
energy is infinite #~-a.e. 

Proof. First of all we show that #~(~'\_d~)=0. We have 

0 0 
n = l  N = I  

where 

_~¢(n,N): {fi~, i n f  ,fikl2kz/(a21ogk2)> ~}. 

With the help of formula (5.2) we get : 

#~( _~¢(,, m) =( I-I exp ( - l o g  k2/n) 1/2, 
\k->_N 

and the conclusion follows from the fact that the infinite product is zero for all n, N 

since the series ~ (1 -1 /k  2In) diverges. Consider now the set 
k>=N 

- " "'  i c ] .  s t ,~  =f~uesll m sup l f i j2k2/(o -2 log k 2) < 
' t I k~°° f 

We have 

 o.:0 0 
n = l  N = I  



70 C, B o l d r i g h i n i  a n d  S. F r i g i o  

where 
s~'~("~ m =/fie ~'[sup ]fik[2k2/(o -2 log k 2) . <  C - -  1/n~, 

' t lk~ N l 
and 

n--~ O0 N~c~O 

since ~'~("~m 3 ~ ' c u - 1 ) a n d  s),(',"cm 3 ~ - 1,u). Proceeding as before we find 

and the infinite product is zero or finite according to whether the series 

k-2(c-1/,) diverges or converges. For c ~ 1 the series always diverges. For c > 1 
k > N  

the series converges for n so large that c-1/n > 1, and for all such n we have 

lim #~(~'~('S)) = 1, 
N ~ o o  

whence.it follows easily that # ~ ( ~ ) =  t, and therefore #o(d~)= 1. 
To prove the second assertion we first calculate the average value of the 

energy: 

Consider the sequence of functions 

:E(N)(fi): =½ Z (lfikl2--a2/k2) N = l , 2  . . . .  (5.3) 
k < N  

since 

II :E(N+ 1)(fi) : --:E(m(fi) : 112(d#~) = a'~ ~ k -4 , 
N < k < N + I  

reasoning like in the proof of Theorem 4.2 we conclude that sequence :E(m(fi): 
converges, as N ~  oo, in L2(d#~) as well as almost averywhere. Since the limit is 

G-a.e. finite and the series ~ k-2 diverges, we conclude that the series ~ [fikt 2 
k ~  2 ke~. 2 

diverges kto-a.e. 
Gaussian equilibrium states are associated to enstrophy conservation : formula 

(5.2) shows that they are Gibbs states with Gibbs factor exp ( - S/cr 2) (a 2 plays here 
the role of a "temperature" associated to enstrophy). It is natural to take energy 
conservation into account and to consider equilibrium states with Gibbs factor 
exp (-E/o~ z -  S/cr z) (cf. [1]). A standard way to give a mathematical definition of 
such states is to consider the sequence of the measures on ~' which have as densities 
with respect to dp~ the following cylindric functions: 

~,.(fi)=exp(--½Ot-2k~Nlfikl2)/!exp(--½a-2k~Slfi~,12)d#~ N =  t, 2. . .  (5.4) 

The limit, as N-* to, of such measures, if it exists, will define the state we are 
looking for. 
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Theorem 5.1. The sequence offunctions (5.4) is a Cauchy sequence in LP(d#o) for any 
p>l .  

Proof To simplify notations we assume a = a =  t, and #1 =P. We have 

0N(fi) = exp (--~: E(m(a) :) /!  exp ( - ½: E(m(fi :)d/~ 

:E(m(fi): being defined by equality (5.3). The normalization factors 

cN =S exp(-½:E(m(fi):)dl"~=( [-[ exp(k-2 -1°g(  1 + k-  2))) 1/2 
~" \ k < N  

converge to a finite limit as N ~  oo. Now, since 

lexp (x) -  exp (y)p < Ix -YI" lexp (x) + exp (y)] 

we have, setting U(m- - - :E(m: 

II exp (U (u)) - exp (U (N')) [1 Lp(e.) < [I U(m - U(w)II Lq(d~) 

• (II exp ( U (m) IJ Lr(e.) + tl exp ( U (N')) I] L,(e.)) 

for any choice of the integers r, q, p > 1 such that p-  1 = q- ~ + r-  1. Moreover since 

([[exp (U(N)) [[ L,(d,))~ = !exp (rU(N))d#-----(g~<_N exp (r/k - z -  log (1 + r/k-2)))1/2 
and the series ~ r/k-z  _ log (1 + r/k-2) converges, we have that ]] exp(U (m)[[ L-(d,) 

k ~  2 

is limited, uniformly in N. To estimate li U(m- U(W)li Lq(a~) assume N'> N and q to 
be even (if q is odd we can use the inequality 

II U (~) -  U(N')tlL~(~.) < il U (N)- l~(w),~ II Lq + l(dlt)),  

Setting q = 2s we find: 

U(N')- U(N) 2"  L~(du, =2-4*5(a, \u <~<-= Iv' (lukl2--1)/k2) 2~d# 

m--1  p l , . . . , p m = O  kl  * . , , 4 - k m e l N +  1 IN 
p l > p 2 > , . . > p m  

p:t + p2+. . .  + p m = s  

where n(p l, .. ., p,,) are combinatorial factors, so that the result follows 
immediately. 

As a consequence of Theorem 5.1 we have a new class of gaussian measures 
which are absolutely continuous with respect to the old ones, with density given by 
the limits of sequences (5.4). Therefore they have the same support properties. The 
new class is labelled by two positive parameters, a and ~. It is easy to show that the 
stationary Hopf equation makes sense for such measures, and that they are 
stationary solution of such equation. In fact the characteristic functionals are 

and the proof of Theorem 4.2 can be repeated step to step. We have found 
therefore a new class of gaussian equilibrium states. We remark that similar 
results on gaussian states are contained in the paper [18]. 
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6. Poissonian States 

Definition5.1. We shall call "simply poissonian equilibrium state with vortex 
strength ~: and parameter c" (~:+ 0 and c > 0 are real numbers) the equilibrium state 
of the class described by Theorem 4.1 which corresponds to the function 

tp(t) = c(exp (i~t) - 1). 

For  such a state vorticity is distributed according to the characteristic 
functional 

Ze( 4)) =exp ( ; c(exp (i~cO(x))- l)dx) d?~ Se( T2) . (5.5) 

Definition 5.2. We shall call "poissonian equilibrium state" any state of the class 
described by Theorem 4.1 which corresponds to a function p of the type 

~v(t) = ~ Cg(exp (i~cjt)- 1), n being a positive integer, and cj > 0, ~cj =~ 0 real numbers. 
j = l  

For such states the vorticity distribution is a superposition of a finite number of 
independent simply poissonian vorticity distribution. 

Proposition 5.2. For any poissonian state there exists a stochastic measure (with 
sign) ~.)  on T z, with'finite total variation #~-a.e., such that the g.rf which gives the 
vorticity distribution admits #,;a.e. the representation 

(4 ,~)= ~ (o(x)~(dx) q S ~ ( T 2 ) .  (5.6) 
T 2 

Proof Since this result is a consequence of a general theorem which can be found 
in [16] (for the case of processes, but the restriction is not essential), we shall only 
outline the proof for simply poissonian states (the generalization to poissonian 
states is however very simple). Consider the g.r.f, identified by the characteristic 
functional (5.5), with c = x = 1 for simplicity). The latter obviously makes sense for 
(]~ = t)~A, with A a Borel set in T 2 and ZA its characteristic function, so that we 

¢ can associate to any Borel set A C T 2 a random variable ~t~(A) such that 

" A ' ' m g~{g~()}=re(A),  g~{~(A)~(B)}= (A)+m(B)+m(Ac~B) 

[where m(-) is the Haar  measure on T z and m(T 2) =(2re)z]. Now if we associate to 
any Borel set A C T 2 the random variable ¢~(A) = ~'~(A) - re(A) it is easy to see that: 

i) ~,p(A)eLZ(d#~o) 
ii) ~(AwB) = ~to(A) + ~to(B) #~-a.e. if Ac~B = 0 

iii) g~(~v(A)~(B))=m(A~B) 
for any Borel sets A, B C T 2. The family of random variables ~(A), for all Borel sets 
A, defines therefore a stochastic measure on T z, whose structure function is m(.), 
and a trivial verification shows that representation (5.6) takes place/%-a.e. Note 
that for any Borel set A ~(A)+re(A) is a random variable which takes integer 
values/~,-a.e, and is Poisson distributed with parameter re(A). 

Corollary 5.1. For any poissonian equilibrium state energy is infinite #~-a.e. 

Proof Again we wilt give the proof only for the simply poissonian state with 
c = ~ = 1, since the extension is not difficult. As a consequence of Proposition 5.1 
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i n 
we have that #t~-a.e. i k = -  ~j_~_~ exp(ik-x) ,  the finite positive integer n and the 

points xj~ T 2 (x~ ~: xj for i+j) depending on ft. Therefore: 

2 [fik[ 2=  2 k-2(  n+ 2 c o s k . ( x i - x ) ) ,  
k J ~  2 k ~  2 \ i < j 

and the result follows immediately since the series ~ k-2 diverges, whereas the 
k ~  2 

series defining the Green's function of the Laplacian in r 2, 2 k-2exp(ik 'x)  , 
converges for x ~ 0. k ~  

7. Equilibrium Dynamics for a Class of Poissonian States 

In this paragraph we construct the time evolution for the Euler equation on a set 
of full measure with respect to all poissonian states for which vorticity takes only 
positive, or only negative, values (i.e. for which all vortices rotate in the same 
direction). 

First of all we need to give sense the Euler equation (2.12) as a differential 
equation in Y. 

Definition 6.1. We shall say that the function fi(.):IR 1 ~ '  is a solution of the Euler 
equation with initial data i o whenever i(0)=rio, the limit B(fi(t))= lim B(m(i(t)) 

N - ~ o ¢  

exists in 3', for all t, the functions (i(t), 0) are derivable for all t and all 0~3, and the 
equality takes place 

d (fi(t),O)=(B(fi),O) tsIR I , (6.1) 

In the following we shall call "Euler equation" Eq. (6.1). It is easily seen (cf. 
[11]) that whenever ~ k2lfik°)]2< Go Eq. (6.1) is equivalent to the usual Euler 

k E ~  ~ 

equation in weak form. 

Theorem 6.1. Let #~ be the measure on 3' corresponding to a simply poissonian state. 
There exists a set P~, #t~(P~) = 1, such that for any ue P~ there is a solution fi(. ) of the 
Euler equation (6.1) satisfying the initial condition i(O)= ft. The solution is such that 
the components ilk(t) are analytic in t, and is unique within the class of functions 
possessing this property (hereafter to be called "analytic"). 

Proof We set for simplicity ~ = 1. Consider the sets 

P( ')= i ~ '  fik=(ik) -1 { ~ exp(ik-x)  

some (x 1 . . . .  ,Xn)f(TZ)n, Xi:#X j for i+j} n = l , 2 , : . .  for 

oo 

As a consequence of Proposition 5.2 it is easily seen that the set P~ =,?~= P~) is a 

set of full measure:/~(P~) = 1. Consider now the ordinary differential equation in 
(T2) " 

d 
x~(t) = rot~, ~ g(xi(t ) -  xj(t)) i = 1, ..., n (6.2) 

j = l : l  
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with the initial condition 

x~(O)=xi, (6.3) 

# being the Green's function associated to the operator - A. Equations (6.2) are a 
set of hamiltonian equations, the hamiltonian being 

= g ( x i - x ?  
i=F j 

(they are the Onsager vortex equations on T 2, cf. [2]). Since the function g(x) is 
everywhere analytic except at x = 0, where it diverges logarithmically to + oo, the 
variety ~f~ = const in (T2)" keeps everywhere at a finite distance (depending on H )  
from the hyperplanes x~=xj, i=l=j, so that (6.2), as a differential equation with 
analytic right hand side posseses a unique analytic solution satisfying the initial 
condition (6.3). Denote by x~(t), i=  1 .. . . .  n, the solution and consider the function 

fi(t)={(ik) -1 ~ exp(ik-xj(t))} . 
j =  1 k ~  2 

(fi(t), O) is differentiable in t for any tEN* and we have 

d * d -  . k " 
~7(fi(t),O) = Z 7;fik(t)O, = Z y-" Z xiexp(--ik'xj)Ok. 
t t  k ~ 2 ~ f ~  k e ~ 2  A j =  t 

A straightforward calculation yields 

B(k~)(fi(t)) = -- i 2 [( mj" k) ( Ik -  m12 _,nZ)/2ktk_ mtm]fi,.(t)ik_ re(t) 
m c l N  

k -" I n . I N  

= - (i/k) ~ ((m ±- k ) tk -  ml/m)fim(t)fi k_.(t) 

Since 

E 
m ~ I N  

m E I N  
k -- m E [ N  

=(ilk) 2 (m±'k/m2)" 
m ~ I N  s , j  = 1 

k -- m ~ I N  

= (ik/k)- ~ exp (ik-x,(t)) 2 
s = l  j * s  

n 

+(i/k) 2 exp (ik-x~(t)) 
s = l  

exp (i(m.xj(t) + ( k -  m)- x,(t))) 

(m±/m 2) exp (im.(xj(t) - xs(t)) ) 
m ~ I N  

k - m e I N  

m I . k/m 2 " 
m E I N  

k -- m ~ I N  

m±-k/m 2= ~ ½m±'k(k2-2k'm)/(m21k-ml2)=0 
m ~ I N  

k -- m ~ I N  k -- m ~ I N  

(cf. proof of Theorem 4.2), and since 

(m±/m 2) exp (im. (x~(t) - Xs(t)) ) N-,~) i rotxfl(x~(t ) - xs(t)), 
m E I N  

k -- m E I N  

d 
we have t h a t ~  ilk(t)= Bk(il(t)) and (6.1) is satisfied. The functions ilk(t) are obviously 

analytic since a composition of analytic functions is analytic. Let ~(t) be another 
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analytic solution satisfying the same initial condition at t = 0 ;  the functions vk 
coincide with the functions ~k and so do all their derivatives, which may calculated 
with the help of Eq. (6.2) in terms of the initial data. Since the function 13k(t ) and 
fi~(t) are analytic and have all derivaties equal at t = 0, they must coincide. 

Actually a stronger result is true, which we give as a corollary. 

Corollary 6.1. There exists a set P in ~' such that for any ~ P  there is a unique 
analytic solution ~(.) of the EuIer equation (6.1) satisfying the initial condition 
fi(O)=fi, and, moreover, I~(P)= 1 for any measure I~ corresponding to a simply 
poissonian state or to a poissonian state for which all vortex strengths ~:j are of the 
same sign. 

Proof. Consider the sets 

P(")= {~e~']~k=(ik)- I j~ 1 ~c~exp ( ik .x) ,  

(x 1, ...,x,)~(T2f,~%~c~>0and xj~:x~ for s:~j} n = l , 2 ,  .... for some 

The set p(n) corresponds to all possible configurations of n vortices with vortex 
strengths of the same sign (i.e. all vortices rotate in the same direction). It is not 

hard to see (cf. Proposition 5.2) that the set P = ~) P(') is a set of full measure for 
n = l  

any poissonian state satisfying the conditions of the corollary. Now, by repeating, 
with small modifications, the proof of Theorem 6.1 it is seen that existence of 
dynamics on the set P tbllows from the existence of a unique solution for finite 
systems of vortices rotating in the same direction. 

Notice that for poissonian states with vortex strengths of both signs the 
theorem does not hold, since finite configurations of vortices of both signs may be 
catastriphic, i.e. two vortices may collapse in a finite time [17]. 

Conclusions 

Equilibrium dynamics for poissonian states admitting only positive (or negative) 
vorticity has been easily obtained via the Onsager vortex equations. The problem 
is more complicated for the other physically interesting cases. For poissonian 
states with vorticity of both signs equilibrium dynamics can be constructed, by 
means of the Onsager vortex equations, only of the set of the catastrophic con- 
figurations which we mentioned at the end of the preceding paragraph is shown 
to be of zero equilibrium measure, as it is reasonable to expect. For this, however, 
one should wait until a sufficiently complete characterization of the catastrophic 
set is given (which seems to be a hard task). For  gaussian states there are some 
preliminary results [18], however the problem is essentially open. 

Once equilibrium dynamics have been constructed we can investigate the 
evolution of initial states which are absolutely continuous with respect to the 
equilibrium measure. Convergence to equilibrium for such states is strictly 
connected to the ergodic properties of the corresponding "equilibrium dynamical 
system" (which is the dynamical system on phase space given by equilibrium 
measure and time evolution). The investigation of the ergodic properties of the 
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equilibrium states is probably as difficult a problem as it is in statistical mechanics 
(cf. [19]). 

For poissonian states we can say for sure that ergodicity does not hold, since 
there are invariants of the motion (at least the vortex number, the hamiltonian and 

the vorticity center x =  ~ xi(t)~cl). Even on the manifolds identified by such 
i=1 

integrals of the motion the system is in general nonergodic and apparently a 
variant of the Kolmogorov-Arnol'd-Moser theorem holds [20]. The situation is 
similar to that of finite particle systems. 
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