
Engineering with Computers (1997) !3:185-196
�9 1997 Springer-Verlag London Limited Engineering

Computers

A Simple Genetic Algorithm for the Design of Reinforced Concrete Beams

C. A. Coello Coello 1, A. D. Christiansen 1 and F. Santos Hernfindez 2
1Tulane University, New Orleans, LA, USA; ZUN. A. CH., Tuxtla Guti6rrez, Chiapas, M6xico

Abstract, We present an optimization model for the design
of rectangular reinforced concrete beams subject to a specified
set of constraints. Our model is more realistic than previously
published models because it minimizes the cost of the beam on
strength design procedures, while also considering the costs
of concrete, steel and shuttering. Thus our method leads to
very practical designs. As there is an infinite number of
possible beam dimensions and reinforcement ratios that yield
the same moment of resistance, an efficient search technique
is preferred over the more traditional iterative methods. We
employ a simple genetic algorithm as the search engine, and
we compare our results with those obtained via geometric
programming. Since the adjustment of parameters in a genetic
algorithm (e.g., population size, crossover and mutation rates,
and maximum number of generations) is a significant problem
for any application, we present our own methodology to deal
with this problem. A prototype of this system is currently being
tested in Mbxico, in order to evaluate its potential as a
reliable design tool for real world applications.

Keywords. Artificial intelligence; Design optimization;
Genetic algorithms; Structural optimization.

1. Introduction

The design of reinforced concrete elements plays a
very important role in M6xico, because of its extensive
use by civil engineers. The traditional design method
proposes a certain solution that is then corroborated
by mathematical analysis in order to verify that the
problem requirements are satisfied. If such requirements
are not satisfied, then a new solution is proposed by
the designer based on his intuition, or some heuristics
derived from his experience (see Fig. 1). This process
is typically of high cost in terms of time and human
effort. As time is always a constraint in real design, a
reasonable solution that satisfies all the requirements
of the problem is usually adopted, and cost optimization

Correspondence and offprint requests to: C. A. Coello Coello,
Department of Computer Science, Tulane University, New Orleans,
LA 70118, USA.

is not even considered. Recently, computers have been
used to help engineers automate the design process,
but their use has been mainly in performing the
tedious and repetitive mathematical calculations that
are required, rather than in automatically generating
designs.

An alternative to the traditional design method is
optimal design, which consists of changing the design
based on a certain 'optimality condition' (see Fig. 2).
However, the general optimal design problem is
highly nonlinear and nonconvex [1]. As a result,
structural optimization problems are characterized by
having multiple local optima.

This paper focuses on the use of an artificial
intelligence (AI) technique based on the mechanics of
natural selection, called the genetic algorithm[2, 3].
The design process based on this technique is very
similar to the optimal design process (Fig. 3). The
main difference is the use of a f i tness function instead
of a cost function, and the fact that the adaptation of
the design is not dependent upon either the engineer
(as in traditional design) or the gradient of the cost
function (as in optimal design). Even more interesting
is that initial designs are randomly generated, with no
human intervention, and the technique nevertheless
converges to at least a reasonably good sub-optimal
design in a reasonable amount of time.

The design of a reinforced concrete beam is
normally an iterative process like the one shown in
Fig. 1, in which the engineer assumes a total weight
for the beam beforehand, and a trial section is chosen.
Then, the moment of resistance of this section is
determined, to check its suitability against the given
applied bending moment. This process is repeated
until a trial section is found to be suitable. This
procedure often creates a difficulty in matching the
moment of resistance of the section with the total
applied bending moment due to the beam's weight,
which may be quite substantial in many cases.
Therefore, not only is the design process of a beam
slow, but it also has no economic analysis since the

186 C.A. Coello Coello et aL

l Final Design

r I Real World Problem

I Generate data 1o describe structure

Initiol Design

Analysis

Modify design using ~_ No
experience/heuristics 1-

Fig. 1. Traditional design processes.

r [Real World Problem

- I
Identify:
a) Des|gn valiables
b) Cost function to be minimized
c) Constraint functions to be satisfied

[Generate data to describe structure]

initial Design

Analysis - - I

Modify design using
optimization technique

I - - Final 0esign - - 1

Fig. 2. Optimal design process. Taken from Belegundu [1].

only concern is to find any section suitable for the
given conditions. A better approach would be to find
the most economical design that is also physically
suitable.

In this paper, we present a model for optimal
design that minimizes the cost of a rectangular
reinforced concrete beam based on strength design
procedures, but also considers the costs of concrete,
steel and shuttering. Our model follows the one
proposed by Chakrabarty [4, 5], with certain modifi-
cations (i.e. additional constraints) that make it
suitable for practical applications. In the next section,

I ,;;, Worl ,,ob,em i "

I ldenflW:
a) Deslgn variables and devise a representation scheme

! b) Fitness function to be maximized
J c) Constralnt functions io be satisfied and decide how to

Incorporate them o ~tness function un, ~e

Modify design
using crossover
and mutation

Generate data to describe structure

J
I ~nlt~al Design (Random)

Decoding

I Analysis

t.o ,mom

_~ 'Yes
Flnal Design

Fig. 3. Optimal design process using a genetic algorithm.

we will introduce some general concepts from rein-
forced concrete design. Then, our model will be
presented and the genetic algorithm approach will be
described. Finally, we will present the results found
by our model when solving some problems found in
the literature, and we will discuss some of the issues
that arise when using genetic algorithms in this kind
of application.

2. Basic Concepts

For the purpose of this research, we adopted strength
design procedures, because they have, among others,
the following advantages [6]:

Strength design better predicts the strength of a
section because of the recognition of the non-
linearity of the stress-strain diagram at high stress
levels.
Because the dead loads to which a structure is
subjected are more certainly determined than the
live loads, it is unreasonable to apply the same
factor of safety to both. Considering that fact, this
approach allows the use of different safety factors
for them.

The basic assumptions that are taken when using
strength design are the following [6]:

* Plane sections before bending remain plane after
bending.

e At ultimate capacity, strain and stress are not
proportional.

Algorithm for Design Reinforced Concrete Beams !87

kud

/ I

f /
j J

j /
j /

J

i o.sf~

- 7

r

/
- ' 7

j / I

E f

Eu

:a

T

Fig. 4. Trapezoid stress distribution.

| Strain in the concrete is proportional to the distance
from the neutral axis.

| The tensile strength of concrete is neglected in
flexural computations.

| The ultimate concrete strain is 0.003.
| The modulus of elasticity of the reinforcing steel is

200 000 MPa (29 000 000 psi).
| The average compressive stress in the concrete is

0.85f' c.
| The average tensile stress in the reinforcement does

not exceed fy.

According to this design method, if we assume a
trapezoidal stress distribution like the one shown in
Fig. 4, the nominal moment capacity M n of a
rectangular beam with tension reinforcement only is
given by [6]:

M n = b d 2 f ' ~ w (1 - 0.59w) (1)

where b is the width of the beam, d is the distance from
the extreme compressive fiber to the centroid of
tension reinforcement, f 'c is the compressive strength
of concrete, w = (A J y b d f ') , fy is the yield strength of
reinforcement and A~ is the area of tension rein-
forcement.

There is an infinite number of solutions to Eq. (1)
that yield the same value of M n [6]. In the traditional
design process, the values of b and/or d are assumed,
and the remaining parameters are calculated based on
them, iterating until a suitable section is found. An
obvious restriction of this approach is that only a few
sections can be evaluated in this manner. Since Eq.
(1) does not incorporate any cost parameter, there is
no way of achieving a least-cost design. Therefore, we

need to include certain cost parameters combined
with the design parameters in our optimal design
model, so that we can produce least-cost suitable
designs.

3. Previous Work

The optimal design of beams was first proposed by
Galilei [7], although his calculations were wrong.
Apparently, the doctoral dissertation by E. J. Haug Jr
[8] (see also [9]) in 1966 was one of the first modern
attempts to use a digital computer as a tool for the
optimal design of this structural element. Haug
reduced the non-linear optimal design problem to a
Lagrange problem in the calculus of variations with
inequality constraints. His model considered a beam
made of a linearly elastic material of known density
with two supports and a certain given load. The
control variables were the values of cross-sections at
different points along the beam, and constraints on
the stress, shear and deflection were imposed. Haug
used an iterative method based on the generalized
Newton's algorithm to solve statically determinate
beams.

Venkayya [10] developed a method based on an
energy criterion and a search procedure based on
constraint gradient values for the design of structures
subjected to static loading. His method can handle
very efficiently: (a) design for multiple loading condi-
tions, (b) stress constraints, (c) displacement constraints
and (d) limits on sizes of the elements. This method
also has been successfully applied to the design of
trusses, frames and beams. In these cases, the weight
of the structural element is the parameter to be
minimized.

Karihaloo [11] presented a model to minimize the
maximum deflection of a simply supported beam
under a transverse concentrated load. Haug and
Arora [12] used the gradient projection method to
optimize the design of simply supported and clamped
beams with constraints on stress, deflection, natural
frequency and bounds on the design variables. Again,
the weight (volume) of the beam is the parameter to
be minimized.

Saouma and Murad [13] developed a method for
minimum cost design of simply supported, uniformly
loaded, partially prestressed concrete beams. This
model uses nine design variables: six geometrical
dimensions, the area of prestressing steel and the area
of tensile and compressive mild reinforcement. The
imposed constraints are on the four flexural stresses,
initial camber, dead and live load deflections, ultimate
shear and ultimate moment capacity with respect to

188 C, A. Coello Coelto e~ aL

both the cracking moment and the applied load.
This model was solved using the penalty-functions
method coupled with quasi-newton unconstrained
optimization techniques.

Das Gupta et al. [143 applied generalized geometric
programming to the optimal design of a modular floor
system, which consisted of reinforced solid concrete
and voided slab units supported on steel beams. One
of the most remarkable characteristics of this model
is that it defines a function representing the cost of
the floor system in terms of design variables, length,
width and thickness of components, and other engin-
eering cost parameters. This function is minimized
subject to various constraints depending on stresses
and deflections, and a dual-based algorithm was used
to solve it.

Some other authors have used multiobjective
optimization techniques to deal with this problem.
For example, Rao [15] studied a cantilever beam with
a hollow rectangular cross-section and tip mass, for
which he minimized its structural mass and its fatigue
damage, while he maximized its natural frequency.
After using many different approaches (i.e., global
criterion, game theory, goal attainment, utility function,
etc.), he concluded that game theory gave the best
results. Also, Osyczka [16, 17] used the min-max
method for the optimal design of an I-beam. More
recently, Lounis and Cohn [18] considered the design
of a post-tensioned floor slab and a pretensioned
highway bridge system for two conflicting objectives:
minimum cost and minimum initial camber. They
used the e-constraint method to transform this
multiobjective optimization problem into a single
nonlinear optimization problem that they solved
using the projected Lagrangian method.

Prakash et al. [t9] proposed a model for the
optimal design of reinforced concrete sections in
which the costs of steel, concrete and shuttering were
included. Chakrabarty's model [4, 5] has some
similarities with Prakash's model, but Chakrabarty's
model is more complete and detailed. That is the main
reason why we decided to use Chakrabarty's model
as a basis for our implementation, although we
modified it slightly to produce designs that fall into
Mexico's standard regulations for reinforced concrete
design. The original model leads to inconsistent
designs in some cases.

4. The Optimal Design Model

A schematic section of a rectangular singly reinforced
concrete beam is shown in Fig. 5. The cost per unit
length of the beam will be given by the following
expression [5]:

d As i r

Fig. 5. Schematic section of a singly reinforced rectangular beam.

y(x) = clA s + czbd q- csd + e4b (2)

where y(x) is the cost per unit length of the beam
($/cm),cl is the cost coefficient due to volume of tensile
steel reinforcement in the beam ($/cm3), c2 is the cost
coefficient due to volume of concrete in the beam
($/em3), c 3 is the cost coefficient due to shuttering
along the vertical surfaces of the beam ($/cm2), c, is
the cost coefficient due to shuttering along the bottom
horizontal surface of the beam ($/cm2), A s is the
variable giving the area of tensile steel reinforcement
as shown in Fig. 5 (cmZ), d is the variable giving the
depth of the beam as shown in Fig. 5 (cm) and b is
the variable giving the width of the beam, also as
shown in Fig. 5 (cm).

The variables A s, d and b not only affect the cost
of a beam, but will also determine its moment of
resistance. Since A s may be calculated if we know d
and b [6], we propose different values for these two
variables so that the total cost of the beam is a
minimum, and that our section has a proper resistant
moment. Then, our optimal design model is the
following:

minimize: f (x) = clA~ + c2bd + csd + c4b

subject to:

alkbd < I (equilibrium constant) (3)
A~

a2 + a3bd
<1

MT

(bending moment compatibility constraint) (4)

0.25 < b/d <<_ 0.6

A]gorithm for Design Reinforced Concrete Beams 189

(width-height ratio constraint) (5)

Q(d - askd)(f~f'~kdb + Asfy)as /M T >_ 1

(acting moment constraint) (6)

a6/b < 1 (minimum width constraint) (7)

A s, d, b, M T, kd > 0 (non-negativity constraint (8)

Here M T is a variable defining the total applied
bending moment including the bending moment due
to self-weight of the beam, kd is a variable defining
the depth of the equivalent rectangular stress block,
k is a factor related to the location of the neutral axis
of a cross-section. Additionally, we have the following
formulas:

c I = w~ x G($/cm 3) (9)

where ws = 0.00785 kg/cm 3 (assumed value) is the
unit weight of steel reinforcement, and cs is the unit
cost of steel reinforcement ($/kg).

C 2 ~--- (1 "}- r)C c X 10 . 6 ($/cm a) (10)

where G is the unit cost of concrete ($/m 3) and r is
the cover ratio.

c 3 = 2(1 + r)c r x i0 .4 ($/cm 2) (11)

where q is the unit cost of shuttering ($/m3).

c 4 = c r x 10 .4 ($/cm 2) (12)

a, = 0.85s (13)

where fy is the yield strength of steel reinforcement
(N /cm 2) and f" is the compressive strength of concrete
(N/cm2).

a 3 = D(1 + r)w~kL 2 (14)

where D = 1.4 (assumed) is the load factor for dead
load, w e = 0.022 8 N/cm 3 is the unit weight force of
concrete, k is the moment coefficient for the design
section (= 1.8 for simply supported beam) and L is
the span of the beam (cm).

a4 = 1/(f, Q f ') (15)

where Q is the capacity reduction factor (= 0.90 for
flexure) andf~ = 0.85 (assumed) is the reduction factor
of concrete. Also, a 2 is the applied bending moment
(N cm), as = �89 (assuming the centroid of compressive
force at half the depth of equivalent rectangular stress
block), and a 6 is the minimum acceptable width of the
beam.

To determine MT (total bending moment, including
self-weight of the beam), we use:

M T = a 2 4- a 3 b d (16)

To calculate A s (area of reinforcement steel), we use:

As : o bdf;/f, (17)

where

09 -=-
X / 4(0"59)MT

1 -- 1 0.9bd2f~

1.18

This last expression can be derived from Eqn (1).
Finally, kd (depth of the equivalent stress block is
given by:

kd -- As/(alb) (l 8)

5. Use of Genetic Algorithms

The genetic algorithm (GA) is a heuristic search
technique based on the mechanics of natural selection
developed by John Holland [2]. Koza [20] provides
a good definition of a GA:

The genetic algorithm is a highly parallel mathema-
tical algorithm that transforms a set (population) of
individual mathematical objects (typically fixed-
length character strings patterned after chromosome
strings), each with an associated fitness value, into
a new population (i.e. the next generation) using
operations patterned after the Darwinian principle
of reproduction and survival of the fittest and after
naturally occuring genetic operations (notably
sexual recombination).
A genetic algorithm for a particular problem must

have the following five components [21]:

1. A representation for potential solutions to the
problem.

2. A way to create an initial population of potential
solutions.

3. An evaluation function that plays the role of the
environment, rating solutions in terms of their
'fitness'.

4. Genetic operators that alter the composition of
children.

5. Values for various parameters that the genetic
algorithm uses (population sizes, probabilities of
applying genetic operators, etc.).

Certain terminology is commonly used by the GA
community:

| A chromosome is a data structure that holds a
'string' of task parameters, or genes. This string may
be stored, for example, as a binary bit-string (binary
representation) or as an array of integers (floating
point representation).

190 C.A. Coello Coello et al.

| A gone is a subsection of a chromosome that usually
encodes the values of a single parameter.

| An allele is the value of a gone. For example, for a
binary representation each gene may have an allele
of 0 or 1, and for a floating point representation,
each gone may have an allele from 0 to 9.

| A schema (plural schemata) is a pattern of gone
values in a chromosome, which may include 'do not
care' states (represented by a # symbol). Thus in
a binary chromosome, each schema can be specified
by a string of the same length as the chromosome,
with each character being one of {0, 1, #}. A
particular chromosome is said to "contain' a
particular schema if it matches the scheme (e.g.
chromosome 01101 matches schema # 1 # 0 #) .

The basic operation of a GA is illustrated in the
following segment of pseudo-code [22]:

generate initial population, G(0);
evaluate G(0);
t : :0;
repeat
t:=t + 1;
generate a(t) using G (t - 1);
evaluate G(t);
until a solution is found.

First, an initial population is randomly generated.
The individuals of this population will be a set of
chromosomes or strings of characters (letters and/or
numbers) that represent all the possible solutions to
the problem. We apply a fitness function to each of
these chromosomes in order to measure the quality of
the solution encoded by the chromosome. Knowing
each chromosome's fitness, a selection process takes
place to choose the individuals (presumably the fittest)
that will be the parents of the following generation.
There are two main selection schemes: roulette wheel
selection and tournament selection.

In roulette wheel selection, each individual is
assigned a certain probability F~ of being selected,
computed according to the formula [22]:

Fi-
L

where f~ is the fitness value of each chromosome i. In
this selection scheme the fittest individuals have a
higher probability of being selected, but individuals
with lower fitness can also eventually be selected.

In tournament selection, k individuals are selected
in a single iteration, and the best one from this set of
k elements is chosen to be a parent to produce the
next generation. This process is repeated as many
times as the size of the population. Large values of k

Cross-point
i

[ll011[0lltl[0Jl

Cross-point
!

i j] i ! 110!l l l lJ[0I
/

/

Descendants

Fig. 6, Use of a single-point crossover between two chromosomes.
Notice that each pair of chromosomes produces two descendents
for the next generation. The cross-point may be located at the string
boundaries, in which case the crossover has no effect and the
parents remain intact for the next generation.

increase selective pressure of this procedure ~211; a
typical value accepted by many applications is
k = 2 (binary tournament selection).

After being selected, crossover takes place. During
this stage, the genetic material of a pair of individuals
is exchanged in order to create the population of the
next generation. The two main ways of performing
crossover are called single-point and two-point
crossover. When a single-point crossover scheme is
used, a position of the chromosome is randomly
selected as the crossover point as indicated in Fig. 6.
When a two-point crossover scheme is used, two
positions of the chromosome are randomly selected
as indicated in Fig. 7.

Mutation is another important genetic operator
that randomly changes a gone of a chromosome. If we
use a binary representation, a mutation changes
a 0 t o 1 and vice-versa. This operator allows the
introduction of new chromosomic material to the
population and, from the theoretical perspective, it
assures that--given any population--the entire search
space is connected [221.

If we knew the final solution in advance it would
be trivial to determine how to stop a genetic algorithm.
However, as this is not normally the case, we have to
use one of the two following criteria to stop the GA:
either give a fixed number of generations in advance,
or verify when the population has stabilized (i.e. all
or most of the individuals have the same fitness).

GAs differ from traditional search techniques in
several ways [22]:

�9 GAs do not require problem specific knowledge to
carry out a search.

Algorithm for Design Reinforced Concrete Beams 191

Cross-points Cross-points

rliOlllljOlljOlll t l [l l l j o [l [l l l l o l

I l lo l l lo l l i l lo l l l
j l l l l l l l iol l l l loI

Descendants

Fig. 7. Use of a two-point crossover between two chromosomes.
In this case the genes at the extremes are kept, and those in the
middle part are exchanged. If one of the two cross-points happens
to be at the string boundaries, a single-point crossover will be
performed, and if both are at the string boundaries, the parents
remain intact for the next generation.

�9 GAs use stochastic operators rather than deter-
ministic operators and appear to be robust in noisy
environments.

�9 GAs operate on multiple partial solutions simultan-
eously (sometimes called implicit parallelism),
gathering information from a population of search
points to direct subsequent search efforts. Their
ability to maintain multiple partial solutions con-
currently helps make GAs less susceptible to the
problems of local maxima and noise.

The traditional representation used by the genetic
algorithms community is the binary scheme according
to which a chromosome is a string the form @1, b2,...,
b~), where bl, b2,..., b m are called alleles (either zeros
or ones). Since the binary alphabet offers the maximum
number of schemata per bit of information of any
coding [3], its use has become very popular among
scientists. This coding also facilitates theoretical
analysis of the technique and allows elegant genetic
operators. However, since the 'implicit parallelism'
property of GAs does not depend on using bit strings
[21] it is worthwhile to experiment with larger
alphabets, and even with new genetic operators. In
particular, for optimization problems in which the
parameters to be adjusted are continuous, a floating
point representation scheme seems a logical choice.
According to this representation, a chromosome is a
string of the form (dl, d2,..., d,,), where dl, d2,...,dm are
digits (numbers between zero and nine). Consider the
examples shown in Fig. 8, in which the same value is
represented using binary and floating point encoding.

The term 'floating' may seem misleading since the
position of the implied decimal point is at a fixed
position, and the term 'fixed point representation'

[11o[11ol I111ol 11ol 111 Iolololololololoj

Representation of the number 35.5072 using
binary encoding

IslsI5101713J

Representation of the number 35.5072 using
floating point encoding

Fig. 8. Representing the same number using binary and floating
point encodings.

seems more appropriate. However, the reason that the
term 'floating point' is preferred is because in this
representation each variable (representing a parameter
to be optimized) may have the point at any position
along the string. This means that even when the point
is fixed for each gene, it is not necessarily fixed along
the chromosome. Therefore, some variables could
have a precision of 3 decimal places, while others are
integers, and they could still all be represented with
the same string.

Floating point representation is faster and easier to
implement, and provides a higher precision than its
binary counterpart, particularly in large domains,
where binary strings would be prohibitively long. One
of the advantages of floating point representation is
that it has the property that two points close to each
other in the representation space must also be close
in the problem space, and vice-versa [21]. This is not
generally true in the binary approach, where the
distance in a representation is normally defined by the
number of different bit positions. Such discrepancy
can, however, be reduced by using Gray coding.

Procedures to convert a binary number b = @1,
b2 bin) into a Gray code number g = (9 t , g2 gin),
where m denotes the number of bits, may be found in
[21]. The Gray code representation has the property
that any two points next to each other in the problem
space differ by only one bit [21]. In other words, an
increase of one step in the parameter value corresponds
to a change of a single bit in the code. This is a well
known technique used to reduce the distance of two
points in the problem space, and it is argued to bring
some benefit because of their adjacency property, and
the small perturbation caused by many single mutations.
However, the use of Gray codes did not help much in
this particular application, as we will see in the next
section.

To solve this optimization problem, we used the
simple genetic algorithm (SGA) proposed by Goldberg

192 C.A. Coello Coello e~ al.

Table 1. Comparison of the geometric programming approach used by Chakrabarty [4] and the GA asing binary (with and
without Gray coding) and floating point representation.

Parameter Chakrabarty GA (Binary) GA (Gray Coding) GA (FP)

As(cm 2) 37.692 6 36.189 3 41.590 5 37.520 5
d(cm) 86.062 9 89.540 2 78.617 7 86.477 6
b(cm) 30.000 0 30.016 2 30.044 7 30.002 2

M~(N cm) 80'064, 711.73 80'540, 242.062 0 79'111,846.565 0 80'131,661.916 0
kd(cm) 14.781 4 14.184 2 16.285 7 14o712 8

Cost ($/cm) 0.443 5 0.444 2 0.446 4 0.443 6

[3], and we experimented with several representation
schemes. We have previously used a binary represent-
ation [23] and we have tried Gray coding [24] for
structural optimization problems with a continuous
search space like this one. For this particular application,
we decided to experiment also with floating point
representation.

Finally, we should mention that we used a two-
point crossover and binary tournament selection in
all our tests. The only operator that had to be
redefined was mutation, which in the floating point
representation selects a random number between
0andg. Our fitness function was given by Eq. (2),
using a penalty function of the form fitness = 1/
(cost*(v*500 + 1)) where v depends on the number of
constraints violated. Whenever the design does not
violate any constraint, the fitness function is just the
inverse of the cost (the GA only maximizes, and we
require a minimization in this case).

6. Examples
The following example was taken from Everard [6]:

Design a least-cost reinforced concrete rectangular
beam simply supported over a span of 1 0 m
supporting a uniform dead load of 15 kN/m and a
uniform live load of 20 k N / m The concrete strength
f2 = 30 MPa and the steel yield strength fy =
300 MPa. The unit cost of steel (CS), concrete (CC),
and shuttering (CSH) are $ 0.72/kg, $ 64.5/m 3 and
$ 2.155/m 2, respectively. Assume a cover ratio (r) of
0.10, unit weight of concrete of 2323 kg/m 3 and
capacity reduction factor as 0.90.
The ultimate uniform load is 1.4 x 15 + !.7 x 20
= 55 kN/m. The ultimate applied bending moment

is 55 x 102/8 = 687.5kN, m = 687,5 x l0 s N cm.
Using this information, we can get the values of the

cost coefficients and the other model constants:

c 1 = 0.005 6520
c 4 = 0.000215 50
a 3 = 438,233,950
a 6 = 30.00

c2 = 0.000 070 95
al = 0.085 00
a4 = 0.000 435 73

c 3 = 0.000 47410
a 2 = 68,750,000
a 5 = 0.50

Our results and their comparison with the geometric
programming method used by Chakrabar ty [5] are
shown in Table 1 and the final design generated by
the genetic algorithm is shown in Fig. 9. The value of
A s = 37.5205 is approximated by using 4 bars # t0
(nominal cross-sectional area = 819 mm 2) and 3 bars
6 (nominal cross-sectional area = 284mm2). This
gives us a total area of 41.28 mm 2, which is greater
than the design value as the ACI (American Concrete
Institute) regulations recommend. The available
reinforcing bar sizes and their corresponding properties
according to the ASTM (American Society for Testing
and Materials), are shown in Table 2 [6-1.

As we can see from these results, the floating point
representation produced the best results and Gray
coding the worst. The final cross-section of the beam
has a total height of 95.125 (see Fig. 9), which is
about 1~ more than Chakrabarty 's design. This slight

30 cm

86.478 cm

3 bars # 6 -

4 bars # 10

Fig. 9. Optimum design of t~e beam of the first example.

Algorithm for Design Reinforced Concrete Beams

Table 2. Properties of reinforcing bars. Taken from Everard [6].

193

ASTM standard reinforcing bars

Nominal dimensions (Round sections)

Bar size Weight Diameter Cross-sectional Perimeter Cross-sectional
designation (lb/ft) (in) area (in 2) (in) area (in 2)

#3 0.376 0.375 0.11 1.178 71
#4 0.668 0.500 0.20 1.571 129
#5 1.043 0.625 0.31 1.963 200
#6 1.502 0.750 0.44 2.356 284
#7 2.044 0.875 0.60 2.749 387
#8 2.670 1.000 0.79 3.142 510
#9 3.400 1.128 1.00 3.544 645

#10 4.303 1.270 1.27 3.990 819
#11 5.313 1.410 1.56 4.430 1006
#14 7.65 1,693 2.25 5.320 1452
#18 13.60 2.257 4.00 7.090 2581

Table 3. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation. We assume b = 20 cm. Notice how the
constraint imposed by Eq. (5) is violated by Chakrabarty's
design.

Parameter Chakrabarty GA (FP)

As(cm 2) 31.126 7 39.541 2
d(cm) 101.549 4 82.704 3
b(cm) 20.000 20.682 5

Cost ($/cm) 0.372 5 0.388 5

Table 4. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation. We assume b = 40 cm.

Parameter Chakrabarty GA (FP)

As(cm 2) 43.601 7 43.764 4
d(cm) 76.149 9 75.910 2
b(cm) 40.000 40.004 2

Cost ($/cm) 0.507 3 0.507 7

Table 5. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation. We assume b = 62.50 cm. Notice how
the constraint imposed by Eq. (5) is violated by Chakrabarty's
design.

Parameter Chakrabarty GA (FP)

As(cm 2) 55.443 5 35.717 2
d(cm) 62.597 4 104.322 3
b(cm) 62.500 62.501 0

Cost ($/cm) 0.634 1 0.727 4

difference is due to the fact that Chakrabarty's model
considers the area of reinforcement steel as a variable,
even though this is a parameter that depends on the
beam section, and can not take any arbitrary value.
On the other hand, our cost of steel, concrete and
shuttering represent 47.80~o, 41.50~o and 10.70~ of
the total cost, respectively, which corresponds almost
exactly to the costs obtained by Chakrabarty. Floating
point representation was used in all further experiments,
since it provided the best results overall.

An important observation should be made before
showing more examples. Our model has more con-
straints than Chakrabarty's model, in order to make
it more realistic. For example, we require the relation
bid to be between 0.25 and 0.6 which is a common
practice recipe used by civil engineers. The reason for
this is not purely empirical. These limits allow us to
have a 'reasonable' amount of reinforcement steel in
our designs, so that we can guarantee a good
adherence between steel and concrete, and we can
provide a good control of the beam's deflection.
Since Chakrabarty does not impose this constraint in
his model, some of the results shown next will violate it.

First we perform an analysis similar to that
conducted by Chakrabarty, experimenting with different
values of b. The results of our tests are shown in
Tables 3, 4 and 5. For the case in which b = 62.50,
Chakrabarty's model produces a design 42.98~o more
expensive than when b = 30. Our design is 63.98~
more expensive. However, Chakrabarty's design violates
the restriction imposed by Eq. (5). Therefore, in
practice an engineer would prefer our design even
though it is more expensive, for the reasons previously
discussed. In all the remaining examples, it will always
be the case that when our results are not equal to

194 C.A. Coello Coello et aL

Table 6. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = 0.36, CC = 64.5 and
CSH = 2.155. Notice how the constraint imposed by Eq. (5)
is violated by Chakrabarty's design.

Parameter Chakrabarty GA (FP)

A~(cm 2) 57.007 2 50.258 3
d(cm) 59.867 8 66.702 9
b(cm) 40.000 40.003 3

Cost ($/em) 0.368 0 0.3716

Table 10, Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = 0.72, CC = 129.0 and
CSH = 2.155. Notice how the constraint imposed by Eq. (5)
is violated by Chakrabarty's design.

Parameter Chakrabarty GA (FP)

As(cm 2) 55.424 0 49.927 8
d(cm) 61.269 8 67.098 1
b(cm) 40.000 40.005 0

Cost ($/cm) 0.698 7 0.703 5

Table 7, Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = 1.08, CC = 645 and
CSH = 2.155.

Parameter Chakrabarty GA (FP)

As(cm 2) 37.200 6 37.031 8
d(cm) 89.545 5 90.020 5
b(cm) 40.000 40.0010

Cost ($/cm) 0.620 6 0.620 7

Table 8. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = IA4, CC = 64.5 and
CSH = 2.155

Parameter Chakrabarty GA (FP)

As(cm z) 33.269 1 33.227 9
d(cm) 101.172 4 101.356 5
b(cm) 40.000 40.0001

Cost ($/cm) 0.719 8 0:719 9

Table 9. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = 0.72, CC = 32.25 and
CSH = 2.155.

Parameter Chakrabarty GA (FP)

As(cm 2) 33.037 2 35.069 8
d(cm) 95.527 9 95.471 9
b(cm) 40.000 40.0001

Cost ($/cm) 0.387 5 0.387 6

those produced by Chakrabarty 's model (or almost
equal, should we say, since there is always a difference
in the last digit due to rounding-off errors) it is because
his design is violating some constraint--usually that
defined by Eq. (5).

Table 11. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = 0.72, CC = 64.5 and
CSH = 1.0775

Parameter Chakrabarty GA (FP)

As(cm 2) 42.3510 42.556 8
d(cm) 78.365 0 78.062 5
b(cm) 40.000 40.000 1

Cost ($/cm) 0A84 7 0.484 8

Table 12. Comparison of the geometric programming ap-
proach used by Chakrabarty [4] and the GA using floating
point representation, b = 40 cm, CS = 0.72, CC = 64.5 and
CSH =4.31.

Parameter Chakrabarty GA (FP)

As(cm 2) 45.945 4 45.901 2
d(cm) 72.408 8 72.510 3
b(cm) 40.000 40.000 3

Cost ($/cm) 0.551 ! 0.551 2

Finally, we tested different vatues for the costs of
reinforcement steel, concrete and shuttering. The
results are shown in Tables 6- t2 . Again, the discrep-
ancies between our resutts and those produced by
Chakrabarty 's method indicate some violation of the
constraints imposed by our model.

7. Selecting the Parameters of the GA

One of the main problems when asing GAs is how to
choose the most appropriate parameter values (i.e.
population size, maximum number of generations,
mutation and crossover rate). This is usually a trial
and error process which takes some time. One lesson
derived from this research was that it is much harder
to fine tune the parameters of the GA when a floating
point representation scheme is used. We confronted a
dilemma: the floating point representation gave the
best results, but was also the hardest to deal with in

Algorithm for Design Reinforced Concrete Beams 195

terms of finding the most appropriate parameters.
Obviously an optimization system will not be very
useful if its outcomes are unpredictable. After much
experimentation, we developed a systematic empirical
process that seems to be able to generate optimal (or
at least near-optimal) solutions in a very short period
of time. However, we do not yet have any theoretical
support for its reliability, even though the empirical
evidence is quite solid. The method is the following:

| Choose a certain value for the random number seed
and make it a constant.

| Choose constants for the population size and the
maximum number of generations (we used 400 chr-
omosomes and 50 generations, respectively).

| Loop the mutation and crossover rates from 0.1 to
0.9 at increments of 0.1 (this is actually a nested
loop). This implies that 81 runs are necessary.

| For each run, update 2 files. One contains only the
final costs, and the other has a summary that
includes, besides the cost, the corresponding values
of the design parameters and the mutation and
crossover rates used. When the whole process ends
the file with the costs is sorted in ascending order,
and the smallest value is searched for in the other
file, returning the corresponding design parameters
as the final answer.

Since each run is completely independent from
the others, we can perform this process in parallel,
so that the total execution time will be practically the
same as required for a single run (approximately 15s
on a PC DX/2running at 66 MHz and with a
mathematical coprocessor).

8. Future Work and Conclusions

Much work remains to be done. We are considering
the possibility of experimenting with other techniques
for adjusting the parameters of the GA, such as fuzzy
logic. Also, we are interested in doing a theoretical
analysis of the search space of this optimization
problem, so that we can devise some strategies to solve
it more efficiently. However, so far the results seem
very promising, and the system has attracted the
attention of more than one engineer in our University.
Although our system has been used only for academic
purposes so far, we are considering the possibility of
giving it commercial use.

We have been working on the use of GAs for
structural optimization problems during the last
2 years, and now we are able to produce optimal
designs of beams [253, columns [24, 26] and plane
and space trusses [23, 27]. However, our final goal is

to develop a complete structural optimization system
that uses GAa and also incorporates the main
traditional mathematical programming techniques
available, together with some other powerful heuristics
such as tabu search [28, 29]. This should provide a
powerful tool for engineers involved in structural
design, introducing considerable savings without
sacrificing safety.

Acknowledgments

The authors gratefully acknowledge the work of Carlos Narcia
L6pez and Ascensi6n Elizalde Molina and the support of Ing.
Robertony Cruz Diaz at the Escuela de Ingenieria Civil of the
Universidad Aut6noma de Chiapas. Without their help and
dedication this paper would not have been possible.

References

1. Belegunda, A.D. (1982) A study of mathematical programming
methods for structural optimization. PhD thesis, University of
Iowa, Department of Civil and Environmental Engineering

2. Holland, J.H. (1975) Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor, MI

3. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimi-
zation and Machine Learning. Addison-Wesley, Reading, MA

4. Chakrabarty, B.K. (1992) A model for optimal design of
reinforced concrete beam. Journal of Structural Engineering,
118, 11, 3238-3242

5. Chakrabarty, B.K. (1992) Model for optimal design of reinforced
concrete beams. Computers and Structures, 42, 3, 447-451

6. Everard, N.J. (1993) Theory and Problems of Reinforced
Concrete Design. Schaum's Outline Series. Third edition,
McGraw-Hill, New York

7. Galilei, G. (1950) Dialogues Concerning Two New Sciences.
Northwestern University Press, Evanston, Ill (originally
published in 1665)

8~ Haug, E.J. (1966) Minimum Weight Design of Beams with
Inequality Constraints on Stress and Deflection. Department
of Mechanical Engineering, Kansas State University

9. Haug, E.J.; Kirmser, P.G. (1967) Minimum weight design of
beams with inequality constraints on stress and deflection.
Journal of Applied Mechanics. Transactions of the ASME,
999-1004

10. Venkayya, V.B. (1971) Design of optimum structures. Computers
and Structures, 1,265-309

11. Karihaloo, B.L. (1979) Optimal design of multi-purpose
tie-beams. Journal of Optimization Theory and Applications,
27, 3, 427-438

12. Haug, E.J.; Arora, J.S. (1979) Applied Optimal Design.
John Wiley, New York

13. Saouma, V.E.; Murad, R.S. (1984) Partially prestressed concrete
beam optimization. Journal of Structural Engineering, 110, 3,
589-604

I4. Gupta, N.C.D.; Paul, H.; Yu, C.H. (1986) An application of
geometric programming to structural design. Computers and
Structures, 22, 6, 965-971

196 C.A. Coelio Coello et aL

15. Rao, S.S. (1984) Multiobjective optimization in structural
design with uncertain parameters and stochastic processes.
AIAA Journal, 22, 11, 1670-1678

16. Osyczka, A. (1984) Multicriterion Optimization in Engineering
with FORTRAN Programs. Ellis Horwood Limited, Chichester

17. Osyczka, A. (1985) Multicriteria optimization for engineering
design. In Design Optimization (Gero, J.S., Editor). Academic
Press, New York, 193-227

18. Lounis, Z.; Cohn, M.Z. (1993) Multiobjective optimization of
prestressed concrete structures. Journal of Structural Engineering,
119, 3, 794-808

19. Prakash, A.; Agarwala, S.K.; Singh, K.K. (1988) Optimum
design of reinforced concrete sections. Computers and Structures,
30, 4, 1009-1011

20. Koza, J.R. (1992) Genetic Programming. On the Programming
of Computers by Means of Natural Selection. The MIT Press,
Cambridge, MA

21. Michalewicz, Z. (1992) Genetic Algorithms + Data Structures
= Evolution Programs, 2nd edition. Springer-Verlag, Berlin

22. Buckles, B.P.; Petry, F.E. (Editors) (1992) Genetic Algorithms.
Technology Series, IEEE Computer Society Press

23. Coello, C.A.C. (1994) Discrete optimization of trusses using
genetic algorithms. In EXPERSYS-94. Expert Systems Applica-
tions and Artificial Intelligience (Chen, J., Atria, F.G. and

Crabtree, D.L., Editors). IITT International Technology
Transfer Series, Houston, Texas, 331-336

24. Coello, C.A.; Christiansen, A.D. (1995) Using genetic algorithms
for optimal design of axially loaded non-prismatic columns.
Technical Report TUTR-CS-95-101, Tulane University

25. Coello, C.A.; Hern/mdez, F.S.; Farrera, F.A. (1995) An approach
to optimal design of reinforced concrete beams using genetic
algorithms. Proceedings of the lASTED International Conference
on Applied Modelling, Simulation and Optimization, lASTED-
ACTA Press, Cancfin, M6xico, 141-144

26. Coello, C.A.; Christiansen, A.D. (1995) Using genetic algorithms
for optimal design of axially loaded non-prismatic columns
(Pearson, D.W, Steele, N.C. and Albrecht, R.F., Editors), In
International Conference on Artificial Neural Nets and Genetic
Algorithms, ICANNGA'95, Albs, France. Ecole des Mines
d'A16s, Springer-Verlag, 460-463

27. Coello, C.A.; Christiansen, A.D. (1994) Optimization of truss
designs using genetic algorithms. Technical Report TUTR-CS-
94-102, Tulane University

28. Glover, F. (1989) Tabu Search - Part L OSRA Journal on
Computing, 1, 3, 190-206

29. Glover, F. (1990) Tabu Search - Part II. ORSA Journal on
Computing, 2, 4-32

