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Abstract, We present an optimization model for the design 
of rectangular reinforced concrete beams subject to a specified 
set of  constraints. Our model is more realistic than previously 
published models because it minimizes the cost of  the beam on 
strength design procedures, while also considering the costs 
of  concrete, steel and shuttering. Thus our method leads to 
very practical designs. As there is an infinite number of  
possible beam dimensions and reinforcement ratios that yield 
the same moment of  resistance, an efficient search technique 
is preferred over the more traditional iterative methods. We 
employ a simple genetic algorithm as the search engine, and 
we compare our results with those obtained via geometric 
programming. Since the adjustment of  parameters in a genetic 
algorithm (e.g., population size, crossover and mutation rates, 
and maximum number of  generations) is a significant problem 
for any application, we present our own methodology to deal 
with this problem. A prototype of this system is currently being 
tested in Mbxico, in order to evaluate its potential as a 
reliable design tool for real world applications. 

Keywords. Artificial intelligence; Design optimization; 
Genetic algorithms; Structural optimization. 

1. Introduction 

The design of reinforced concrete elements plays a 
very important role in M6xico, because of its extensive 
use by civil engineers. The traditional design method 
proposes a certain solution that is then corroborated 
by mathematical analysis in order to verify that the 
problem requirements are satisfied. If such requirements 
are not satisfied, then a new solution is proposed by 
the designer based on his intuition, or some heuristics 
derived from his experience (see Fig. 1). This process 
is typically of high cost in terms of time and human 
effort. As time is always a constraint in real design, a 
reasonable solution that satisfies all the requirements 
of the problem is usually adopted, and cost optimization 
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is not even considered. Recently, computers have been 
used to help engineers automate the design process, 
but their use has been mainly in performing the 
tedious and repetitive mathematical calculations that 
are required, rather than in automatically generating 
designs. 

An alternative to the traditional design method is 
optimal design, which consists of changing the design 
based on a certain 'optimality condition' (see Fig. 2). 
However, the general optimal design problem is 
highly nonlinear and nonconvex [1]. As a result, 
structural optimization problems are characterized by 
having multiple local optima. 

This paper focuses on the use of an artificial 
intelligence (AI) technique based on the mechanics of 
natural selection, called the genetic algorithm[2, 3]. 
The design process based on this technique is very 
similar to the optimal design process (Fig. 3). The 
main difference is the use of a f i tness  function instead 
of a cost function, and the fact that the adaptation of 
the design is not dependent upon either the engineer 
(as in traditional design) or the gradient of the cost 
function (as in optimal design). Even more interesting 
is that initial designs are randomly generated, with no 
human intervention, and the technique nevertheless 
converges to at least a reasonably good sub-optimal 
design in a reasonable amount of time. 

The design of a reinforced concrete beam is 
normally an iterative process like the one shown in 
Fig. 1, in which the engineer assumes a total weight 
for the beam beforehand, and a trial section is chosen. 
Then, the moment of resistance of this section is 
determined, to check its suitability against the given 
applied bending moment. This process is repeated 
until a trial section is found to be suitable. This 
procedure often creates a difficulty in matching the 
moment of resistance of the section with the total 
applied bending moment due to the beam's weight, 
which may be quite substantial in many cases. 
Therefore, not only is the design process of a beam 
slow, but it also has no economic analysis since the 
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Fig. 2. Optimal design process. Taken from Belegundu [1]. 

only concern is to find any section suitable for the 
given conditions. A better approach would be to find 
the most economical design that is also physically 
suitable. 

In this paper, we present a model for optimal 
design that minimizes the cost of a rectangular 
reinforced concrete beam based on strength design 
procedures, but also considers the costs of concrete, 
steel and shuttering. Our model follows the one 
proposed by Chakrabarty [4, 5], with certain modifi- 
cations (i.e. additional constraints) that make it 
suitable for practical applications. In the next section, 
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Fig. 3. Optimal design process using a genetic algorithm. 

we will introduce some general concepts from rein- 
forced concrete design. Then, our model will be 
presented and the genetic algorithm approach will be 
described. Finally, we will present the results found 
by our model when solving some problems found in 
the literature, and we will discuss some of the issues 
that arise when using genetic algorithms in this kind 
of application. 

2. Basic Concepts 

For the purpose of this research, we adopted strength 
design procedures, because they have, among others, 
the following advantages [6]: 

Strength design better predicts the strength of a 
section because of the recognition of the non- 
linearity of the stress-strain diagram at high stress 
levels. 
Because the dead loads to which a structure is 
subjected are more certainly determined than the 
live loads, it is unreasonable to apply the same 
factor of safety to both. Considering that fact, this 
approach allows the use of different safety factors 
for them. 

The basic assumptions that are taken when using 
strength design are the following [6]: 

* Plane sections before bending remain plane after 
bending. 

e At ultimate capacity, strain and stress are not 
proportional. 



Algorithm for Design Reinforced Concrete Beams !87 

kud 

/ I 

f /  
j J  

j /  
j /  

J 

i o.sf~ 

- 7 

r 

/ 
- ' 7  

j / I  

E f 

Eu 

:a 

T 

Fig. 4. Trapezoid stress distribution. 

| Strain in the concrete is proportional to the distance 
from the neutral axis. 

| The tensile strength of concrete is neglected in 
flexural computations. 

| The ultimate concrete strain is 0.003. 
| The modulus of elasticity of the reinforcing steel is 

200 000 MPa (29 000 000 psi). 
| The average compressive stress in the concrete is 

0.85f' c. 
| The average tensile stress in the reinforcement does 

not exceed fy. 

According to this design method, if we assume a 
trapezoidal stress distribution like the one shown in 
Fig. 4, the nominal moment capacity M n of a 
rectangular beam with tension reinforcement only is 
given by [6]: 

M n = b d 2 f ' ~ w ( 1  - 0.59w) (1) 

where b is the width of the beam, d is the distance from 
the extreme compressive fiber to the centroid of 
tension reinforcement, f 'c  is the compressive strength 
of concrete, w = ( A J y b d f ' ) ,  fy is the yield strength of 
reinforcement and A~ is the area of tension rein- 
forcement. 

There is an infinite number of solutions to Eq. (1) 
that yield the same value of M n [6]. In the traditional 
design process, the values of b and/or d are assumed, 
and the remaining parameters are calculated based on 
them, iterating until a suitable section is found. An 
obvious restriction of this approach is that only a few 
sections can be evaluated in this manner. Since Eq. 
(1) does not incorporate any cost parameter, there is 
no way of achieving a least-cost design. Therefore, we 

need to include certain cost parameters combined 
with the design parameters in our optimal design 
model, so that we can produce least-cost suitable 
designs. 

3. Previous Work 

The optimal design of beams was first proposed by 
Galilei [7], although his calculations were wrong. 
Apparently, the doctoral dissertation by E. J. Haug Jr 
[8] (see also [9]) in 1966 was one of the first modern 
attempts to use a digital computer as a tool for the 
optimal design of this structural element. Haug 
reduced the non-linear optimal design problem to a 
Lagrange problem in the calculus of variations with 
inequality constraints. His model considered a beam 
made of a linearly elastic material of known density 
with two supports and a certain given load. The 
control variables were the values of cross-sections at 
different points along the beam, and constraints on 
the stress, shear and deflection were imposed. Haug 
used an iterative method based on the generalized 
Newton's algorithm to solve statically determinate 
beams. 

Venkayya [10] developed a method based on an 
energy criterion and a search procedure based on 
constraint gradient values for the design of structures 
subjected to static loading. His method can handle 
very efficiently: (a) design for multiple loading condi- 
tions, (b) stress constraints, (c) displacement constraints 
and (d) limits on sizes of the elements. This method 
also has been successfully applied to the design of 
trusses, frames and beams. In these cases, the weight 
of the structural element is the parameter to be 
minimized. 

Karihaloo [11] presented a model to minimize the 
maximum deflection of a simply supported beam 
under a transverse concentrated load. Haug and 
Arora [12] used the gradient projection method to 
optimize the design of simply supported and clamped 
beams with constraints on stress, deflection, natural 
frequency and bounds on the design variables. Again, 
the weight (volume) of the beam is the parameter to 
be minimized. 

Saouma and Murad [13] developed a method for 
minimum cost design of simply supported, uniformly 
loaded, partially prestressed concrete beams. This 
model uses nine design variables: six geometrical 
dimensions, the area of prestressing steel and the area 
of tensile and compressive mild reinforcement. The 
imposed constraints are on the four flexural stresses, 
initial camber, dead and live load deflections, ultimate 
shear and ultimate moment capacity with respect to 
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both the cracking moment and the applied load. 
This model was solved using the penalty-functions 
method coupled with quasi-newton unconstrained 
optimization techniques. 

Das Gupta et al. [143 applied generalized geometric 
programming to the optimal design of a modular floor 
system, which consisted of reinforced solid concrete 
and voided slab units supported on steel beams. One 
of the most remarkable characteristics of this model 
is that it defines a function representing the cost of 
the floor system in terms of design variables, length, 
width and thickness of components, and other engin- 
eering cost parameters. This function is minimized 
subject to various constraints depending on stresses 
and deflections, and a dual-based algorithm was used 
to solve it. 

Some other authors have used multiobjective 
optimization techniques to deal with this problem. 
For example, Rao [15] studied a cantilever beam with 
a hollow rectangular cross-section and tip mass, for 
which he minimized its structural mass and its fatigue 
damage, while he maximized its natural frequency. 
After using many different approaches (i.e., global 
criterion, game theory, goal attainment, utility function, 
etc.), he concluded that game theory gave the best 
results. Also, Osyczka [16, 17] used the min-max 
method for the optimal design of an I-beam. More 
recently, Lounis and Cohn [18] considered the design 
of a post-tensioned floor slab and a pretensioned 
highway bridge system for two conflicting objectives: 
minimum cost and minimum initial camber. They 
used the e-constraint method to transform this 
multiobjective optimization problem into a single 
nonlinear optimization problem that they solved 
using the projected Lagrangian method. 

Prakash et al. [t9] proposed a model for the 
optimal design of reinforced concrete sections in 
which the costs of steel, concrete and shuttering were 
included. Chakrabarty's model [4, 5] has some 
similarities with Prakash's model, but Chakrabarty's 
model is more complete and detailed. That is the main 
reason why we decided to use Chakrabarty's model 
as a basis for our implementation, although we 
modified it slightly to produce designs that fall into 
Mexico's standard regulations for reinforced concrete 
design. The original model leads to inconsistent 
designs in some cases. 

4. The Optimal Design Model 

A schematic section of a rectangular singly reinforced 
concrete beam is shown in Fig. 5. The cost per unit 
length of the beam will be given by the following 
expression [5]: 

d As i r 

Fig. 5. Schematic section of a singly reinforced rectangular beam. 

y(x) = clA s + czbd q- csd + e4b (2) 

where y(x) is the cost per unit length of the beam 
($/cm),cl is the cost coefficient due to volume of tensile 
steel reinforcement in the beam ($/cm3), c2 is the cost 
coefficient due to volume of concrete in the beam 
($/em3), c 3 is the cost coefficient due to shuttering 
along the vertical surfaces of the beam ($/cm2), c, is 
the cost coefficient due to shuttering along the bottom 
horizontal surface of the beam ($/cm2), A s is the 
variable giving the area of tensile steel reinforcement 
as shown in Fig. 5 (cmZ), d is the variable giving the 
depth of the beam as shown in Fig. 5 (cm) and b is 
the variable giving the width of the beam, also as 
shown in Fig. 5 (cm). 

The variables A s, d and b not only affect the cost 
of a beam, but will also determine its moment of 
resistance. Since A s may be calculated if we know d 
and b [6], we propose different values for these two 
variables so that the total cost of the beam is a 
minimum, and that our section has a proper resistant 
moment. Then, our optimal design model is the 
following: 

minimize: f ( x )  = clA~ + c2bd + csd + c4b 

subject to: 

alkbd < I (equilibrium constant) (3) 
A~ 

a2 + a3bd 
<1  

MT 

(bending moment compatibility constraint) (4) 

0.25 < b/d <<_ 0.6 
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(width-height ratio constraint) (5) 

Q(d - askd)(f~f'~kdb + Asfy)as /M T >_ 1 

(acting moment constraint) (6) 

a6/b < 1 (minimum width constraint) (7) 

A s, d, b, M T, kd > 0 (non-negativity constraint (8) 

Here M T is a variable defining the total applied 
bending moment including the bending moment due 
to self-weight of the beam, kd is a variable defining 
the depth of the equivalent rectangular stress block, 
k is a factor related to the location of the neutral axis 
of a cross-section. Additionally, we have the following 
formulas: 

c I = w~ x G($/cm 3) (9) 

where ws = 0.00785 kg/cm 3 (assumed value) is the 
unit weight of steel reinforcement, and cs is the unit 
cost of steel reinforcement ($/kg). 

C 2 ~--- (1 "}- r)C c X 10 . 6  ($/cm a) (10) 

where G is the unit cost of concrete ($/m 3) and r is 
the cover ratio. 

c 3 = 2(1 + r)c r x i0 .4  ($/cm 2) (11) 

where q is the unit cost of shuttering ($/m3). 

c 4 = c r x 10 .4 ($/cm 2) (12) 

a, = 0.85s (13) 

where fy is the yield strength of steel reinforcement 
(N /cm 2) and f" is the compressive strength of concrete 
(N/cm2). 

a 3 = D(1 + r)w~kL 2 (14) 

where D = 1.4 (assumed) is the load factor for dead 
load, w e = 0.022 8 N/cm 3 is the unit weight force of 
concrete, k is the moment coefficient for the design 
section ( =  1.8 for simply supported beam) and L is 
the span of the beam (cm). 

a4 = 1/(f, Q f ' )  (15) 

where Q is the capacity reduction factor ( = 0.90 for 
flexure) andf~ = 0.85 (assumed) is the reduction factor 
of concrete. Also, a 2 is the applied bending moment 
(N cm), as = �89 (assuming the centroid of compressive 
force at half the depth of equivalent rectangular stress 
block), and a 6 is the minimum acceptable width of the 
beam. 

To determine MT (total bending moment, including 
self-weight of the beam), we use: 

M T = a 2 4- a 3 b d  (16)  

To calculate A s (area of reinforcement steel), we use: 

As : o bdf;/f, (17) 

where 

09 -=- 
X /  4(0"59)MT 

1 -- 1 0.9bd2f~ 

1.18 

This last expression can be derived from Eqn (1). 
Finally, kd (depth of the equivalent stress block is 
given by: 

kd -- As/(alb ) (l 8) 

5. Use of Genetic Algorithms 

The genetic algorithm (GA) is a heuristic search 
technique based on the mechanics of natural selection 
developed by John Holland [2]. Koza [20] provides 
a good definition of a GA: 

The genetic algorithm is a highly parallel mathema- 
tical algorithm that transforms a set (population) of 
individual mathematical objects (typically fixed- 
length character strings patterned after chromosome 
strings), each with an associated fitness value, into 
a new population (i.e. the next generation) using 
operations patterned after the Darwinian principle 
of reproduction and survival of the fittest and after 
naturally occuring genetic operations (notably 
sexual recombination). 
A genetic algorithm for a particular problem must 

have the following five components [21]: 

1. A representation for potential solutions to the 
problem. 

2. A way to create an initial population of potential 
solutions. 

3. An evaluation function that plays the role of the 
environment, rating solutions in terms of their 
'fitness'. 

4. Genetic operators that alter the composition of 
children. 

5. Values for various parameters that the genetic 
algorithm uses (population sizes, probabilities of 
applying genetic operators, etc.). 

Certain terminology is commonly used by the GA 
community: 

| A chromosome is a data structure that holds a 
'string' of task parameters, or genes. This string may 
be stored, for example, as a binary bit-string (binary 
representation) or as an array of integers (floating 
point representation). 
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| A gone is a subsection of a chromosome that usually 
encodes the values of a single parameter. 

| An allele is the value of a gone. For example, for a 
binary representation each gene may have an allele 
of 0 or 1, and for a floating point representation, 
each gone may have an allele from 0 to 9. 

| A schema (plural schemata) is a pattern of gone 
values in a chromosome, which may include 'do not 
care' states (represented by a # symbol). Thus in 
a binary chromosome, each schema can be specified 
by a string of the same length as the chromosome, 
with each character being one of {0, 1, #}. A 
particular chromosome is said to "contain' a 
particular schema if it matches the scheme (e.g. 
chromosome 01101 matches schema # 1 # 0 # ) .  

The basic operation of a GA is illustrated in the 
following segment of pseudo-code [22]: 

generate initial population, G(0); 
evaluate G(0); 
t : :0;  
repeat 
t:=t + 1; 
generate a(t) using G ( t  - 1); 
evaluate G(t); 
until a solution is found. 

First, an initial population is randomly generated. 
The individuals of this population will be a set of 
chromosomes or strings of characters (letters and/or 
numbers) that represent all the possible solutions to 
the problem. We apply a fitness function to each of 
these chromosomes in order to measure the quality of 
the solution encoded by the chromosome. Knowing 
each chromosome's fitness, a selection process takes 
place to choose the individuals (presumably the fittest) 
that will be the parents of the following generation. 
There are two main selection schemes: roulette wheel 
selection and tournament selection. 

In roulette wheel selection, each individual is 
assigned a certain probability F~ of being selected, 
computed according to the formula [22]: 

Fi- 
L 

where f~ is the fitness value of each chromosome i. In 
this selection scheme the fittest individuals have a 
higher probability of being selected, but individuals 
with lower fitness can also eventually be selected. 

In tournament selection, k individuals are selected 
in a single iteration, and the best one from this set of 
k elements is chosen to be a parent to produce the 
next generation. This process is repeated as many 
times as the size of the population. Large values of k 
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Fig. 6, Use of a single-point crossover between two chromosomes. 
Notice that each pair of chromosomes produces two descendents 
for the next generation. The cross-point may be located at the string 
boundaries, in which case the crossover has no effect and the 
parents remain intact for the next generation. 

increase selective pressure of this procedure ~211; a 
typical value accepted by many applications is 
k = 2 (binary tournament selection). 

After being selected, crossover takes place. During 
this stage, the genetic material of a pair of individuals 
is exchanged in order to create the population of the 
next generation. The two main ways of performing 
crossover are called single-point and two-point 
crossover. When a single-point crossover scheme is 
used, a position of the chromosome is randomly 
selected as the crossover point as indicated in Fig. 6. 
When a two-point crossover scheme is used, two 
positions of the chromosome are randomly selected 
as indicated in Fig. 7. 

Mutation is another important genetic operator 
that randomly changes a gone of a chromosome. If we 
use a binary representation, a mutation changes 
a 0 t o  1 and vice-versa. This operator allows the 
introduction of new chromosomic material to the 
population and, from the theoretical perspective, it 
assures that--given any population--the entire search 
space is connected [221. 

If we knew the final solution in advance it would 
be trivial to determine how to stop a genetic algorithm. 
However, as this is not normally the case, we have to 
use one of the two following criteria to stop the GA: 
either give a fixed number of generations in advance, 
or verify when the population has stabilized (i.e. all 
or most of the individuals have the same fitness). 

GAs differ from traditional search techniques in 
several ways [22]: 

�9 GAs do not require problem specific knowledge to 
carry out a search. 
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Fig. 7. Use of a two-point crossover between two chromosomes. 
In this case the genes at the extremes are kept, and those in the 
middle part are exchanged. If one of the two cross-points happens 
to be at the string boundaries, a single-point crossover will be 
performed, and if both are at the string boundaries, the parents 
remain intact for the next generation. 

�9 GAs use stochastic operators rather than deter- 
ministic operators and appear to be robust in noisy 
environments. 

�9 GAs operate on multiple partial solutions simultan- 
eously (sometimes called implicit parallelism), 
gathering information from a population of search 
points to direct subsequent search efforts. Their 
ability to maintain multiple partial solutions con- 
currently helps make GAs less susceptible to the 
problems of local maxima and noise. 

The traditional representation used by the genetic 
algorithms community is the binary scheme according 
to which a chromosome is a string the form @1, b2,..., 
b~), where bl, b2,..., b m are called alleles (either zeros 
or ones). Since the binary alphabet offers the maximum 
number of schemata per bit of information of any 
coding [3], its use has become very popular among 
scientists. This coding also facilitates theoretical 
analysis of the technique and allows elegant genetic 
operators. However, since the 'implicit parallelism' 
property of GAs does not depend on using bit strings 
[21] it is worthwhile to experiment with larger 
alphabets, and even with new genetic operators. In 
particular, for optimization problems in which the 
parameters to be adjusted are continuous, a floating 
point representation scheme seems a logical choice. 
According to this representation, a chromosome is a 
string of the form (dl, d2,..., d,,), where dl, d2,...,dm are 
digits (numbers between zero and nine). Consider the 
examples shown in Fig. 8, in which the same value is 
represented using binary and floating point encoding. 

The term 'floating' may seem misleading since the 
position of the implied decimal point is at a fixed 
position, and the term 'fixed point representation' 

[11o[ 11ol I111ol 11ol 111 Iolololololololoj 

Representation of the number 35.5072 using 
binary encoding 

IslsI5101713J 

Representation of the number 35.5072 using 
floating point encoding 

Fig. 8. Representing the same number using binary and floating 
point encodings. 

seems more appropriate. However, the reason that the 
term 'floating point' is preferred is because in this 
representation each variable (representing a parameter 
to be optimized) may have the point at any position 
along the string. This means that even when the point 
is fixed for each gene, it is not necessarily fixed along 
the chromosome. Therefore, some variables could 
have a precision of 3 decimal places, while others are 
integers, and they could still all be represented with 
the same string. 

Floating point representation is faster and easier to 
implement, and provides a higher precision than its 
binary counterpart, particularly in large domains, 
where binary strings would be prohibitively long. One 
of the advantages of floating point representation is 
that it has the property that two points close to each 
other in the representation space must also be close 
in the problem space, and vice-versa [21]. This is not 
generally true in the binary approach, where the 
distance in a representation is normally defined by the 
number of different bit positions. Such discrepancy 
can, however, be reduced by using Gray coding. 

Procedures to convert a binary number b = @1, 
b2 ..... bin) into a Gray code number g = (9 t ,  g2 ..... gin), 
where m denotes the number of bits, may be found in 
[21]. The Gray code representation has the property 
that any two points next to each other in the problem 
space differ by only one bit [21]. In other words, an 
increase of one step in the parameter value corresponds 
to a change of a single bit in the code. This is a well 
known technique used to reduce the distance of two 
points in the problem space, and it is argued to bring 
some benefit because of their adjacency property, and 
the small perturbation caused by many single mutations. 
However, the use of Gray codes did not help much in 
this particular application, as we will see in the next 
section. 

To solve this optimization problem, we used the 
simple genetic algorithm (SGA) proposed by Goldberg 
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Table 1. Comparison of the geometric programming approach used by Chakrabarty [4] and the GA asing binary (with and 
without Gray coding) and floating point representation. 

Parameter Chakrabarty GA (Binary) GA (Gray Coding) GA (FP) 

As(cm 2) 37.692 6 36.189 3 41.590 5 37.520 5 
d(cm) 86.062 9 89.540 2 78.617 7 86.477 6 
b(cm) 30.000 0 30.016 2 30.044 7 30.002 2 

M~(N cm) 80'064, 711.73 80'540, 242.062 0 79'111,846.565 0 80'131,661.916 0 
kd(cm) 14.781 4 14.184 2 16.285 7 14o712 8 

Cost ($/cm) 0.443 5 0.444 2 0.446 4 0.443 6 

[3], and we experimented with several representation 
schemes. We have previously used a binary represent- 
ation [23] and we have tried Gray  coding [24] for 
structural optimization problems with a continuous 
search space like this one. For this particular application, 
we decided to experiment also with floating point 
representation. 

Finally, we should mention that we used a two- 
point crossover and binary tournament  selection in 
all our tests. The only operator that had to be 
redefined was mutation, which in the floating point 
representation selects a random number between 
0andg.  Our fitness function was given by Eq. (2), 
using a penalty function of the form fitness = 1/ 
(cost*(v*500 + 1)) where v depends on the number of 
constraints violated. Whenever the design does not 
violate any constraint, the fitness function is just the 
inverse of the cost (the GA only maximizes, and we 
require a minimization in this case). 

6. Examples 
The following example was taken from Everard [6]: 

Design a least-cost reinforced concrete rectangular 
beam simply supported over a span of 1 0 m  
supporting a uniform dead load of 15 kN/m and a 
uniform live load of 20 k N / m  The concrete strength 
f2 = 30 MPa  and the steel yield strength fy = 
300 MPa. The unit cost of steel (CS), concrete (CC), 
and shuttering (CSH) are $ 0.72/kg, $ 64.5/m 3 and 
$ 2.155/m 2, respectively. Assume a cover ratio (r) of 
0.10, unit weight of concrete of 2323 kg/m 3 and 
capacity reduction factor as 0.90. 
The ultimate uniform load is 1.4 x 15 + !.7 x 20 
= 55 kN/m. The ultimate applied bending moment  

is 55 x 102/8 = 687.5kN, m = 687,5 x l0 s N cm. 
Using this information, we can get the values of the 

cost coefficients and the other model constants: 

c 1 = 0.005 6520 
c 4 = 0.000215 50 
a 3 = 438,233,950 
a 6 = 30.00 

c2 = 0.000 070 95 
al = 0.085 00 
a4 = 0.000 435 73 

c 3 = 0.000 47410 
a 2 = 68,750,000 
a 5 = 0.50 

Our results and their comparison with the geometric 
programming method used by  Chakrabar ty  [5] are 
shown in Table 1 and the final design generated by 
the genetic algorithm is shown in Fig. 9. The value of 
A s = 37.5205 is approximated by using 4 bars # t0 
(nominal cross-sectional area = 819 mm 2) and 3 bars 
# 6 (nominal cross-sectional area = 284mm2). This 
gives us a total area of 41.28 mm 2, which is greater 
than the design value as the ACI (American Concrete 
Institute) regulations recommend.  The available 
reinforcing bar sizes and their corresponding properties 
according to the ASTM (American Society for Testing 
and Materials), are shown in Table 2 [6-1. 

As we can see from these results, the floating point 
representation produced the best results and Gray  
coding the worst. The final cross-section of the beam 
has a total height of 95.125 (see Fig. 9), which is 
about  1~ more than Chakrabarty 's  design. This slight 

30 cm 

86.478 cm 

3 bars # 6 - 

4 bars # 10 

Fig. 9. Optimum design of t~e beam of the first example. 
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ASTM standard reinforcing bars 

Nominal dimensions (Round sections) 

Bar size Weight Diameter Cross-sectional Perimeter Cross-sectional 
designation (lb/ft) (in) area (in 2) (in) area (in 2) 

#3 0.376 0.375 0.11 1.178 71 
#4 0.668 0.500 0.20 1.571 129 
#5 1.043 0.625 0.31 1.963 200 
#6 1.502 0.750 0.44 2.356 284 
#7 2.044 0.875 0.60 2.749 387 
#8 2.670 1.000 0.79 3.142 510 
#9 3.400 1.128 1.00 3.544 645 

#10 4.303 1.270 1.27 3.990 819 
#11 5.313 1.410 1.56 4.430 1006 
#14 7.65 1,693 2.25 5.320 1452 
#18 13.60 2.257 4.00 7.090 2581 

Table 3. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation. We assume b = 20 cm. Notice how the 
constraint imposed by Eq. (5) is violated by Chakrabarty's 
design. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 31.126 7 39.541 2 
d(cm) 101.549 4 82.704 3 
b(cm) 20.000 20.682 5 

Cost ($/cm) 0.372 5 0.388 5 

Table 4. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation. We assume b = 40 cm. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 43.601 7 43.764 4 
d(cm) 76.149 9 75.910 2 
b(cm) 40.000 40.004 2 

Cost ($/cm) 0.507 3 0.507 7 

Table 5. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation. We assume b = 62.50 cm. Notice how 
the constraint imposed by Eq. (5) is violated by Chakrabarty's 
design. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 55.443 5 35.717 2 
d(cm) 62.597 4 104.322 3 
b(cm) 62.500 62.501 0 

Cost ($/cm) 0.634 1 0.727 4 

difference is due to the fact that Chakrabarty's model 
considers the area of reinforcement steel as a variable, 
even though this is a parameter that depends on the 
beam section, and can not take any arbitrary value. 
On the other hand, our cost of steel, concrete and 
shuttering represent 47.80~o, 41.50~o and 10.70~ of 
the total cost, respectively, which corresponds almost 
exactly to the costs obtained by Chakrabarty. Floating 
point representation was used in all further experiments, 
since it provided the best results overall. 

An important observation should be made before 
showing more examples. Our model has more con- 
straints than Chakrabarty's model, in order to make 
it more realistic. For  example, we require the relation 
bid to be between 0.25 and 0.6 which is a common 
practice recipe used by civil engineers. The reason for 
this is not purely empirical. These limits allow us to 
have a 'reasonable' amount of reinforcement steel in 
our designs, so that we can guarantee a good 
adherence between steel and concrete, and we can 
provide a good control of the beam's deflection. 
Since Chakrabarty does not impose this constraint in 
his model, some of the results shown next will violate it. 

First we perform an analysis similar to that 
conducted by Chakrabarty, experimenting with different 
values of b. The results of our tests are shown in 
Tables 3, 4 and 5. For the case in which b = 62.50, 
Chakrabarty's model produces a design 42.98~o more 
expensive than when b = 30. Our design is 63.98~ 
more expensive. However, Chakrabarty's design violates 
the restriction imposed by Eq. (5). Therefore, in 
practice an engineer would prefer our design even 
though it is more expensive, for the reasons previously 
discussed. In all the remaining examples, it will always 
be the case that when our results are not equal to 
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Table 6. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = 0.36, CC = 64.5 and 
CSH = 2.155. Notice how the constraint imposed by Eq. (5) 
is violated by Chakrabarty's design. 

Parameter Chakrabarty GA (FP) 

A~(cm 2) 57.007 2 50.258 3 
d(cm) 59.867 8 66.702 9 
b(cm) 40.000 40.003 3 

Cost ($/em) 0.368 0 0.3716 

Table 10, Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = 0.72, CC = 129.0 and 
CSH = 2.155. Notice how the constraint imposed by Eq. (5) 
is violated by Chakrabarty's design. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 55.424 0 49.927 8 
d(cm) 61.269 8 67.098 1 
b(cm) 40.000 40.005 0 

Cost ($/cm) 0.698 7 0.703 5 

Table 7, Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = 1.08, CC = 645 and 
CSH = 2.155. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 37.200 6 37.031 8 
d(cm) 89.545 5 90.020 5 
b(cm) 40.000 40.0010 

Cost ($/cm) 0.620 6 0.620 7 

Table 8. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = IA4, CC = 64.5 and 
CSH = 2.155 

Parameter Chakrabarty GA (FP) 

As(cm z) 33.269 1 33.227 9 
d(cm) 101.172 4 101.356 5 
b(cm) 40.000 40.0001 

Cost ($/cm) 0.719 8 0:719 9 

Table 9. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = 0.72, CC = 32.25 and 
CSH = 2.155. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 33.037 2 35.069 8 
d(cm) 95.527 9 95.471 9 
b(cm) 40.000 40.0001 

Cost ($/cm) 0.387 5 0.387 6 

those produced by Chakrabarty 's  model (or almost 
equal, should we say, since there is always a difference 
in the last digit due to rounding-off errors) it is because 
his design is violating some constraint--usually that 
defined by Eq. (5). 

Table 11. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = 0.72, CC = 64.5 and 
CSH = 1.0775 

Parameter Chakrabarty GA (FP) 

As(cm 2) 42.3510 42.556 8 
d(cm) 78.365 0 78.062 5 
b(cm) 40.000 40.000 1 

Cost ($/cm) 0A84 7 0.484 8 

Table 12. Comparison of the geometric programming ap- 
proach used by Chakrabarty [4] and the GA using floating 
point representation, b = 40 cm, CS = 0.72, CC = 64.5 and 
CSH =4.31. 

Parameter Chakrabarty GA (FP) 

As(cm 2) 45.945 4 45.901 2 
d(cm) 72.408 8 72.510 3 
b(cm) 40.000 40.000 3 

Cost ($/cm) 0.551 ! 0.551 2 

Finally, we tested different vatues for the costs of 
reinforcement steel, concrete and shuttering. The 
results are shown in Tables 6- t2 .  Again, the discrep- 
ancies between our resutts and those produced by 
Chakrabarty 's  method indicate some violation of the 
constraints imposed by our model. 

7. Selecting the Parameters of the GA 

One of the main problems when asing GAs is how to 
choose the most  appropriate  parameter  values (i.e. 
population size, maximum number of generations, 
mutation and crossover rate). This is usually a trial 
and error process which takes some time. One lesson 
derived from this research was that it is much harder 
to fine tune the parameters of the GA when a floating 
point representation scheme is used. We confronted a 
dilemma: the floating point representation gave the 
best results, but was also the hardest to deal with in 
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terms of finding the most appropriate parameters. 
Obviously an optimization system will not be very 
useful if its outcomes are unpredictable. After much 
experimentation, we developed a systematic empirical 
process that seems to be able to generate optimal (or 
at least near-optimal) solutions in a very short period 
of time. However, we do not yet have any theoretical 
support for its reliability, even though the empirical 
evidence is quite solid. The method is the following: 

| Choose a certain value for the random number seed 
and make it a constant. 

| Choose constants for the population size and the 
maximum number of generations (we used 400 chr- 
omosomes and 50 generations, respectively). 

| Loop the mutation and crossover rates from 0.1 to 
0.9 at increments of 0.1 (this is actually a nested 
loop). This implies that 81 runs are necessary. 

| For each run, update 2 files. One contains only the 
final costs, and the other has a summary that 
includes, besides the cost, the corresponding values 
of the design parameters and the mutation and 
crossover rates used. When the whole process ends 
the file with the costs is sorted in ascending order, 
and the smallest value is searched for in the other 
file, returning the corresponding design parameters 
as the final answer. 

Since each run is completely independent from 
the others, we can perform this process in parallel, 
so that the total execution time will be practically the 
same as required for a single run (approximately 15s 
on a PC DX/2running at 66 MHz and with a 
mathematical coprocessor). 

8. Future Work and Conclusions 

Much work remains to be done. We are considering 
the possibility of experimenting with other techniques 
for adjusting the parameters of the GA, such as fuzzy 
logic. Also, we are interested in doing a theoretical 
analysis of the search space of this optimization 
problem, so that we can devise some strategies to solve 
it more efficiently. However, so far the results seem 
very promising, and the system has attracted the 
attention of more than one engineer in our University. 
Although our system has been used only for academic 
purposes so far, we are considering the possibility of 
giving it commercial use. 

We have been working on the use of GAs for 
structural optimization problems during the last 
2 years, and now we are able to produce optimal 
designs of beams [253, columns [24, 26] and plane 
and space trusses [23, 27]. However, our final goal is 

to develop a complete structural optimization system 
that uses GAa and also incorporates the main 
traditional mathematical programming techniques 
available, together with some other powerful heuristics 
such as tabu search [28, 29]. This should provide a 
powerful tool for engineers involved in structural 
design, introducing considerable savings without 
sacrificing safety. 
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