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The formal Teichmiiller space for stable Mumford curves

By

MEINOLF PIWEK

The purpose of this paper is to construct the formal Teichmiiller space f‘g 7; is a formal
scheme which is a moduli space for uniformized stable Mumford curves.

A (non-singular) Mumford curve over a complete local ring @ is a stable curve C over
@ (in the sense of [2]) with non-singular generic and totally degenerated special fibre.
Mumford showed in [10] that such curves can be uniformized by an action of the
free non-commutative group F, on IP'. This can easily be generalized to any stable curves
C with totally degenerated spec1a} fibre (stable Mumford curves) by embedding C into
a nonsingular deformation. Instead of the action of F, on P! one gets an action of
F, on a tree of projective lines, a so-called F,-tree (see 191). The formal Teichmiiller
space thus can be thought of as a formal neighbourhood of the subspace correspond-
ing to totally degenerated curves in the moduli space BF ’ of F-trees as constructed
in [9].

Unfortunately, Bg is only a pro-scheme, not a scheme, so we have to work in a different
way:

F-trees are classified by the set of all cross-ratios of the attracting fixed points of any
four elements of F {primitive elements of F,}, thus BF ¢ is naturally embedded in
PV ={0...,v)lv, +:v;¥i£jy eF .}. By covering ]PV by copies of A} we get a
coverlng of BF by afﬁne schemes U, = SpecA,, ce C = {maps V - {+1}}. Let

= SpecA be ‘the subspaces of U, corresponding to totally degenerated curves, and
Y Spf A the completion of U, along Y,.

We then have to glue the formal schemes Y, over “their intersections” ?\M = {U,n U,
completed along ¥, n %,).

The key point in this paper is to show that this is possible, i e. that the maps SA’” - Y.
are open immersions. This is done as follows:

After introducing the basic objects and notions in Section 1 we show in Section 2 —
Section 4 that A, is a finitely generated Z-Algebra (Theorem 4.7): In Section 2 a tree
T is constructed corresponding to a point of Y, and it is shown that F, acts on T and
T/F, is finite. In Section 3 it is shown that A, is essentially of finite type over Z, and
this fact combined with the results of Section 2 is used to get a finite covering of each ¥,
by schemes Y, ,, for which it is possible to show that they are of finite type over
Z (Section 4).
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In Section 5 it is shown that §./S? is finitely generated, where S, is the ideal sheaf of
Y, in U,. This (together with the results of Section 2—Section 4) yields the existence of the
formal Teichmiiller space 7, (Theorem 5.3). T, then is a moduli space for

{stable Mumford curves + basis of the fundamental group}/Inn F,

(Theorem 5.10}.

Finally in Section 6 the formal Teichmiiller space is related to the rigid analytic Teich-
miller space 7, (see [4], [7], [11]) through the fact that 7, is an open subspace of the rigid
analytic space YA;“" associated with Tg

1. Basic concepts. Denote by F, the free non-commutative group of rank g, let
F be the subset of primitive elements (.e. F ={yeF,|y+46"VéeF,, n=2}) and
={v=(vy, vy, vs, V) |v;e Fp v, $v;Vi=+j}
Note that Aut F, acts on F, and hence on V. Let F, act as inner automorphisms. Let
&= {g;,...,¢,} be a base of ;. Then each y € F, has a unique representation as a reduced
word in &4y, ..., £4,, where we define ¢_;:= &',

1.1. Definition. Let yeF,.

1(y):= 1,{y):= length of y:= number of letters in the reduced word associated with y.
st(y):= st (y):= first letter in the reduced word associated with y. If y =afeF,
st(B) + st(x™?), we write y = o - .

For later use we proof some Lemma’s on F:

1.2. Lemma. yeﬁ,y =0 f-o /)’cyclzc reduced (i.e. st(B) = st(f 1), u € F,. Then
st(pyu™ D Fst(W=F=Py fop ' =0-p" fnz00ora=p""t o

Proof.
() a=id,ie.y = p. Then we can find §, (possibly =id), §,,ne F,s.th. f=f, - B,, p=#n- 7,
st(n"i):l?st(ﬁz) if B, + id.
(@ B,+id. Then pfu~'=nB "B Bn " =npin " =n-Fy- By n ' -st(upp ) Fst(w

=9 =id.
(b) f, =id. Then ,u[f,u L =y By, so by induction on 1(4) and using (a) we find st(pfp™ ")
*st(y) = =p"-Bi. = ﬂ1 Bs.

(i) o+ id. Let A —-/ux Then pyu "t = 14" L
(2) st(4) = st{u). Then st(uyp ") Fst(p) = st =y d " =p"-py=p " =a- " p;.
(b) st(DF+st{w:Theno=pu"-a’. [

13. Lemma. Let o, ff,7€ F be pairwise distinct. Then there exists a unique y € F, s.th.
# {stuop™"), st(uppt), st(uyu™ ")} = 3.

Proof. Uniqueness follows directly from Lemma 1.2. We proof the existence of y by induction
on 1(x B, p)r=1(e) + 1(B) + 1(p):

For 1(a, f, ) = 3 there is nothing to prove. Let now 1(x, f, y) = n, and suppose the lemma is true
forall 1 < n.

Conjugation with the greatest common starting sequence of «, f, 7y leads (without increasing
length) to w.Lo.g. st{e) = st(f) =+ st(y) or all three different.

If « and f are not cyclic reduced, a suitable conjugation decreases length. So let § be cyclic
reduced.
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Leta =75 o -5 1, o cyclic reduced.
(i} B =n-p. Then conjugation by # leads to x and § cyclic reduced.
@ a=C-o, =08 +id, 4 {st(), st(B), st(C } =3.Then p={ %
(b) f=a*- Pau={ o, {st@),st(f),st(("H} =3 Then p="tu"*
() n=pB o, B=p"B" 4{st@) st(p"), St(ﬁ’ ")} = 3. Then = ([)’"ﬁ) -

1.4. Lemma. oc,[fng, a =+ f. Then there exist only finitely many peF, s.th.
st(p™top) F st{p™h), st(u™ Bu) st

Proof. Since there can be only finitely many wswith o = g o' -y Lor f=u- - 4™, suppose
we had infinitely many g =o' - {"+ {, =B’ g7 -, witha =o' - {, - {2’ LB =F 9,4, 4
Then there would also exist infinitely many such w’s with.{,, 7, fixed. Let u, be one of them, and
define for each pvi=ugtp={ 1 =gt g™ gy, o1 (R =7t gt g, with k> 0.

Let x = {1 {0y =00, y = trpny )™, ri=Ul.
Then x* =y, x, y cyclic reduced and primitive. A simple calculation shows that this implies x = y,

sol,-{; = (ﬂz"h)il-

@B =y '11)_1- Then v ="{(n, )" "™ =g, 7)™ =, L) " =>ntm=n,+mg,
so the number of such v’s is finite.

i -li=mny- ’?1—""/1—oc Lp-wr=p"n - w'-wlogk=n-mz0.
Then f=f'y, 1,8 '*,B"hw(ﬁﬂ) 1“—°(C1W w' wh P =a (i wE T e T = [0

Next we want to introduce some rings and their spectra, which are the building blocks
for the spaces we want to construct:

1.5. Definition.
(i) A*:=Z[A, i, |ve V)., where I * is the ideal generated by ]
(a) the kernel of the map Z[A,, 4, '|ve V] —» Z[x,, (x, — x5) 'y, 0 € F,, y * 6]
which sends 4, to the cross-ratio (x, —x, ) (x, —x,) ' (x, ~x, )" ( v, = %)
(this kernel we want to call the “cross-ratio relations”) and
(b) all 4,., — 4,, ve V, y e F, (the “F -invariance relations”).
(i) Letc,d:V - {41} be any maps. Then A, := subring of 4* generated by all A5,
A, q4:= subring of A* geperated by all 25, 140, '
(i) Ve, d:V - {+ 1} let T, T, , be the ideal in A4, A4, ,, generated by all A,, v=
oy Ly ) (= Al c() = —1). Let A, = Ayr,, Ao o= Ao gz, -
(iv) Denote by Ac, Ac o the completion of 4, A4, ; w.t.t. the T-adic topology.
(v) Y.:= Spec 4, ch = SpecAcd
U,:=Spec A, U, ;:=Spec 4, 4
:=Spf 4, Y,,,, =Spfd,, d

~

Y:

c*

1.6. Remark. The typical cross-ratio relations are

H -1
q A =1
) Vs Vg Vya Vg Vi ViaVsa Vg
() 4 =14
) VirVysVas ¥y vl,v3,v2,v41
i) 4 =/ . .
ViV V3.V, Vi Vss V3.V VysVsaV3,Vy

1.7. Definition. t,:= 4
is called the multiplier of 7.

- * (8)
Uy ap-— )La,ﬂ,y,v"e’q ;J;c =U
- ® 6.
vv,a:,ﬁ"”“}“yay‘lsﬁ.v,v*‘eA V="

yay-1.a,5.9-1 € A* (which does obviously not depend on )

i Sf’sk} for any base ¢.

€585, 8k
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1.8. Lemma. In A* we have
(1) (1 - ta) }“aézx”l,[i,v,d = la,ﬁ,y,é - taz : j’a‘l,ﬁ,y,é
() Calapors = Aa-1.p.9.0) " Aaya1.p.56 = Aaprrota-t.py,6(1 = 1)
or
(1), (1 - tm)/:a&a",/},y,& = (1 - ta )”afl,a,y,é) : )'a,ﬂ,y,a
1Y (1=t u-14.6) Paya-t.p96 =1L = 1) Aup s

Proof.
. ~1 i o] —
(l)/ (1 —ta‘lm‘l.z,yﬁ))‘a.ﬁ.y,& = (1 w’lrxr?a‘l.é,a,z"l ’ }“y,é,a,a‘l) ’ ’}'a,ﬁ,y,é - (1 _}‘uéa",y.a,u") /“a,ﬁyv,(?_
-1
j’u&a"‘z,y,a‘i ’ /]”uéa‘l,a,y.é . ;“ouia",ﬁ,y.é = Améa“’,d,é,m’l ) )”:zéa“,[i,y,ﬁ = (1 - ta)/laéu“,ﬁ,y,é'

(iiy is proved in the same way, and (i), (ii) are easy consequences of (i), (ii). []

2. The tree associated to a point of Y.
2.1. Definition. Let e = {e;,...,&,} be a basis of F,.
Co={c:V = {+1}{clvy, vy, v, va) = c (v, vy, vy, v3) Vv e ¥ with st(v))
= st(v,), ¥ {st(vy), st(v3), st(vs)} = 3}
C,={ceC,|A, *0}
¢:= |J C,

£ basis
of Fy

In this paragraph we fix e, c € C"8 and a k-valued point of 4, (k any field). By 1, we always
mean the value of 4, in this point (1, € P, (k)), if nothing is explicitly specified.

2.2. Lemma. Let M be any subset of Fg, SM):= {(ay, o, 3) € M| o + o, Vi = j.
Then R:= {((0ty, 2, %3), (B1, 25 B3)) € S(M) X S(M)| A, s, g5, F 1 Whenever

# {a, o;, B, B} = 4} is an equivalence relation on S (M).

Proof.
(i) Reflexivity: obvious
(ii) Symmetry: obvious

(ifi)  Transivity: Take (), (B), () € S(M), (), (B)) € R, ((B), (7)) € R and suppose (), (7)) ¢ R.
Then w.lo.g. A =1, hence 4

E Yy s Yy TR PRY9% 7Y =0.

* 7 = . . _
In A* we have ARy 0507 ‘)“al,v,,rxz.vz lﬂi!“x-“l’yz’ hence Vi )‘ﬂpvl,zzsvz =0v ‘)'ﬂ,-,ﬂpvzvzz
=w.lo.g }“ﬁx.vl.nlsvz = iﬂzyn,zz,vz =

:>iﬁ1~12~3’1-72 = lﬂz'azel’lﬁ’z =1= Aﬂpﬂz»?ph =1= ((B)’ ()’))¢R D

2.3. Remark. (¢, 7,6), (B,7,0))e R, 4, ;€ k*.
2.4. Definition.
(i) Ty(M):= S(M)/R, the equivalence classes are denoted by [«,, a,, %,].
(i) T,(M)={P,Q)eT,(M)xTy(M)|3a, B,v,6c M s.th. P =[x, 7, 6],
Q=180 Ayp,5=0YeeM: A ,s+0v i, ;+0}
(i) T, (M)— T,(M), Z(P,Q):=P
(T (M) - To (M), (P, Q):=(Q, P)
(iv) Wedenote by T(M):=(T,(M), T, (M), /,”) the graph given by the data in (i), (ii),
(ii1), Ty (M) being the vertices, T, (M) the edges.

={.
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2.5. Remark. Factson T:= T{Fg) by

y Loy, o a) = [yay ™y y T yasy T Ly (P Q) =y Pyt Q)
Denote the quotient T/F, by G.

Proof. Factson T, (Fg) as an easy consequence of the F -invariance relations: F, acts on § (F oh
and equivalence is preserved since

2

yayy T Loyeyy T yBry i yByy

ey

@525, By B1

From the definition of the action of F, on T; it is clear that &/ and — are F-equivariant.

2.6. Lemma. Given P, Q e Ty(M), P +.Q, there exist o, ,y,0 € M s.th.
P - [CC, '}}a 5]9 Q = {5’ y’ 5]: j‘a,ﬁ_y,é = 0'

. Proof. P={u;, %, 03], @ =[f1, 85 Bal, wlo.g Ay o, 5,5, =1 Aoy g, im0, F 905 25,0, 8,8
ko0,
@ A, pa0, =0 Then P = oy, o, B,] since 1 = Aagoay 8,0y = A”‘.B!'aMM(

(i) Auyp,,a,,4, ¥ 0 Then P=[B;, oy, ] since 4, ; . .o€k* The same holds for Q, so take
70,0 =y

2.7. Definition. y,0e M, y & 0.
(7. 8):={[o, y, 8] € Ty (M} & 7, % d} together with the ordering [, v, 8] <{#,7, 8]
< Ay g6 = 0 is called the axis from y to .

2.8. Proposition. T (M) is connected.

Proof. P,Q e T,(M), P+ (. Choose an axis 1 = (3, §) with P, Qe 1, P < Q.

Claim. W:={Re(y,8)|P < R < Q}is finite.

Proof. P=[a,7,358],0 =147 6] GzMV—O

We may assume M = F since T, {M}c T (F) and W= W(F)f\ To(M}. For any uye F, the
map f: TO(F)f»T(F)mducesabljectlonWN,uW—’Re(u}» b Dl P<R<u g}

hence we may assume # {st(pB), st(y), st(6)} =3 by Lemma 1.3. Suppose # W =.0. Then
W= {lo,,7,01li€ Z} With Ly 4, 1.5 = %00, 1.8 = %a,.5.y,6 = 0 Vi< j. Each o; uniquely determines
4 € F, by Lemma 1.3 s.th. 4 {st(u;0; u, . st(u,m Dyst(pdp D} =3

Notethatth B, =O0IMPHES Ay Lot gt o et ot = Ay a5 = 0, hence st{p) = st (6 1)

for p; # id because st{y;d; Y & st{g,) would imply st(pyp %) = st(,ul) = st{p; f ;") in contra-
diction to ceC But then st(g; vz ") % st(u,) by the definition of y. 4, , , ;= 0= 1, by =0

=st(pop % sty oY) = st(y,) because ¢ € C,. But by Lemma 1.4. there can only exist ﬁnitely
many such s, so we have a g s.th. ;= p for mfxmteiy many 0. Fr={ieZly = pe} Forijinli,
i<jwehave 0 =1y o 5= 2yoo-t uou-t uru- ' uou-ts 50 €€ C = st{pe;u ") = st{po ")

So #1 < 4 {st{uo, p Hiiel} < co.

Since W is finite, we can write W= {R,,... R}, P=Re< R, <...<R,<R,,,:= (0. But
then the definition of T; (M) yields (R, R;, )€ T, (M), so we have found a path joining P with
g O

2.9. Remark. Theproof of 2.8. also shows that if P, Q € (y, 6} then there exists a path
in (y, 8) joining P and Q.

For a finite M < F we have an alternative way to associate a graph with a k-valued
point of ¥,:
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Let B,, be the moduli-scheme of stable M-pointed trees of projective lines (s. [5]).
Projective coordinates on B, are given by the 4,, v, € M, relations between them are the
cross-ratio relations. Hence any k-valued point of ¥, uniquely determines a k-valued point
of By, 1.¢. a stable M-pointed tree of projective lines. Let T (M) be its intersection graph,
which is a tree.

2.10. Proposition. T(M) = T'(M) for each finite M < F,.

Proof. Any clement of Ty(M) is the “median” [, §,y]" of three marked points. A simple
calculation shows [, §, 7] = [0, B, T <[, B, y] = [, f", ¥'], so Ty (M) = Ty (M). We have T, (M)
= {{P, Q)e Ty (M)x Tg(M)| Lp n Ly % @} where L,, L, are the components of the tree of proj.
lines corresponding to P, . (P, Q) e T/{M) = P = [0, y, 8], Q@ = [B. y, 61" (the tree is stable, so any
end component has 2 marked pointonit), 4, 5 ., = 0{P + Q). foranyee M wehave 4, ;+ Oor
Ze.5.7,6 F 0 (because otherwise [¢, y, §] would correspond to a component “between” Lp and L, and
then Ly Ly = §) = (P, Q) € T, (M),

P, Qe T,(M)=P ={u,7,6].Q =[B,7,0], 4,50 foranye 4, ., s 00tk ,, ;+0:P,Q
are on the path between the component with the marked point “y” and the component with the
marked point “6”, and there is no component between them == (P, Q) e T} (M) because T'(M) is a
tree.

Obviously .o and — are the same maps in both graphs. [

2.11. Corollary. M < F, finite = T(M) tree.

2.12. Proposition. T(M) is a tree for all subsets M of Fg.

Proof. We have to show T(M) is simply connected.

Suppose w=(P;,..., P,) simply closed path in T(M) (ie (P,P,)eT (M), P,=P,P;
+PVi<ji®0 or j+un), P,=[a,p,y] Choose Nc M,N finite, «,f;,y,e NVi. Then
Poe Ty(N) (P, P )e T, (N), Py = P, P& PVi<j,i4 Qorj#nie wisasimply closed path in
T{N), which contradicts 2.11. [

2.13. Proposition. The action of F,on T is free and G = T/F, is a finite graph.

Proof.

{i) Since F, is a free group, the action on T is free if it is fixed point free. Suppose there exist y € F,,
PeTysthy+id,y  P=P,y=o"for some ae ¥, n> 0. Let Q:= 7,(P):= uniquely deter-
mined1 vertex in («, &~ ') with (path from P to @) n (o, @'} = @ (called the projection of P onto
{o, 27 1))

We have =z {y-P)=7 n,(P) because y-{x, 0 ) ={x,a "), (path joining v-R with
y-R)=7v-(path joining R with R’), so 7-Q0=0. Let Q=B xa '], then v -Q
=y Lyay Ly ly T = [ B, @ 07 1] with

lz"ﬁa‘",ﬂ,a.z’l = Am”ﬁa”",a”‘“‘ﬂz‘“",z,a“ . /“a""ﬁz‘"*‘,a"‘zﬁaz'",a,zz" """ j'nzﬁac”“.[i,oz,z‘l
—— s f e P -
=1, t,=1,= 0

which contradicts y - @ = Q. So F, acts freely on T.

(i) LetF,-[o),p,7]€Gy. By Lemma 1.3. wefind o, 8,y & F, with 4 {st(a}, st(B), st{y}} = 3, and
Fg ) {G‘,a B: 'yr} = Fg ) [0(: ﬁa '37} St{(x} =& = !_’DC, 387 })] = {gia 183_"}’}; St(ﬁ} =&; = [81‘7 57 ﬂ = {8:‘3 €5 }’L
st(y} =g =g, 8591 = 8,8, 8] (use 23. and ceC,) This shows that the map
{lenepalliFj+ k ik k} = Gy, [e 5, 8] — F, " [6, &5, ,] is surjective, hence G, finite.
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T is the universal covering of G, F, the group of cover transformations = ¥, is the fundamental
group of G => the cyclomatic number of G is g.

But a graph with a finite number of vertices and finite cyclomatic number can only have finitely
many edges. [

2.14. Corollary. T is a locally finite iree.

2.15. Definition.

@)
(ii)
(iii)

P,Qe T, . d(P,Q):=min{n|d path in T joining P and Q with length n} is a metric
on T.

A basis w=w,,...,w, of F, is called Schottky-basis in a point of ¥
v =0Vijke{+1,..., +g},j,k + iin this point.

A basis of F, is called a geometric basis for the action of F, on T if it can be
constructed by the following process (given by Bass and Serre, s. [13]}):

Let H be a lifting of a maximal subtree of G to a subtree of Tlet!ly, ..., 1, beliftings
of the remaining edges of G with &/ (l;)e Hy, o/ (I} & H,.

Then there exist uniquely determined w, ..., w, e F, s.th. w; (o () e Hy. An easy
calculation shows that wy, ..., w, form a basis of F,.

iff

2.16. Proposition. For each point of Y, ce C.s, there exists a Schottky-base of F,. In
fact: Every geometric basis of F, for the action on T is a Schottky-basis.

Proof. Let w,,..., w, be a geometric basis, H the corresponding lifting of the maximal subtree,
i; liftings of the free edges.

®

(i)

(1i1)

(iv)

Claim. Vie {1,..., g} we have (w,, w; )" H, # .

Proof. Suppose the contrary. Then d((wl, w; Y, Hy):= min {d(P, Q)| P e (w,, w"‘) Q e Hy}
>1=d(w,- P,Hy) = 3VPe H, (because w; acts as a translation on (w;w;')). But
dw; - (), Ho) = 1.

Claim. o (), o (1) e (w;, w; Vi

Proof. Suppose P e {o (1), o (I,)}, P & (w,, w;*). Let Q be the projection of P onto {(w;, w; ).
From the facts that d(P, Hy) < 1, (w;, w; 'y Hy = 0, H and T are trees we conclude Q € H,.
But then d(w,- P, Hy) = d(w;- P, w;- Q)+ d(w;* Q, Hy) = 1 + 1 = 2 in contradiction to the
definition of I,.

L+ lj7 L+ Z;'Vi +J] = 0.6 (Wi Wi 1)“(“’1; wy Ye H,
Claim. [w;, w, w 1€ H,.

Proof.
a) (W VV l)r\( ] J )'—Q)
Then [w w;, wi ] = (projection of d(l ) onto {w;, w; )€ Hy
b) (w;, w; 1) (wj, w; ty = 0. Then [w), w, wi 'Te(w;, wo D (w;, wilj < Hy,
Ul & o =1y =0

U = oo = vm’ = 0. Then

[Wes W, i '], [W Wy, Wy e H,
=) zw;,w, ]>[Wk,W1, i ]>W )z w; - [w, wiswi_l]
=[w,, W,= W, Low,w'in (W,,W D)
=% = 0.

ijk
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3. The rings /-fc. Fix a basis ¢ and a map ce ('38.
Let B, be the subring of A, generated by all 4
(c(,8,858)=—1and 1]} unit}).

“YiBisEj e

€A, (e ciyeg, €,8)=1o0r

V2 8is 8508k

3.1. Lemma. A, is generated as Z-Algebra by all f € A, with fe By or f ‘e B, (= A,
is essentially of finite type over B,).

Proof.

(i) Let B the subring of A, generated by all f e 4, with f e B, or f "' e B,. We have to show:

A,e 4, = A, eB. By Lemma 1,3. we know 1, = 4 L€ A, with 3 {st(x,), st(etg), st{xy)}
=3,

(i) x unit in 4, x 'eB=x"'=P(fi,..,fub1,--8,) With fieB,,g7*eB,, ged,
PeZlxy....,x,, ] Define
y:=11g; " e By
Then x 'yeB,,x 'yisaunitin 4, = xy~

Ay 0y .0y, Q,

t.yeB.

(i) ) B
st{o,) =st(xy) = A, e 4, A, unit in 4,

stog) =stag) =>4, =1— Aoy agiagong> Ay iy gy © A,.
So we may assume st (o) = st{og}, st o).
(V) Aoy mpine ™ Aayoogimsnng  Aepay s n, © Ae I SE{21} = &, hence we may assume a; = §;.
(v} st{uy) = 8;, st{us) = &, st{x) = &4
a) {=J:
A

8,0, ,03,0, Uy g B0 Gy

=7t - A

LY OV TN S - T PO -T2

= (1 - }‘m‘,,az,sk,ti) (1 . &a3,az,sk,zi)‘l
—( -2 ) (=4 TL Ly

A,
PP TG P CIVETN N A PYIRLN

=up ', ue B, veB, u‘“leﬁcguv‘leB
b) i = j. Choose m = j, k, |
A

=4 -4
(IS T B e By Ep Xy B a By TE;
( LOTLFRL N “aa,sj.sk,am)
1
€

=y 'y with u,veB, u~

% B P3:04

Sl -
A,

) Ik
CICTH N PN RN By 18y s By 5 Bg

=u"lveB.

3.2 Lemma. Let B, be the subring of B, generated by all

]')’Ei?—l’aj’akvel € AC’ #* {j’ k’ l} = 3.
Then B, = B,.
Proof. Ay,sjyzkygl e B,
B z:= ,}Ly-x,y&k!gl e A,. Then by Lemma 1.8.() we know
}”y.sj,sk,sl = lye,y“‘,aj,zk,s, € BZ

(i) z¢A =4, €A, = Ay ety = Pagy-1e,0.e, € B1 again by Lemma 1.8.4Y O

Wy g g
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3.3. Lemma. Let B be the subring of B, generated by all 4, , . . € A, and all v,
Then B, is essentially of finite type over B;.

Proof. Let B, be the subring of B, generated by all fe B, with fe By or /™" e B;. We have
toshow: A=A, -1, , ., €4 =1eB,.

We do induction on I{y):
0 =1
{a) y = g7 *. Then there is nothing to prove.
(b) y==5,,r =% +i 7=+ (otherwise 1 is a unit, exchange k and {}, r + k (look at { — A}
b)) r+ji=4, iyt Ao sat.ez,,s» A0d the second factor is a unit, hence 4, , oty € A,
Sowlog i Yy td LT R 'R
(by) r=j Ifk——Jorlw«j,thenf1 =1~ ,,, which is a unit in B, If k & —j, 1 # —J,
then A= {1 —u; ; (! = 1;,,) ' €B,.
(i) () =n + 1, and assume the Lemma is proved for /() < n w.lo.g st~ ) £85, st} =&,
#+ &, &. As in (i) we may assume r =jand k, [ &= —J.

A=A Ak

- . -1
LIS IR PR TR p

={1- Asgnﬁsiﬁ'lgfm-fkvzj’af At )'53"551‘5' 1517'""1'2112f‘)wx

=0 = F g gt o0 VU — G g gy o om) o

= =70 Agpte e ) (L= 7T Vio Mpesp= ey epert)
=upt

with g = st(B) + &} *1 hence u, v € B,, u, ve B, by the mductmn assumption and b Y'e B, because
V= Aygy ey et 1S @ UNIL D A (styey Y=¢),sov 'eBand then l=uv"'eB,. [

3.4. Proposition. A, is essentially of finite type over Z.

Proof. This follows immediately from Lemma 3.1. to 3.3. using Proposition 6.3.45 in [3],
Chapter 0. (B. ess. of. fin. type over A4, C ess. of fin. type over B = C ess. of fin. type over 4).

3.5. Corollary. A, is noetherian.

3.6. Proposition. If ce C then

n=n{c}
Yc= Ul Yc,c(s)
s=

with: € basis of F,
YZ o= Iye Yi ES; k(}’ = 0Vinj> knf» k + il}

Proof. Letp be a minimal prime ideal of 4,, K = Quot (4,), 4, — K the corresponding k-valued
point of Y. By Proposmon 2.16. there exists a Schottky-basis &, i.¢. a basis of F, with Uiji € P, hence
Spec A, < ¥, . A, is a noetherian ring (3.15), so the number of minimal prime 1d-:—als isfinite. -3

4. Schottky-domains, Throughout this paragraph we fix c e éw and a basis ¢ of F,. We
define

A= Ac/(u‘@jkl alli, j,k) -

s
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41. Lemma. j, k, le {+1,...,+ g}, #{j k1} =3, y=¢ Boyey ' =& f-e f e
Then
;Lysx‘y—l'sj'gk’al = 1 in Ac,s'
Proof. We do induction on n = I(f).
(i) n=0:1y=2¢},iF *].
We may assume k, [ + —j.
A’srs.zj“r,sj,zk,xl = (1 - t§_1 Ujik) (1 - t;_l 7"jiz)_1 =1
@ n-n+liy=¢-pp=2¢,-0,1(6)Snm=+j.
Then ;‘.ﬂgiﬁ—l‘sm’sj,sj—l =1, and so

ve; v g 808

-1, 1 -1 _
- (1 - t; Yjomk j'ﬁs Bl g8 ) (1 - tr Uit * }”ﬂsiﬂ’l,am,aj,sj“) =1. d

=1 in

V28 Eys

_ 42 Lemma. j, kle{+1,...,+g}, % {jk 1} =3 st,(y) =¢;. Then A
A

c,e*

Proof. Lemma 1.8. implies )‘m,wsk.s, = Ays ytre 1.0, With m =k or m =1 (s. proof of Lem-
ma 3.3.), and Lemma 4.1. implies }Ly&my,,’sjysm =1 [

43. Lemma. i,je{£1,..., g}, i %], st,(y)=¢ or st,(y,) =¢;, st,(y;) +¢; and
st,(y,) & &. Then A

718s V08

Proof.
(@) st {yy) = &, st (v2) * & 85, St (y2) = &
Then
)V71-5i~72~ g = t— )“71 Vaiges t— /lyufkvsi-sj ) iVZ’Ek’Si’sj
=1-(1 ~—)y1 " ;:’Tzfsk‘ei’sjz 1—(1—-1D-1"1=1

(i) st (y;) = & st,(y,) = ¢;. Choose k =+ i,j. Then

Avl.ai,yz,sj =1- (1 71 . ) (1 72 I )= 1
ind, . [0

4.4. Proposition. y,,...,7, € Fy st () =&, # {k;li=1,...,4} 23. Then Ay,

=1ty ..., N A, where we define
i 4 ’
0 if ky=ksor k,=k,
Aiprine =1 i ky=ky or ky =k,
oo if ki =k, or k, =k;,.
Proof. wlo.g #{k|1>2}—3
@ ys= &y Va =
- | o -4 « 4 1 *
)Vx'V245k3s5k4 Ayl’£k2’5k3'8k4 A)’z.Ekz,&ka,eks _Askl ..... 9 /“'yl,t;kz_gks,gk“ /'71‘6"2’8"3'8’% in A* and

the proposition follows from Lemma 4.3.
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i) &, =&
N R - - .
L ={1-—-4 V. ot 1 -2 *
’yu)’v?s»h ( LR SRS £ T FRL YA FEL /szz [ P }y2‘ﬁk2‘74‘5k4 in A
N -
Lomama Mpvora 1= Aak2,2k4,v1.73 n Ac‘e‘
4.3
0] Fyseeas Y4 /12,(1 ..... 5;«4 s
i) g o &y =1 A in A*
( ) Skx * 81‘2 Ayx '''' V4 71-“k2~};3w};4 /3’1’8k2e73;y4 in A
= A, == i
(3] Pyaeeon Py j’}’l.sk V¥4 m Ac,z
4 5 -
= A =4 in A4
gy " P Y4 o Y 2By s Vi By B €&
= J, =4 inA4 rl
[0 B R Ya sk1 ..... g"a (%3

_4.5. Corollary. Zw is of finite type over Z, in fact:
A, . is generated by all 2 withve {exq,..., 65,1 NV,

Proofl. v=(v,...,v,)€ V. There exists ueF, s.th. %{St(,uvip"i 1122} =3 yom pvu?,
(]

i=1,..,4st,(uv;p"") = g . Then ;¥ = )“"’ ="

4.6. Lemma. Let B be a noetherian ring, A —~ B a ringhomomorphism s.th. for each
minimal prime ideal p of B the homomorphism A — B/p is of finite type. Then B is of finite
type over A.

Proof. Letpy,..., p, be the minimal prime ideals of B, let x'? be liftings of the generators of B/p
over 4, and let ¢ be generators of p;, 54, ..., §, generators of \/(0) as B~modules. Then the subring
C of B, generdted over A by all xP, 10, s; is of finite type over A.

Claim. B=C.

Proof feB=3f,eCAPeBs.th f=f, + 3 AV because C — B/p, is surjective.
i i 1 j b /P1 1 »
To each AV exist 27 e B and afV € C s.th. A" =o' + 3 A ¢{?. Continuing this we get

f=g+h,geC,hei(jlp,~=\/@.
By the same procedure we get
h=0+h KeC He f(o_)l
for any 1. Since B is noetherian, f 0) for some 1, hence he C and finally f e C.
4.7. Theorem. c & C = A, is a finitely generated Z-algebra.
_ Proof. ﬁ is noetherian by 3.5., and to each mimimal prime p of A, there exists a base ¢ s.th.

A, =4, oy N A, by 3.6. A, . is finite type over Z(Cor. 4.5, so A, is of finite type over Z for each
minimal prime. Then A, is a fmltely generated Z-algebra by Lemma 4.6. - [

5. The spaces 1.  and T p

5.1. Lemma. Let ¢ € C and ¢ be a basis of F,, p the kernel of the map A, — A, ,. Then
p/p? is a finitely generated A -module.
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Proocf. p/p?is generated by all vfji (finitely many) and all L. Lety = - B reduced in the basis
¢, and assume st, () = st, («), i.. y cyclic reduced. Take & e F,. s.th. st,(6) # (st,a ™), st,(§) and
,(67) # st, (B,

Then
by = Ayp-1oy- 1510,
= Aa-é‘ﬁ"-z",&-ﬁ“,a-ﬁ,ﬂ‘l-z“l '}*6-[3’1,[3'1~¢5,a~[i,ﬂ‘1~m’1
=uvep?
because
st 6- B -a Y =st(x-B=uep
and

st,(B71-8)=st,(pt-aH=vep.

Hence p/p” is generated by all v}, and all ¢, with I(y) < 1.

5.2. Proposition. A,/T, - /T, is noetherian.

Proof
R:=A/T? T:=ker(R—> A4,),T*=0.

(i) Letp IERREFS M be liftings of the minimal primes of 4, to R(A, noetherian), I,:= ker(R — A4_,).
Ij1%isa ﬁmtely generated 4 -module, hence noetherlan so we know that R/I 2is noethenan
But to each p, there exists a ba51s e s.th. I,  p,;, hence R/p? noetherian.

(i) Choose ﬁnltely generated ideals a; in R s. th p; = a; + T (note that p,/T is finitely generated).
Then p? =a? + o; T, and p?/p, T = a?/a, T is ﬁmtely generated, hence noetherian. But then
R/p? noetherlan 1mp11es R/p, T noether1an

(iii) Choosefinitely generated ideals T;in Rs.th. T = T, + o, T. Then there exists a a finitely generated
ideal T in R s.th. T= T+(Ha)T Obv1ously Ha cﬁ hence T=T+ T~ ﬁ Now

T/T - ﬁ is noetherian, because it is finitely generated over R/\/ T, a noetherian ring. From
this fact we conclude that 4,/T, - ﬁ R/T: ﬁ is noetherian.

5.3. Theorem.
(i) The rings Ac, Ac a are noetherian and adic.
(i) The morphisms Spf Ac > Spf A are of finite type.
(il The morphisms Spf Ac’d — Spf A are open immersions.

Proof.

(@) To each pair ¢,d e C with A, , % 0 we can find ee C s.th. 4, , = 4,.

B) S.:= ﬁ Then A,/S, is noetherian and S,/S?2 is finitely generated (5.2). Then by [3], 0.7.2.5 and
0. 7 2.7 A, s noetheman and adic.

(y) The morphxsm Spf AC, 4 Spf A, is adic, Spec A, 4= Spec A, is of finite type, hence by [3],
10.13.1 the morphism is of fmlte type.

{8) The underlying topological spaces of Spf A, and Spec A4, are the same for all c e C. The maps
A, - AC ¢ are localizations, and they are of finite type. Hence the maps Y, , — Y, arc open
immersions, and top (Spf Ac 2)isan open subset of top (Spf 4 - LetZ bethe multlphcatlve system
in 4, generated by all 2™ with d (v) # ¢(v). Then obviously 4, , = 4. {Z ™1} (strictly convergent
power series, terminology of EGA), and the stalks of the structure sheaves of Spf A, {Z "1} and
Spf 4, are the same. So Spf A > Spf A, gives an isomorphism of Spf Ac 4 With an open formal
subscheme of Spfd,. O

Archiv der Mathematik 60 13
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5.4. Definition.
(i) The formal scheme T obtained by glueing all the Spf A on the “overlaps” Sp{ /L» 4
is called the (formal) Telchmuller space for degenerating curves.
{(ii) The scheme —Tg obtained by glueing all the Y’s over the Y, /s is calied the Teich-
miiller space for totally degenerate curves.
{iii) ,:= Aut F,/Inn F, =: Out F, is called Teichmiiller modular group.

5.5. Remark. f;,,ed= Y_;,Rd.

5.6. Proposition. f; is separated, locally noetherian and a formal SpfZ [[tywel:’g]—
scheme locally of finite type.

Proof. We only have to proof separatedness:
The morphism T — SpfZ [[t |y € F,] is inductive limit of the sequence

(T,, 04,/7"Y) — Spf @ [t, 1y € F, J1Im* ),

where J denotes the ideal (— sheaf) generated by all ¢,. By {3], 10.15.2 we have to show that T is
Separarated over Z. Using [3], 5.3.6 it is enough to know that A, ,is generated by 4 and 4,V e, d e C
But this is obvious.

5.7. Remark. The group y, acts on T, by A3 @)  jo for a € ¢,. This action
induces isomorphisms of the trees corresponding to x and «(x), xe T,.

We want now to establish the connection to moduli theory:

Let A be a complete noetherian local ring with maximal ideal m and quotient field K.
Let C — Spec A be a stable curve s.th. C,:= C x Spec A/m is totally degenerated and
C,:= Cx Spec K nonsingular.

The completion C of C can be uniformized by a flat Schottky group I' « PGL(2, K),
see [10]. Fix a basis of I', or equivalently an isomorphism z: F; — I', and let 2 / be the
cross-ratio of 7{v,), ..., 7(v,) for ve ¥. Then I flat means /1 eAor /1 le AVve V Note
that I is unique up to conjugation in PGL (2, K), thus the collectxon of /lv is unique up
to outer automorphisms of F,.

5.8. Lemma. In the situation above, there exists abasis ey, ..., e, 0f F,s.th. 1, A\m for
all ve V with # {st,(v,),...,st,(v,)} = 3 and st,(v,) = st (v,).

Proof. CxSpecK nonsinguiar implies that there exists a complete noetherian valuation ring ¢
and a continuous homomorphism 4 — @ s.th. C x Spec ¢ is generically nonsingular. But if the image
of 1, is in O — m,, then 1, is in A — m. Thus we may assume that A is a valuation ring. But then
K is a complete ultrametric valued field and we can use results of rigid analysis: I" has a Schottky
basis w,,...,w,, and this means that there are 2¢ disjoint disks C,,...,C,, in IPg s.th. the
attracting fixed point of yis in C ., if st (y) = +w,, see[6]. Let 5;:= 1~ * (w,), then 1ts easy to see that
|4} =1 if v satisfies the conditions of the Lemma.  [J

5.9. Proposition. Let A be a complete noetherian local ring with maximal ideal
m, k:= A/m, K:= Quot A. Let C be a stable curve over SpecA with C = C x Speck
totally degenerated and C,:= CxSpecK nonsingular. Let ¢, -~ ¢, be a basis of the
uniformizing Schottky-group I and ) the corresponding cross-ratios. Then There exists a
unique morphism @ :SpfAd — 7; s.th. Av = @*A,.
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Proof.
I Existence: By Lemma 5.8. we can choose ¢: V' - {£ 1} s.th. ce C, and e A¥veV. Let

¥ Z[A,, 471 |ve V] - K be the homomorphism sending A, to Z,. Since 1, are cross-ratios of points
in P; and ﬂy,v = )nyeInnF we have ¥, (I*) =0, and ¥, induces y,: 4* - K.

Because /T“” e AVve V¥, induces ¥5: 4, - A.

v, (t, ) == My,x apy1 = t the multiplier of 7 (y) and t emall t{y), vy + id, are hyperbohc) thus
T. < ¢~ (m) because T, is generated by all t,. Hence 'P is continuous and induces P,: 4, — 4,
which in turn gives @ Spf A - T because ¢ e C.cC. Obv1ously ¥, =1,

IL. Uniqeness. Let ¢, ¢, be two such morphisms. Then ¢, be induced by ¥,: 4, — 4, ¢, by
¥,: A; — A. But then 12, 1™ ¢ A4, and there exists ¥3: 4, ; — A s.th. p,, @, factor over ¥;. But

this means ¢, = ¢,. O

Now let €¥ A% be the category of complete noetherian local rings, let
L BL N FE — sets be the functor

nn F

C stable curve over 4, C, totally degenerated,} /I
o

(g4, ..., &,) basis of the fundamental group of C

F(A):= {(C, (815 ---r8)):
Let Tgo and T.°° be the open subschemes of T, with

top(T%) = {xetop(T,): 4, + 0 in 01, 7}
top (1,°) = {x e top(T): © /T\ regular}

g’

400, 40, B4 the point functors.
8 g g

5.10 Theorem. There exists a morphism of functors &: & — h with
] @(A) injective.
(i) hpoo(d) S Im P (A) S hyo(A).
V Ain LN

Proof.

(i) Let Abeasin35.9,(C, (31, --» 8)) € F(A). Let & ~ 4 be the universal deformation of C, (see
[2]). There exists a unique morphlsm WiSpfA — M s.th, C = & x , Spf A and Cg > 5'2”
Then %, is nonsingular, and (z,, ..., &,) determines a basis of the uniformizing group. By 5.9
we find a unique morphism ¢: /{ — Tg
Define @(4)(C, (gy,---, &,)):= ¢ < . Obviously this is well-defined and functorial, and the
uniqueness of ¢ and  gives injectivity.

{ii) (f:Spfd — T,) e Im @ (4) factors through ¢: .# — T, with p* A, =1, + 0 Vv asin 59. Thus
fe hTo (4). -

(i) f EhToc (A) factors through ¢: Spf (OT .= T and @* A, 0Vv. Then there exists a flat

Schottky-group I' = PGL (2, Quot 0T ) with cross-ratios ¢* 1, with respect to some basis
{¢15 -+ &,)- Applying Mumfords constriiction ([10]) to I we obtain a curve C — Spec OT +»and
by pullback C — Spec 4. Then f = ®(4)(C, (e;,..-,¢,)). [

5.11 Remark. Onecan construct {(replacing F , by F , W {z} and repeating the whole
construction) a formal scheme &, — T, together with an action of F, on Z,. The fibres
of &, are open formal subschemes of “trees of projective lines” (see [9]), and F, acts
partially by translation of the components and the stabilizer groups of the components
act as Schottky-groups.

13*
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The closed fibre Z, is a tree of projective lines, and the intersection graph is the tree
described in Section 2.

Z,/F, ~ 7; is a family of Mumford curves, and %, — f; should make 27; into a fine
moduli space.

However there are some technical difficulties in the construction, and I will carry it out
in a subsequent paper.

6. Rigid analytlc aspects. In this paragraph we construct a rigid analytic space T"’"
associated with T and show that the rigid analytic Teichmiller space 7, for nonsmghlar
curves (see [4], [7] [11]) can be embedded into T % as an open analytic subapace In order
to limit the length of this section (which is more hke an appendix to the rest of the paper)
we don’t give proofs in full detail. For a definition and properties of rigid analytic spaces
we refer to [1]. Let @ be a complete valuation ring, m its maximal ideal, k its quotient field
(which is assumed to be algebraically closed) and k = O/m its residue field. If 7 is a
nonzero element of m, then n@ is an ideal of definition for the topology of 0.

6.1. Definition.
i) R:= Z[tyly € Fg] with the (3, R)-adic topology
(i) ¢, deC,0%+mgem:

"Q?c,n,d,g ‘Z @ { #I }

where { } denotes strictly convergent power series
LQ{crtdg_)-: cndg®k
A0 =im(H, ,, —

cn:cg ¢, 7,0 cfcdg)

Forc=dand n = ¢ we get A, ,, &, ., ..

c, 2 [ 2

6.2. Remark. The topologies on the (-algebras in 6.1. are the ones induced by 0.

6.3. Proposition.
@) Spfetl, s, — SpfO is of finite type.
(i) A, r 4, is a k-affinoid algebra.

Proof.
{) By [3],10.13.1 we have to show that </, 0 metl, is afinitely generated @/n @-algebra. But since
T, is finitely generated (4, is noetherlan) there exists a surjective homomorphism

A, ®z0/mzy,.... 2,1 > A2 /nd?
(the z; are mapped to 1 & %, u; generators of T,/T2). But A, is finitely generated.

(i) is a consequence of (i), see [12]. [

6.4. Proposition. The obvious homomorphism o, ,, ">, ., , , identifies Sp &, , 4 , with
the (open) affinoid subdomain
Usraoi={xeSpA. |16, S lel. VyeF,, 1M ()| 21 Ve() + d()}

Of Spﬂc,ﬂz:UE,ﬂ'
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Proof. We have to show that # represents all affinoid morphisms Sp(¢): SpC — Sp «#, , with

image in U, ., ,°

Let ¢ be such a morphism. Then { o (¢, )} < lol, ¢ (A" = 1 if c(v) # d(v). Then we find
t
A4, ~ C0,¢21(9{EVIV€F5,} - CUC’={feCl|fIs1})
t
@{}%l'yng

A,
commutes.
\ ﬂfy 15/ P2
C 0 \Ld) C ]
N c /

Then we find (uniquely determined) continuous extensions
Lt
Y iA .~ C° and wzz@{%,Ey!yng} - C9,
and they give a homomorphism y: o/, ., , — C with §f o = ¢. Obviously ¢ is uniquely determined

by ¢.

6.5. Definition. T"" = rigid k-analytic space obtained by glueing all U, . over

U VceC 0+nem

¢, m,d, 07

6.6. Remark. AutF, acts on Tg‘"‘ by
o, > A

Coa,

%(V) N ;v‘(xc&a)c'l)(a(ﬂ)
for any o« € Aut F,. Inn F_ acts trivial, so there is an action of QutF, on T..
y g g g9 g

Let now 7, be the rigid analytic Teichmiiller space for nonsingular curves. For the
following facts about 7, see [11]. It is a fine moduli space for

{(y17 crey yg)l 7€ PGL(za k)a <’YI7 RRRE ’yg>
= subgroup of PGL (2,k) generated by y,, ...,7, is a Schottky group of rank g}/PGL(2,k).

Let ¢,...,¢, be a basis of F,. Then t(g) ({):=y;, where { = conjugation class of
{(715---»74) 71 has fixed points 0 oo and y, ! has attractmg fixed point 1, defines an
injective group-homomorphism z: F, —>Aut,- (P' x 7,) with i 1mage I, the “universal”

Schottky-group over 7. Over each aff1n01d subdomam SpB < 7, vl is represented
by M, e GL(2, B). We can take

M= <xy —l Xy X, X, (t, — 1))
Y
1_‘ty tyxv—xy—q
where ¢, x, € B are the multiplier and the attracting fixed points of y, i.e.

e, <1, 7@ - x, 2 LvzeP!.
y(z) — x,-1 z—x
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For ve V define

X, — X X, — X
o, = EN as: @, Ese@(%), o, = 1{v;).
xazz - X% xaz - X%
Then obviously the , satisfy the cross-ratio relations, and for f € F, we have d;,5-. = §,.

The group AutF, acts on 7, by AutF,aua:{y,.. g)»(a(yl) - 0{y,)s and

a(3,) = dyy- Byi= {115 s /5)1,15... 7, are a Schottky—basm for {yy,..., 7,0} is an
admissible open subset of 7, and

7= U oc(Bg>
xcAutFy

is an admissible covering. It is described by
B, = {{e 7| o (O1= 10,0t oo D1 < 1}
and, using the embedding
‘Z — k3g“3

(‘})1’ ] Yg) e (tyii x}!i’ }C},;i}

by
e - 3
B, = {(ts %1 x-)10 < || <1, [t~ kK < Lox b
X‘—)'_i kax_, 3
Let
By owwi={leB Im" St In"| S16,|Vve Y, i Sin|VyeF,|5Y s 1VveV}

VeeC,0+nemneN,V:={ve V[vie{sf‘,...,sfl}}

B, . ., is affinoid, and is an affinoid subdomain of k*3. (B, . ., can be defined by
finitely many inequalities, sec ¢.g. [6]}. The k-algebra homomorphism 7, , — O{B, . , .)
given by A5 — ¢ defines a morphism of k-analytic spaces B, , ., = U, .. Let

Viww=1x€ U, . [1t, @) Z 2% 14, 2 =], ¥ve V, vl ()] < |=l}.

6.7. Lemma.
0 AdsaunitinOV, ., )VveV
x X, X, — X

Yy Py TVy ¥y

(i) 4= for x, 1= Aozt a

v, x"a x"z - x"d

Proof. Obvious.

6.8. Lemma.

~ — X, ot~ 1 .
im0 B 5 G GLo o)
11" X, by = Xy-1 o
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ifyzoc",oceﬁg,oc#gfl,n>0

~ ty 0
iy = ( : 1) € GLQ (Vo).

Then J\ZY =u,- ]\26,1...1\25_ ify=2¢...¢6,andu,is aunitin OV,,,).

Proof. The matrices act on IPO(V S0 they act on sections Spec ¢ (V, . ,) — P'. One easily
finds M, (x, )= Xy Vy, 0 € F,. Thus’

My(xa) = x*yay" = Ei,."""'i,.”i:.l"'si;I

=M, ..M, (x,)VacF,
iy in
especially for X, =0, x,~1 = 00, X,-1 = 1.

So My M M acts tr1V1al on these sections, and this implies 6.8. [

6.9. Proposition. The map j,: B, . . , — U, , induces an isomorphism B, ., .~V .
Proof. The morphism
I/c T,n s k3g*3
(%) = (1, (%), X, (0 %, ()
has it’s image in B,  , ,, so it factors over B, , ... Let y: O(B, . . .} — O(V, . ,) be the correspond-
ing algebra homomorphism. The morphism B, . ,— U, , has it's 1mage in V., Let

¢: 0V, , )= 0B, ., be the corresponding algebra—homomorphxsm Obviously ¢ © w id.

Lot & = o . I 51, = (‘;v Zv) then (M, ) = M, , and
¥ v
O(M,)=0(M, ). oM, )= ]\711\71 =u ' M,
thus
Da,)=uta, Ob)=....
. avdv - bycy L
Define 1, := = . Then ¢{u,) = u, and @(t,) = ¢, because ||z, || < 1. Now one can

(a,+d) 1+1¢]
easily see that @(1,) = 4,¥ve ¥ hence ¢ = id because V,

[ 54

is a rational subdomain of U, .. I

The affinoid domains a(B, ., ,) form an admissible covering of 7,. Using the action
of Aut F, on J, and T“" we obtain open immersions j, = ¢ °j, ° « -7, 20 (By ) T”"
Obviously j, = ]ﬂ on oc(Bg,m,n) N B (B, .r, ) 50 We can glue all these maps to get an open
immersion j: 7, — TA"H”".

Concluding we have

o

6.10. Theorem. There exists a natural open embedding j: 7,
T)={xe f;‘"’iiv(x) +0VveV}.

- T with image

Proof xe Tg“" =xeSps,, for ce Cl(e,, TEM.

Let w™, ..., w™ be bases of F, s.th. Spec 4, = { | Spec A, . x defines a continuous homomor-
phism ¢ : A, — 0, hence a k-valued point % of SplZC. Thus there exists an index [ e {1, ..., n} s.th.
X)) = 0Vij k le ¢ (o emVij kot

[0 (X} < 1V j, k.
Let |g| = max ({|v ()|, i, J, k} v {i=nl}, pem.
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Then for
# {stym(v)li=1,...,4} =3, st,m(vs) = st,u(vy)
we have
14, (x) — 1] £ max ({|¢, ()], v € Fy} v {{o{ (01, 5., &}) £ e

thus |4,(x)| = 1 and we assume ¢ € C .
Next we may assume w = ¢ because j(7,) and {x € T|,(x)  0Vv} are Aut F, invariant.
Ifnow ,(x) # 0Yve Vwecanfindne Ns.th.xe ¥, , , thus x € /(7). On the other hand clearly
x e j(J,) implies A4, (x) # 0Vve V.
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