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BOUNDARY INTEGRAL EQUATIONS FOR SCREEN PROBLEMS IN ~3 

Ernst P. Stephan 

Here we present a new solution procedure for Helmholtz 
and Laplacian Neumann screen or Dirichlet screen problems in ~3 
via boundary integral equations of the first kind having as 
unknown the jump of the field or of its normal derivative, 
respectively, across the screen S. Under the assumption of 
local finite energy we show the equivalence of the integral 
equations and the original boundary value problems. Via the 
Wiener-Hopf method in the halfspace, localization and the calcu- 
lus of pseudodifferential operators we derive existence, unique- 
ness and regularity results for the solution of our boundary 
integral equations together with its explicit behavior near the 
edge of the screen. We give Galerkin schemes based on our inte- 
gral equations on S and obtain high convergence rates by using 
special singular elements besides regular splines as test and 
trial functions. 

1. INTRODUCTION 

This paper presents a solution procedure for both the 

Dirichlet and the Neumann screen problems for the scalar 

Helmholtz equation (with small wave number k) via boundary 

integral equations on the screen surface S. The problems under 

consideration are the following ones. For given g or h on S 

find u i__nn ~S := IR3\ ~ satisfying 

(A +k2)u = 0 in ~S (i.i) 

u = g on S (Dirichlet) or 
-- ] (1.2) 

~u _ h on S (Neumann) and 
~n 

-iku =o(r -I) for k ~ 0 or u = O(r -I) for k = 0 
Dr (1.3) 

as r :: ixl + ~. 

Such problems appear in scattering of acoustic fields u by 

obstacles of different hardness (see [8]) : The Dirichlet 
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condition represents a soft screen whereas the Neumann condi- 

tion represents a hard screen. For k = 0 the above Dirichlet 

problem describes the electrostatic field u of an electrified 

screen and one looks for the charge density (see [i]). 

We make the general assumption: 

S is a bounded, simply connected, orientable 

smooth, open surface in IR 3 with a smooth (1.4) 

boundary curve ~ which does not intersect 

itself (see Fig. i). 

Our solution procedure is to derive boundary integral equations 

of the first kind on S for the jump of the normal derivative 
~u 
[~] across the screen S in the Dirichlet case and for the jump 

of the field [u] across S in the Neumann case, respectively. 

In Section 2we reduce the Dirichlet problem by use of Green's 

formula to the weakly singular boundary integral equation 

3u 1 e iklx-yl ~u = 2g(x) x e S (1.5) 
VS[ ~] (x) := 2--~ ~ I x -Yl [~-~] (y)dSy 

Similarly, the Neumann screen problem is reduced to the hyper- 

singular boundary integral equation 
1 3 2 e iklx-yl 

Ds[U] (x) := 2--~ ~ ~nx~ny Ix -yl [u] (y)dSy = -2h(x), (1.6) 

x ~ S 

Both integral equations (1.5), (1.6) have been already sug- 

gested by physical arguments in [8]. Although the integral 

operators in (1.5), (1.6) possess quite different properties in 

the classical theory of integral equations, they both belong to 

the larger class of pseudodifferential operators. The solva- 

bility of the equations (1.5) and (1.6) hinges on the fact that 

V S and D S are strongly elliptic, that is they satisfy a G~rding 

inequality in suitable Sobolev spaces (Len~na 2.8). Therefore, 

Vs,D S are Fredholm operators of index zero and, thus, the 

injectivity of the operators implies their bijectivity. Since 

the integral equation (1.5) is equivalent to the Dirichlet prob- 

lem (1.1)-(1.3) and the integral equation (1.6) to the cor- 

responding Neumann problem, respectively, our integral equa- 

tions have no eigensolutions for Im k ~ 0. Following [16] the 

analysis of the integral equations using the calculus of 
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pseudodifferential operators and Wiener-Hopf technique provides 
~u 

the explicit edge behavior of the unknown densities [~] and 

[u] (Theorem 2.9). In case of the Dirichlet problem we obtain 

that the jump in the normal derivative of the acoustic field 

behaves near the edge like p-i/2 even for C a data where p 

denotes the Euclidean distance to the edge y of the screen S. 

This is in agreement with the "edge condition" in physics (see 

[8]). Therefore, in general, s solution of (1.5) is not 

continuous for continuous data g contrary to Hayashi's claim 

[5], [6]. Both integral equations (1.5) and (1.6) are derived 

under the only assumption that the acoustic field u in (i.i)- 

, H 1 (1.3) has local finite energy, i.e. u E loc near S -- which 

is the physically relevant property. For the Neumann problem 

we obtain the explicit edge behavior for the solution of (1.6) 

which improves the results by Durand [3]. 

The knowledge of the explicit edge behavior of the 

solutions of (1.5) and (1.6) is important for an effective 

numerical scheme (based on our integral equations) in order to 

diminish the pollution effect caused by the edge singularity. 

Solving (1.5), (1.6) approximately with regular splines we 

obtain only low convergence rates in the energy norm for the 

boundary element Galerkin solutions (Theorem 3.1). This is in 

accordance to the standard variational finite element method 

for (1.1)-(1.3) in the domain. In order to improve the conver- 

gence rate we incorporate in the Galerkin scheme as test and 

trial functions special singular elements which simulate the 

edge behavior of the exact solutions of the integral equations. 

With this augmentation method we obtain higher convergence 

rates (Theorem 3.2) as in the two-dimensional case [19]. 

2. BOUNDARY INTEGRAL EQUATIONS 

Before we derive the integral equations (1.5) and 

(1.6) we reformulate the original screen problems: Let 
HI/2 H-I~2 g { (S) (h e (S)) be given, we look for u { L S satis- 

fying the Dirichlet (Neumann) boundary condition in (1.2) where 

= H 1 L S ~u c IOC(~S) : (A+k2)u = 0 in aS, u satisfies (1.3)} (2.1) 
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For completeness, let us introduce the Sobolev spaces HS(~), 

Hs(F), and HS(s), s c ~, where ~ is a bounded domain with a 

smooth boundary F and a smooth boundary piece S c F. We recall 

from [9], [ii] the function spaces used which are incorporated 

with their natural norms: 

HS(~) H s (m3)} {u]~: u c (s c m) 

{ulr: u c Hs+ �89 m 3) (s > 0) 

Hs(F) = L2(F) (s = 0) 

H-S(F)) ' (dual space) (s < 0) 

H s HS(s) = {Uls: u c (r)} (s ~ 0) 

HS(s) = {u c HS(F) : supp u c S}, HS(s) = Hs(F)/HS(F\S) 

AS in the two-dimensional case (see [19]) we prove 

uniqueness of the screen Dirichlet and the screen Neumann prob- 

lem (1.1)-(1.3) for Im k a 0 by transforming them into appro- 

priate transmission problems. 

LEIv~'~ 2.1. For Imk ~ 0 t h e  homogeneous  s c r e e n  

D i r i c h l e t  (Neumann) p r o b l e m  has a t  m o s t  t h e  t r i v i a l  s o l u t i o n  

i n  L s . 

For the proof and further investigation we extend S 

to an arbitrary smooth, simply connected, closed, orientable 

manifold (surface) ~G 1 enclosing a bounded domain G 1 with boun- 

dary 5G 1 (see Fig. i). Let ~n denote the exterior normal deri- 

vative to ~G I. Let [v] denote the jump v_ - v+ where the sub- 

script + (-) means the limit from ~3\G 1 (from G 1 ) to 5G 1 . 

Furthermore, let B denote a sufficiently large ball with radius 

R including G1 and let G 2 := B n ( ~3\G I) and $B denote the 

boundary of B. 

Fig. i. 
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PROOF. Let us consider first the homogeneous 

Dirichlet problem; thus u c L S with UIs = g = 0. Then 

H I IR 3 U HI(G1 ) u loc ( \GI ) solves the following transmission 

problem: 

u = u I in G 1 with Au I + k2Ul = 0 in G 1 

u = u 2 in ~3\G l with Au 2 + k2u2 = 0 in ]193\GI 

satisfying (1.3) and 

~u I ~u 2 
= u 2 on SG 1 and ~n - ~n on ~GI\S. (2.2) u 1 

Application of the Green's formula in G 1 and G 2 then yields 

with the transmission conditions in (2.2) by eliminating the 

integral over S 

~u2 _ k 2 [ -~n- ~2ds = _k 2 I lUlI2dx [ u212dx 

~B G 1 G 2 
(2.3) 

+ I IVUlI2dx + f IVu 2 2dx 

G 1 G 2 

Note that (2.3) holds with the traces of uj since for u c L S we 

�9 L 2 (Gj also have Au 3 c ), j : 1,2. For Im k > 0 or k = 0, the 

left hand side in (2.3) tends to zero for R + ~. Hence, both 

imaginary and real parts of the right hand side in (2.3) vanish 

which implies u I ~ 0 and u 2 E 0. For Im k = 0, k > 0, we use 

the radiation condition (1.3) and then take the imaginary part 

of (2.3) obtaining 

k I lu212ds + o(1) : 0. 
~B 

This gives with Rellich's theorem [23, Theorem 4.2] u 2 ~ 0 and 

with (2.2) also u I 5 0. 

The uniqueness for the Neumann screen problem follows 

by the same arguments if one considers (2.2) with the new 

transmission conditions 

~u I ~u 2 
- ~n on ~G 1 and u I = u 2 on SGI\S. D Sn 

For the boundary integral eguations on S we shall 

need some properties of the traces of the solution u e L s of 

(1.1)-(1.3). As in the two-dimensional case (see [19]) we 
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obtain for the screen Dirichlet (Neumann) problem the fol- 

lowing result on the jump of the normal derivative (of the 

trace) of the weak solution. 

H 1 LE~ 2.2. L e t  u c loc(~S) be a weak s o l u t i o n  of 
t h e  s c r e e n  p r o b l e m  ( 1 . 1 ) - ( 1 . 3 ) .  Then f o r  t h e  D i r i c h l e t  p r o b l e m  

we have  

~u ~-i/2 
[~] IS ~ (S) = (HI/2(S)) ' (2.4) 

and f o r  t h e  Neumann p r o b l e m  we have  

[u] IS ~ HI/2(S). (2.5) 

PROOF. Since (A+k2)u = 0 in 9S and B c 9S := ]R3 \~ 

from Green's formula 

~u> (j = 1,2) I v �9 Au dx + I Vv �9 Vu dx = (-i) j <v,~ L2($Gj ) 
Gj Gj 

HI/2 ~u H-I/2 we have v ~ ($Gj and ~-~ ~ (~Gj) by duality. Here we 

can take v with supp v cc B such that the integral along ~B 

vanishes. 

~u H-I/2 Hence the ump [7~] belongs to (~GI). By assump- 
H 1 tion u c loc(~S), therefore away from S the relation 

H 3 (A+k2)u = 0 implies u { loc(~S), and repeating this argument 

C ~ ~u] implies even u e away from S. Thus [~n = 0 on ~GI\S. 

~u] e H -I/2 This together with [~ S (S) yields (2.4) because 

S) H-I/2 H-I/2(S) = {w c H-I/2(~GI): supp w �9 S} = CO( ($GI) 

The assertion (2.5) follows by similar arguments with 

= C~(S) HI/m(~G I) [] ~l/2(s) 

The above properties of the Cauchy data enable us to 

derive boundary integral equations to solve (1.1)-(1.3) even 

for weak solutions u < L S- 

Before we give our solution procedure let us briefly 

recall the idea of layer potentials by introducing the funda- 

mental solution % of (A+k2)u = 0 in G. (see Fig. i). 
3 

1 for k = 0 4~Iz-{l 
%(z,%) := eikl z_6 i (2.6) 

_4~iz_61 for k ~ 0 
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DEFINITION 2.3. Let u �9 C=(F), F a bounded closed 

C~-surfaceo Then 

V G u(z) := -2 I #(z �9 
j F (z �9 G~) (2.7) 

J 
KG u(z) := -2 f u(~) ~ ~(z,~)dS~ 

3 F 

The same definition of the potential of the simple and the 

double layer is valid for arbitrary distributions u on F since 

C ~ for z ~ F the above kernels are functions on F. 

These potentials give the following representation 

formula for the solution of (A+k2)u = 0 in G.. 
3 

H l (Gj) (j = 1�9 w i t h  Cauchy LE�89 2.4. For u ~ loc 

v := UI~s. ~ := --~.~n u and for z �9 O. we d a t a  have  
�9 ~G. 3 

3 J 

1 (KG.V(Z) _ VG.~(z)) (2.8) u(z) = (-1) j 

J 3 

PROOF. This representation formula is well-known for 

smooth boundaries 3G. and smooth layers v and 4- Since the 
J 

operators in (2.7) have C ~ kernels �9 formula (2.8) remains valid 

H ! (Gj) j = 1�9 (compare Fig. I).D for the Cauchy data of u E loc ' 

Next, we give a representation of the weak solution 

of (1.1)-(1.3) via the operator of the single layer potential 

for the Dirichlet problem and via the operator of the normal 

derivative of the double layer potential in case of the 

Neumann problem. 

Let us first consider the Dirichlet problem and pro- 

ceed as in [18]. Using Green's formula we shall end up with an 

integral equation of the first kind for the jump of the normal 

derivative of the solution (1.1)-(1.3) on the open surface 

piece S. When we use the geometrical situation of Fig. 1 

application of the representation formula (2.8) yields for 

x �9 G 1 

1 ~u 
u(x) = - [ (KGlU(X) - VGI ~-~ (x)), 

(2.9) 

0 1 (KG2U(X) _ VG 2 ~u = - ~ ~ (x)) �9 



Stephan 243 

where KG , VG , j = 1,2, are defined according to (2.7). 

3 u 3 HI/2 ~Z~ u H_I/2 
Note that ~G. e (~Gj) and ~ ~G. e (~Gj), j = 1,2. 

3 3 
Hence addition of (2.9) yields with the outer boundary 

~3 
~B = {y e : lyl = R} and the fundamental solution ~ in (2.6) 

u(x) = I u(y) ~ - I ~u IYl :R ~ ~(x,y) dSy IYl :R 7~(y)%(x,y)dSy 

~u 
- f [~-~] (Y) S (x, y) dSy, 

~u 
since [~-~] ~Gj\S = 0 according to Lemma 2.2. 

For x § S the trace theorem yields together with the 

boundary condition u I S = g the relation 

~u 
g(x) = I {u(y) ~ r - ~(y)~(x,y)}dS 

lyi:R y Y 
(2.10) 

[~u~ 
- I ~](y) %(x,y)dS . 

S Y 
Since the radiation condition (1.3) holds for u and %, the 

integral in (2.10) over IYl : R vanishes as R § ~ and therefore 

(2.10) becomes for x c S 

.~u] 
g(x) = -I [~ (y) }(x y)dS (2.11) 

S Y 
~u ~-i/2 

Now, let [~-~] c (S) (compare Lemma 2.2) be a solution of 

(2.11). Then the potential of the single layer 

~u 
u(x) = -I [~](y) %(x,y)dS (2.12) 

S Y 

is well defined for every x ~ S since ~(x,y) c H I/2 (S). The 

same holds for any derivative (~x)i( $ )m ~y 9 (x,y) IS. Now the 

single layer potential V in (2.12) is a ~do of order -3/2 as a 

mapping from functions on the boundary SG 1 into functions on 

the bounded domain G. and on its complement G 2 = ]R3\G 1 [4, w 
I 

Thus for ~* ~ H-I/2(~G I) we have V~* E HI(G1 ) u H 1 
loc(G2) where 

~* 0 on SGI\S and ~* ~u = = [~n ] on s. 

For x ~ S we can interchange differentiation and inte- 

gration in (2.12) obtaining 

(A+k2)u = 0 in ~S = IR3\S" 

For Ixl _> R the potential (2.12) is C ~ and satisfies the 
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radiation condition (1.3). Hence the potential u in (2.12) 

belongs to Hloc(~S ). 

The above results we sum up as follows: 

H 1 THEOREM 2.5. u ( loc(~S) i s  the  s o l u t i o n  of t h e  

sc reen  D i r i c h l e t  problem ( 1 . 1 ) - ( 1 . 3 )  i f  and only i f  t h e  jump 
[~u] ~-i/2 

IS ~ (S) i s  the  s o l u t i o n  of t h e  weakly  s i n g u l a r  i n t e -  

gra l  equat ion  

V [ ~u~ ~u S ~] (x) := -2 I [~] (y)~(x,y)dS = 2g(x) (2.13) 
S Y 

HI/2 for  x ~ S wi th  ~ as in  (2.6) and g iven  g c (S). 

Next we consider the screen Neumann problem. Taking 

in (2.9) the normal derivative we obtain for x e G 1 

~_~u (x) = 
~n 

I {u(y) ~ ~ ~u(,) ~n ~(x,y) - ~ 3 ~ }(x,y) }dS 
l yi=R Snx y x Y 

-I [u] (y) ~n ~n #(x,y)dS 
Y S x y 

since [u] ~G \S = 0. Since } and its derivatives satisfy (1.3) 

we obtain for x § S and R § ~ together with ~u = h the rela- 
S 

tion 
3 2 

h(x) = -/ [u] (y) $n ~n #(x,y)dS (2.14) 
S x y Y 
~1/2 

Conversely, let [u] ~ (S) be a solution of (2.14). Then 

for x e ~S =: ~3\ { the potential of the double layer 

u(x) = -I [u] (y) ~ #(x,y)dS (2.15) 
S y Y 

H-I/2 (S) together with all is well defined since ~ r 

Y 
derivatives with respect to x and y. The double layer poten- 

tial K in (2.15) is a ps~udodifferential operator of order -1/2 

as a mapping from functions on the boundary ~G 1 into functions 

on the domains G 1 and G 2 = ]R 3 \GII [4, w Thus for 

v* ~ HI/2(~GI) we have Kv* c HI(G I) u H 1 loc(G2) where v* = 0 

on 3GI\ S and v* = [u] on S. 

For x ~ S we can interchange differentiation and 

integration obtaining (A+k2)u = 0 in QS and for Ix[ = R § ~ the 

potential (2.15) satisfies the radiation condition (1.3). 
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Summing up, we have the following equivalence: 

THEOREM 2 6 u c H 1 . . ~ l o c ( ~ S )  i s  t h e  s o l u t i o n  of  t h e  

s c r e e n  Neumann p r o b l e m  ( 1 . 1 ) - ( 1 . 3 )  i f  and o n l y  i f  t h e  jump 
~i12 [u] IS ~ (S) i s  t h e  s o l u t i o n  o f  t h e  h y p e r s i n g u l a r  i n t e g r a l  

e q u a t i o n  
2 2 

Ds[U] (x) := 2 I [u] (y) 3n ~n r dS = -2h(x) (2.16) 
S x y Y 

f o r  x ~ S w i t h  } as i n  (2.6) and g i v e n  h c H-I/2(S). 

We note that for the derivation of the integral equa- 

tions (2.13) and (2.16) we only assumed local finite energy of 

the solution u of (i i)-(i 3) i e. u ~ H 1 �9 . , . , ioc(9S). We need no 

additional regularity assumptions. Using the calculus of 

pseudodifferential operators we derive the following existence 

results for the solutions of (2.13) and (2.16), respectively. 

THEOREM 2 . 7 .  L e t  Im k >_ 0. Then t h e r e  h o l d s  : 

( i )  For g i v e n  g { H I / 2 ( S )  t h e r e  e x i s t s  e x a c t l y  one s o l u t i o n  

c ~ - i / 2 ( S ) ,  ~ := [~-~u] S '  o f  t h e  i n t e g r a l  e q u a t i o n  ( 2 . 1 3 )  

H-I/2 (ii) For g i v e n  h c (S) t h e r e  e x i s t s  e x a c t l y  one s o l u t i o n  

~i/2 of  t h e  i n t e g r a l  e q u a t i o n  (2.16) v ~ (s), v : lulls, 

The proof of Theorem 2.7 is based on the following 

lemma showing the coerciveness of the operators V S and D S in 

the form of a G~rding inequality in the appropriate trace 

spaces. 

LE~H4A 2.8�9 (i) The mappings  Vs: Hs(S) + Hs+I(s) and 

DS: HS(s )  § H s - I ( s )  a r e  c o n t i n u o u s  f o r  any r e a l  number  s .  

( i i )  T h e r e  e x i s t  c o n s t a n t s  y. > 0 ( i  = 1 , 2 )  and an o p e r a t o r  

c~ f rom ~ - i / 2 ( s )  i n t o  H } ~ + E ( s ) l a n d  an o p e r a t o r  C 2 f rom ~ I / 2 ( S )  

i ~ t o  H -�89 f o r  some ~ > 0 s u c h  t h a t  f o r  a l l  ~ c H - I / 2 ( S )  and 
~1/2 

v c (S) 

<(Vs+CI)%'~>L 2(S) 

< (Ds+C2) v'v>L2 (S) 

> Y1 II Ii2 
~-i/2 (S) 

2 
> Y2 llvll l/2(s ) 

(2.17) 

(2.18) 

PROOF. For any 9 c HS(s) the extension ~* by zero on 

F\S belongs to Hs(F) with F being the closed smooth bounded 

manifold SG 1 in Fig. I. Thus, the assertion (i) follows since 
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V and D are continuous mappings from Hs(F) into Hs+I(F) or 

into Hs-I(F), respectively, because V and D are pseudodifferen- 

tial operators of order minus one and plus one respectively 
o . 

(see [2], [i0], [15]). The Gardlng inequalities (2.17), (2.18) 

for V S and D S are consequences of the strong ellipticity of V 

and D, since their respective principal symbols are 

o(V) (~) = l~I -I, o(D) (~) = l~I (2.19) 

where I~I = ~ + ~2 ~ 0o By use of a partition of unity the 
2 

screen S is locally mapped to the halfspace ]R+ and therefore 

(2.17), (2.18) follow from (2.19) by standard arguments (see 

[16]). 

The first expression in (2.19) is easily obtained by 

applying the Fourier transformation to the kernel ~ in (2.6) 

yielding the Fourier transformed kernel (see [12]) 

$(~) : (l~l 2 - k2)-~/2 

having the asymptotic expansion 

3 k 4 -4 (I~12-k21 -I/2 ~ i~l-l{l + 2k21~I -2 + g l~f + --.} 
(2.20) 

for I$I > Ikl 

This expansion into homogeneous functions of decreasing degree 

in the Fourier transformed variable ~ shows that the operator 

of the single layer potential is a pseudodifferential operator 

of order -i (see also [16]). D 

PROOF OF THEOREM 2.7. From (2.17) and (2.18) follows 

that V and D are Fredholm operators of index zero from H-I/2(S)- 

into H1/2(S) and from H1/2(S) into H-I/2(S), respectively. On 

the other hand, the integral equations (2.13) and (2.16) are 

equivalent to the screen Dirichlet problem and the screen 

Neumann problem, respectively. Due to Lemma 2.1 both problems 

do have no eigensolutions. Hence the above mappings V S and D s 

are injective and therefore bijective. D 

We now come to the point of our main concern -- the 

singularity of the densities of the integral equations (2.13), 

(2.16) near the edge y of the screen S. 

The following results give the asymptotic behavior of 
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,~u] 
the exact solution [~ of the integral equation (2.13) and [u] 

of (2.16) near the edge y. The analysis here follows the pro- 
2 

cedure in [16] by (i) mapping locally S onto IR+ , (ii) applying 
2 

the Wiener-Hopf technique in the halfspace IR+ and (iii) 

patching together the local results. 

THEOREM 2.9. (i) Let  g c H3/2+~ be g i v e n .  Then 

t he  s o l u t i o n  of  t h e  i n t e g r a l  e q u a t i o n  (2 .13)  has t h e  form 

[~u] = B(s) p-I/2x(p) + ~r on S (2.21) 

w i t h  B c H�89 ~r e H�89 0 < g' < g < 1/2. 

( i i )  Let  h e H�89 be g i v e n .  Then t h e  s o l u t i o n  of t h e  i n t e -  

g r a l  e q u a t i o n  (2 .16)  has t h e  form 

[u] = ~(s)pI/2x(p) + v r on S (2.22) 

H�89 L 2 �89 ~3 /2+q '  w i t h  ~ c (y), v e (I;H (X)) n (I;L2(y)), 
r 

0 < d' < g < 1/2, where S i s  i d e n t i f i e d  w i t h  I • y, I = [0,i]. 

(Here s denotes the parameter of arclength of y, p 

C ~ corresponds to the Euclidean distance to y, X is a cut-off 

function with X E 1 for IPl < 1/2 and X E 0 for IPl > i.) 

PROOF. As a first step to prove the decompositions 

(2.21), (2.22) we discuss the halfspace case where F = ~G 1 

(compare Fig. i) coincides with the plane x 3 = 0 and S coin- 
2 

cides with IR+ given by x 3 = 0 and x 2 > 0 such that its boun- 

dary y becomes ~{i. 

Following the ideas in [16], [17] the key of our 

analysis is to consider instead of (2.13), (2.16) the following 

equations which can be solved by the Wiener-Hopf technique: 
^ 

p+V�+ = 2g, 

for given data 

g ~ H3/2+~ , 

^ 2 
p+D+v+ = -2h on IR+ 

H�89 +2 h ( ( m )  , Id l  < 112 

(2.23) 

(2.24) 

A A  

Here V(D) is the pseudodifferential operator with symbol 

(~2 + (I~iI + i)2)(~)�89 respectively, where ~i,~2 are the dual 

variables to Xl,X 2 of the Fourier transformation, p+ denotes 

2 The operators V and the restriction to the halfspace ~+. 

have the suitable form to perform the Wiener-Hopf technique 
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according to [4, w In [16], [17] we derive via the factori- 

zations V = V+V = V V+ and D = D+D = D_D+ the solutions of 

(2.23) as 

= 2 +lp+ -l g 

and 

v+ 

where V(Z) has the symbol (g2(t) i(Igll + 1)) -1/2 and D(Z ) has 

the symbol (~2(i) i(l{ll + 1)%. 

Under the assumption (2.24) we can improve the above 

decompositions to 

= ~s + %r' }~s  = 2 o ~ l i ~  l i p ' o ~ t Z g  (2.25 ~+ 
*r = O~IA~lP+A+ O[ lkg  

= -2 1 
v s 

= + v , 1 lp+~ ~ [ l s  (2 .26 v+ v s r v r = -2D~ s + 

where p' denotes the restriction to ]R 1 and i(~) denotes the 

pseudodifferential operator with symbol (~2(~)i(l~iI + i)). 

(2.26) follows ~r c H�89176 From (2.25) , ), 
~3/2+o ~ ~-i^-i ^-i^-i 

v r ~ (JR ). Since both V+ A+ and D+ A+ do not have 

the transmission property, %s and v s do not belong to those 
~-i/2 

are less regular, namely ~s E (S), spaces: ~s and v s 
v c HI/2(S). 
s 

As shown in [16], [17] with application of Fourier 

transformation we deduce from (2.25), (2.26) 

^+ 1/2 
~s(X) = b(Xl,X2)e+x2 I/2, Vs(X) = a(xl,x2)~ x 2 (2.27) 

with the Heaviside function 0+(x2 ) = 1 for x 2 0 and 
+ 

0 (x 2) = 0 for x 2 < 0. Here 

b(~l,X 2) = c exp[-x2(l + l~iI)]~({l) 
(2.28) 

a(~l,X 2) = c exp[-x2(l + l~iI)]~(~l) 

where 

:= 2p,~l~g, ~ := -2p,~l~h, (2.29) 
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and c denotes a generic constant. 

We observe that the singular terms in (2.27) are not 

tensor products in x I and x 2. We derive in [16], [17] the 

claimed decompositions (2.21) and (2.22) by rewriting the 

singular terms, for example, 

-I/2~, 
~s(~l,X2) = x2+ D~I ) + r(~l,X 2) 

-1/2 
r(~l,X2) = x2+ [b({l,X 2) - ~(~i) ] 

and studying the regularity of the remainders in anisotropic 

Sobolev spaces. Applying Theorem 1.4.4 in [16] we obtain the 

claimed decompositions (2.21)-(2.22) for the halfspace case 

S = ~2. 
+ 

In order to prove those decompositions for a smooth, 

bounded, open surface S we proceed as follows: First, we 

observe V and V have the same principal symbols. Therefore, 

they differ by a pseudodifferential operator C 1 of order -i-s 

for some s > 0. Similarly C 2 = D-D is a pseudodifferential 

operator of order l-s for some g > 0. Hence we can rewrite 

the integral equations (2.13), (2.16) as Riesz-Schauder equa- 

tions 

[I + Q-I(v-Q)]~ = 2v-lg (2.30) 

[i + ~-i (D-~) ]v = -2~-ih 

Note that due to Rellich's embedding theorem the operators 

V-I(v-v) and D-I(D-D) are compact perturbations of the identity 

on S. The detailed analysis in [16] shows that the decomposi- 

tions (2.21), (2.22) are not altered by such compact perturba- 

tions. Therefore, using standard localization techniques and 

patching the local results together completes the proof of 

Theorem 2.9. 

3. A BOUNDARY ELEMENT GALERKIN METHOD 

In this section we solve the boundary integral equa- 

2 of tions (2.13), (2.16) in finite dimensional subspaces S~'Shn 

the Sobolev spaces H-I/2(S) and HI/2(S), respectively. For con- 

formity of our boundary element method, we assume that the fami- 
1 2 

lies of finite element subspaces Sh,S h satisfy for integers t,k 
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i t-l,k-i �9 Hk-i ~-i/2 
S h = S h (S) < (S) c (S), 

(3.1) 
= ~ i  ~i12 2 -t'k(s) c ~k(s) n (S) c (S) t > k ~ i 

Sh ~h 

In agreement with our general assumption (1.4) on S 

we can assume that S is given by local representations such 

that regular partitions in the parameter domains are mapped 

onto a corresponding partition of S. On the partitions in the 
t,k 

parameter domains we use a regular (t,k)-system, called S h , 

of finite elements. Then the local representation of S trans- 

plants these finite element functions onto S. In their coordi- 

nates the finite elements appear as simple functions over the 

parameter domains. The parameters in S t'k have the following 
h 

meanings: h, 0 < h s h0, is the mesh size of the partition of S, 

for example h stands for the longest side of a triangle in a uni- 

form triangulation; t-I is the degree of piecewise polynomials 

constituting the corresponding finite element, k describes the 

t,k H k conformity S h c (S). 

Now the Galerkin procedures to (2.13) and (2o16) read 

as follows: 
st-l'k-l's" For the Dirichlet screen Problem find ~h ~ h [ ) such that 

<Vs~h'%> 2 = <2g,~>L2 (3.2) 
L (S) (S) 

st-l,k-i for all ~ c with t,k as in (3.1). 
N t,k 

For the Neumann screen problem find v h { S h (S~ such that 

= (3.3) <Dsvh'Wh>L 2 (S) -<2h'Wh>L2 (S) 

for all w h ~ s~'k(s) with t,k as in (3.1). 

The solvability of the above Galerkin equations and 
o , 

the convergence of the procedures are based on the Gard• 

inequalities (2.17), (2.18) and the uniqueness of the integral 

equations (2.13), (2.16). Application of the general results 

on the Galerkin procedure for strongly elliptic pseudodifferen- 

tial equations ([7], [18], [21], [22]) yields the following 

theorem. 

THEOREM 3 . 1 .  ( i )  T h e r e  e x i s t s  a m e s h w i d t h  h 0 > 0 

s u c h  t h a t  t h e  G a l e r k i n  e q u a t i o n s  ( 3 . 2 ) ,  (3 .3 )  a r e  u n i q u e l y  
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s o l v a b l e  f o r  a n y  h ,  0 < h -< h O. 

( i i )  For  d e c r e a s i n g  m e s h s i z e  h § 0 t h e  G a l e r k i n  s o l u t i o n s  
t , k  

~h ~ st-l'k-l(s) and  v h ~ S~ (S) c o n v e r g e  t o  t h e  e x a c t  s o l u -  
ii 

t i o n s  o f  (2.13), (2.16), ~ c H-I/2(S) and  v ~ HI/2(S). 

F u r t h e r m o r e ,  we h a v e  t h e  q u a s i - o p t i m a l  a s y m p t o t i c  e r r o r  e s t i -  

m a t  e S 

l[@-~hll_i/2,S s c inf II~-XII_I/2, S (3.4) 
~XE -t-l'k-ls h 

llV-Vhlll/2, s ~ c inf llv-Zlll/2,S (3.5) 
~ S t'k 
vc h 

w h e r e  II fir, S d e n o t e s  t h e  norm i n  Hr(s) and  t h e  c o n s t a n t  c i s  

i n d e p e n d e n t  o f  9 ,  ~ h '  v ,  v h and  h .  

Due to Theorem 2.9, the exact solutions ~,v of 

VS~ = 2g and of DsV = -2h behave like p-i/2 and pi/2, respec- 

tively, where p is the distance to the boundary y of the screen 

S, i.e., ~ is not square integrable on S. Since pl/2 ~ HI-s 

for some s > 0 the estimates (3.4), (3.5) give at most conver- 
1 

gence of order ~ - s. As in the two-dimensional case [19], we 

can improve the asymptotic rate of convergence by using so- 

called singular elements as test and trial functions in the 

Galerkin procedures (3.2) and (3.3). Thus we augment the stan- 

_t,k by special global singular dard finite element spaces s h 

elements according to the form of the exact solution given in 

Theorem 2.9. This gives the augmented finite element spaces 
,i/2 �9 z3/2 
~h (S) -h (S) on S: 

zl/2 t',~ ~t-l,k-l(s 
h (S) := {~ = ~r + ~ p-I/2X: ~ e Sh (Y)' ~r e h )} 

(3.6) 
.3/2 zpl/2 X t',i o ,k(s 
~h (S) := {Z = Z r + : ~ c S h (y), Zr E S )} 

t',i H 1 Zt-l'k-l(s) c Hk-I(s) nHI(s); where Z,~ E S h (y) c (Y); ~r c s h 

v c ~ H k ~2 ~r S h (S) c (S) n (S). (3.7) 

with t' > Z a i; t',Z e ~ and t,k as in (3.1). 

The inclusions (3.7) yield t ~ 3, k a 2, i.e., the 

simplest conform elements are continuous piecewise linear, one- 
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+ 
dimensional elements ~,~ on y, piecewise linear elements ~r on 

C 0 S with ~r ~ (S) and piecewise quadratics Zr on S with 

v c CI(s) satisfying on y 
~r 

~rV - ~x I V~r - ~x 2 V~r = 0 and ~%r 0 on y. 

�89 3/2+d 
If we introduce the notation Z , Z for the set of all 

distributions having the form (2.21), (2.22) with the assigned 

regularity in Theorem 2.9, and with ~ c H3/2+~(7) then there 

holds the following conformity for the augmented finite element 
.1/2 .3/2 

spaces ~h (S), ~h (S) in (3.6): 

ZI/2 h (S) c Z �89 c ~-I/2(S) 
(3.8) 

.3/2 Z3/2+~(S ~i/2 and ~h (S) c ) c (S) 

Our improved Galerkin schemes now read as: 

8hp-i/2x r 1/2 For the Dirichlet screen problem find ~h = +~h ~ Zh (S) 

such that 

= <2g,~>L2 (3.9) <Vs~h'~>L2(S) (S) 

for all 9 : ~@-I/2x + ~r ~ Z~/2(S). 

~hpl/2x r ~3/2 For the Neumann screen problem find v h = + v h c ~h (S) 

such that 

<D v. ,v> . = - <2h,W>L2 (3.10) 
s n ~ Lz(S) (S 

~3/2 for all w = ~pl/2 X + Z r ~ ~h (S). 

Now the above Galerkin equations with test functions 
.3/2 ~i/2 

e ~h (S), ~ c ~h (S) define quadratic systems of linear 
t',Z 

equations for the unknown coefficients of ~h,Bh e S h (y), 

vhr < S~ and ~hr e ~t-l,k-l._h Is). There holds the following 

result : 

THEOREM 3.2. (i) T h e r e  e x i s t s  a m e s h w i d t h  h 0 > 0 s u c h  

t h a t  t h e  G a l e r k i n  e q u a t i o n s  ( 3 . 9 ) ,  ( 3 . 1 0 )  i n  t h e  a u g m e n t e d  
~i/2 .3/2 

f i n i t e  e l e m e n t  s p a c e s  ~h ( S ) ,  ~h ( S ) ,  a r e  u n i q u e l y  s o l v a b l e  

f o r  any  h ,  0 < h ~ h O. 

+~r is a linear polynomial in two variables on each triangle of 

a quasi-uniform triangulation of S. 
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( i i )  For d e c r e a s i n g  m e s h s i z e  h § 0 we have  f o r  t h e  e x a c t  s o l u -  

t i o n s  @ of  ( 2 . 1 3 )  and v o f  ( 2 . 1 6 )  and f o r  t h e  G a l e r k i n  s o l u -  

t i o n s  

r ~i/2 ehpl/2 r .3/2 
9h = @h P-I/2x + @h ~ "'h (S) , v h = X + v h { ~h (S) 

of  (3.9), (3.10) 

ll~-~h -I/2,S 

llV-Vh I/2,S 

< ch I+~ 
-< c i n f  I I ~ ' n l l _ l / 2 , s  - l l ~ l t z m + O ( s  ) , 

BeZ I/2 (S) 

(3.11) 

< ch l + a  
c< ~zi)~(s )llv-~lll/2,s llVllz3/2+O(s ) 

The a r i s i n g  norms are  d e f i n e d  v i a  t h e  n o t a t i o n  i n  Theorem 

lq, denotes the Sobolev norm in Hq(~)) : 3.1 as f o l l o w s  ( II'I 7 

I1~•  + vrllq, s , g ~ q < 1-~,~>O arbitrary 
llvll :: 

IIq, Iq,s 3 zq(s) II~ ~ + llvrl , 1 ~ q ~ ~+ o. (3.12) 

I e p-i/2 I 1 < 
If- ~ + @r Ip,S ' - 2 - p < -s' 

II~l P(S) llal y + ll%rl , 0 -< p -< ~ + ~. Ip, Ip, s 1 

PROOF. (i) By the inclusions (3.8) the augmented 

Galerkin schemes (3.9), (3.10) are uniquely solvable for small 
O7. 

enough h since the Garalng inequalities for V and D hold in 
s 

the respective energy space H-1/2(S) and ~i/2 S). Furthermore, 

the integral equations (2.13), (2.16) are uniquely solvable in 

thos spaces. 

The estimate in (ii) is a consequence of Theorem 3.1 

due to the conformity (3.8) and of the following convergence 

property (3.13), (3.14) of the augmented finite element spaces 
Z3/2 ~I/2 
h (S), ~h (S). D 

LE~@~ 3.3. The f i n i t e  e l e m e n t  s p a c e s  ~h~3/2 (S), ~h~i/2 (S) 

Z s have  t h e  a p p r o x i m a t i o n  p r o p e r t i e s :  For any U = ~/PX(P) + v r ~ (S) 
~3/2 t h e r e  e x i s t s  a u = Z/PX(P) + r e ~h (S) w i t h  t ~ s and a 
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c o n s t a n t  c > 0 i n d e p e n d e n t  o f  h and U s u c h  t h a t  f o r  q smin{k,s} 

1 
v -- -- -- ilu-Diizq(s ) _< ch s-qliullzs(s ) ~ < q < s < 2-~ (3.13) 

For any ~ = $@-I/2x(@) + ~r e Zs' (S) there exists a 
= ~p-i/2 X(P) + ~r e Z I/2 

~ ~ h (S) w i t h  t-i -> s' and a c o n s t a n t  

c > 0 i n d e p e n d e n t  of  h and ~ s u c h  t h a t  f o r  q '  < m i n { k - l , s ' }  

_ ! 

l i~ -~ i l  ~ ch s q il~il (3.14) 
z q' (s) z s' (s) 

PROOF. For Idl < 1/2 and arbitrary s > 0 there holds 

with S substituted by I • 7, I = [0,i], 

ii~-(~-Z) iIL2(I,H�89 O(Y)) 

ii/P(a-Z) I[H�89 2(Y)) 

< c li~-~ll %+o(7) 

< c II~-~Ji 
H ~ (7) 

(3.15) 

1 The estimates (3.15) imply for ~ -< q < l-s and l-s -< s < 2-s 

with (3.12) and the triangle inequality 

-< ilr liq,S + llVr-vrlIq S llu-~il zq(s ) 

_ + liVri I } < chS-q{ (l+hq-s) iI~IIs,y s,S 

< ch s-q iluli (3.16) 
z s (s) 

H~ and Here we have used ile-~IIHq(y) -< ch s-q IIel s(y) 

ilVr-vrieq,S _< ch s-q liVrIls,S which hold by the standard approx- 

t',Z ~ 
imation property of S h (y) and S h (S), respectively [21]. 

For 1 -< q -< s -< 3/2 + (~ we have with (3.12) 

= H~-~li + ilvr-vrll liu-~ii zq(s ) q,y q,s 

_< chS-q( Ilc~Jis, 7 + liVrils,s ) 

: ch s-q lluli 
zS(s) 

For s < I-E we take U = v r c s~ in (3.16) completing 

(3.13). The estimate (3.14) holds analogously. Finally we 



Stephan 255 

note that the estimates (3.15) are verified as in the proof 

of Theorem 1.4.4 in [16]. And for completeness we recall from 

[!i] for any real number s a 0 

, H s L 2 Hs(I • y) = {U: u e L2(I;HS(7)) u ~ (I; (y)) }, 

with the equivalence of norms 

2 
IIull 2 ~ IrUllL2 + flull s 

HS(I• (I;HS(y)) ~ (I;L 2 (y)) 

Finally, we remark that for problems in acoustics we 

have in (1.2) 
~u. 

1 
g=-u., h 

1 ~n 

where u. denotes the incident field with a source away from 
1 

the scattering screen S. Therefore the given data for the scat- 

tered field u in (1.2) are infinitely smooth. In this case the 

proof of Theorem 2.9 (compare (2.25)-(2.29)) shows that the 

unknowns in our integral equations (2.13), (2.16) have still 

the form (2.21), (2.22) but with smooth line layers ~,8 c C (7) 

for a smooth edge curve y. Following our above analysis we 

expect further improvement for the Galerkin method if further 

singular elements :like p3/2,p5/2- ,... are used. This is indi- 

cated for the two-dimensional case in [19]. For an analysis of 

errors arising from a finite element approximation of the screen 

surface S we refer to [13]. 
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