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The formal Teichmfiller space for stable Mumford  curves 

By 

MEINOLF PIWEK 

A 
The purpose of this paper is to construct the formal Teichmiiller space Tg, r is a formal 

scheme which is a moduli space for uniformized stable Mumford curves. 
A (non-singular) Mumford curve over a complete local ring (9 is a stable curve C over 

(9 (in the sense of [2]) with non-singular generic and totally degenerated special fibre. 
Mumford showed in [t0] that such curves can be uniformized by an action of the 
free non-commutative group Fg on IP I. This can easily be generalized to any stable curves 
C with totally degenerated special fibre (stable Mumford curves) by embedding C into 
a nonsingular deformation. Instead of the action of F 0 on IP1 one gets an action o f  
Fg on a tree of projective lines, a so,called Fg-tree (see [9]). The formal Teichmtiller 
space thus can be thought of as a formal neighbourhood of the subspace correspond- 
ing to totally degenerated curves in the moduli space B~ ~ of Fg-trees as constructed Fo 

in [91 . 

Unfortunately, B~ is only a pro-scheme, not a scheme, so we have to work in a different 
way: 

F0-trees are classified by the set of all cross-ratios of the attracting fixed Points of any 
four elements of/?g = {primitive elements of F0}, thus B v.~ is naturally embedded in F~ 
IP v, V = {(vl,.. . ,  ~'4)1 vi * vj Vi 4:j, vl 6/~g}~ By covering IP v by copies of ~ v  We get a 
covering of B~, by affine schemes U c = SpecAc, c e C  = {maps V ~ {+ ~}}, Let Fg 

Y~ = Spe~4~ be the subspaces of U~ corresponding to totally degenerated curves, and 
= Spf A~ the completion of U~ along Ir 
We then have to glue the formal schemes ~ over "their intersections" ~,~ = ( ~  c~ ~ 

completed along Y~ c~ yd). 
The key point in this paper is to show that this is possible, L e. that the maps I~,e -~ }'; 

are open immersions. This is done as follows: 
After introducing the basic objects and notions in Section 1 we show in Section 2 - 

Section 4 that  A~ is a finitely generated Z-Algebra (Theorem 4.7): In Section 2 a tree 
T is constructed corresponding to a point of Y~, and it is shown that Fg acts on T and 
T/Fg is finite. In Section 3 it is shown that A~ is essentially of finite type over 2g, and 
this fact combined with the results of Section 2 is used to get a finite covering Of each Y~ 
by schemes Y~,~, for which it is possible to show that they are of finite type over 
:g (Section 4). 
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In  Sect ion 5 it is shown tha t  S i S  ff is f initely genera ted ,  where  S~ is the ideal  sheaf  of 
Y~ in U~. This  ( together  wi th  the results  of Sect ion 2 -  Sect ion 4) yields the existence of the 
formal  Teichmfil ler  space T0 (Theorem 5.3). T,,j then  is a m o d u l i  space for 

{s table  M u m f o r d  curves  + basis  o f  the f u n d a m e n t a l  g r o u p } / I n n  F o 

(Theorem 5.10). 
F ina l ly  in Sect ion 6 the fo rmal  Teichm/i l ler  space is re la ted  to the r igid ana ly t ic  Teich- 

m/i l ler  space ~#g (see [4], [7], [11]) t h ro u g h  the fact tha t  ~ is an open  subspace  of the r ig id  

ana ly t ic  space To ~" assoc ia ted  with  Tg. 

1. B a s k  concepts.  D e n o t e  by  Fg the free n o n - c o m m u t a t i v e  g r o u p  of  r a n k  g, let 
~+0 be the subset  of pr imi t ive  e lements  (i.e. /~g= { y e F g l y = t = 3 " g 6 e F o ,  n >  2 } ) a n d  
v :  = = ( q ,  Yo, v, 4=  jvi + j} .  

N o t e  tha t  Au t  Fq acts on  Fg and  hence on V. Let  F 0 act  as inner  a u t o m o r p h i s m s .  Let  
= {< . . . . .  be a base o f # .  Then each g has a unique representation a s  a reduced 

w o r d  in e_+, . . . . .  eeg, where  we define ~_~:= e~ -~ .  

1.1.  D e f i n i t i o n .  L e t y e F g .  
1 (7) : = 1~ (7) : = length of  2 : = n u m b e r  of let ters  in the reduced  word  assoc ia ted  with ~. 

s t ( y ) : =  s t~(?) :=  first le t ter  in the reduced  w o r d  assoc ia ted  with  2. If  ? = e r i e  Fg, 
s t ( f l )  # s t ( a -* ) ,  we wri te  ? = ~..fl. 

F o r  la te r  use we p r o o f  some L e m m a ' s  on Fo: 

1.2. L e m m a .  y ~ [7o, y = c~ . f t .  ~ -  *, fi cycl ic  reduced (i. e. st (fl) 4: st (fi - 1)), # e Fg. Then  

s t ( # y # - * )  # s t (# )  ~ fl = fl ,  " f i 2 , # - ~  = ~" fi"" f l~ ,n  > O, or ~ = t* -~ " ~'. 

P r o o f .  
(i) e = id, i.e. ? = ft. Then we can find fil (possibly = id), f12, i/~ Fg s. th. fl = fii " fi2, # = 1/" f l ~ l  

st ( t /- l)  4= st (fi2) iffl2:4= id. 
(a) fli4=id. Then #j~l.l-l=rll~llfllfl21~iYl-l=~flltl-l=tl.~2.fll't"l *.s t (#f l#-*)4=st(#)  

~ r / = i d .  
(b) f12 = id. Then # f l # - i  = tlf111-l, so by induction on 1 (t/) and using (a) we find st(#flp -1) 

4= st(#) ~ #  - I  = f i "  fl',, fi = f l ; ' f l ' z .  
(ii) a 4= id. Let 2 = #a. Then #7# -1 = 2fl2 ~1. 

(a) st(2) = st(#). Then s t (#y# -1) 4= st(#) ~ st(2) ~(0 2-1 = fl"" fll ~ #-1 = a .  f l , . f l , .  
(b) s t ( 2 ) # s t ( g ) : T h e n c ~ = p - x ' e  '. [] 

1.3. L e m m a .  L e t  ~, fi, y ~ 13 o be pa irwise  dist inct .  Then  there ex i s t s  a unique I~ e Fo s. th. 
@ { s t ( p c # - 1 ) ,  st (#131a-1), s t ( # ? # - 1 ) }  = 3. 

P r o o f. Uniqueness follows directly from Lemma 1.2. We proof the existence of # by induction 
on ~ (~,/~, 7):= 1(~)+ ~( /D+ 1(7): 

For  1 (e, fi, 7) = 3 there is nothing to prove. Let now 1 (cr fi, 7) = n, and suppose the lemma is true 
for all 1 < n. 

Conjugation with the greatest common starting sequence of c~, fi, 7 leads (without increasing 
length) to w.l.o.g, st(c 0 = st(fl) 4= st(7) or all three different. 

If c~ and fl are not cyclic reduced, a suitable conjugation decreases length. So let fl be cyclic 
reduced. 
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Let c~ = n, �9 ~' - t/ ~, :( cyclic reduced. 
(i) fl = ~/�9 Then conjugation by ~/leads to x and fl cyclic reduced. 

(a) e = ( - e ' , / ?  = ( .  fl' =t = id, @ {st (~'), st(fi'), st(~')} = 3. Then # = ~-~. 
(b) fi = c~ ~. ~. fl', ~ = ( -  ~z', @ {st (:(), st(/?'), s t((-x)} = 3. Then # = ( -~  c~ 

(ii) ~ =/?k" f l ' '  t/', fi = f i ' '  /?", ~ {st(q~)' st(/F'), s t (# ' -x)}  = 3. Then # = (/?~/?')-~. [] 

1.4. L e m m a .  c~, fl e ~'o, ~ ~ fi" Then  there exis t  only f in i te ly  many  # ~ ~ s. ~h. 
st ( # - *  c~#) @ st ( # -~ ) ,  s t ( f l -1  fi#) =~ s t ( # -  1). 

P r o o f. Since there can be only finitely many #'s with ~ = # .  :( - # ~ or fi = # - f l ' .  ~r ~, suppose 
we had infinitely many # = e ' - ( " .  ~ = fl '-r/ '~,  q> with c~ = cd- (t  " r " c( -  1,/? = / ? '  ~/, "~/2 "/? '-  ~' 
Then there would also exist infinitely many such / f s  with ~ ,  r h fixed. Let #o be one of them, and 
define for each #v :=  #o i # = (~  1 ( , - , o  ~1 = t/~- ~ . rl " - ' ~  . ~ ,  or ~ -  ~ ~k ~ = ~/~ ~ ~ th with k > 0. 

Let x = Cf~ C~ = (2(~, Y = (?/2 t / l )  sign/, r : =  [11. 
Then x ~ = y', x, y cyclic reduced and primitive. A simple calculation shows that this implies x = y, 

so r r = (~2" ~)•  
(i) ~2' ( ,  = @fa" th) -1- Then v = (t/2 �9 th) "-"~ = (t~2 . *h) "-m~ = (~2 ' {,) '~ ~ n + m = n o + too, 

so the number  of such v's is finite. 
(ii) ~2"~,=~2"ql=:W,#=~'i~l 'wn=fl"t l , 'wm'w.l .o .g.k=n-m>=O. 

Thenfi=fl'rhq2fi'-l=fi'q,w(fl~qt)-l=~x'(lwkw(~z'~,wk)-l=~'(,w~[-~'-~ =g. [] 

N e x t  we w a n t  to  i n t r o d u c e  s o m e  r ings  a n d  the i r  spectra ,  which  are  the  b u i l d i n g  b locks  
for the  spaces  we w a n t  to c o n s t r u c t :  

1.5.  D e f i n i t i o n ,  
(i) A* : =  2g[2~, 2~-11 v e V]/I.,  where  I *  is the  ideal  g e n e r a t e d  by  

(a) the  ke rne l  of the  m a p  2g [).~, 2~- 1 [ v e V] ~ 2g [x 7, (x~ - x a ) -  1 t 7, 8 ~ Fg, 7 * 6] 
wh ich  sends  2~ to the  c ross - ra t io  (Xvl - x~3 ) (x~l - xv 4 ) ~ 1 (xv2 - x ~ ) -  ~ (xv~ - x ~ )  
(this ke rne l  we w a n t  to cal l  the  "c ross - r a t io  re la t ions" )  a n d  

(b) all  ).~.~ - 2~, v ~ V, 7 e F o (the "Fg- inva r i ance  re la t ions") .  
(ii) Let  c, d :  V -+ { + t} be  a n y  maps .  T h e n  A~ : =  s u b r i n g  of A* g e n e r a t e d  by  all 2~ (~, 

A~,a:= s u b r i n g  of A* g e n e r a t e d  by  all  2;  (*), 2~ (~). 
(iii) Vc, d:  V--~ { +  1} let T~, T~, a be  the  ideal  in  A~, A~.a. g e n e r a t e d  by  all 2 , ,  v = 

( 7 a 7 - 1 ,  ~, ~, ~ -1 )  ( =  A~ if c(V) = - 1). Let  A~ = A~/T~, A~,a:= A~,a/r~,~. 

(iv) D e n o t e  by  A~, A~, a the  c o m p l e t i o n  of A~, A~, a w.r . t ,  the  T -ad i c  t opo logy ,  
(v) Y~:= SpecA~,  Y~,a:= SpecA_~,d 

U ~ : =  S p e c A r 1 6 2  Spec A~I ~ 
Y~:= SpfA~,  Y~.a:= Spf A~. a 

1.6.  R e m a r k.  T h e  typ ica l  c ross - ra t io  r e l a t i ons  are  

(ii) 2~ , ,~ ,~ ,  ~0 = I - 2~ ,  ~ , ~ , , ,  

1 .7 .  D e f i n i t i o n .  t ~ : =  2~-~,~,~,~-~ c A *  (which  does  o b v i o u s l y  n o t  d e p e n d  o n  c 0 
is ca l led the  m u l t i p l i e r  of  7. 

u : ,~ ,~ :=  )~,fl,y,7 t c A *  "'(~) "-- "[ 
- u k - -  u~, ,~ ,~  for a n y  base  ~. 
U i j k ' - -  IOei,a3,~ k 
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1.8. Lemma.  In A* we have 
(i) (1 - t~)2~,-~ ~,~,~ = 2,,a,~,~ - t~" 2~-~ ~,~,~ 

(ii) (t~)~,~,~,~ - 2~-~,~,~,~) �9 2~-~,~,~,~ = 2~,~,~,~2~-~,~,~,~(1 - t~) 
or 

(i)' (1 - t~)2~-,,~,~,~ = (1 - t~2~ ~,~,~,~)" )'~,t~,~,~ 
(ii)' (1 - t , 2 , , ~ _ ~ , ~ ) . 2 ~ , - ~ , ~ , ~  = (1 - t~)" 2~,~,~,~ 

P r o o f .  
(i)' (1 -t,2~-~,~,~,~)Z~,~.~,~ = (1 - ,~,_~,~ .... _~. ).~.2,~,~_,). 2~,~,~,~ = (i - , ~  ,,~ . . . . .  )..~o~,~,~,~= 

.;L~ ,.~,~,~_, . 2~-,,~,~,~ " )o~,,~,,-,,~,~,~ = 2~_ ,  ~,~,~_, �9 2~-,,~,~,~ �9 = (1 -- t~)2~-,,~,~,~. 
(ii)' is proved in the same way, and (i), (ii) are easy consequences of (i)', (ii)'. []  

2.  T h e  t ree  a s s o c i a t e d  to  a p o i n t  o f  Y~. 

2.1. D e f i n i t i o n .  Let e = {e~ . . . . .  %} be a basis of F~. 

C ~ : =  {e: V --~ {~__ 1} [C(yl ,  v2, v3, v4. ) = c ( v l ,  1'2, v4, v3)Vv ~ V with st(v~) 

= st(v2), ~ {st (v2), st(v3), st (v~)} = 3} 

d,:= {c 0} 

d:= U 
basis 

of F~ 

In  this pa rag raph  we fix e, c ~ C, and  a k-valued point  of Ac (k any field). By 2, we always 
mean  the value of 2~ in this point  (2~ ~ ~a (k)), if no th ing  is explicitly specified. 

2.2. Lemma.  Let  M be any subset of  t6g, S ( M ) : =  {(el, a2, e3)~ M3 I ~i ~ ~j V i + j }. 
Then R : =  {((el, c~2, cq), (ill ,  fi2, f13)) ~ S (M) x S (M) I 2 . . . .  j ,~.~, :4= I whenever 
# {~i, ~j, fi~, fll} = 4} is an equivalence relation on S(M).  

P r o o f .  
(i) Reflexivity: obvious 

(ii) Symmetry: obvious 
(iii) Transivity: Take (c~), (fl), (7) E S(M), ((~), (fl)) ~ R, ((fl), (7)) E R and suppose ((~), (7)) ~ R. 

Then w.l.o.g. )~,~2,~.~ = I, hence 2~,,~,~,~ = 0. 
In A* we have 2p,,y~ ,~,y~ = 2~,~,,~,~. 2r ,~,~, hence V i: 2p,,~,~,~ = 0 v 2&,~,~.~ = 0. 

w.l.o.g. 2&,~,~_,,~ = 2&,~,,~,~ = 0 
~ , , , ~ , ~ , , ~  = ~ , ~ , ~ , , ~  = ~ ~ , ~ , , p ~ , ~ , ~ ,  = 1 ~ ( ( f l ) , ( ~ ) ) ~ R .  [ ]  

2.3. R e m a r k .  ((a, 7, 6), (fl, 7, g ) ) )~R~2~,~ ,~ ,~Ek* .  

2.4.  D e f i n i t i o n .  
(i) T o ( M ) : =  S(M)/R ,  the equivalence classes are denoted by [cq, c~2, cq]. 

(ii) T 1 ( M ) : =  {(P, Q) ~ To (M) • T O (M)I 3 e, fl, 7, 6 ~ M s.th. P = [~, 7, 5], 
Q = [fl, 7, 5], ,;o~,p,~,~ = 0, Ve ~ M :  2 .... ~,~ + 0 v Z~.,p,y,~ 4: 0} 

(iii) s~r T~ (M) ~ To(M), s~C (P, Q ) : =  P 
: T~ (M) -~ To(M), (P, Q ) : =  (Q, P)  

(iv) We denote  by T ( M ) :  = (T o (M), T~ (M), :.~r the graph  given by the data  in (i), (ii), 
(iii), To (M) being the vertices, T~ (M) the edges. 
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2 ,5 .  R e m a r k .  Fg acts  on  T : =  r ( /}g)  by 

' [~1, g2, ~3] :=" [~'0~1~ -1 ,  ]2~2~ ) - l ,  ])~3~- 1], ~/ ' (P, Q):== (~ ' P~ '~ ~ Q), 

D e n o t e  the  q u o t i e n t  T/F o by  G. 

P r o  o f. F~ acts on T o (/~) as an easy consequence of the Fo-invariance relations: F~ acts on S (~o), 
and equivalence is preserved since 

F r o m  the definition of the action of F o on T~ it is clear that  o~/and - are Fa-equivaria~t. 

2.6. L e m m a ,  Given P, Q ~ T o (M), P 4: Q, there exist ~, fl, 7, 6 ~ M s. ~h. 
P = [,~, ?, b], 0 = [fl, ?,, 5] ,  2~,t~,v,~ = 0 .  

P r o o f .  P = [cq, ~ ,  %], Q = [fl~, fiz, fi3], w.l.o.g. 2~,~,,~,,~ = 1, 2~,~, , , .~ ~ ~ ,  ;%,~ .~ ,~  

(i) 2 ~ , ~ . ~ . ~  = 0. Then P = [~3, cq, fl~] since i = 2 ~ , ~ , ~ . ~  = ,~;~,,,~,%.~, 

(ii) 2~, r  4: 0. Then P = [fl~, ~ ,  %] since 2%,~,~,~z e k*. The same hotds for Q, so take 

7 = cq, 6 = ill- 

2 .7 .  D e f i n i t i o n .  ~ , 6 E M ,  7 + 5 .  
(?,, 3 ) : =  {[c~, 7, 3] ~ To(M)[e  :t: 7, c~ 4= 3} t o g e t h e r  w i t h  t he  o r d e r i n g  [c~, 7; 3] < [fl, ?,, 31 
~2~,~,~,~ = 0 is ca l l ed  the  axis  f r o m  ~' to  6. 

2.8. P ropos i t i on .  T ( M )  is connected. 

P r o o f .  P,Q ~ To(M), P ~ Q Choose an axis 1 = (?, 6 )wi th  P, Q e i, P < Q. 

C l a i m .  w : =  {R ~ (y, 5)[P < R < Q} iS finite. 

P r o  of.  P = [e, ;~,', 5], Q = [[1, 7, 6], )'~,~,~,~ = O. 
We may assume M = ~+~ since To(M ) ~ To(~'o) and W = W(/hg),~ To(M ). Fo r  any u ~ ,  the 

map #: T o (/~g) --, T O (f~) induces a bijection W ~ # W  = {R ~ (#~-  ~#, # # 3 # -  1)[/~. p < R < # .  Q }, 
hence we may assume ~ {st(fl), st(?,), st(5)} = 3 by Lemma 1,3. Suppose ~ W =  ~ ,  Then 
W = { [a i, 7, 5 ] 1 i ~ Z} with 2 .... .  ~' ~ = )~, ~s, r, ~ = 2~j, B, ~, ~ = 0 V i < jl Each ~ uniq ue!y determines 
/q ~ F o by Lemma 1.3 s, th. 4+ {st (/~,a~#~- ~), st (#i7/~- ~), st(#i 6/~/1)} = 3. 

Note  that 2~.~, ~. ~ = 0 implies ,1~, ~,- , u~,,- ', ~ ~ ,i ', ~ , , -  ~ = 2~. ~, ~,,0 = 0, hence st (g~) = st (g~ 5 ~ -  ~) 

for ~, 4: id because s t (#~6~[  ~) + st (g~) would imply st ( ~ # 7  ~) = s t ( # 3  = st (# ,~ ,~  -~) in contra- 
diction to c ~ (~. But then st (#~,/q -~) 4: st (#~) by the definition o f /q .  2~,~,,~,0 - 0 ~ 2~,~,~,,~, = 0 

s t (#~e#[  t :t: st (#~6#[ !) = st (#~) because c ~ (2~. But by Lemma 1.4. there can 0nly exist finitely 
many such #~'s, so we have a # s, th. #~ = # for infinitely many ~ri~ I :  = {i ~ 2g t #i - #}- For  i,j in l ,  
i < j  we h a v e 0  = 2~,,~,~,~ = 2#~ ~- ,ur ,~u-~,u~u ~, so c ~ C~ ~ st (#ad,u -~) =~ st (#a~#- t ) .  

So # I N  # {st(pa~#-~)ji~I} < ~ .  
Since W is finite, we can write W =  {R~ . . . .  ,R,},  P = : R  o < R~ < . . .  < R,  < R~+~:= Q. But 

then the definition of 7"i (M) yields (R~, R~+ ~)e T, (M), so  we have found a path joining P with 
Q. []  

2 . 9 .  R e m a r k.  T h e  p r o o f  o f  2.8. a l so  s h o w s  tha t  i f  P ,  Q e (7, 3)  t h e n  t he r e  ex i s t s  a p a t h  

in (7, 3) j o i n i n g  P a n d  Q. 

F o r  a f in i te  M c / 3  we h a v e  an  a l t e r n a t i v e  w a y  to  a s s o c i a t e  a g r a p h  w i t h  a k -~a lued  

p o i n t  of  Y~: 
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Let  B M be the  m o d u l i - s c h e m e  of  s tab le  M - p o i n t e d  t rees of  p ro jec t ive  l ines (s. [5]). 
P r o j e c t i v e  c o o r d i n a t e s  o n  B M are  g iven  by  the  ,~,  v~ s M,  r e l a t ions  b e t w e e n  t h e m  are  the  
c ros s - r a t io  re la t ions .  H e n c e  a n y  k - v a l u e d  p o i n t  o f  Y~ u n i q u e l y  d e t e r m i n e s  a k - v a l u e d  p o i n t  
o f  B M, i.e. a s t ab l e  M - p o i n t e d  t ree of  p ro jec t ive  l ines.  Le t  T'  (M) be  its i n t e r s e c t i o n  g raph ,  
wh ich  is a tree. 

2.10. P ropos i t ion .  T ( M )  = T'  (M) for  each f ini te  M ~ I:g. 

P r o o f .  Any element of Td(M) is the "median" [e, fl, 7]' of three marked points. A simple 
calculation shows [c~, fi, 71' = [~', fl', ? '] '  ~ [e, t ,  7] = [e', fi', 7'], so To(M) = Td(M). We have T[(M) 
= {(P, (2)~ Td(M) x Td(M)ILec~Le 4= ~} where Lv, L e are the components  of the tree of proj. 
lines corresponding to P, Q. (P, Q) a T~' (M) ~ P = [~, 7, 61', (2 = [fi, 7, 6]' (the tree is stable, so any 
end component  has a marked point  on it), 2~,~.~, ~ = 0 (P # (2), for any e ~ M we have 2~,~,~,~ 4= 0 or 
2~, ~, ~, ~ 4= 0 (because otherwise [e, 7, ~] would correspond to a component  "between" Lv and L a and 
then Lv c~ Lo = ~) ~ (P, Q) a To(M). 

(P, Q) ~ T O (M) ~ P = [c~, 7, ~], (2 = [fl, 7, 6], 2~,~,~,~ = 0, for any ~ ).~.~,~,~ # 0 or ).~.~,~.~ # 0: P, Q 
are on the path between the component  with the marked point  "y" and the component  with the 
marked point  "~", and there is no component  between them ~ (P, (2)~ TI(M ) because T'(M) is a 
tree. 

Obviously ~r and - are the same maps in both graphs. [ ]  

2.11. Coro l l a ry .  M ~ !~ o f in i te  ~ T ( M )  tree. 

2.12. P ropos i t ion .  T ( M )  is a tree for  all subsets M o f  Fg. 

P r o o f. We have to show T(M) is simply connected. 
Suppose w = ( P  o . . . . .  P,) simply closed path in T(M) (i.e. (Pi, Pi+I)E T~(M), Po = P~,Pi 

4= Pj V i < j, i # O or j ~: n), Pi = [ai, fli, ??i]. Choose N ~ M, N finite, cq, fli, 7~ ~ N V i. Then 
P~ ~ T O (N), (P~, P~ + 1) ~ T~ (N), P0 = P,, P~ 4= Pj V i < j, i ~ 0 or j 4= n, i.e. w is a simply dosed path in 
T(N), which contradicts 2.11. []  

2.13, P ropos i t ion .  The action o f  Fg on T is free and G = T/Fg is a f ini te  graph. 

P r o o f .  
(i) Since Fg is a free group, the action on T i s  free if it is fixed point free. Suppose there exist ? e Fg, 

P e T o s. th. 7 4= id., ? .  P = P, 7 = c~ for some c~ e F~, n > 0. Let Q : = ~ (P) : = uniquely deter- 
mined vertex in (~, e -  ~) with (path from P to Q) c~ (e, c~- 1) = Q (called the projection of P onto 
(a, ~ -  i)). 
We have ~ ( ~ , - P ) = 7 . ~ ( P )  because 7 - ( e , a - 1 ) = ( ~ , ~ - I ) ,  (path jo ining 7 - R  with 
? .  R ' ) =  7 - (pa th  joining R with R'), so 7 "Q  = (2- Let (2 = [fl,~,c~-1], then }, .Q 
= [y f lT - I , 7~? - l ,  ya-~ },-1] = [ e ~ f i a - .  e , ~ - i ]  with 

= t~ �9 t~ . . . . .  t~ = t~ = 0 

which contradicts 7 ' Q = (2. So Fg acts freely on T. 
(ii) Let ~ -  [a', fl', 7'] ~ Go, By Lemma 1.3. we find ~, t ,  7 ~ F~ with # {st(a), st (fl), st(?,)} = 3, and 

Fg" [a', fl', 7'] = Fa" [cq t ,  71- st(a) = e, ~ [a, t ,  7] = [ei, fl, 71, st(fi) = ej ~ [e~, t ,  y] = [~i, cj, 71, 
s t ( y ) = e k ~ [ e i ,  ej, 7] =[e~,e~-,~k] (use 2.3. and c eC~). This shows that the map 
{[% e~, el,] I i 4= j 4= k, i 4: k} -~ Go, [% ej, ~k] ~ /~,j" [~i, ej, ek] is surjective, hence G O finite. 
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T is the universal covering of G, F, the group of cover transformations ~ F~ is the fundamental 
group of G ~ the cyclomatic number of G is g. 
But a graph with a finite number of vertices and finite cyclomatic number can only have finitely 
many edges. [] 

2.14. Corollary.  T is a locally f in i te  tree. 

2.15.  
(i) P, 

(ii) 

(iii) 

D e f i n i t i o n .  
Q ~ T o. d(P, Q ) : =  mi n  {hi 3 path  in T jo in ing  P and  Q with length n} is a metric  

on  T. 
A basis w = w~ . . . . .  w~ of F o is called Schottky-basis  in a po in t  of ~ iff 
v ( ~ ) = O V i ,  j , k ~ { + _ l ,  +_9},j, k q = i i n t h i s p o i n t .  i j k  " " " 

A basis of F~ is called a geometr ic  basis for the act ion of F o on T if it can be 
cons t ructed  by the following process (given by Bass and  Serre, s. {13]): 
Let H be a lifting of a maximal  subtree of G to a subtree  of T, let 1,, . . . .  I~ be tiftings 

of the r emain ing  edges of G with d ( l i ) ~  Ho, ~ ( ~ ) ~  H o, 
Then  there exist un ique ly  de te rmined  w, . . . . .  wg e F~ s. th. w i (~ '  (~)) ~ H o. An easy 

calcula t ion shows that  w, . . . . .  wo form a basis of F, .  

2.16. Proposition, For each point o f  Yc, c ~ C~, there exis ts  a Schot tky ,  base o f  Fg. !n  
fact:  Every  geometric basis o f  F o for  the action on T is a Schottky-basis.  

P r o o f. Let %,  ..., w h be a geometric basis, H the corresponding lifting of the maximal subtree, 
l~ liftings of the free edges. 

(i) C 1 a i m. Vie {I . . . . .  9} we have (w, w f  1) c~ H o 4= ~. 
P r o o f .  Suppose the contrary. Then d((w i, wl- !), H0):= min {d(P, Q) ]Pa(w~,w i-~),Q~ Ho} 
> = l ~ d ( w ~ . P ,  H o ) > 3 V P e H  o (because w~ acts as a translation on (wi, W~Z)). But 

d ( w  i " ~ r  H o )  = 1 .  

(ii) C l a i m .  ~r ~r ~ (w~, w ~ ) u  
P r o o f .  Suppose P ~ {~r (li), .~r (~)}, P r (wi, wF1). Let Q be the projection of P onto 0% w~-~) - 
From the facts that d(P, Ho) < 1, (w~, w j  1) n H o . 0,/4 and T are trees we conclude Q a H 0. 
But then d(w~ �9 P, 14o) > d(w~. P, w~. Q) + d(w~. Q, Ho) > I + 1 = 2 in contradiction to the 
definition of 1 v 

(iii) 
l i 4= Ij, I i 4 = 1jgi @j ~(O,(iO (wi, w[ 1) m (wj, w f  1) c H o 

C l a i m .  [wj, w i, wi -I] � 9  o. 

(iv) 

P r o o f .  
a) (w i, w F 1) n (wj, w;  1) = O. 

Then [wj, w i, w 71] = (projection of ~r (lj) onto (wi, w~ ~)) �9 H o 
b) (w i, wf 1) • (w j, w i 1) 4= O. Then [wj, wi, w~ 1] ~ (wi, w i  1) c~ (wj, w~ 1) c H o 
u(W) ~ " ( ~ )  = 0 ijk 4= ~ ~ijk 
u(W~ ~ ,,(w) = O. Then i jk  ~ (30 u i j  k 

[wk, wz, wi-1], [wj, w.:, w[ 1] �9 Ho 

= [wl, wj, w i  1, w~, w71] in (wi, w,  1) 
=~,,(w) = O. [] 

~i jk  
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3. T h e  r ings  . i~.  F i x  a bas is  e a n d  a m a p  c e C~. 

L e t  B~ be  the  s u b r i n g  o f  .4~ g e n e r a t e d  by  al l  2~, . . . . .  ~,~ e A~ (i.e. c(? ,  el, ~ ,  ~ )  = 1 o r  

- ~ unit)), (c(?,  ei, ~ ,  ~ )  = - -  1 a n d  2~ ,~ ,~ ,~  

3.1. L e m m a .  A~ is generated as ~-Algebra by all f ~ Ar with f ~ B~ or f - ~ ~ B~ ( ~  A~ 
is essentially o f  finite type over  Ba). 

P r o o f .  
(i) Let B the subring of .A~ generated by all f ~ .,t~ with f e B~ or f - ~ ~ B~. We have to show: 

2~ E ){~ ~ ,~ ~ B. By Lemma 1,3. we know 2~ = , ~ , ~ . ~ . ~ ,  e A~ with ~ {st (~:), st (e3) st (c~4) } 
= 3 .  

(ii) x unit in A~, x - l ~ B ~ x - l = P ( f !  ..... f~,gl ..... g~) with f ieB~,g[-~sB~,gi~A~, 
P ~ ~g Ix i . . . . .  x~+,~]. Define 
y : =  I ]  ~ /~~  P ~ B~. 
Then x-~y~B~,  x -~y  is a unit in A~ ~ xy -1 . y eB .  

(iii) 
st (~l) = s t ( ~ )  ~ )s ~ ,  2~ unit in 2~ 

st(m~) = st(c%) ~ 2~ = 1 - 2  . . . .  ,t . . . .  e2 , , .  
1 ,  3 ,  2 ,  4 ~ I ,  3 ,  2 ,  4 

So we may assume st (cq) 4: st (ca), st (e4), 
(iv) 2~ . . . . .  ~,~ = )~ " 2 . . . . . . .  ~.~ e / t~  if st(~i) = ~i, hence we may assume :~l = ei. 

(v) st(~2) = e/, s t (%) = e~, st(~x~) = e~ 
a)  i 4 : j :  

~ g k , f t 3 ' e i , ~ 2  * ~ g k "  ~ 4 ,  g 2  

b) i = j. Choose m r j, k, 1 

~ ,  �9 , m ,  2 ,  k ,  3 m ,  2 "  k "  ~ g" m '  3 '  4 

=u~ with u,v~B, u-l~/i~ 

3.2 L e m m a .  Let B 2 be the subring of  B 1 generated by all 

Then B 1 = B 2. 

(i) z : =  2~-~ ~,~k,~zEA ~. Then by Lemma 1.8.(i)' we know 

~,e~,Ek,EZ = J~,eZ~-I ~,%,~ E B 2 

(ii) z ~ A~ ~ 2~,~-, ~.~, ~ .4~ ~ ,~,~j,~,~, = 2~k~-~ ~j,~,~ ' E B~ again by Lemma  1.8. (i)' [ ]  
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3.3. Lemma. Le t  B 3 be the subring o f  B 2 generated by all 2~ % ~ q e ,-4~ and all v~)~, 
Then B2 is essentially o f  f ini te  type over B~. 

P r o o f. Let B ,  be the  subr ing of B 2 generated by all f ~ B 2 with f e B 3 or j ' -  l e B 3. We have 
to show:  2 = 2 ~ - ,  ~ ...... ~ ,i{~ ~ ). e B 4 

We do induct ion on  l(7): 
(i) t(~) = ~: 

(a) , / =  E{ L Then  there  is no th ing  to prove. 
(b) ~ = e,, r + _ i, r 4= 1 (otherwise 2 is a unit ,  exchange k and  I), r 4= k (look at  t - 2). 

(bl)  r 4 : j :  2 = 2~;,j,~.~, - 2 ~ ; ~ . ~ , ~ . ~ , ,  and  the  second factor is a unit,  henc  e )~,~j,~,<.~, ~ 5~. 
So w.l.o,g.: 

(b2) r - - j :  I l k  = - j  or 1 = - j ,  then 2 -+l = 1 - vj, i, ?, which is a uni t  in B,,. I f k  * - j , !  4: - j ,  
then  ~ = (1 - vi, i,k) (1 - vM.z) -1 e B 4. 

(it) l(?) = n + 1, and  assume the  L e m m a  is p roved  for  t(7) =< n. w.Lo.g, st(7 - I )  , e{~, st(y) = ~ 
4: ek, el- As in (i) we m ay  assume r = j  and  k, l 4= - j ,  

= (~ - e ; - ~  ~,.~, ~ G ,  a- , ,o, ,  ~ , , z ' )  ( t  - t 7 - ~  ~j,,,, ;-a,; a- , ,  ~,, o,, ~;') - '  
._~ b! lj -1 

with q = st(f l)  + ~+~, hence u, v ~ B2, u, v ff B 4 by the induct ion  as sumpt ion  and  v =t 6 B~ because 
v = 2 ~ - ,  ,~,,,,V~ is a uni t  in A, (st (7~7-~)  = eft, so v-  ~ E B~ and  then 2 = uv-~ ~ B , .  [] 

3.4. P r o p o s i t i o n .  :4, is essentially o f  f ini te  type over ;g. 

P r o o f .  This  follows immediate ly  f rom L e m m a  3.1. to  3:.3. using Propos i t ion  6.3A5 in [3], 
Chap te r  0. (B. ess. of. fin. type over  A, C ess. of fin. type over  B ~ C ess. of fin. type over  A). 

3.5. C o r o l l a r y .  A~ is noetherian. 

3.6. P r o p o s i t i o n .  I f  c ~ d then 

n=,~(c) 

We= U ~,~,,,) 
s = l  

with: e (~) basis o f  ~ 

Yc,~*, := {Y ~ Ycl v}s},~(Y) = Ogi, j, k , j ,  k 4 = + i } .  

P r o o f. Let p be a min imal  pr ime ideal of X~, K = Q u o t  (Xc), Ac -~ K the  cor responding  k~valued 
po in t  of Y~. By Propos i t ion  2./6. there exists a Schot tky-basis  e, i: e. a basis of Fg with v~k e t), hence 
Spec Ar ~ Y;, ~" A~ is a noe ther ian  r ing (3.15), so the n u m b e r  of min imal  pr ime ideals is finite. [ ]  

4. S c h o t t k y - d o m a i n s .  T h r o u g h o u t  t h i s  p a r a g r a p h  w e  fix c e Cw a n d  a b a s i s  e o f  Fg. W e  

d e f i n e  
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" / 3 , ? e d - *  " "  ' - 4.1. L e m m a . j , k ,  l e { - •  l . . . . .  + g } , 4 ~ { j , k , l } = 3 ,  y = e j  = e j  /3.e~ /3 ~ e f ' .  
Then  

2~q~-~ ,5 ,~ ,~  = I in A~,~. 

P r o o f .  We do induct ion  on n = I(fl). 
(i) n = 0 : 7 = e S ,  i * _ + j .  

We may  assume k, I 4= - j .  

~-gSrlefr,ej,ek,el = (1 - -  ~ j -  1 Vjik ) (1 - -  tS -  1 Vjil ) -  1 = 1 

(ii) n - , n +  l : y = e 5 " f i ,  f i = e ~ - & l ( a ) < n ,  m4:+_j .  
Then  2a , , e - , ,~ .~ .~ ; ,  = 1, and  so 

~ y  - L g j , ~ ,  q 

= ( 1  -- t~ -~vj ,m,~'x~ , ,~- t ,~ ,v ,v~  ) ' (1  --  t~ - ~ v j , , . , , ' ; ~ e ~ , e  ~,,~,~,,~;t)-I = 1. [] 

4 . 2 .  L e m m a .  j ,  k,  1E { +  1, . . . ,  + 9 } ,  @ {j, k, I} = 3, st~(y) = ej. Then  )~,,~,,~,q = 1 in 

ac, e �9 

P r o o f .  L e m m a  1.8. implies 2~,~j,~,~, = 2~, ,~_, ~j,,~.,, with m = k or  m = 1 (s. p roof  of Lem- 

m a  3.3.), and  L e m m a  4.1. implies 2~,~ ~_,,~j,~,~, = 1. [ ]  

4.3. L e m m a .  i, j a { •  1 . . . . .  +-9}, i 4= j ,  sty(71) = el or ste(Tz ) = gj, ste(71 ) :4 = gj and 
s t , (72)  4 = ei. Then  2~,~,y=,~a = 1. 

P r o o f .  
(i) st,(71) = % st~(y2) =t = el, e;, st~(y2) = G- 

Then  

(ii) 

= 1 - ( 1  -2.~,~,,,~,~)2~,~k,~,.~ = 1 - ( 1  - 1). 1 -~ = 1 

st~(71) = e i, s t , ( 72  ) = gj. Choose  k + i,j. Then  

in A~,~. [ ]  

4 . 4 .  P r o p o s i t i o n .  71 . . . . .  74 ~ Fg,  st~(Ti)  = ek,, # { k i l l  = 1 . . . . .  4 }  > 3. 

= 2~ ~ in A c ~, where  we define 
k i ' ' ' ' '  k 4 

i i f  k 1 = k 3 or k 2 = k 4 

2 % ,  . . . . .  ~ : =  / f  k l = k  2 or k 3 = k  4 

i f  k x = k 4 or k 2 = k 3 . 

Then  2~  ..... ~4 

P r o o f .  w.l.o.g. ~ {kill  > 2} = 3. 
(i) ~3 = eke, ~4 = ek4 : 

)~7~,~2,~k a,~k 4 )~ ~ ~ ~ ' ~ ~ " = ~,, k2, k3, ~4 z ~ 2 , % . % , %  = z %  ..... % � 9  � 9  in A* and  

the propos i t ion  follows f rom L e m m a  4.3. 
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(ii) 

(iii) 

2>. ~ , ~ > ~  = (1 ~ ~ ' 2  -~ "2 -1 - 

4 . 3  

==~ ~71 " '  74 = " ~ a k  1 ek 4 " 

( i i )  A'TI . . . . .  Y4 A e k  1 . . . . .  e~ 4 
[] 

4.5. C o r o l l a r y ,  .4r is of finite type over ~, in fact: 
A~.~ is generated by all 2~ ~') with v e {e+_~ . . . . .  e+.~} ~ n V. 

P r o o f .  v = ( h  . . . . .  v4)~ K There  exists : t~  k~ s.th. # {st(/~vl:~-~)[i  > 2} = 3. h : =  ~v~, u-~, 
i = 1 . . . . .  4, st~ (#v~ # -~)  = ~ .  Then  2~ ('~ = 2 ~ )  = 2~ '~ . [ ]  

}'1 , " "  ' ' r 4  k~ " " , ~ k  4 

4.6. L e m m a .  Let  B be a noetherian ring, A ~ B a ringhomomorphism s.~h. )'or each 
minimal prime ideal p of  B the homomorphism A ~ B/p  is of  finite type. Then B is of finite 
type over A. 

P r o o f. Let p 1 . . . .  , p,  be the minimal  pr ime ideals of B, let x} i) he liftings of the  genera tors  of B/p 
(0 over  A, and let t j be generators  of p~, s~, . . . ,  s, generators  of ~ as B-modules.  Then  the  subr ing 

C of B, generated over  A by all xy ~, t(J ), sj is of finite type over  A. 

C l a i m .  B = C. 

P r o o f .  f ~ B ~  3f~ ~C,2~!)~B s . t h . f  = f l  + ~.,,~j ,j because C ~ /p~ is surjective. 
_ ~ l n  + x-2r Con t inu ing  this we get To each 2} I) exist "~jk~'2) e B and ~}~) e C s.th. 2} 1) - i & jk ~k �9 

f = g +  h ,g~C ,h~  ~ p i = x ~ .  
i = l  

By the same procedure  we get 

h = h} + h~', h I ~ C, h'[ ~ ~(0~) t 

for any 1. Since B is noether ian,  ~ ~ = (0) for some 1, hence h ~ C and  finally f ~ C. 

4.7. T h e o r e m ,  e ~ C ~ A~ is a finitely generated ;Gatgebra. 

P r o o f .  X c is noe ther ian  by 3.5,, and  to each mimimat  pr ime p of X~ there exists a base e s.th. 
A~/v ~ Xr ~ c~ A~.~ by 3_6. A~,~ is finite type over  ~g (Cor. 4.5.), so Xr is of finite type over~ for each 
min imal  prime. Then  A~ is a finitely generated ~Galgebra by L e m m a  4.6. [ ]  

5. The spaces Tg and To" 

5.1. L e m m a .  Let  c ~ C and ~ be a basis oj" F~, r~ the kernel ( f  the map Ai -~ Zc,~. Then 
p /p2  is a finitely generated At-module. 
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P r o o f .  p/p2 iS generated by all vl~ ~ (finitely many) and all t z. Let ~ = c~ ./~ reduced in the basis 
e, and assume st~(/~ -~) + st~(~), i.e. y cyclic reduced. Take 3 ~ F~. s.th. st~ (3) + (st~ e-~), st~(fl) and 
st,(6 -1) 4= st~(fl- ~). 

Then 

= ~ , ~ . ~ . a - t . ~  t , ~ . B - x , ~ . p , B - x . m - ~  " ) ~ . ~  x ,B- t .3 , c t .~ , f l -~ .  ~ i 

= U V ~ p  2 

because 

and 

sL(c~ - ~ ' / ~ - ~  �9 ~ - ~ )  = s t A ~ ' / ~ )  ~ u ~ p 

s t ~ ( f 1 - 1  . ~)  = s t . ( f l  - i  . ~ - i )  :=~ /) e p .  

Hence p/p2 is generated by all ~,4~)~jk and all t~ with l(?) =< 1. 

5.2. Proposit ion.  A~/T~ �9 ~ is noetherian. 

P r o o f .  

R:=A~/T~ 2, T : = k e r ( R ~ A ~ ) , T  2 = 0 .  

(i) Let p~,. . . ,  p, be liftings of the minimal primes of A~ to R(A~ noetherian), I~:= ker(R ~ Ar 
IJl~ is a finitely generated A~-module, hence noetherian, so we know that R/I a, is noetherian. 
But to each p~ there exists a basis ~ s.th. I~ c p~, hence R/p~ noetherian. 

(ii) Choose finitely generated ideals ai in R s.th. Pi = al + T (note that pJT is finitely generated). 
Then p2 = a~ + a~ T, and p~/p~ T = a~/a~ r is finitely generated, hence noetherian. But then 
R/p~ noetherian implies R/p i T noetherian. 

(iii) Choose finitely generated ideals T/in R s. th. T = T~ + c~i T. Then there exists a finitely generated 
ideal T in R s.th. T = 7" + ( [ I  a~) T. Obviously 17][ cq ~ ~ hence T = T + T .  ~ .  Now 

i 
T/T" ~ is noetherian, because it is finitely generated over R/x/T,  a noetherian ring. From 
this fact we conclude that A S T  ~ �9 ~ = R / r .  , ~  is noetherian. 

5 . 3 .  T h e o r e m .  

(i) The rings A~, A~,d are noetherian and adic. 
(ii) The morphisms SpfA~,d -~ S p f @  are of  finite type. 

(iii) The morphisms SpfA~, d -~ SpfA~ are open immersions. 

P r o o f .  
(c0 To each pair c, d e C with -'tc, e 4= 0 we can find e e C s.th. Ac.d = Ae- 

(13) S~ : = ~T~. Then Ac/S c is noetherian and Sc/S~ 2 is finitely generated (5.2). Then by [3], 0.7.2.5 and 
0.7.2.7 Ac is noetherian and adic. J 

(7) The morphism SpfAc, d ~ Spf.4c is adic, SpecAc, d -~ SpecA c is of finite type, hence by [3], 
10.13.1 the morphism is of finite type. 

(6) The underlying topological spaces of Spf Ac and Spec Z c are the same for all c e C. The maps 
A~ --, A~. d are localizations, and they are of finite type. Hence the maps Y~.d --' Y~ are open 
immersions, and top (Spf A~.a)is an open subset of top (Spf/~.  Let Z be the multiplicative system 
in A~ generated by all 2~ ~ with d (v) 4= c (v). Then obviously Ac, d = d e {Z - l} (strictly convergent 
power series, terminology of EGA), and the stalks of the structure sheaves of Spf A~ {Z - 1 } and 
Spf.4~ are the same. So SpfA~,~ -~ SpfA~ gives an isomorphism of SpfA~, d with an open formal 
subscheme of SpfA c [] 
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5.4. D e f i n i t i o n .  

(i) The formal  scheme ~'o ob ta ined  by glueing all the SpfA~ on  the "overlaps'! Spf.4~, d 
is called the (formal) Teichmiil ler space for degenerat ing curves. 

(ii) The scheme T o ob ta ined  by glueing all the Y~'s over the Y~,d's is called the Teich- 
mfiller space for total ly degenerate  curves. 

(iii) ~o : = Aut  Fo / Inn  F 0 = :  Ou t  F o is called Teichmfiller m o d u l a r  group.  

5.5. R e m a r k .  To, red = To, red" 

5.6. Proposition. ~ is separated, locally noetherian and a formal S p f ~ t ,  lo/~ F ~ -  
scheme locally o f  f inite type. 

P r o o f. We only have to proof separatedness: 
The morphism ~ -~ Spf2~ [t~ 1~ ~/~0] is inductive limit of the sequence 

(L, (gL/J'+ ~) ~ Spf (~ Wt, t7 ~ Fo~/J "+ ~), 

where J denotes the ideal ( ,  sheaf) generated by all t~. By [3], 10.15.2 we have to show that ~ is 
separarated over ~g. Using [3], 5.3.6 it is enough to know that AC. d is generated by A~ and '4d V e, d e C, 
But this is obvious. 

5.7. R e m a r k. The group ~o acts on To by ,,~(~(c~-,>(~(,,)~ ~ 2 ~  for e e ~g. This  act ion 
induces i somorphisms  of the trees cor responding  to x and  c~ (x), x e Tg. 

We wan t  now to establish the connec t ion  to modul i  theory:  
Let A be a complete  noe the r ian  local r ing with max ima l  ideal m and  quo t ien t  field K. 

Let C ~ Spec A be a stable curve s.th. Cs : = C x Spec A m is total ly degenera ted  and  
C~ : = C x Spec K nons ingular .  

The comple t ion  C of C can be uniformized by  a flat Schot tky group  F c P G L  (2, K I, 
see [10]. Fix  a basis of F, or  equivalent ly an i somorph i sm ~: F o -~ F, and  l e t / ~  be the 
cross-rat io of z (va), . . . ,  z (v4) for v ~ V. Then  F flat means  2"~ E A or 2";- ~ ~ A v v e V. Note  
that  F is un ique  up to con juga t ion  in P G L  [2, K ), thus the  collection of ~'~ is un ique  up 
to outer  au tomorph i sms  of Fg. 

5.8. Lemma.  In the situation above, there exists a basis ~1, . --, % of  F o s.th. ~,, ~ A \ m  for  
all v e V with # {st~(v2) . . . . .  st~(v4)} - 3 and st~(vl) = st~(v2). 

P r o o f. C x Spec K nonsinguiar implies that there exists a complete noetherian valuation ring (9 
and a continuous homomorphism A =, (9 s.th. C x Spec (9 is generically nonsingular. But if the image 
of ~'~ is in (9 - m o, then ~ is in A - m. Thus we may assume that A is a valuation ring. But then 
K is a complete ultrametric valued field and we can use results of rigid analysis: F has a Schottky 
basis w~ . . . . .  wg, and this means that there are 2g disjoint disks C+~ . . . . .  C+# in IP~ s.th. the 
attracting fixed point of y is in C + ~ if st~ (7) = _ w~, see [6]. Let e~ : = z ~ (w~), then its easy to see that 
1~[ - 1 if v satisfies the conditions of the Lemma. [] 

5.9. Proposition. Let  A be a complete noetherian local ring with maximal ideal 
m, k : = A/m,  K : = Q u o t  A. Let  C be a stable curve over Spec A with C~ : -  C x Speck  
totally degenerated and C , :=-C •  nonsingular. Let  e l " " e g  be a basis of  ~he 
uniformizing Schottky-group F and )~ the corresponding cross-ratios. Then: There exists a 
unique morphism q9: SpfA -~ Tg s.th. ~ - qo* 24. 
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P r o o f .  
I. Existence: By Lemma 5.8. we can choose c: V--* {+ t} s.th. c~C,  and ~.~(~)~AVve V. Let 

T~ : ~ [2,, 2;- ~ I v s V] ~ K be the homomorphism sending 2~ to 2~. Since ~.~ are cross-ratios of points 
in IP~ and ~r., = ~ V 7 ~ Inn F o, we have 7~ (I *) -- 0, and ~ induces 0~: A* --+ K. 

Because ~;~*) e A V v ~ V, ~/2 induces T3 : A~ -~ A. 
g/~(t,) = ~,~,_ ~.,.~-~ =: t'r, the multiplier of z (y) and ~'~ e m (all ~(7), 7 * id, are hyperbolic), thus 

T~ c ~o- t (m) because T~ is generated by all tr. Hence ~u 3 is continuous and induces ~P3 : ~ --, A, 
which in turn gives q): SpfA ~ ~ because c ~ C~ c C. Obviously q)* 2, = 7~. 

II. Uniqeness. Let ~o~, Oz be two such morphisms. Then (p~ be induced by t/, :/]~ ~ A, (Pz by 
7tz : -4e ~ A. But then .~(~), .~(~) e A, and there exists t/' 3 : _A~,a ~ A s.th. (p~, ~o2 factor over ~3. But 
this means q~ = ~o~. []  

N o w  let cg~W~/'N? be the ca tegory  of comple t e  noe the r i an  local  rings, let 
5 P : c g ~ J V N  ~ sets be the functor  

( C s table  curve over  A, C~ to ta l ly  d e g e n e r a t e d , ) ,  
5g (A): = C, (e~ . . . . .  %)) : (el,  . . . ,  %) basis  of the fundamen ta l  g r o u p  of C ~ / I n n  Fg. 

Let  ~o  and  ~goo be the open  subschemes  of  To with  

top  (7"o ~ = {x ~ top(T0):  2~ + 0 in (9~.~ Vv} 

^ 0  top  (~oo) = {x ~ top  (T o ): (gt,,~ regular} 

hLo0, h~?, h L the po in t  functors.  

5.10 Theorem.  There exists a morphism of  functors ~b: Y ~ h~ with 
(i) ~ ( A )  injective. 

(ii) hLoo (A) ~ I m  �9 (A) ~ h~o (A). 
V A in c g ~ y ~ .  

P r o o f .  
(i) Let A be as in 5.9, (C, (~1,-.-, %)) e 5P(A). Let W ~ / / d  be the universal deformation of C s (see 

[2]). There exists a unique morphism ~:  SpfA ~ dg s.th. C = X x ~  SpfA and C s ~, W s. 
Then o~, is nonsingular, and (el . . . .  , eQ determines a basis of the uniformizing group. By 5.9 
we find a unique morphism ~o : ~ '  ~ T 0. 
Define ~(A)(C, (~1, ..-, %)):= q) ~ tp. Obviously this is well-defined and functorial, and the 
uniqueness of q~ and r gives injectivity. 

(ii) ( f :  SpfA ~ T0) E ImP(A)  factors through ~o: ~ '  ~ To with ~o'2., = ~ ~ 0 Vv as in 5.9. Thus 
f e h~o (A). ~ .  

(iii) f e h~oo(A) factors through ~o: Spf(97., x ~ 7"~ ~176 and ~o* 2, + 0 Vv. Then there exists a flat 

Schottky-group F ~ PGL(2, Quot ~f~._.x) with cross-ratios ~o* 2~ with respect to some basis 
(el, -.-, %). Applying Mumfords constrffction ([10]) to F we obtain a curve C" --, Spec (~r and 
by pullback C ~ Spec A. Then f = q5 (A) (C, (el . . . .  , %)). []  

5.11 R e m a r k.  O n e  can  cons t ruc t  ( replacing ~'o by/~g w {z} and  repea t ing  the whole  
cons t ruc t ion)  a fo rmal  scheme ~fg ~ To toge ther  wi th  an ac t ion  of F o on Ng. The  fibres 
of ~ 0  are open  fo rmal  subschemes  of "trees of pro jec t ive  l ines" (see [9]), and  F o acts 
pa r t i a l ly  by  t r ans l a t ion  of the c o m p o n e n t s  and  the s tabi l izer  g roups  of the c o m p o n e n t s  
act  as Scho t tky -g roups .  

13" 
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The closed fibre ~o is a tree of projective lines, and the intersection graph is the tree 
described in Section 2. 

~o/F9 -* To is a family of Mumford curves, and ~o -" To should make T0 into a fine 
moduli space. 

However  there are some technical difficulties in the construction, and I will carry it out 
in a subsequent paper. 

6. Rigid analytic  aspects. In this paragraph we construct a rigid anatytic space ~a,~ 
associated with T0 and show that the rigid ana~t ic  Teichmfiller space Jo  for nonsingular 
curves (see [4], [7], [11]) can be embedded into To~" as an open analytic subspace. In order 
to limit the length of this section (which is more like an appendix to the rest of the paper) 
we don' t  give proofs in full detail. For  a definition and properties of rigid analytic spaces 
we refer to [1]. Let (9 be a complete valuation ring, m its maximal ideal, k its quotient field 
(which is assumed to be algebraically closed) and k = (9/m its residue field, if  n is a 
nonzero element of m, then ~ (9 is an ideal of definition for the topology of (9 

6.1. D e f i n i t i o n .  
(i) R := Z ~t~ [7 e Fg~ with the (• t~ R)-adic topology 

(it) c , d ~ C ,  O4=rc, o~m:  

where { } denotes strictly convergent power series 

sJ  ~ .... ~ : -  im (~,~..Q ~ d~,~,d,o). 

For c = d and ~ = 0 we get s~,~, d~,~, ~ o .  

6.2. R e m a r k. The topologies on the (9-algebras in 6.1. are the ones induced by (9. 

6.3. Proposit ion.  
(i) Spfd~ ~ Spf(9 is of finite type. 

(it) sJ~,~,a. ~ is a k-affinoid algebra. 

P r o o f .  
(i) By [3], 10.13.1 we have to show that sul~/~d~ is a finitely generated (~/~t0-algebra. But since 

T~ is finitely generated (A~ is noetherian), there exists a surjective homomorphism 

%~| z.] o o .., ~ A,,~/uo4;., 

#i 
(the z, are mapped to I | ~-, #~ generators of ~/~2). But A, is finitely generated. 

(it) is a consequence of (i), see [12]. [] 

6.4. Proposition. The obvious homomorphism ~'~,~ ~ r  identifies Sp ~Y~,~,~,~ with 
the (open) affinoid subdomain 

U~.~,d,o:= {x a SpA~,~ I It~(x)l < Iol, v7 ~ Fg, ]2:(~)(x)[ > 1 Vc(v) 4 = dtv)} 

of Sp~<~ =: E ~  
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P r o o f. We have to show that t/represents all affinoid morphisms Sp (~b) : Sp C --, Sp age, = with 
image in U~, ~, a, o: 

Let q5 be such a morphism. Then ]l q)(t~)II =<101, I[ 4)(2~ (*)) II => 1 if c (v) =I= d (v). Then we find 

(ol :A~C~176176 {f  ~Cl [lfH < l}) 

s. th. commutes. 

C O ~/~ C O 

Then we find (uniquely determined) continuous extensions 

t~,:A,e-+C ~ and g ' 2 : ( 9 J ~ - ' o j T s F ~ a ~ C ~  

and they give a homomorphism 0:  sr --+ C with O o t /=  qS. Obviously O is uniquely determined 
by 4. 

6.5. D e f i n i t i o n. 7"~" : = rigid k-analytic space obta ined by glueing all Uc, ~ over 
gc,~,d,~, Vced ,  O-+- ~em. 

6.6. R e m a r k. Aut  F o acts on T0"" by 

~: d c ~ - "  d c  . . . .  

�9 ~ (v) 

for any c~ ~ Aut  Fg. Inn  Fg acts trivial, so there is an act ion of Ou t  F o on "Fg. 

Let now ~ be the rigid analytic Teichmiiller space for nonsingular  curves. Fo r  the 
following facts abou t  ~ see [11]. It is a fine modul i  space for 

{(71 . . . .  ,7g) [ 7~ e P G L  (2, k), (71 . . . .  ,70)  

= subgroup  o f P G L  (2,k) generated by 71 . . . . .  70 is a Schot tky  g roup  of rank g}/PGL(2,k). 
Let el . . . . .  eg be a basis of  Fg. Then  r ( e i ) (~ ) :=  71, where ~ = conjugat ion  class of 
(71 . . . . .  7g), 7~ has fixed points  0, oo and 721 has at t ract ing fixed point  1, defines an 
lnjectlve g r o u p - h o m o m o r p h l s m  z : F g  Aut~- (IP • ~'g) with linage F, the umversal  
Scho t tky-group  over ~ .  Over  each affinoid subdomain  Sp B c ~ ,  y e F is represented 
by M 7 e GL(2 ,  B). We can take 

M = ( x , - t , x , - ~  xvx,-~(t , - 1 ) ~  
I - t? t v x ~ - x ~ - ~  / 

where t~, x~ e B are the multiplier and  the at tract ing fixed points  of 7, i.e. 

II t~ [p < 1 ,  7 (z)  - x~ z - x~  
- -  t 7 V Z ~  3 1  . 

(z) - x~-~ z - x~-~ 
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For v ~ V define 

Xcq - -  X~2 - -  X~3 
~v : __ X~3. e 0 (JO), ~: = T (Vi). 

X % - -  X% X% - -  X% 

Then obviously the 8~ satisfy the cross-ratio relations, and for f l e F  0 we have 6/~z-~ = 6,. 
The group Aut F~ acts on .f~ by Aut Fg e ~: (7~ . . . .  , Y.o) --' (~ (70,-.~, ~,(~o)), and 
c~(8~,) = 8~(v). Bg:= { ( ? > . . ,  7g) l?~ . . . . .  ?g are a Schottky-basis for (y~, , : . ,  ?~)} is an 
admissible open subset of ~ ,  and 

~eAutF 9 

is an admissible covering. It is described by 

and, using the embedding 

(~; * . . . . .  ";.) - "  (~,v x~,, x r c  , ) 

by 

B o = { ( t , x , x _ , ) [ O  < lt~[ < 1, tr . . . .  x j  - x_~: xTZ/-77~_~l < l, xe + xj . 

Let 

Bo. ~ . . . .  : =  {~ e B,  tt~'l 5-It, t, irc~ =_< l&l w ,  e g~, {t,i < i~IV~ e f ~ ,  l~S"'t 5 ! Vv e v }  

g c e C , , 0 @ ~ e m ,  n 6 N ,  K : = { v e V l v ,  e{z [ '  . . . . .  e l '}}  

B o . . . . . .  is affinoid, and is an affinoid subdomain of k ~~ (B o . . . . . .  can be defined by 

finitely many inequalities, see e.g. [6]). The k-algebra homomorphism ~ ,~  -~ (C)(Bg,~,~,,) 

given by 2{, ('9 --, c~ (') defines a morphism of k-analytic spaces B 0 ...... --+ L~,=. Let 

V~ .. . .  :=  {x ~ U~,~ [ It~,(x)[ :> >1", 12~1 = l,~l ~ Vv e V, t4~-'~(x)l <= I':t}. 

6.7. Lemma. 
(i) 2,. is a uni t  in ~o(V~ . . . .  ) V v e  V 

Xv~ --~ Xv. ' - -  
(ii) 2 ~ = -  x"3" - x~3 Jbr  x~:=)o~ ~ ,~ ,  q~.  

Xv~ - -  Xv4 Xv 2 - -  Xv4 

P r o o f. Obvious. 

6.8. Lemma. 

[ x ,  - t~, x,~-,. 
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/f ~ = c~~ ~ e i 0 ,  ~ + ~71, n > 0 

2~r = 1 e G L  (2, (V~ . . . .  )). 

T h e n  ~r = u~,  M % . . .  M ~ i , / f  7 = e q . . .  ei , and u~ is a unit  in (9 (V~ . . . .  ). 

P r o o f. The matrices act on IP~ v . . . . .  ), so they act on sections Spec (9 (V~ . . . .  ) --+ P1. One easily 
finds ]kf, (x~) = x~v_~ VT, a 6 Fo. Thus 

~%(x~) = x .~ , = Go.,.~o~;2...~6 ~ 

= ,~2~ .. .  ~ , ~  (x~) V c~ ~ G 

especially for  x~ = O, x q ,  = o~, x q ,  = 1. 
So M~. 1 M q . . .  M~i,~ acts trivial on these sections, and this implies 6.8. []  

6.9. P ropos i t i on .  T h e  map  Jo : Bg . . . . . .  -* U~, ~ induces an i somorphism B o ....... ~ ,  V~ . . . .  . 

P r o o f. The morphism 
Vc . . . .  ~ k 3 g - 3  

(x) --* (t~,(x), x~(x), x ~  (x)) 

has it's image in Ba .. . . . . .  so it factors over Bo .. . . . .  . Let ~:  O (Ba .. . . . .  ) ~ (9 (V c . . . .  ) be the correspond- 
ing algebra homomorphism.  The morphism B s . . . . . .  - ,  U~,. has it's image in V~ . . . .  . Let 
r  (9(V~ . . . .  ) ~  (9(Bg .. . . . .  ) be the corresponding algebra-homomorphism.  Obviously ~b o ~, = id, 

L e t 4 ~ = 6 o ~ b .  I f [ ~  = ( a v  b : )  ' c~ d then q s ( ~ , )  = ~,~, and 

~ ( 2 ~ )  = ~ ( ~ ,  ) . . ,  ~ ( ~ o )  = ~ . . . ~ o  = u7 ~ ~ 
thus 

cI ) (a , )=uTl  a~, ~(bv) . . . . .  

a~ dv - b~ cv t v 
Define # ~ . -  ~ Then ~b (t~) = fl~. and �9 (t~) = tv because [[ t v ]1 < 1. Now one can 

(a~ + dr) 2 1 + t~ 
easily see that ~(2 , )  = 2~Vv e V, hence ~ = id because V~ . . . .  is a rational subdomain of Ur []  

T h e  a f f ino id  d o m a i n s  c~(Bg . . . . .  ) f o r m  an  a d m i s s i b l e  c o v e r i n g  o f  ~ .  U s i n g  the  a c t i o n  
A 

of  A u t  F o on  ~ a n d  T~" we o b t a i n  o p e n  i m m e r s i o n s  j~ = c~ ~  ~ c~- 1 : c~(B ~ . . . . . .  ) -~ T~ a"- 

O b v i o u s l y  j~ = jp o n ~ ( B  o . . . . .  ) r f l(B~ . . . . .  ), so we  can  g lue  all  t hese  m a p s  to  get  an  o p e n  
i m m e r s i o n  j :  ~ ~ Tg "n. 

C o n c l u d i n g  we  h a v e  

6.10. T h e o r e m .  There  ex is ts  a natural  open embedding  j :  9 -  a - ,  ~.~n wi th  image 

Ao, v } .  j ( ~ ) = { x c T ~  12v(x ) * 0 w e  

P r o o f .  x ~ ? o " " ~ x ~ S p d ~ ,  ~ for c~C~(~),Tc~m. 
Let w (1~ . . . .  , w ("~ be bases o f f  o s.th. Spec.~ c = [9 SpecA~,~,~ x defines a continuous homomor-  

phism ~b~ : A~ ~ (9, hence a k-valued point  2 of Sp .4~. Thus there exists an index I e {1 . . . . .  n} s.th. 
~)~') (2~) = OVi, j, k, i.e. ,e~ '~ wqk("(~')~ e raVi, j , k  or 

(w~) Ivi# (x)l < 1Vi, j, k.  

Let I~ot = max ({Ivl~')(x)l, i,j, k} ~ {1~1}, p ~ m. 
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Then for 

{st,,(,, (v~)li = 1 . . . . .  4} = 3, stw(,, (v3) = Stw,, (v4) 

we have 

12~(x) l ]<_max({I t~(x)[ ,v~Fo}va{Iv l~ ' l (x ) f , i , j , k} )<lo~l  

thus [2v(x)] = I and we assume c e  d~,,. 
^ "  ' 0Vv} are A u t F  a invariant. Next we may assume w (~ - e because j (Y0) and {x e T~ 12, tx) 4: 

If now 2~ (x) 4= 0 V v e V we can find n e N s. th. x e V~ 0, thus x s j (~ ) .  On the other hand clearly 
xe j ( J -o )  implies 2v(x ) =I= 0 W E  V. 
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