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Artificial neural networks for  the classification o f  wood veneer 
by an automatic visual inspection system are presented. 
Initially, a single large neural network is implemented with 
eleven image features as inputs and thirteen outputs - one for  
each class of  veneer. In order to improve on the classification 
accuracy o f  this single network, a decision tree o f  smaller and 
more specialised modular neural networks is introduced to 
achieve a classification by successive refinement. This results" 
in a substantial improvement in classification accuracy. A key 
process in the design of  a modular neural network is the use 
of  "normaIised inter-class variation" in the selection of  the 
most appropriate image fealures to be used for  its particular 
specialised classification task. 
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1. Introduction 

Plywood is formed by bonding veneers of wood with an 
adhesive. Figure 1 shows the process followed in the wood 
mill considered here, defects being identified at the grading 
stage. The veneer sheets are placed on a conveyor which runs 
at a speed of 2.2 ms -~ and they appear at one- to two-second 
intervals for human inspection. Experiments have been carried 
out to assess the accuracy of human inspectors in wood mills. 
Huber et al. [1] found that humans inspect boards with only 
68% accuracy whilst Polzleitner and Schwingshakl [2] report 
55% accuracy. 

An automatic visual inspection system, based on a Hamam- 
atsu monochrome CCD matrix camera, has been developed for 
this application by the Intelligent Systems Laboratory in the 
School of Engineering at the University of Wales Cardiff 
(UWC) and the Wood Research Institute (VTT), Kuopio, Fin- 
land. The system includes feature extraction and defect-detec- 
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tion algorithms. Images of the defects (classes) in the wood 
veneer to be ientified are shown in Fig. 2. 

The construction of an artificial neural network classifier to 
identify these classes is the aim of the work reported here. 
Initially, a single relatively large neural network (the SNN) 
with eleven image features as inputs is implemented. This 
holistic approach results in an average classification accuracy 
of 88%, In order to improve this performance a design of 
classifier incorporating several more specialised neural networks 
is developed. This alternative approach implements a "decision 
tree" in which the decisions at each node are made by much 
smaller and more specialised "modular neural networks" 
(MNNs), and the leaves of the tree (the final decisions) are 
classes of wood veneer. 

2. Image Feature Extraction 

The digitised image of the veneer sheet consists of 512 x 512 
pixels, each with a grey level value between 0 (black) and 
255 (white). Defect areas are identified and separated from 
clear wood using segmentation [3]. Once a defect area is 
found, a 3 cm square window of size 60 pixels in the X- 
direction and 85 pixels in the Y-direction is placed on it such 
that the origin of the window is in the middle of the defect. 
The grey level values and their frequencies are recorded from 
this feature extraction window to form a grey level histogram. 
Figure 3 illustrates a typical grey level histogram derived from 
the feature extraction window for a sample of clear wood. 
First-order (tonal) features are calculated from this histogram. 
This method of extracting features from windows has been 
tried by several researchers [4-6]. Second-order (textural) fea- 
tures are obtained directly from the image by thresholding and 
edge-detection. 

3. Image Feature Evaluation 

In defining the features, i denotes the ith grey level, f denotes 
the number of pixets in the feature extraction window which 
have grey level i, and N is the total number of pixels in 
the window. 
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Fig. 1. Wood processing in the wood mill. 

Image features 1 to 7 are defined in Table t, Features 8 to 
12 are obtained by the combinations given in Table 2, of the 
steps given below. Note, although feature 12 is defined in this 
section it is not used by the single neural network (SN~,I), its 
use is introduced later in this paper for one particular modular 
neural network (MNN). 

Step 1. Threshold to create a binary image containing only 
black and white pixels. 

1.1 Threshold the window at /, (mean value). 

1.2 Threshold the window at /x-2cr. 

1.3 Threshold the window at /x+2o-. 

Step 2. Count the number of white pixels in the window 
resulting from Step I. 

Step 3. Apply the Laplacian edge detector (filter) [7] on the 
thresholded image to detect the edge pixels. This is 
implemented by the 3x3 convolution mask shown in 
Fig. 4 and counting the number of pixels in the 
resulting window. 

Fig. 2. Birch wood veneer defects and clear wood. 
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Fig. 3. Example grey level histograms from a window containing 
clear wood. 

4. The Single Neural Network (SNN) 
Classifier 

The type of neural network used is a multi-layer perceptron 
trained with the back-propagation algorithm. A detailed intro- 
duction to neuraI networks is beyond the scope of this paper, 
especially the type used here which is "'standard" and widely 
used. Instead, the reader is referred to some of the introductory 
texts [8-12]. Initially, a single neural network with eleven 
input neurons (one for each extracted feature) and thirteen 
output neurons (one for each class of veneer) is used, as 
illustrated in Fig. 5. Experiments show that the best results are 
obtained with only one hidden layer and that this should 
contain thirty-three neurons [I3]. 
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Table I. Image features 1-12. 

Feature number Description 

8 
9 

10 
11 
12 

Standard deviation of the grey levels (~). 
Skewness. 

Kurtosis (fourth moment of grey levels) to measure peakedness 
z-I 

E ( i  - /&)4~fi 
_ i - - - o  

N*o ~ 

Number of dark pixels, i.e. with level less than a given threshold - in this case 80. 
Lowest grey level - the 20th lowest pixel is used to allow for "noise" pixels. 
Highest grey level - the 20th highest pixel is used to allow for "noise" pixels. 
Histogram tail length on the dark side = difference in grey level between the 20th 
and 2000th lowest pixels. 
Number of edge pixels after thresholding a segmented window at mean value. 
Number of pixels after thresholding at /x-2o-. 
Number of pixels after thresholding at /x-2m 
Calculate the number of edge pixels for feature 10. 
Calculate the number of edge pixels for feature 9. 

Table 2. Steps to calculate image features 8-12. 

First step 

1.1 1.2 1.3 

Second 2 - Feature 9 Feature 10 
step 3 Feature 8 Feature 12 Feature 11 

0 -1 0 

-1 4 -1 

0 -1 0 

Fig. 4. Laplacian convolution mask. 

5. Neural Network Input Normalisation 

In order to simplify the training of the neural network,  the 
feature values are normal ised to remove the effects of  different 
scales and ranges. It is common  practice to normalise  between 
0 and 1, or - 1  and 1, according to the neuron activation 
function used. In this application, the data is normal ised 
between - 1  and 1 to be within the non-saturated region of  the 
hyperbolic  tangent  activation function used here. To perform 
the normalisat ion each image feature is assumed to have its 
own normal  distribution which is then converted to the standard 
"unit"  normal  distribution by the fol lowing transformation: 

x - / ~  
z - ( 1 )  

O" 

where /z is the mean  and ~r the standard deviation of  the 
original distribution, x is the original feature value and Z is a 
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Fig. g. The SNN. 
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new transformed variable with a standard normal  distribution 
(mean = 0 and standard deviation = 1). This then ensures that 
99.73% of the data will lie within the range +3 to -3 ,  i.e. 
within three standard deviations of the mean. The Z values are 
further divided by three to effectively l imit the input values 
to the range -1  to 1. The normal ised feature values are then 
presented to the neural network for training. This method of  
normalisat ion is also used by Kjell et al. [14]. 

6. Neural Network Outputs 

Each output of  the SNN is assigned to a class, as shown in 
Table 3. The SNN is required to set all of  the outputs to zero 
except the one corresponding to the class of  the current input 
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Table 3, Description of classes for the SNN outputs. 

Class Description Desired neural network 
outputs 

8. Results for the SNN 

1 B a r k  1 0 0 0 0 0 0 0 0 0 0 0 0  
2 Clear w o o d  0 1 0 0 0 0 0 0 0 0 0 0 0  
3 Coloured streaks 00 I 0 0 0 0 0 0 0 0 0 0  
4 Curly grain 0 0 0 1 0 0 0 0 0 0 0 0 0  
5 Discolouration 0 0 0 0 1 0 0 0 0 0 0 0 0  
6 ttoles 0 0 0 0 0 1 0 0 0 0 0 0 0  
7 Pin knots 0 0 0 0 0 0 1 0 0 0 0 0 0  
8 Rotten knots 0 0 0 0 0 0 0 1 0 0 0 0 0  
9 R o u g h n e s s  0 0 0 0 0 0 0 0 1 0 0 0 0  

I0 Sound knots 0 0 0 0 0 0 0 0 0 1 0 0 0  
11 S p l i t s  0 0 0 0 0 0 0 0 0 0 1 0 0  
12 S t r e a k s  0 0 0 0 0 0 0 0 0 0 0 1 0  
13 Worm h o l e s  0 0 0 0 0 0 0 0 0 0 0 0 1  

data which it should set to 1. To increase the separation in 
the outputs, a hyperbolic tangent is used as the activation 
function for the neurons instead of the commonly used sigmoid 
function. Consequently, the desired output values of t and 0 
become equivalent to 1 and -1.  In practice, the desired output 
values of 0.9 and -0.9 are used instead of 1 and -1 to allow 
the training of the neural network to take place in the non- 
saturated region of the activation function. 

7. Post-processing of Neural Network 
Outputs 

Since the SNN's outputs are real numbers it is necessary to 
convert them into a binary form for the classification decision. 
This is achieved here by setting the highest valued output to 
t and all the other outputs to 0, thus indicating that the class 
chosen is that corresponding to the output neuron with the 
highest value. This is a commonly used method and is found to 
be the best of the methods considered for this application [13]. 

The SNN achieves 88% classification accuracy. Table 4 shows 
the decision classes of the SN2~. For the classes for which the 
SNN achieves 100% accuracy, the decision class is always the 
same as the actual class. For the classes for which there is 
less than 100% accuracy, the table lists the different classes 
to which the image is assigned. 

9. The Decision Tree 

To improve the classification accuracy a decision tree of MNNs 
is constructed. The root of this decision tree is the original 
SNN, with an output for each potential class of wood veneer. 
The classes for which this network is seen to give 100% 
accuracy are allowed to be classified directly by the SNN, so 
that when the corresponding output is set to one it leads 
directly to a classification decision (leaf of the decision tree). 
If one of the other outputs is fired (set to one) then the 
decision process continues down the tree, as it is not I00% 
certain of the class, and the class is assumed to be either the 
class associated with this output of the SNN, or one of the 
other corresponding classes given in Table 4. At the subsequent 
node in the tree a specialised two-output MNN is introduced 
to decide which of this subset of classes the current image 
belongs to. If there are only two classes in this subset then 
each one is assigned to an output, and the MNN will discrimi- 
nate between them by firing the appropriate output. If there 
are more than two classes, the MNN will attempt to "filter 
out" one of the classes which is assigned to one of the MNN 
outputs, whilst the remaining subsubset of classes is assigned 
to the other output. This filtering or refining process continues 
down the decision tree until a single-class classification is 
reached. The complete decision tree is illustrated in Fig. 6. 

Table4. The actual classes and the decision 
classes for the SNN. 

Actual class Decision classes for 
SNN 

1 1,4 
2 2, 12 
3 3 
4 4, 10, 12 
5 5 
6 6, 1, 8, l l  
7 7, 2, 3, 12 
8 8 ,1 ,5  
9 9 ,2 ,12  

10 10, 4 
11 11 
12 12, 2, 4, 9 
13 13 

10. Image Features for the MNNs 

The MNNs have to separate only one class from a small subset 
of classes. This means that a smaller and more focused set of 
inputs can be used rather than the original set of eleven 
image features. This greatly improves accuracy, by ignoring 
information that is not relevant to the current decision. The 
best features to discriminate between two classes are those that 
display the greatest change in their values between the two 
classes, i.e. the greatest sensitivity. This change is measured 
here by the use of a metric called the "normalised inter-class 
variation" (NIV). For each MNN, the two features with the 
largest NIV, for the classes to be separated, are selected as 
inputs and a two-input neural network is trained and tested. If 
this two-input MNN does not give satisfactory accuracy, then 
the feature with the next largest NIV is included as an input, 
and so on, until satisfactory classification accuracy is obtained. 
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Fig. 6. Decision tree for wood veneer inspection using MNNs. ©, modular neural network classifier; [1, fault class (decision). 

Table 5. NIV in features between classes 6 and 8. 

Features 

1 2 3 4 5 6 7 8 9 10 11 

Normalised 
inter-class 0.53 1.57 1.42 0.27 0.66 1.06 0.47 0.69 0.95 0.67 0.06 
variation 

11. Normalised Inter-class Variation (NIV) 

Inter-class variation measures the ability of  a feature to separate 
two classes. The normalised distance between class means is 
used here as the measure of  inter-class variation. Normalisat ion 
is performed to compensate  for different measurement  scales 
and variances. The NIV for feature x, with respect to classes 

j and l, is defined as follows: 

I/xkJ -/x~'l  (2) 

NIV~j' - (o.~j + O~x0 '/z 

The best  features for separating two classes will have  their 
mean values, for each of  the two classes, furthest  apart giving 

a large value for the NIV. 

12. Feature Selection using NIV 

To demonstrate  the feature selection process consider  the MNN 
required in the decision tree to separate classes 6 and 8. Tile 
NIV in each image feature between the two classes is calculated 
with the results given in Table  5. Out  of  the eleven features, 
features 2 and 3 are initially selected as the inputs to the 
M N N  to separate classes 6 and 8. However,  this two-input  
MNN does not produce 100% correct classification. Conse- 
quently, feature 6 is included as an input, because it has the 
next highest  NIV, and 100% correct classification is achieved. 

The input features are selected for each of  the other  MNNs  
by the same procedure with the results in Table 6. Note, in 
the case of MNN-3,  it is found that 100% correct discrimination 
between classes 3 and 7 can be achieved only by introducing 
the additional image feature 12. This  follows from earlier work 
[13] in which seventeen image features were used originally 

Table 6. Features selected for the modular neural 
networks 

MNN Features selected 

1 2 3 4 5 6 7 8 9 l0 11 12 

1 1 0 0 0 1 1 0 0 1 0 0 ~ a  
2 0 1 1 0 0 0 0 0 0 0 0 n& 
3 0 0 1 0 0 0 0 0 0 0 0 1 
4 I 0 1 0 1 0 0 0 0 0 0 ~ a  
5 0 0 0 0 1 0 0 1 0 0 0 n/a 
6 0 1 1 0 0 1 0 0 0 0 0 ~ a  
7 0 1 0 0 0 0 0 1 0 1 1 ~ a  
8 1 0 0 0 0 1 0 0 0 0 0 ~ a  
9 0 0 0 0 1 0 0 0 0 0 1 n& 

l0 1 0 1 0 0 0 0 0 0 0 0 ~ a  
11 0 1 1 0 0 0 0 0 0 0 0 ~ a  
12 1 0 1 0 0 0 0 0 0 0 0 n/a 
13 0 0 0 0 1 1 0 0 0 0 0 n ~  
14 1 0 1 0 1 0 0 0 0 0 0 n/a 
15 0 1 1 0 0 0 1 0 0 0 0 ~ a  

1 = selected; 0 = not selected 
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for the SNN. In this work it was found that only the eleven 
image features used here are necessary for the SNN - the 
inclusion of the other six features actually reduces classification 
accuracy and greatly increases computation time. However, the 
far more specialised MNN-3 is able to make good use of the 
previously rejected feature 12. 

13. Further Considerations for the MNNs 

In order to keep the size of the MNNs as small as possible, 
they have only one hidden layer of neurons, and the number 
of neurons in this layer is equal to the number of neurons in 
the input layer. Since each MNN has only two outputs, they 
are trained with a high gain factor, in this case 10 instead of 1, 
i.e. at] increased gradient for the hyperbolic tangent activation 
function. The higher gain factor forces the neural network 
outputs to be either "high" or "low". 

14. Results for the Decision Tree of 
MNNs 

The decision tree of MNNs achieves 96% classification accu- 
racy. This is a substantial improvement on the 88% achieved 
with the SNN. The decision tree of MNNs produces an average 
classification time of 0.18 in the particular computer system 
used, whereas the SNN takes 0 . t l  s. Obviously, there is a 
trade-off between accuracy, computation time and classifier 
complexity. 

15. Conclusion 

Neural network classifiers for the automatic inspection of wood 
veneer have been presented. The first implementation was a 
single large neural network that had eleven image features as 
inputs and thirteen outputs - one for each class of veneer. 
This holistic approach resulted in 88% classification accuracy. 
This accuracy has been increased to 96% by the introduction 
of a decision tree of modular neural networks. The modular 
neural networks have been designed to be small and very 

accurate by using " n o ~ a t i s e d  inter-class variation" in the 
selection of small subsets of the image features to form the 
inputs to the modular neural networks. 
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