
Probab. Theory Relat. Fields 102, 455- 509 (1995) 

Probability 
Theory and Related Fields 

�9 Springer-Verlag 1995 

Large deviations for Langevin spin glass dynamics 

G.B. Arous 1, A. Guionnet 2 

1 URA 762, CNRS, DMI, Ecole Normale Superieure, F-75230 Paris, France 
2 URA 743, CNRS, Bat. 425, Universit6 de Paris Sud, F-91405 Orsay, France 

Received: 27 January 1994/tn revised form: 1 February 1995 

Summary. We study the asymptotic behaviour of asymmetrical spin glass 
dynamics in a Sherrington-Kirkpatrick model as proposed by Sompolinsky- 
Zippelius. We prove that the annealed law of the empirical measure on path 
space of these dynamics satisfy a large deviation principle in the high tem- 
perature regime. We study the rate function of this large deviation principle 
and prove that it achieves its minimum value at a unique probability mea- 
sure Q which is not markovian. We deduce that the quenched law of the 
empirical measure converges to 6Q. Extending then the preceeding results to 
replicated dynamics, we investigate the quenched behavior of a single spin. 
We get quenched convergence to Q in the case of a symmetric initial law and 
even potential for the free spin. 
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1 Introduction 

The Sherrington-Kirkpatrick model is a mean field simplification of the spin 
glass model of Edwards-Anderson. The behaviour of its static characteristics 
such as its partition function has been intensively studied by physicists (see 
[9] for a broad survey). There are few mathematical results available (except 
for [1,3, 17]). 

In [9], it is argued that studying dynamics might be simpler since it avoid- 
susing the "replica trick" and the Parisi ansatz for symmetry-breaking which 
are yet to be put on firm ground. It seems that, in the physics literature, 
the first attempt to study the dynamics of Sherrington-Kirkpatrick is due to 
Sompolinsky and Zippelius (see [16]), who chose a Langevin dynamics scheme. 

We follow here this strategy with some technical restrictions explained 
below. 

Our aim was to understand Chap. V of [9] from a mathematical point of 
view. 
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Roughly speaking, the first conclusion to be drawn from [9] is that the 
limiting dynamics are not markovian and seem rather mysterious. One of our 
goals is to derive the law of those dynamics by means of a large deviation 
principle. 

Our approach builds upon the strategy developed for a much simpler mean- 
field dynamics problem; i,e. the large deviation approach to study propaga- 
tion of chaos for mean field interacting diffusions, and subsequently conver- 
gence to McKean-Vlasov dynamics (see [2,4, t5, 18]). To be more specific, 
let us recall that the Sherrington-Kirkpatrick hamiltonian is given by Hj(x)  = 
1 Ei,jJijxiXj, for x = (xl , . .  ,Xx) ~ {-1 ,  1} N, where the randomness in the ,/~ 
spin glass is here modelled by the (J/j)i=<j which are i.i.d, standard centered 
gaussian random variables, and where Jij = Jji. The Gibbs measure one would 
like to study (for N large) is given by 

e-~Hj(x) 

1 where c~ = g(g t + ~ ) and fi is the inverse of temperature. 
ZN(J) is the partition function: 

1 
ZN(J)  = ~ ~ e -/~HJ(x) �9 

If one replaces the hard spins { - 1 , + 1 }  by continuous spins, i.e. by spins 
taking values in IR, or as we shall see in a bounded interval of IR, and if one 
replaces the measure ct = �89 + c51 ) by ct = e-2C/(x)/f e -2~(x)dx dx, where U 
is, for instance, a double well potential on IR, then, the Langevin dynamics for 
this problem are given by 

VV( S)dt E Jj   dt, 
~/N l<_i<_N 

(1) 

where B is a N-dimensional brownian motion. 
We want to understand the limiting behavior (for large N) of this system 

of randomly interacting diffusions. 
We will need two simplifying features: 
First, we will study only bounded spins, i.e. we will assume that U(x) 

is defined on a bounded interval [ -A ,A]  and tends to infinity when Ix[ ~ A 
sufficiently fast to insure our spins xJ stay in the interval [-A,A] .  

The second simplifying feature is that we will assume that the whole matrix 
(Jij)i,j is made of i.i.d N(0, 1) random variables and we will not impose the 
symmetry Jij = Jji. 

1 N Our first goal is to study the empirical m easu re  ~N ~_ N E i = I  (~x i on path 
space. There is no reason for this to be a simple problem, since, for fixed 
interaction J,  the variables (x ~ . . . .  ,x N) are not exchangeable. So, we first study 
the law of the empirical measure ~X averaged on the interaction. 

The main result of this paper is a large deviation principle for this averaged 
law in a large temperature (or short time) regime fi2A2T < 1 which entails the 
convergence of the empirical measure to the unique minimum of the good 
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rate function which governs this large deviation principle. This minimum is a 
probability measure, say Q, on path space that we describe explicitly as the 
law of a non-markovian, highly non-linear, solution of a stochastic differential 
equation. The existence and uniqueness problems for this limit law are not 
obvious and are the analogue here of the existence and uniqueness problem 
for McKean-Vlasov diffusions in the mean field interacting diffusion context 
as obtained in [14]. 

As a consequence, we show that the quenched law (i.e. the law with given 
interaction) of the empirical measure converges exponentially fast to 6Q in 
the high temperature (or short time) regime. In particular, if ~2A2T < 1, Q 
describes the asymptotic mean behavior of spin glass dynamics since, for 
any bounded continuous function f on W A, for almost all J ,  for almost all 
( xi )1 <=iNN, 

N 
1 xi 

lim ~i_~lf ( ) :  f f d Q .  

Since the variables (x ~ . . . .  ,x N) are not exchangeable, this result is not enough 
to get convergence for the quenched law of a single spin. Thus, we investigate 
the quenched behavior of a single spin using replicated systems and get only 
very preliminary results. 
It might well be that the model we have chosen is unnecessarily complicated. 
The diffficult features are here due to the fact that we are working in continuous 
time, and on a continuous spin state space with boundary problems. The same 
study on discrete space, or compact manifolds, is of course possible and might 
be easier and more transparent. 

The organization of the paper is as follows: 
We give the notations and the results in Sect. 2. 
In Sect. 3, we establish a large deviation principle for a time discretization 

of the system, which represents only a necessary technical step. 
In Sect. 4, we get from Sect. 3 the full large deviation principle in the high 

temperature (or short time) regime. 
In Sect. 5, we study the minima of the rate function which governs those 

large deviations results, show their uniqueness, and give a pathwise non- 
markovian description of this probability measure on path space. 

Finally, in Sect. 6, we introduce replica to get a first understanding (in 
tune with [9]) of the nature of this limit law and also to get some preliminary 
quenched results. We thank gratefully the referees for their very competent 
reading and their suggestions. 

2 Statement of the results 

We begin by describing the system of randomly interacting diffusions we want 
to study. 

Let A be a strictly positive real (A > 1) and U be a C 2 function on the interval 
] - A , A [  such that U tends to infinity, when Ixl ~ A, sufficiently fast to insure 
that 
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lira kv(x) = + o o ,  
ix] ~A 

< 

where ku(x) = 2 Jo x e x p Z U ( y )  (fY exp - 2U(z)dz )  dy. 

Remark.. We can take U(x) = - log(A z - x2). 
For any number N of  particles, any temperature ( =  ~) and J = (Jij)l<-iO<=u C 

]R Nxx, w e  consider the following system 5~r  of  interacting diffusions: 

7 ~  ~ J jixt J ~ ( J )  = f d g  = - v U ( g ) d t  + dBjz + vlv fl i=lu i dt V1 < i <_ N ,  

Law of  x0 = ]-to QN , 

where (BJ)I<=j<=N is a N-dimensional brownian motion and /~0 a probability 
measure on [-A,A] which does not put mass on the boundary { - A , + A } .  

Proposit ion 2.1 For each J E IR N| r (J) has a unique weak solution. 

In the following pages, we shall focus on the evolution of  this system until 
a time T. We will call PJ(J )  the weak solution of  oo~ restricted to the 

a-algebra a(x~, 1 < i <_ N, s <= T). 

Proof o f  Proposition 2.1. Proposition 2.1 is a direct consequence of  Girsanov 
theorem and of  the following very classical lemma (see [13, p. 357] (Criterion 
for explosions)). 

L e m m a  2.2 Let (F,(~t)t>=o,q/,p) be a probability space on which a brow- 
nian motion (Bt)t>o lives. Then there exists a unique strong solution to the 
stochastic differential equation (5~): 

d& = - V U ( x t ) d t  + dBt , 
(50) = Law of  xo =I*o. 

Moreover, ifT~=inf{s/[xs[ =>A-e} .  ThengT, P(T~ =< T) =< l+~v(A-~)'exPr SO 

that P (lim~,0 T~. = +oc )  = 1. 

Notation. We shall note P the law of  this solution restricted to the a-algebra 
~ r  = a(xs,s <= T). Lemma 2.2 implies that P is a probability measure on the 
space W~- of  continuous functions on [0, T] with values in [-A,A]. 

As a consequence, Girsanov theorem shows that, for any J E ]R N| P~J(J) is 

a probability measure on (W A)N. 

1 ~ U  (Sxi , under We want to study the behaviour of  the empirical law ~N = ~ i=1 
PJ(J) ,  when J is a random matrix with independent standard centered gaussian 
entries (Jij ~ N(0,  1)). 

We will first study the law of  ~N averaged on J ,  and then deduce some 
quenched results, i.e. the results we can find for a given interaction (or disorder) 
shape (i.e. the J almost sure properties). 

More precisely, let (~ ,  ~q', y) be a probability space and J/j be i.i.d random vari- 
ables on (2 such that the J~j are, under 7, standard centered gaussian variables. 
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We first remark that P~(J)  is a measurable function of J ,  indeed Girsanov 

theorem shows that P~(J)  is absolutely continuous with respect to p| and 
that: 

i / } 
d p |  fifo ~ E  Jjixt d B ~ - 2 f ~ - ~ i ~ - - 1 J j i x t ) d t  

j=l 

and it is obvious that this density is a measurable function of J .  
Hence, we can define a probability measure Q~V on (Wr A)N by 

Of = f P ~ ( J ( o ) ) d ? ( o ) .  

L e t / / ~  T be the law of the empirical measure under Q~.//~, r is a probability 

measure on the set ~ ( W r  A) of the probability measures on W A which is 
defined by 

M~,T(B ) = O~(-fiN C B) 

= fP~(J(co))(~ N E B)dy(o)  

for any measurable subset B of ~(+(WA). 

The main result of this paper is: 

Theorem 2.3 There exists a good rate function H on ~/~+(W A) such that if 
~2AZT < 1, II~, T satisfies a full large deviation principle with rate function 
H, i.e: 

For any open subset 0 o f  ~ + ( W  A) lira 1 logf/~,r(O) > - i n f H  
N~cx~ N = o 

1 log//~, T(F) < -- inf H For any closed subset F of  ./d+(W~) Nlim ~ , g 

A complete description of  H is given in Sect. 4, Theorem 4.1. 

The proof is given in Sect. 4, Theorem 4.1, after a preliminary study in Sect. 3 
of a time discretized version of the dynamics. 

To get a convergence result for//~, T, we need to investigate the minima of H. 

Theorem 2.4 H achieves its minimal value at a unique probability measure 
Q on W A which is implicitly given by the following procedure: 

Let P(h) be the law of  the diffusion on W A solution o f  

dxt = - V U ( x t ) d t  + dBt + flht dt ,  

Law oJ xo = #o 

for a determinist process h in L2([0, T], dt). 

Then, Q satisfy the non-linear equation 

Q = fP(G(co)) dTQ(CO), 
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where ~/Q is the law of  a centered gaussian process G with covariance 

f G G  dyQ = fx,x~ dQ. 

We can elucidate the non-markovian character of Q by 

Theorem 2.5 Q is the unique solution of  the stochastic differential system: 

( t 

xt = Xo - f VU(xs) ds + Bt,  
0 

t s 

B, = W~ + B2 f f~;~(s,u)dG ds, 
O 0  

KQ (t,s) = fxtxs dQ(x) ,  

Law of  x = Q, Qlyo = l~o, 

where (Wt)t>=o is a brownian motion under Q, and, for any continuous covari- 

ance K on [O, T] 2, for any t < T, K t is the covariance given by 

f exp  ~: t 2 {-T fo 
Kt(s, u) = 

where G is, under 7K, a centered gaussian process with covariance K. 

Theorems 2.4 and 2.5 are proved in Sect. 5. 

As a consequence, one finally gets the propagation of chaos result: 

Theorem 2.6 (1) I f  fi2A2r < 1, then II~, r converges weakly to OQ ie. 

1 N 

(2) 

In particular, i f  f E Cb(W~), 

lim f ~ f(xi)P~(J(oJ))(dx) dv(oJ) = f f (x)dQ(x) .  (3) 
N--~oo 

(2) As a consequence, if B2A2r < 1, Vk ~ N,  V(f~ ..... f~) ~ Cb(W;)L 

k 

lim f (ff~(xl)...fg(xk)P~(J(co))(dx)) dT(e)) = l-Iffi(x)dQ(x). (4) 
N--+oc: i = l  

The proof of Theorem 2.6 is very classical, its main arguments are recalled in 
Appendix C. 

Of course, one can deduce from Theorem 2.3 that the quenched law of the 
empirical measure satisfies a large deviation upper bound, i.e.: 
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Theorem 2.7 There exists a 9ood rate function H such that if fl2A2T < 1, 
for any closed subset F of ./~+(wA), for almost all J, 

lim 1 N ~  N logP (j)(-fiN C F)  =< - in fH.F  (5) 

The proof of Theorem 2.7 relies on Borel Cantelli lemma and is given in 
Appendix C. 

A consequence of Theorems 2.7 and 2.4 is that the quenched law of the em- 
pirical measure converges exponentially fast to 6Q so that: 

Theorem 2.8 I f  fi2A2T < 1 
(1) For any bounded continuous function F on J/+(W~), for almost all J, 

lira fF(~fi N) dP~(J) = f f dQ.  
N --* c~z 

(2) For any bounded continuous function f on W~, for almost all J, for 
almost all ((xi)l <=i<=N )Nc~, 

N 
1 xi lim ~.__~f( ) =  f f d Q .  

N - - + ~  

Theorem 2.8 is proved in Appendix C. 

Since P~(J) is not exchangeable, we cannot deduce from Theorem 2.8(1) that 

P~(J) is Q chaotic as in Theorem 2.6. Thus, we introduce replica to get a 
better understanding of the quenched asymptotic behavior of a single spin. 

We will identify in Sect. 6 a gaussian external magnetic field H and a 
probability measure PH on W~ which depends on H such that: 

Theorem 2.9 For any integer r such that rfl2A2T < 1, for any functions 
0 A ( f l , - - - , f ~ )  E c~b(W~) 

(m )r m 
f fi~=fi(xi)pJ(J(~ dY(~ 6~H [ ( f f i d P , )  r] , 

where gu denotes the expectation on the gaussian process H. 

The law of H and PH are described in Sect. 6 as the unique solution of the 
following non-linear procedure: Let (H, G) be two independent centered gaus- 
sian processes and denote •H (resp. 6 ~a) the expectation over H (resp. G). For 
f in L2([0, T]), let P( f )  be the restriction on [0, T] of the law of the diffusion 

dx, = -VU(x t )d t  + dBt + f l f ( t )dt  
Law of xo =/Zo. 

Then, the covariances of (H, G) are defined non-linearly by 

eG[ c,c ] = e "  c [ f dP( a + H)] 

_ g~i [gG [fx~dP(G+H)] ga [fxtdP(G + H ) ] ]  , 

g;4[HtHs] = ~ H  [~G [ fXs  dn(G + U)] ga [fxt dP(G + H)]] . 
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Finally PH is given by 
PH = E~ + H ) ] .  

Theorem 2.9 enables us to prove that, in general, P~(J)  is not Q chaotic but 

that, if U is even and #0 is a symmetric law, P~(J)  is Q chaotic in the 
following weak sense: 

Theorem 2.10 Suppose that 2f12A2T < 1, that U is even and go is a symmetric 
law. Then, for  any times (t l , . . . , tk)6[O,T] k, there exists a subsequence 

(X  1 X 1 (Np)p>=o such that, for  almost all J, for  any integer m, the law of  ~ t~ . . . . .  tk, 
xm . xm  Np . . . .  tl . . . .  t~ ) under P/~ (J) converges to the law of  (X]l ' "' ' , 'X ltk,..., X mtl,...,xtk 

under Q| when p tends to infinity. 

A more detailed result is given in Sect. 6. 

3 A technical step: large deviation principles for discretized systems 

As mentioned at the end of  Sect. 1, we prove here a large deviation principle 
for the measures / /~,r  after a time discretization. In this section, an integer n 

will be fixed. We introduce a version y ~ , n ( j )  of  the stochastic system 5P~(J)  

where the interaction has been discretized in time. Let A n = {0 = to < tl . - .  < 
tn+l = T} be a partition of  [0, T] and define 

{ dx~ = - V U ( g ) d t  +dB~t + ~ J j i x ; ( n ~ d t  , 1 <= j <= N ,  
~ N  n ~ / N  i=l 

/~' ( J )  t (n) = sup{tk 6 A"/tk < t} ,  

Law of  x0 = peon �9 

As in Proposition 2.1, it is clear that @N,~(j) has a unique weak solution for 

any J 6 IR uxN. We will denote p; ,n( j )  its restriction to (wA) N. 

We will call Q;,n the probability measure on (wA) x defined by 

Q;,n = f p;,n(j(co) ) dT(e)) ' 

N, n N, n Let finally H~, r be the law of  the empirical measure under Q~ . 

V A C ~ ( j { + ( w A ) ) ,  Nn N,n ( 1 ~ = ,  ) nr = Qr162 ~ 6xp c A . 

N,n TO state the main result of  this section, i.e. a large deviation principle for H~, r, 
we first introduce the rate function. 

Recall here that P is the law of  the diffusion process solution of  

{ xt = - V U ( x t ) d t  + dB,, 0 <_ t <_ T 
Law of  xo = /~o .  
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If # C ../g+(wA), let I(#IP ) be the relative entropy with respect to P, i.e.: 

I(#lp)  = { f log dd-~pd# i f # < <  P ,  

+oo otherwise. 

And define 

logfexp fl Gt~(co)(Btk+t-Bt~)(x ) 
= 

k=O 

where G is, under ~K~,, a centered gaussian process with covariance K~(s, t) = 

fxsxt d#(x) and Bt(x) = xt - xo + fo VU(xs)ds. 

We then define, for # E ~+(WTA), 

f< I ( # ] P ) -  F"(#) if I(#]P) < oc, Hn(#) 
l +oo otherwise. 

The aim of this section is to prove the following large deviation theorem for 
the discretized systems. 

Theorem 3.1 
(1) H n is a good rate function, i.e. VL > O, {H n < L} is a compact set. 

X,n satisfies a weak large deviation principle with rate function H ~. (2) II~, T 

N,n satisfies a full large deviation principle with rate (3) I f  fl2AZT < 1,111, r 
function H ~. 

We first give another description of F" for which we need some prelim- 
inary notations. 

We recall that, for any probability measure # on W A, we define the covariance 
KI~ by 

K,(s, t) = fx ,xt  d#(x) .  

Moreover, for any t < T, we define a map i t," in the set of covariances (i.e. 
of symmetric positive kernels) on [0, T] x [0, T] such that, for any covariance 
K, ~t, ,  is given by 

f _ s  FiG2 ds~ 
Kt'"(s, u) fG~G~ exp/. 2 ao ~(.) dvx 

f e x p {  -f12 ft~2 ds}dTK 2 30~s(n) 

fd~x exp { -  ~2 w,~,~2 ~t A t -- TT_~0,Jtkt k+l tk A t ) j  

In particular, for any probability measure # on WT A, for any t < T, we denote 
= ; , , o ( K . ) .  
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We remark that, for any probability measure p on W A, for any s, t < T, 
[~t'n(s,s)[ < IK~(s,s)[ (see the proof in Appendix A, Lemma A.5), so that 

the covariance K-~t,n is bounded by A 2. 
Let 

f12 n G 2 09 tk ) } ,k( )(tk+,-- dVK~,(~) 

n B 2 
f12 (~oGtk(O))( tk+l(x) Btk(x)) ) d?fr , , (co)d#(x)  F~(~) = ~ f f o 

Standard gaussian calculus gives (see Neveu [10, Proposition 8.4]): 

Property 3.2 
C"(~) = C~(~) + r~(~) .  

Notation:In short, we shall write 7~ for 7/c,. 

In order to prove Theorem 3.1, we first study the continuity properties of the 
applications F~ and F~: 

We will denote d r  the Vaserstein distance on J//[(wA), i.e. 

Ix,- 
1/2 

k t<=T J 

The infimum being taken on the laws ~ with marginals v and/t .  
d r  is a distance on JC/+(W A) which is compatible with the weak topology (see 
[6, Theorem 2]). 

Lemma 3.3 
(1) F~ is a bounded Lipschitz function from ( Jd+(wA),dr )  to (IR, I [). It is 
therefore continuous. More precisely: 

(a) -�89 < r~ < O. 
(b) There exists a positive constant Cr, depending on T but not on n, 

such that: IF~(/~)- F~(v)l < Crdr(/~, v). 
(2) F~ is lower semi-continuous. 
(3) F ~ < I(IP ), i.e. H" is positive. Hence F ~ is finite whenever/(I P) is. 
(4) There exist real constants ~ < 1 and ~ > 0 such that F ~ < ~I(IP ) + q. 

T 2 n Proof We recall here that t (") = sup{tk/tk < t} SO that fo Gt(,)dt = ~k=0 
G~ (t~+l - tk ) for instance. 

Proof o f  Lemma 3.3(1). By Jensen inequality 

} f t~2 FG2 F]'(/O = logfexp . [ - ~ t ,  3o t(,,)dt d7u 

1 2 { i  2 } 1 2  { i  } x 2 dt dl~ 

=> -~B2A2T 
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So that 

Moreover 

-~fi2A2T <= F~(#) < 0 V# E dd+(W]). 

trT(u) - rT(~)l = log (1 + 
fexp { - ~  f2G2t(.) dt k d(vu-  7v)~ 

fexp{-~froG2t(~)dt } dv~ ) 
< el~2[ ~2A2T 

Let ~ be a probability measure on 

Then 

f12 T dt} 
f e x p { - - f  foG~,) - d(7~- yv) �9 

W A x Wr a with marginals v and #. 

Ke(s, t) = ( fx~xt d~(x, y) fx~y, d~(x, y) 
- k, fxty~ d~(x, y) fY~Yt d~(x, y) ./ 

defines the covariance of a bidimensional centered gaussian process (G, G'). 
Remark that the law of G (resp. G') is 7u (resp. Yv) and denote 7~ the law of 
(G, G'). Then 

f12 r 2 - 7v) 
fexp - 7 fo Gt(,) dt d(y, 

f {exp ( fi2 r 2 = I - -T foGt (n )  d t  } ( fi2 T ,2 - exp l - -~ foGt ( . )d t } }dT~  

f12 r 
<= Trio ]G,  - a;(5~l dta~ 

f12 ( i )1/2 
=[[i f (at(.) , 2 <= T e-- 1 -}- 8G t(, )) dt d7~ 

by Cauchy-Schwarz inequality. 
But 

T T t 2 f f  (Gt(.) + G,(.)) dtdTr = f f  (x,(.) + y,(.))2 et<(x,y) <= 4A2T, 
0 0 
T T 

f f  (Gtr , 2 - -  at(n) ) dt dT~ = f f(x,(.~ - Y t ( n ) ) 2  dt d~(x, y).  
0 0 

Hence, 

( i )1/2 IrT(~) - rT(v)l =< fl2Av~expl fl2A2T f (xt(.) -- yt(.)) 2 dtd~(x, y) 

(6) 
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So that, taking the infimum on the measures ~, we find 

,U~(#)- F~(v), < {fi2AT exp ~fl2A2T } dr(# ,v) .  

Proof of Lemma 3.3(2). We define 

T 2 

rg~4(#)= f f  (foGt(,)(co)dBt(x)) AMd7~r,.(co)d#(x). 

We state in Appendix A, Lemma A.5, that p ---+ ~-~r,n is Lipschitz for the weak 
distance so that it is continuous for the weak topology. Hence # ~ 7~r,, is 

continuous for the weak topology. 

But (co, x) ---+ Gt(,,~(co)dBt(x ) AM is a bounded continuous function. 

Therefore, F~ 'M is continuous from ~(+(W A) into IR. 
Finally, by monotone convergence theorem, when M grows to infinity, F~ 'M 
grows to F~, so that F~ is lower semi-continuous. 

Proof of Lemma 3.3(3). Let 

F~(x)= logfexp {fiiGt~,dB,(x)- fl2 r 2 ~fG,( , ,dt}  dye. 

It is well known (see [5, Lemma 3.2.13] for instance) that 

,og,exp    

so that, by bounded convergence, for any bounded measurable function q~ on 
WA, we have 

f ~b d# - log f exp ~b dP <_ I(p]P).  (7) 

For instance, if we define, for a positive real number M, 

FM(x)=l~ (MAexp{flfor Gt(")dBt(x)-T f r G2t(.)dt})dy~' we find 

that, for any positive real number a, 

afFM(x)g(dx) < I(~IP) + logfexp aFM(x) dP(x). 

So that monotone convergence gives 

afF~(x)#(dx) < I(#]P) + logfexp aFv(x) dP(x). (8) 

By Jensen inequality, Va > 1, 

fexp aFu(x)dP(x) < f f e x p  aft G,(.~ dBt(x) - a G}.~ dt dP(x)dy,,. 



Large deviations for Langevin spin glass dynamics 467 

But, under P, Bt is a brownian motion and 

T (a2f12 T 2  exp } 
so that, ga > 1, (8) implies 

afFu(x)d~(dx ) < I(#]P) + logfexp {(a  2 _ a)_f  fo Gt(.) dt}  dTv (9) 
T 

We have chosen F~ so that F"(/~) = fFu(x)t~(dx); letting a = 1 in (9) proves 
that F" < I(IP). 

Proof of  Lemma 3.3(4). According to Lemma A.3(2) of the Appendix, if 
b = (a 2 - a)flZA2T < 1, we can find a finite constant c such that 

{ a)flZfa2,(n~dt~ < exp cb, f exp  (a 2 -  2 0  t j d T ~ =  

so that, (9) becomes 

1 cb 
F"(/,) < - I ( # I P ) + - - .  [] 

a a 

To circumvent the fact that F~ is not continuous, we approach this function by 
linear applications 

Lemma 3.4 Let v be a probability measure on W A. 
(1) Define F" �9 d//+(W A) --~ IR + by 2,v ( )2 

f12 n B 
r~,v(u) = T f f  ~oG,k(co)(tk+l(X)--Btk(X)) d~,T,n((.o)Eu(x ) . 

Then, there exists a constant CT, such that, for any integer n, 

Ir~(u) - FL,(u) I =< Cr(1 + I(l~[P))dr(p, v). 

(2) Let F~(p) = F~(v) + F~,,,(p). Then we can define a probability measure 
Q~ on W A by 

dQ~(x) = exp F,~,(bx) dP(x) (10) 

{ T f12T 2 } 
= fexp  fifGt~.,dB,(x ) -  ~ f G t ( . , d t  dy~dP(x).  (11) 

Then, the relative entropy, I(IIIQ~), of  t~ with respect to Q~, is equal to H~: 

/t7 �9 ~ + ( W ) +  [0,oo1 

f I ( ~ l P ) - r ~ , ( ~ )  / f I (# lP )  < oc, #--+ 
/ 
t +oo otherwise. 

As a consequence, H,", is lower semi-continuous. 
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Proof of Lemma 3.4(1). 

f l 2 ( i  )2 r~(,,) - r L ( # )  = T f . (  O,(,,)dB~ d(~,Zj,,, - ~Z(.o)d~. 

Pick, as in the proof of Lemma 3.3(1), a probability measure { on Wr A x W~ 
with marginals # and v and let 2~. be the law of a bidimensional centered 
gaussian process (G, G') with covariance K~. 

Let 

At(G ) = 
f _l~ 2 rr G 2 dt'l. exPl. 2.10 tt,) J 

fexp-f-/~2 FTG2 dt} " I. 2 a0 too d?e 

Then 

= T At(O ) Gt(~)dB, 

<= f f lAt(G) - At(G')I G,(,) dBt 

-at(G') (iG;(n) dBt) 2} d~{dlA 

2 
dye- ct~ 

Let 

fi2 n I f z dBt + T f f A T ( G  ) (G,(n) + G,(.)) i (  - ) dB, + .  
Gt(.) GI(.) dy~ 

(12) 

2 
B1 ~- f f l A t ( G ) -  At(G')I G,(,)dBt dyedl~, 

) ) 9 2 = Te__I]I fAt(G') 2 (Gt(n) +8G;(,,))dB t d'ye-d}l 

If we apply Cauchy-Schwarz inequality in the second term of the right hand 
of (12), we find that 

[ r ~ . ( ~ ) - - C ~ , v ( # )  [ ~ B 1 + 9  2 . (13)  

We first bound Bj. Remark that 

[A~(G) - A'~(G')[ 

= e x p { - r ~ ( # ) - f l 2 r  2 dt} T fo G t(,) dt } - exp {-r'~(v) - fi2 rC G'2 
T Jo ,(~ 

{1 }:,2; ) 
=< exp flZA2T \ ~ o  ]G,L~ - G'L] dt + IV~'(~) - r T ( v ) l  (14) 



Large deviations for Langevin spin glass dynamics 469 

so that, if c = �89 + �89 I t~2A2T 

Ol ~ e l / ' 7 (# )  - FT(v)lff Gt(.) dBt dT~ d~ 

+ fffla,5~ dt Gt(,)dB, dy~cl~. (15) 
0 

Moreover, one can deduce from (7) that, for any probability measure # on 
W A, for any function h in L2([O,T],dt), for any C > 2, we have 

f h~dB~ dg < C(1 +I(~lP))fh~dt.  (16) 
\ 0  / 0 

We come back to Eq. (15). We first integrate with respect to /~ and use the 
independence of G and B to apply Eq. (16). We then find a constant CT such 
that 

B, < CT(1 + / ( p i P ) )  ( [ F ~ ( # ) -  r?(v)l 

(i ) 0 

, such So that, using Lemma 3.3(1), we deduce that we can find a constant c r 
that 

g~ < v)(1 + I ( ~ I P ) ) .  = C'TdT(II, 

We can bound similarly B2 so that inequality (13) gives the result, i.e. that 
we can find a finite constant CT such that, for any integer number n and 

c 

Remark. 3.5. We could also have remarked that 

[3 2 n ~ T , n  ~ r , n  
IrT(u)-rT,"( )l --< 5- 2 -Kv 

k,kr =l 

X f (Btk+l --Btk)(Btkt+ 1 - -Btkt )  CIr. 

And, since we state in Appendix A, Lemma A.5, that ~-~r,n is Lipschitz for 
the Vaserstein distance, we should have found a finite constant Cr such that 

n f12 2 
[F~(/~)-P2,v(#) [ <= ~ n  Crdr(,U,v) sup f(Btk+l --Bt,)2 d, u. (17) 

I Kk <_n 

Proof of Lemma 3.4(2). The equality between the two definitions, (10) and 
(11), of the density dQ~/dP is due to standard gaussian computations (see, 
for more details, the proof of Lemma 5.15). We deduce from the martingale 
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properties of  this density that Q~ is in fact a probability measure. The equality 
between I(IQ~) and H i' is proved in Appendix B. 

We can now prove Theorem 3.1. 

Proof of Theorem 3.1(1). We first prove that H"  is lower semi-continuous. 
Take a sequence (#p)  of  probability measures on W A converging to # and 
choose a subsequence (#pm)m such that limm Hn(#pm ) = limp Hn(#p). 

Then, we distinguish the case where the sequence [(#pro I P) stays bounded for 
large m from the case where we can find a subsequence (Pm(M))M6N such that 
I(#pm(M )lP) tends to infinity when M does. 

In the first case, with the notations of  Lemma 3.4, 

lim Hn(fp) = lim(I - Fn)(gpm) ~ lim (l -- F~) (#Pro) -~ lim (F,'~ - F n) (#Pro), 
p m m m 

As I(#p,, ]P) is finite for large m, Lemma 3.4(2) implies 

lim (I(#pm [P) -- / -n n n . u(#p,,)) = lira H~(pp,,) > H~(#) = H"(#) 
m m 

Moreover, Lemmas 3.3(1) and 3.4(1) imply that we can find a finite constant 
C such that 

[r"(#p,. ) - r~(#p m)[ < C(1 + I(#p,,, IP)) d r (# ,  #pro)- 

Therefore. I(#;m[P ) being bounded for large m, li_~_m m ( F ~ -  F ~) ( # p ~ ) =  0. 
Hence limpHn(flp) > Hn(#). 
- Suppose now that we can find a subsequence (Pm(M))McN such that limM~oo 

I(#pm(M)[P ) = o o .  Then, according to Lemma 3.3(4), l i m g H "  ( # p m ( ~ ) ) =  
~ % # x 

% / x # 

+c% so that 

lim Hn(#p) lim " lira H ~ ( ] = +oo  > = H ( # P r o )  = \ # P m ( M ) /  = H"(#) . 
p m M 

Hence, we proved that, for any sequence.(#p)pc~ converging to #, l imHn(#p)  
> Hn(#) .  This means that H"  is lower semi-continuous, and, equivalently that, 
for any positive real number M, {H ~ <= M} is closed. Moreover, by Lemma 
3.3(4), we also know that the entropy relative to P is bounded on {H n <= M} 
so that this set is in fact compact. 

Proof of Theorem 3.1(2). The demonstration of  the large deviation principle 
will follow the following classical steps: 

First of  all, we shall compare our system with the system without interaction 
5P0 N. We shall state 

N,n dH#, r (# )  = exp{NF" (#)} dlI~, V(#)" (18) 

Then, we shall prove, without any restriction as fi2A2T < l, that a weak large 
deviation principle holds; we give a lower bound inequality: 

1 N .  
For any open set O ofo/gl+(WA), - i n f H  ~ _< lira ~ l o g H p , ' r ( O  ) .  (19) 

O N---~oo 
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And an upper bound for any compact set K: 

lim 1 ~ H~ N-+~ N log//f l ' r (K),  < - infx " (20) 

In a second step, we shall prove an exponential tightness lemma for which we 
need the condition fl2A2T < 1: 

3~ > 1 3C < ec sup(fexp{~VFn(~N))dp| < e x p C .  (21) 
N,n 

So that, if  6 = 1 - c~-l,gB E N(Jg+(WA)) ,  

N,n ! N 1~I~ T(B) < exp CN • Ho,r(B ) . (22) , 

But, by Sanov exponential tightness property, we know that, for any positive 
integer L, we can find a compact set KL such that 

lim logH0,r (K~)  < - L .  
N----~ oo 

Hence, VL, there exists a compact set K~(L+c/~) such that 

lim ~log/Tfl, '  r KI(L+c/~) < - L .  (23) 
N---+oo 

Then, Eqs. (20) and (23) give the upper bound for any closed set F;  

- -  1 Nn 
VF ---- F N~o~lim ~ l o g l I f l ' T ( F  ) =< -- infH~F " (24) 

The following lemma allows us to compare our system with the system without 
interaction and is the key of  the whole approach of  this paper: 

L e m m a  3.6 Note Q;'" = fP~'"(J(co))d7(~o ). Then Q~'" << p| and 

d p * N  --  e x p { N F " ( ~ N  ) } " 

Proof. By Girsanov theorem, for all J E IR NxN, ~ " ( J )  << p| and 

dp| ' = exp ~j=l fifo -~i~= Jjixt(") ) dBJ - 2 f \-~i~=lJjixt(") J dt . 

dq'n(J) 
Applying Fubini theorem to the positive function ap| , we find that L~fl 'n << 
p| and 

n 

dp| - f e x p E  
j = l  ~ / - N  i=1 

 2T(1N 12} 
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But, under 7, the J/j are independent, so that 

dp| - l - l fexp /7 Jji(~o)xi(, o dB~ 
j = l  

~ s t ~ , , ( < o ~ , < , ~ ?  d, ~ , ~  
.#  

( , ._ ,v , "~ ~,~,,,, i.e. { D  ~,":1+'<;<",' Moreover, under y, the law of ,.-t'/N ~i=iJjixt(,)j is 

t < T} is a centered gaussian process with covariance fxt(,,)xs(,)d'fiN(x)= 

• E.u=, x ~ .~ N t(n) s(n) " 

Hence 

i logfexp ~foGtO,)dBJt--ffGt@)dt dy.~N 

= exp{NFn('~x)}. [] 

We prove here the lower bound (19): 

Lemma 3 . 7 / f  O is an open set of  MZ+(W~ ), then 

- i n f H "  _< lira 1 N,n 
O N--~oo N l~ " 

Proof According to Lemma 3.6 

N,n II ~, T( O ) = f exp{ XFn('fi N ) } dp| (x ) . 
0 

But, by Lemma 3.2, F" = F~ + F~ and F~ + F~ is lower semi-continuous ac- 
cording to Lemma 3.3(1) and (2). We can therefore apply [5, Theorem. 2.1.7], 
to obtain the result. [] 

The next step is to prove the weak upper bound (20): 

Lemma 3.8 For any compact subset K of  J//+(WA), 
1 

H~,T(K ) < - i n f H " .  l i rn  ~ l o g  N,n X 

Proof Take 5 > 0. We can find an integer p and a family ( Y i ) l < i < = p  of 
probability measures such that 

P 
K c O~(v~,6), 

i=I 

where B(vi ,6)= {t~/dv(#,vz)< 6} is an open ball in J~+(Wr A) for the 
Vaserstein's metric, so that 

1 ~v~ lim 1 log N,~ lim ~logI I# 'v (K ) < max N II#,T(KNB(vi, 6)). (25) 
' l<=i<=p 
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Let v be a probability measure on W~. 

N,n Hfl, T(KAB(v, 6))= f exp{UFn(p)}dflU(#). 
KNB(v,6) 

We noticed in Remark 3.5 that there exists a finite constant C such that 

[F~(#) - F'(#)I < C max f(Btk~l - Btk) 2 d#dr(#,v). 
l<k<n 

Thus 
N,n //fl, r(X n B(v, 6)) 

< f exp~NC6 max f (B tk+ l -B tk )2d#+NF~(# ) ;  d//oN, r(#) �9 (26) 
KVIB(v,6) [. 1 <k<n ) 

But, for any probability measure v, QN,, = exp {Xl 'nv(~N)} .P  | = (onv)| is 
a probability measure on (wA) x (see Lemma 3.4.2). 

Hence, (26) implies that for any conjugate exponents (p,q), 

H~:~(KVIB(v, 6)) <= f exp {NC6 max f(Btk+l-Btk)2d~ N) dQ~ 'n 
~fiN cKNB(v,6) 1 < k < n " 

<= QN, n(~N E X UI B(v, 6))1/p 

., l/q 

x (fexp{NqC6 lm~xf(Bt~+l-Btk)2d~fiN)dQ~ '~) . 

(27) 

To get an upper bound for the right hand side of (27), we need: 

Lemma 3.9 Whenever ~ = 2 maxk Itk+l - tk] qC6(1 + flZA2) < 1, 

f exp {NqCfo<_k<_~max f(Btk+l-Btk)2d~fi N} d Q  N'~ < Q ~ ) N  

Proof As we remark in Appendix B, (79), the processes B i are, under (Q~)| 
independent gaussian processes. 

Moreover, its covariance is given by 

f (Btk+, -- Btk )2 dO~ 

= f (f(Btk+l _Bt~)2exp{fiiGt(,,~dB ' fl2 r 2 

But Girsanov theorem implies that, for given G, if W denotes the Wiener 
measure: 

T f12 T 2 
f(B,k+l -Btk)2exp{flfGt(,)dBt-~fGt(,)dt) dP 

tk+l 

= f Wtk+l -- Wtk -- fl f Os(n ) d S  d m ( w )  
tk 
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so that 

(( lk -k I 

f(Btk+, -B,k)2dQ~= f f wtk+ , - w t k - f i  f G~(,)ds dW dTv 
tk 

__< (1 + #2A2)(t~+~-tk) =< (1 +/~A2)mkax Jtk+l-tk/.  

Classical integrability properties of  gaussian variables (see [8, Lemma 3.1], for 
instance) end the proof. 

To bound the first term in the right hand side of  (27), we finally remark 
that, according to Sanov theorem, r,qN,, " t ~ v  O (~N)-I}N satisfies a large deviation 
principle with good rate function I(IQ~ ). Moreover, we saw in Lemma 3,4(2) 
that 

f I(p I P) - F~(#) whenever I(kt ]P) < az ,  I(# I O~ ) I4n(~ ) L +cx~ otherwise. 

As a consequence: 

lira l log Q~'n('~N E K rqB(v,~)) < -- inf (I - F~). (28) 
/ v  KY~B(v,6) 

Hence, if we fix ( p , q )  and choose 3 small enough, Eqs. (27), (28) and Lemma 
3.9 give 

1 N,n 1 inf (I rv  n) 1 lim ~ log 11#,T(K MB(v,6)) < - - = P Kn~(--~,~ ~qq log(l - ~). 

Thus, Eq. (25) implies 

1 Nn ( i  inf (I(IP) l~n)) 1 lim ~ log Hfl'T(K ) < max . . . .  = l~i=~p k p~n~i,~) vi ~ log(1 4). 

But, as a consequence of  Lemmas 3.3 and 3.4: 

tt Ir,,i(u) - rn(~)l _< car(~,v,)(~ +I(tt IP)). 

Therefore 

N,n 1 1 
lira log H# T(K ) < ----  inf((1 - c6 )1 ( ]P) - r " )+ca-~q  log(1 - ~ ) .  

, p K 

Let 6 ",~ 0: as I "n < ~I(IP)+ ~ for an c~ < 1, we can prove that 

lira inf((1 - C6)I(IP ) - Y") -= i~f(I(I P ) - Yn). 
6---~0 K 

Letting p "~ 1, we proved Lemma 3.8. 

Proof of Theorem 3.1.3. To prove Theorem 3.1.3, we have seen (see (24)) 
that it is enough to prove the following exponential tightness lemma: 
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Lemma 3.10 I f  fl2A2T < l, 3o~ > 1, 

sup ( f  exp { ~z NFn(~fiN ) } dp| 1/N <5. (30. 
N,n 

Proof 

Let BN = f exp {~NFn(~fiN)} dP | 

where Of = 1 v-.,N - -  i ~2_,i=lajixt. If  7 > 1, we use Jensen inequality and H61der in- 
equality with conjugate exponents (p,q) to get 

BN < fexp =fl G j dB j f ,(,, s -~ E f ,o dt dTdP | 
0 z.. j = l  0 

< f exp ~fi G j dB~ (c~flq) V" f {G j = too ~ z_., 3 ~, t(")J dt dTdP | 
z, j = 1 0  

• fexp ~fiap(q~_ 1) f ,) dt dydP | 
"~ 0 

By supermartingale properties, the first term is bounded by one. 

Moreover, since the G j are i.i.d, 

f exp ~ -  p(qc~ - 1 ) ~  fo tG~n~ dt d7 dP | 

N 
= f ( f e x p { ~ F 2  ~ ~ _ p , q  ~ l(Gt(n~ )2dt  } - 1 ) f  d P  | 

Furthermore, 

f f  (Gtl(o~) 2 d t@ = 0 f ~  dt < A2T, 
o p=l 

P| surely, so that, whenever afl2p(qa - 1)TA 2 < 1, we can find a fi- 
nite constant C(~, p)  (see Appendix A, Lemma A.3.2)), which does not depend 
on n, such that 

fexp ~ - / ' t q  - 1)f (Gt~) 2 dt d7 <-_ e c(~'p), p| 
o 

But c~ f12 p(q c~ - 1) TA 2 , flZA2 T so that, if  fiZAZ T < 1, there exists a real 
c~, q - ~  1 

number c~, c~ > 1, and conjugate exponents (p,  q) such that C(e, p)  is finite. 
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for any integer n, 

f exp {~NF"('fiN)} dP | <= exp C(cq p)U.  [] 

4 Large deviation principles in the high temperature regime 

We remove here the cut-off in the time variable, i.e. the discretization in the 
interaction and prove a large deviation principle for//~,v.  

Theorem 4.1 
(a) Let 

F : { I ( IP )  < oo} ~ IR 
T f12 r 2dt~ 

and define 
f I(#1 P)  - F(#)  / f #  E {I(1 P)  < co}, 

H(#)  / 
( + ~  otherwise. 

Then H is a good rate function. 
(b) I f  fl2A2T < 1, fl~, r satisfies a full large deviation principle with rate 
function H. 

Remark. 4.2." Let # be in {I(I P)  < co}. 
(1) # << P so that Girsanov theorem imply that {Bt}t<=r is a semimartingale 

T 
under #. In particular, the stochastic integral fo Gt dBt is well defined for 

any G in L2([0, T]), i.e. for 7u-almost all G(fToG dBt is, given G, a centered 

gaussian variable with covariance froG2 t dt). In particular, it implies that F is 
well defined when the entropy relative to P is finite. Moreover, we can see, as 
in Lemma 3.3, that F is finite whenever I(I P)  is finite. 
(2) Moreover, we notice in the proof of Lemma A.1, Appendix A, that there 
exists a sequence of centered gaussian process G ~t which converges in proba- 
bility (and even almost surely) to G such that: 

G M ~ ~ = g n ( s ) G ,  O<_n<_M 
where (~)n>__0 are i.i.d N(0,1) and (g,,(s))n>=o are determinist functions in 
L2([0, T]). 

T M It is obvious that fo Gs dBs is, conditionally to B, a centered gaussian variable 
and that 

T f12 r ds I 

{ r  (fTgl~n(s)dBs) 2 } ~ f12 f ds} 
=exp 7T7  fexp L-Yo (<,)2 
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The same formula shows that, for almost all B, exp ~foG, dB,- 

2 fo (G,)  ds is bounded in Ll+a(O, d ,  ?), for any positive real num- 
M > 0  

ber 6, so that this sequence is uniformly integrable. Thus 

r f12 r ds~ 
fexp{e foGsdBs-2 fo(G~)2  ) dT" 

= e x p  2 - s  1 + fi22n ~ f e x p L - - 2 o ( G s ) 2 d s  dT"" 

Hence, under the new law 
/~2 T 2 

exp { - - T  f0 G s ds} 

frGsdBs is, conditionally to B, a centered gaussian variable with covariance 
T 2 ; 

We will here follow the pattern of the proof used in Sect. 3. We first dwelve 
on the properties of the rate function H. 

In the following pages, we will choose the subdivisions An such that IAnl = 
max0_<k_<n Itk+l - tk[ tends to zero when n tends to infinity. 

Proposition 4.3 (1) On the compact set KL = {I ( ]P)  < L}, F" converges 
uniformly to F. 
As a consequence, lim,+oo i n fFH ~ =  infFH, for any closed set F, and 
limn+oo info H ~ < info H for any open set O. 
(2) V# E {I ( IP)  < oc}, F(/*) = r , (~)+r2(~)  where 

( fl2T 2 "1 
F , ( # ) = l o g f e x p ~ - ~ f O s d s }  d?u, 

r 2 ( ~ )  = T f f G, dB, dy~[, d#. 

(3) F < I(]P) and 2e < 1,7 > O/F < eI  + ~. 
(4) H is a 9ood rate function. 

Proof 
(1) We will show that F]' and F~ introduced in Property 3.2 are uniformly 
Cauchy on KL: 

- By an argument similar to the one used in the proof of Lemma 3.3(1), we 
see that there exists a finite constant C such that 

12 -11/2 
I(r - <= c f suplx'r dp)  

< C sup Ix, - x,] 2 d/~ 
It-sl < IA. I 

(29) 
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- Similarly, as in Lemma 3.4, we find a finite constant C such that 

IF'J(p)-F2+P(#)] <=C(l+I(#[P)) f sup [xt-Xsl2d# . (30) 
II-sl<=t~,l 

But, according to (7), for any c(, we know that 

c~f ,t-sisup__< ,A. I 'xt - xs'2 d# ~ I(# ,P) + log f exp {c~ ,,-slSUp__< ,~., ,xt - xs, 2 } d P .  

(31) 
And, by bounded convergence theorem, for any c~, 

lim l o g f e x p  { e  sup ]Xt--Xs] 2} dP=O. (32) 
n~oc It-sF < P~,d 

1 in (31), one sees that there exists an integer n(e) Let e > 0, choosing ~ = j 
depending on e but not on # such that, for n > n(e): 

f sup Ix,-x,12d# < ( I ( # I P ) +  1)e z �9 
It-sl<=lAnl 

Using this last estimate in (29) and (30), one gets that, for any n > n(e), any 
integer p, and any # EKc:  

IrT(#) - FT+P(#)I <= C(1 +L) l /2e ,  

] r ~ ( f l ) - c ; + P ( # ) l  5 c (1  +L)3/2~. 

As a consequence, F" converges uniformly in KL to a limit which is obvi- 
ously F. 

We now study the behaviour of  infB H', when n grows to infinity, for a mea- 
surable set B. We distinguish the case where infe H is finite from the case 
where it is not. 

Suppose first that in fBH = oc. Then, for all # in B, I(# ] P ) =  oc so that 
H"(# )  = oc, and, of  course, infBH" = oc. Hence in fBH = infB H ' .  

I f  in fBH < oc, we can find a positive number M such that in fBH = 
infB•{I<=M} H. But, recalling Eqs. (29) and (30), one sees that 

lim inf H" = inf H .  (33) 
n ~ C ~  BO{l  <=M} B n { I  <_M} 

But infBnU<M}H" > infBH" SO that Eq. (33) implies 

lim inf H n _< inf H = inf H .  (34) 
n--+oo B - -  Bn(I<=M} B 

Moreover, we stated in Theorem 3.1 that H n is a good rate function so that it 
achieves its minimal value on B, if B is closed. Let g" be a probability measure 
such that infB H" ---- H" (#  n). Then Lemma 3.3(4) shows that there exists a real 
e, c~ < 1, and a finite real t/ such that H ' ( p ' )  > (1 - c~)I(g ' ]P)  - t/. So that, 
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using Eq. (34), we see that we can find a finite constant M' such that, for n 
large enough, 

/ (#n ip  ) < M ' .  (35) 

Hence, for n large enough, infBH" = infBn(i_<M,} H n, and Eq. (33) gives, for 
any closed set B, 

lira inf H" = inf H .  (36) 
n--~ o o  B B 

(2) We can obviously identify the limits 

( f l Z T  2 "] 
lira F ~ ( # ) = l o g f e x p l - ~ f G s d s  ~ d?u = FI (#) ,  

n---+ OO 

lim F~(#) = ~ f  fGtdBt d#dT~, T = r2(#) 
n--+ oo \ 0  / 

Similarly, 

lim Fn(#) = f log f exp{fifG~dB~- ~fG~ds}dT~ d# = C(#) 
n ---+ oc 0 0 

which proves that F ( # ) =  F I ( # ) +  F2(#), using Lemma 3.2. Another proof 
would be to use directly Remark 4.2(2). 
(3) The proof is identical to Lemma 3.3(3) and (4). 
(4) The proof of this last point is very similar to the proof of Theorem 3.1(1); 
it relies on the convergence of the lower semi-continuous rate functions H ~ 
to H on the compact sets KL (Theorem 3.1(1) and 4.3(1)) and then on 
Proposition 4.3(3). We leave it to the reader. [] 

We now turn to the proof of Theorem 4.1(b). We recall that, if flZA2T < 1, 
we have the following exponential tightness lemma (see Lemma 3.10): 

L e m m a  4.4 ~ > 1 

sup ( f  exp {c~Nr (~x)} dp| < 0 0 .  
N 

Therefore 3C, 3q > 0, VB C ~(Jgl+(W~)), 

II~,T(B) <= eCNIIN(B) ~ . 

Moreover, we have the following crucial result: 

L e m m a  4.5 Let 6 > 0 be given: 

lim lim 1 n~ooN--+oo N log P| - F n l ( ~  N)  > 6 )  = - - 0 0 .  

1 N  ( g  ~ s )  2 Proof of Lemma 4.5. Let Y~ = V~j=I  suP[t-,l<l&l - . Then, for any 

real number 1/: 

P| F'l('fi N) > 6) 

<- P| ) > 6; Y~ < q)+p| > r/). (37) 
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We first estimate the tail of  Yz~: 

Lemma 4.6 Vq > 0 VR E IR + 3n(R, rl) Vn >= n(R, rl) 

P| > q) ~ exp - R N .  (38) 

Proof V~ E IR + 

P| > ~/) =< exp - - t l~Nfexp{N~Y~r}dP | 

= e x p - t / ~ N  f e x p { ~  sup (x t -xs )2}dp  
It-sl _-< [A,I 

so that (32) gives (38). 
We now estimate the first term of  the right hand side of  (37). [] 

Lemma 4.7 For any R > O, there exists tl(R ) > 0 and n(R) E N depending 
on R but not on N, such that, for any q <__ ~I(R), any n >-_ n(R), 

pON([F- F"I(~ N) > c5; Y~ < r/) < e x p { - R N } .  (39) 

Proof By Tchebyshev inequality, it is enough to show that we can find a 
constant C such that, for any c~, when ~/ is small and n large, 

Ep| [ny# < . e x p { . N l F - r n j ( ~ N ) } ]  < C N . 

It is of  course, since IF - F"[ < It, - r? l  + IV2 - rTI, enough to prove, for 
i =  1,2: 

Ep| [~r~v<,exp(~Nlri- rTl( ' f iN)}]  < C N . (40) 

Inequality (40) with i = 1 is obvious since we can show as in the proof of  
Lemma 3.3(1 ) that 

1 N 2 
sup -xJ~ = CI(Y~v) 1/2 (41) 3ci/Irl-F?](# N) _-< Cl ~ It-sl<la.I 

Moreover, to prove inequality (40) with i = 2, we follow the lines of  the proof 
of  Lemma 3.4(1) so that we find a finite constant c (c = (fl2/2 + 1) exp �89 
such that 

2 
~-~]/~2 -- /'~1(~ N) 

(i )2 
+ e l f  foG2t(.)dt - f G  2 fGt~.,dB, d3).figd~ N 

0 \0 

+ f fAT(G)  f(Gt(,o-Gt)dBt i(Gt(n)+Gt)dBt dy'fixdpN. (42) 
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According to (41),  the first term in the right hand side o f  (42)  is bounded by 

( i )  Irl - r'~lf f c,(,o riB, 2 ( ~  Nd~.= ( i B j )2)  dg.fiNd~N < Cl(Yffv)l/2 i d = Xt(n ) �9 
i 1 

(43)  

We now focus on the second term in the right hand side o f  (42): 

2 

<= Nj~=I (Gt(") - Gt)2dtdT~N 

( T ( i  BJt') 4 )1/2 
x ff(G(.) + Gt) 2 d t  Gt(. ) d dy.fiN 

0 

But 
T 1 N  T 

f f(at(n ) - Gt) 2 d t =  ~i~= l f(X~ -- Xi(n)) 2 dtd~)-fiN ~ T Y~ 
0 - 0 

and, for any centered gaussian variables X and Z, we know that 

ff[Z2X 4] ~ 15ff[Z2]~[X2] 2 

so that, for any t G T: 

4 

f(Gt(n)+Gt)2(fGt(n)dBYt) dT-fiN 
\0 

( ) 2 )  2 

\0 
1 N /T . .'~2"~ 2 

__< 60A 2 ~i__~l ~fox: (")dBat)) " 

We conclude that we can find a finite constant C2 so that 

T T 2 

i = xi(~) d . < C2(y~)1/2 ~ i ,  1 (44)  
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Similarly, we find 

fd~fiNfdT~NAz(G) i ( G t ( ~ - G t ) d B t  i(Gt(n3+@)dBt 

< C 3 x i = t(") +x~)d 
i, 1 

l N T i j 

1 .~  . 1/2 1 N V i j = (xi(~ + x,) de ,  

(x;~.>-xt)dBt . (45) 
+ q-~Zi,.-1 

Thus, if we recall the main steps (42),(43),(44) and (45), we can find a 
r  

C4 such that, on the subset {Y~ < q} = /~ -~ ;=~  suPlt_sl< & finite constant 

2 
fi-5 If2 - r~l (~N) 

1 Nj= ( i  B~l 2 ~1/2 
< C4tll /2N2i,  E i d + C4 - -  Xt(.) 

1 

+ X t ) dBt 
X ~ i ,  1 

( tOO-  ~- ~i , /~- -1  xi x~)dBJ . (46) 

It is now quite easy to deduce (40) with i = 2 from (46) since, for any pre- 
N 

visible processes (hi)l_<i_<N such that -~ ~(h i )  2 is uniformly bounded by one, 
i=l 

[ 
for any e < 2 ~ '  

Thid dP | G ( 1 - 4 e 2 T )  -N/4 [] 
f exp ~ i ,  i t -- " 

We can now prove Theorem 4.1(b). Let us first verify that the upper bound 
of the large deviation principle holds. 

Let B be a closed set of J#+(wA). For any integer number n, for any positive 
real number 6, 

H~,T(B ) = fexp  {NF('fiN)} dP | 
B 

< f exp {Nff(fiN)} dP | + f exp {Nff(fiN)} dP | 
{It-r" I =<_,~} e~ I r"- rl > ~ 
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so that 

1 
lim --  log f exp {NF('fi N )} dP | 

N-+oo N B 

=< max {6 + N-,oolim N--1 log Bfexp {NU'('fiN)} dp| 

1 } 
lim log f exp {NF('fiN)} dP  ON 

N--+ oo N lr-r"l>a 

But, by Theorem 3.1(3), 

lim 1 log fexp {NU'(~N)} dP | 
N---* oc N B 

so that 

lira 1 logH~,r(B) 
N--+oo 

lira 1 N = _ l o g H j r ( B  ) < - i n f H  ~ 
N-+~ N , = B 

= < m a x {  a - infH~; lim 1 l ~  N--~oo IV ]r_rn]> a f exp{NF( ' f iN)}dp|  " 

Moreover, by exponential tightness Lemma 4.4, 3q > 0 3C < oo 

f exp NF(~fi N ) dP | N n = n ~ , r ( f  - r l  > a )  
Ir"-rl>a 

__< expCN x HN(IF" -- r t > 6) , .  

which, according to Lemma 4.7, implies 

lira lim 1 l o g / / ~ , r ( I v "  - V{ > a )  = - c o  
triO| N----~oo N ' 

(47) 

Finally recalling that we proved in Proposition 4.3(1) that limn~o~ in fBH n = 
infB H and letting n --+ +ec,  and then letting 6 ---+ 0, (47) becomes 

lim 1 log//~,v(B) < - i n f H .  
N----~ oo N ' = B 

We shall now prove the lower bound; i.e. if O is an open set of J//+(wA), 

lim --1 log/ /~,r(O) = lira --l log fexp{NF(fiN))dp| > - i n f H .  
N- - ,~N  N - - ~ N  0 -- 0 

( 4 8 )  
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But, by Theorem 3.1, for any integer number n, for any positive real number 6, 

- i n f H "  <- lim 1 logfexp{NF,( , f iX)}dp|  
O N---* oa N O 

{ _-< max 6 + l _ ~ o ~ l o g  exp{NF(~fiN)}dp| 

lira 1 N,n } 
N--+oo N l ~  - r l  > 3)  . 

So that, using Proposition 4.3(1) and again Lemmas 4.7 and 3.10 as in (48), 
and letting n ~ oo, 6 --+ 0, we get, 

- i n f H  _< lim --1 logH~,r(O ). [] 
O N---* ec  N ' 

5 Existence, uniqueness and description of the limit system 

In this section, we study the minima of H. First, we characterize these minima 
through a variational study of H. We show that any minimum of H is solution 
of the non-linear equation: 

{i } d Q _ f e x p  /~ G s d B s -  G~ds dTQ. (49) Q <<P dP 

Secondly, we prove that there exists a unique probability measure Q on W A 
which satisfies (49). We proved in Sect. 2, Theorem 2.6, that this implies that 
Q~ is Q-chaotic. We finally give a pathwise description of Q. 

5.1 Variational characterization of  the minima of  H 

We shall prove: 

Theorem 5.1 H achieves its minimum value (= 0) on the subset M of  prob- 
ability measures on W A which is 9iven by 

= I Q  E ~ + ( W ~ ) / Q  << M P 

d Q = f e x p  f i fO,  d B , - f i - - f G  2ds d?e . 
dP k o 2ao s 

Proof o f  Theorem 5.1. We first establish that any minimum of H is equivalent 
to P. To do so, we give the following technical lemma: 

Lemma 5.2 Let Q be a probability measure on W A which minimizes H. Then: 
(1) Q << P. (2) Denotes B = {~ /~- (~ )  = 0} and (~ = P(B). Then 

(Q+" ~Bp ) 
(a) I \ ~ -  I P~ = I(Q [ P) + s6 log s + O(s). 

(b )  r ~ /  = r(Q) + O(s). 
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{ Q+SlBP ) Remark. Since Q minimizes H,I(Q [ P) is finite so that I \ ~  [P is also 
( Q+s ~BP ) 

finite for any s. According to Proposition 4.3, we then know that F \ 1---i%~U-] 

is well defined and finite. We recall that this was in part made possible by the 
semi-martingale properties of  B under the measures of entropy relative to P 
finite, which allowed us to define stochastic integrals against this process. 

Proof of Lemma 5.2. We denote QS Q+s aBp --  1 +sg) 

Proof of(I) .  Since I ( Q I P  ) is finite, Q <<P. 

Proof of (2)(a). One can compute: 

1 log(1 + s 3 )  s3 s 
I(OS [ P ) -  l ~ s 3  I(Q [ P) l + s 6  + ~ l o g  l + s ~  

which gives (2)(a). 

Proof of (2)(b). To get the Taylor expansion for F at Q, we remark first 
that, if G and V are independent centered gaussian processes with covariances 

G + . 
EQ[XuXt] and E~B P [x,xt], then G s - is a centered gaussian process 

v ~ + s ~  
with covariance f x,xt dQ~(x ). 
Hence, we can write 

F(Q')=f  logfexp /3 G~dBt - flz f ( G t )  2 dt dTQ@T,B. P dQ s . 
z 0 

We compute the Taylor expansion of the last term in the right hand side of 
the last quality so that we find, for any real number s, a random variable R(s) 
such that 

r /~2fV ,2 }dr exp ~fGtdBt  - o 2 o  (Gt) 

= e x p (  ~ x / l + s 6  dB,--~-fo k, ~ / dt 

= (1 +sR(s)) 1 + x/~ f l fV tdB , -  fl2fVtGtdt 
k 0 0 

2 •  /~ GtdBt -  s - f (Gt)  dt . 
0 

Then, a detailed analysis of  R(s) using that G and V are gaussian processes 
with bounded covariances and that the mean quadratic variation of B under Q~ 
is also bounded 1 shows that 

f f l  log(1 + sR(s))[ dTo | T~,.pdQ s = O(s). 

I Since Q'<< P, Girsanov theorem (see Chap. 12 in [7]) implies that we can find 
g a previsible process b and a brownian motion w such that Bt = wt + bsds. Then, 
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P 2 F(Q ~) = f logfexp  /7 G, dB,-  ~-f(G,) dt 
0 

x l + v ~  ~fV~dBt - f l2 fV tG,  dt 
k 0 0 

x dTQ | 7~.edQ ~ + O(s). 

Integrating with respect to 7he.e, and taking into account the fact that G and 
V are independent and centered, we prove the result, i.e.: 

F ( O ~ ) = f  l o g f e x p  f i f G t d B t -  (Gt)Zdt dYo dO+O(s)  
k 0 

= r ( Q )  + O(s ) .  

Lemma 5.3 I f  Q minimizes H, Q ~- P. 

Proof If  Q minimizes H, 

But, Lemma 5.2(2) implies that 

1 H \  i ~ s 6  j - H ( Q )  = f l o g s + O ( 1 )  
s 

so that & = P(B) = 0, which is just what we need to prove the claim. [] 

(l+s+ n~ To characterize Q, we study the Taylor expansion of H \ l+~ ~ ]  for positive 

bounded measurable functions 4) such that f ~ dQ = 1. We denote Q~ the 
1 +sr  0 probability measure Q~> = 5 ~ - ~ .  

Lemma 5.4 Let q~ be a positive and bounded measurable function on W A such 
that f ~ dQ = 1. Denote ~b = (J - 1. 

(1) ,  IP) : , ( Q  I P)+s  s +log + o 

where (Yt)t<=T is an adapted process with finite variation. 

Proof The first point is left to the reader. To prove the second point, we 
consider, as in Lemma 5.2(2), the independent centered gaussian processes G 
and V with covariances EQ [XsXt] and E~b. Q [XsXt] , and write 
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and 

d~  
- -  ( 0 ) 2 )  ~-- 
dTQ 

{i ;; } exp fl Gs(co2)dBs(x)- Gs(cO2)2 ds 
o 

f exp  fl G, dB(x)-  T f Gs(o~2)e ds dyQ(O)2) 
o 

We now observe that Xr(x, 4)) must be linear in • = 4) - f 42 dQ so that 

f Xr(x, cfl)dQ(x) = f ~b(y)YT(y)dQ(y), 

{ TG'+v~V~ 
F ( ~ ) =  f log f exp  fifo-v/-1-+~ dBt 

20 \ ~ / dt dTQ | dQ~ �9 

We repeat the proof of Lemma 5.2(2): 

fexp~pod ~ , ~  d B t - s f  ~ \ ~ j dt d70|162 O 

= f dYo @ 74"0 exp fi Gt dBt - ~ o 

( { i  • l + v ' s  fl VtdBt-f i2fVtGtdt 
o 

+ " -  f G t d B t -  T f o  + 0 ( $ 2 )  ' 

So that, integrating with respect to 7Q @ ~b.Q and taking into account the fact 
that G and V are independent and centered, we find that 

T 

+ fXT(x, q~)dO(x)} + o (s 2) 

where 

~ T fi2 T 
Xr(x, qS) = f - f G~(02ldBs(x)+ -~ f Gs(a~212ds 

o o 

+ ~ fi Vs(OOl)dB,(x)- fl2fGs(cO2)Vs(Ool)ds 
o 

x dy4.Q((.Ol ) dyX(o~2) 
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where, according to the definition of Xr(x, (p), YT is given by 

Yr(Y) = 1_2f f ~ y~dB~(x)- flz f Q(~o2)y~ds dv~(~2)dQ(x). 
0 

Since B is, under Q, a semi-martingale with bounded quadratic variation, it is 
clear that (Yt)t_<v has finite variations. [] 

We can now prove that Q satisfies (49), i.e. Theorem 5.1. 
Since Q minimizes H, 

lira 1_ (H (Q~) - H(Q)) = O. 
s---* 0 S 

But, Lemma 5.4 implies that 

H ( Q ~ ) - H ( Q )  

= f  l o g ~ - ~ - l o g f e x p  /~ G t d B t - - ~ f G  2dt dVQ-YT 
0 

• + o (s 2) 

so that we can find a constant CQ such that, Q-almost surely, and so P-almost 
surely by Lemma 5.2, 

log a ( x ) = l o g f e x p  ~fGsdB~(x)--~foG~ds dTQ+YT(x)+CQ. 

dO must be a (W~,(~t)t<=T,~r, P) local martingale (see [13, But dP ~ t__<T 

Chap. VIII]). 

Since (fexp{flJoGsdBs pz ft~2ds}dTQ)t<v - 2 J0vs is a local martingale and 

(Yt)t<=r a process with finite variation, by uniqueness of semimartingale de- 
composition, we find 

dQ - f Bfo GtdB'-  - f  fo G' dt dTQ" [] 

5.2 M is reduced to one probability measure Q 

We shall use a fixed point argument to prove that H admits a unique 
minimum, i.e.: 

Theorem 5.5 The set M is reduced to a probability measure Q, i.e., there 
exists a unique probability measure Q on WAy which is implicitly defined by 

Q << P dp - f exp ~ G~(oo)dBs - -~ f G~ (oJ)ds dTQ(OJ). 
0 
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For # E J/g+ (wA), let L(#) be the measure defined by 

d L ( # ) = f e x p  fl G t d B t - - f  f G 2dr dTudP, 
o 

where 7~ is the law of a centered gaussian process G with covariance 

f GaGt d~ = fXsXt d~(x). 

We want to characterize M as the set of the fixed points of the map L, which 
needs that L maps Jr + (W A) into Jg+ (wA), i.e.: 

Lemma 5.6 For any probability measure l~ on WXr, L(lO is a probability 
measure on W;. 

Proof For any # E ~ +  (wA), it is clear that L(/t) is a positive measure on 
W A so that we only need to prove that L(/O (Wr A) = 1. But Fubini Theorem 

=f fexp O dB - fG d  dP 
o 

= f  exp fl G, d B , - T  f G~ ds dP dT~. 
o 

And exp flfoGsdBs T fo G2sds~) isauniformlyintegrableP-martin- 
: / t < _ T  

gale as soon as fo r G~ ds is finite (see, for instance, Novikov criterion, Proposi- 

tion 1.15 in [13]) so that, ?O almost surely, f e x p  fifor G, dBs T fo r G2ds 

d P -  1. Hence L(p) (W A) = 1. [] 

Thus, it is clear that Theorem 5.5 is equivalent to: 

Theorem 5.7 L admits a unique fixed point Q. 

We shall prove Theorem 5.7 through a contraction argument. 
Let (~)t=<r be the natural filtration on /g+ (W A) defined by 

~ = ~ ( x , ,  s < t )  

We will denote in this section Pt the restriction of P to the a-algebra 
~t (P = PT). 
Let d r  be the subset of Jg+ (W~) made of the probability measures which 
are absolutely continuous with respect to PT. 
Let Dr be the variational distance on Jg+ (W A) defined by 

V(/~,v) C d/l + (W A) Dr(p,v) = s u P I f f d # -  f f d v l  , 

where the supremum is taken on the measurable functions on W A which are 
uniformly bounded by one. 
It is well known (see [12, Corollary6.1.1]) that the variational distance is 
stronger than the Vaserstein distance, i.e. that: 

V(p,v) C ~ (Wr ~) dr(~,v) <= DT(~,~). (50) 

implies that 

(rv;) 
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On +~r, one can see that 

d# dv dPr .  
V(#,v) E SeT Dr (# ,v )  = f dPr dPr 

In the following pages, for probability measures # and v in ~ r  and for t __< T, 
we will denote D= (#, v) instead of  Dt (#1.%, vl.~) for simplification. 

We then prove that: 

Proposition 5.8 We can find a strictly positive real number q and a finite con- 
stant 2 such that for any probability measures # and v absolutely continuous 
with respect to PT, for any t < T, 

t 

Dt (L(#), L(v)) q <= 2 f  Ds(#,v)qds .  
0 

Proof o f  Proposition 5.8. We first give another formula for ~1(~) . 
dPT .~ 

For v C [0, T] and # E Jr (wA) ,  we recall that we define a covariance ~'~ 
by 

f exp{-@foG=V 2 d s } d 7  ~ dTu" 

Then: 

Lemma 5.9 For any # E J /+(W A) and any t < T, 

dPT ~ 1. o o , 

Proof We first notice that, for any time t < T, 

dLl(#)  = f e x p  fi G=dB, -  G2=as d7, , 
dP N 

i.e. that d ~  f l f o G s d B s - T f o G 2 s d s  dT~ t<=r 

martingale. 
In fact, (gt)t_<_r is a supermartingale such that g0 -- 1, so that it is enough to 
prove that E[6=r -- 1, which can be proved as in Lemma 5.6. 
Finally, we prove in Lemma 5.15 (in the case g = Q) that 

( i )  f exp flfGs dB= - Ga= ds dT= 
k 0 

t s f14 t s ~ 2 d s  

- -  / J " ( oo 
[] 
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We denote ~ the law of a centered gaussian process with covariance K~. 
Let 

, s  

- (s, u) dBu ds f f :' (s'u dBudBsoo To 
Then: 

Lemma 5.10 For any conjugate exponents (p, q),for any probability measures 
# and v on W~: 

Dt(L(p),L(v)) < (flXt p - g['lq dPt) 1/q 

• ( i  ( f exppXt~dP' ) ' -~  ( f  exp pX  t~ dPt) ~ de)l/P 

Proof. Let #,v E Jdl+(WA). 

dLl(#) dL(v) dPt 
Dt(LI(#)'LI(v)) = f dPT ~ dPr ,~ " 

But, according to Lemma 5.9, 

alL1(#) = expXt ~ . 
dPr .~ 

Hence: 

Dt(Ll(#),Ll(v)) = f l  expXtU(x) - expXtV(x)l dPt(x) 

1 

= f IXt~(x) - X,~(x)lf exp{X~(x) + ~(Xt~(x) - Xt~(x))} dc~ dPt(x). 
0 

Let (p,q) be conjugate exponents (i.e. p - I  + q-1 = 1 ) .  H61der inequality gives 

Dt(L'(#),LI(v)) < ( f lx t  ~ - Xt~)] q dPt) '/q 

x exp p {X/' + ~(X t - X y ) }  d~dPt 

We obtain Lemma 5.10 using H61der inequality with conjugate exponents 

fexp p{X[ + e(Xt ~ - XtU)} dPt < (fexppAvtUdPt) l -~ ( f exppXZdPt )  ~ . [] 

We first bound the second term in the right hand side of the inequality of 
Lemma 5.1 O: 

Lemma 5.11 I f  p - 1 is small enough (fl2p(p _ I)A2T < I), we can find a 
.finite constant C1 such that, for any # ~ J/Z~(wA),for any t < T, 

f exp{pXt ~} dPt < C1. 
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Proof 

f e x p { p X [ }  dPt = f f e x p  f l fGsdB,(x) -  flZ., ds~dT~ dPt(x) 
o 2 0  J 

{,o } t fl 2 dPt(x) < f f exp pp UsdB,(x)-  p ~  G~ ds d7, 

f12 t } 
= f e x p  Tp(p- 1)foGffds dye. (51) 

Moreover, if p -  1 is small enough so that 

t t 

f l2p(p_ l ) f  fG2 dsdT. = fl2p(p_ l ) f  fx2 dsdt ~ < fi2p(p_ 1)A2T < 1. 
0 0 

Then, we prove in Appendix A, LemmaA.3, that we can bound (51) by a 
finite constant C1 which only depends on p. [] 

We will suppose in the following pages that p has been chosen so that 
Lemma 5.11 holds and, for later convenience, so that q = ~-1 > 2. 

We now focus on the first term in the right hand side of the inequality of 
Lemma 5.10: 

Lemma 5.12 We can find a finite constant C2 such that for any (~, v) E 
~?(w:) 

t - K v ( u , s  ) du. f lxt  ~ - xtrIq dPt ~ C2f sup K;(u,s) ~ q 
0 s<u 

Proof 

f IX? - x," IqdP~ 

# 

2 0 0  o 

<= fl2q2q-l f (u,s) - KU(u,s) dPt 
O0 

+ fl4q ?~  (~.~(.,s)_~Uv(bt, s ) )dBs  
2 a oo 

u dBs du q ) K~(u, , )  + -~.(u,,) dP, . (52) 
0 
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We first focus on the first term in the right hand side of  (52). We apply 

Burkholder-Davis-Gundy inequality to the martingale Mt = fo fo(K~(u,s) - 
K~,(u,s))dBsdB,, so that we find a finite constant Cq such that 

trio0 dBu q 

Since we supposed q > 2, we can use Jensen inequality: 
q 

' f ( K ~  )dBs q <= cqTq/2-1f f (u,s)-- KU(bl, S) d P t d u  . (53) 
0 

Moreover, since B is a brownian motion, 

0 

is a centered gaussian process with covariance 

= - ( u , s ) /  d s  

< Tsup  K ' ~ ( u , s ) -  ~"  2 ,_<. K;(~,*) 

so that we can find a finite constant c2 such that 

( i  ) q  ~<=~ K:(u,s) -K:(u,s)(54)~u q f (~7~p(l.I,S)- KU(u,s)) dBs dR t ~ c 2 sup 

(53) and (54) allow us to conclude that we can find a finite constant c3 such 
that 

f 0 0 (/~(u,s) - KU(u,s)) dBsdBu q ' ~ ~:~(u,s) ~ a u  dPt < c3fsup ( u , s ) -  
O s<=u 

(55) 

Similarly, we can bound the second term in the right hand side of  (52) and 
find a finite constant c4 such that, for every t < T, 

#0 o 
t ~ q 

< oa f  sup K~(u, %' s)-Kv(u,s du. (56) 
0 s<=u 

Thus, (52), (55), and (56) achieves the proof  of  Lemma 5.12. [] 
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Thanks to Lemmas 5.10, 5.11 and 5.12, we conclude that we can find a positive 
real number q (q > 2) and a finite constant K such that, for any t < T, for 
any #,v E J~+(WTA), 

Dt(gl(#),gl(v)) q <= K f s u p  ~2~(u,s) ~" q ' - K v ( u , s  ) du .  (57) 
Os<u 

Finally, we prove in Appendix A, Lemma A.4, that # ~ K~ is Lipschitz 
for the distance D~: 

Lemma 5.13 We can find a finite constant k such that, for any u < T, for 
any probability measures #, v E s / r ,  

sup K ~ ( u , s ) - K ~ ( u , s )  <= kDu(#,v). 
s<=u 

Hence, inequality (57) implies that we can find a positive real number q and 
a finite constant 2 such that, for any t < T �9 

t 

Dt(L(p),L(v))  q < Z fD, (# , v )qdu .  [] (58) 
0 

Proof o f  Theorem 5. 7. It is now classical to deduce Theorem 5.7 from Propo- o 
sition 5.8: 
We construct a sequence (#,)n~N of probability measures on W A as follows: 

#o = Pr, #,+1 = L ( # , ) .  

We notice that, for any integer n, #n belongs to S/r .  
We deduce from Proposition 5.8 that, for any integer n, 

, (xr). 
Dsl (L(P ),P )q l~ dsi < 

2q(n- 1)! Dr(#n+l,#n)q ~ )n f ( 5 9 )  
0 < s  I <...<=sn<=T i=1 

Thus, inequality (50) implies 

( (?r),,)'Jq 
dr(#n+bU,) <= 2 \ ( n - -  1)]J 

Thus, (#,),~N is a Cauchy sequence in the complete metric space ( ~ + ( w A ) ,  
dr) ,  so that this sequence converges to a probability measure Q. Q is a fixed 
point of L. 
Using Gronwall Lemma and Proposition 5.8, we see that L admits a unique 
fixed point. [] 

5.3 Characterization of  M as the set o f  weak solutions of  a (non-markovian) 
stochastic differential equation 

We interpret here the elements of M as the weak solutions of a non-linear, 
non-markovian, stochastic system S defined, on the time interval [0, T], by 
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{ Xt = Xo - fVU(XDds + Bt , 
0 t s S 

Bt = W, + fl2f fK~(s,  u) dB, d t ,  
oo 

Law of  (X)  = Q, Q[,yo = #o ,  

where W is a brownian motion. 

Theorem 5.14 
�9 (a) I f  Q belongs to M, then Q is solution of X 
�9 (b) Reciprocally, I f  S admits a weak solution Q, then Q E M. 

dQ To prove Theorem 5.14, we first give another formula for 2Y" 

Lemma 5.15 

dQ I Tt f l 4 T ( i  ) 
- exp fl2ff~2tQ(t,s)dBsdBt- 2fo ~YQ(t,s)dg~ 

1, oo 
2dt} . 
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(60) 

Proof of Lemma 5.15. Gaussian properties (see [10, Proposition 8.4]) show 
that, under the probability measure 

~Q . . . .  }2 , ~ - -  ~ .  
f e x p  - 5- fo G, ds dTe 

N 

G is a centered gaussian process with covariance K~. Hence, according to 
Remark 4.2: 

dQ f e x p  B GdBt dP - - fi~-2 fo G2 dt dTQ 

= exp ~-  f f~;~ (t, s) dB, dB, (61) 

Let 

A T = 
f i2  fT G2 dt] 

exp I - T ao ~t J 

f e x p  f _ ~ 2  fTG2 dt} ( 2 do t dYQ 

Then 

Y2~(t,s) = f GtG~Ar d?Q 

so that 

TT 
f f~:~(t,s) dn, de, 
00 

(i )2 
= f Gs dBs Ar dyQ . (62) 
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Its formula implies that 

GsdBs = 2fGtfGsdBsdBt + fGZt dt, 
0 0 0 

fi2 r 
A r = l + - f f 0 A t ( K t Q ( t , t ) - G 2 t ) d t  

So that (62) becomes 

TT A T  t T 
ffKS(t,s)dBsdBt = f ~ AtGtfG~dB~dBt + fAtG2tdt 
O0 0 0 

, 2 ) 
+~-i(foGsdBs) At(KtQ(t,t)-G2t)dt dyQ 

Tt T 
= 2ff~;~(t,s)d~,dB, + f~;~(t,t)clt 

O0 0 
f12 T t 2 

+ f f  fdYafo (foGsdBx) At(K~(t,t)-G2t) dt. 

We now observe that for any (s,r,t,u)E [0, T] 4, 

So that we can compute the last term in the right hand side of (65): 

f f  C~CIBs A, ( t , t ) -  G atdTe = - 2 f  ~;~(t,s)dg, 
0 0 

Finally, we can prove by the integration by parts formula that 

Hence, according to (61), (65), (66) and (67), we have proved that 

r /~2r 2 } 
dQdp = f e x p  BfGtdgto - fifo @ dt dyQ 

exp -- f f~2,, ( t, s) dB, dBt = ( f e x p { - - ~  :G2dt}dTQ) f i 2 r r  V 2 o o  

{ Tt f l 4 f ( i ~  b )2  = exp )(t,s)dBsdBt - ~ (t,s)dBs dt 
"00 

f 2 T  2 2T " 
x (fexp{--f foGtdt}dvo) exp{ -~zf~t~ o 

{ Tt O0 0 f14 T ( i ~  )2 = e x p  fiZffKb(t,s)dBsdBt--fff Kb(t,s)dBs dt 

(63) 

(64) 

(65) 

dt. (66) 

(67) 

[] 
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Proof of Theorem 5.14. 
�9 Proof of (a): Since Q << P, this point is a direct consequence of Girsanov 

theorem according to Lemma 5.15 (see [13], Theorem 1.12, p. 306). 
�9 Proof of (b): Reciprocally, if Q is a weak solution of S, Q belongs to M as 

soon as 

fQi  )2 Ar = ~2~(s, u) dBu ds (68) 0 
is Q almost surely finite (see Jacod [7, Theorem 12-57b]). 

Since Q is solution of S, 
t s 

w, = Bt - B2 f f ~;~(s,u)dBuds 0 0 
is a Q brownian motion. Then 

(i~.~( )2 f ( ~ (  Wu) 2 f s,u)dBu dQ < 2 s,u)d dQ 
\0 

(i/~ ~ ~ )2 +2f14f  (s,u) "~(~(u,v)dBvdu dQ. 0 
We recall that Lemma A.2 in Appendix A, implies that K~(s, u) is bounded 
by A 2, so that we conclude 

(i )2 sf (u )2 
f ~;~?(s,u)dBu dQ < 2A2s+2f14A 2 f J'~(u,v)dgo dQdu. 0 kO 

s Kb(s,-S u ) ) 2  Thus, Gronwall lemma shows that f (fo dBu dQ is uniformly boun- 

ded when s < T so that f A r d Q  is finite, and so Ar is Q almost surely finite. 
[] 

6 Higher moments and quenched results using Replica 

To improve our study of the quenched laws P~(J), we shall study the asymp- 

totic behaviour of annealed replica laws Qr, N on (W A) | 

Q~.N = f p~j(j(o))| dT((o) " 

Q},N is the annealed law of r independent replica of spin glass dynamics. 
This analysis enables us to get convergence results for higher moments of 

random variables like f Hm=~fi(xi)dp~(J), where ( f l  . . . . .  fm) are bounded 
continuous functions on W A. Namely: 

Theorem 6.1 For any integer number r, there exists a probability measure 
Qr on (W~) ~ such that, whenever rfi2A2T < 1, for any bounded continuous 
functions ( f l , . . . ,  fro) on W A, 

f fi(xi)dp~j(J(o))) dy(o)) ---+ I-I f,(xJ)dQr. ~v ---+co i=l 
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Moreover, Qr is characterized as the unique solution of  the non-linear equa- 
tion 

(i ) dQ~ - f exp /~ (Gt, dBt) - IlGtll2 dt dTQ,. Q~ <<P| dp| (69) 

where B is a r-dimensional brownian motion under P| and G is, under 7Q~ 
a centered r-dimensional centered gaussian process with covariance 

f G~sG~tdTQri ' = f x~x[dQr(x), 1 <= i, j <= r. 

The proof  is derived from a large deviation principle for the law of  the empir- 
ical measure under Q}OV and is similar to the case r = 1 (see Theorem 2.6); 
we omit it. 

I f  Q2 is the unique solution of  (69) (with r = 2), let (G,H)  be independent 
gaussian centered processes with covariance 

1 I - x t ) ( x  , x~)], CI4[H(t)H(s)] 12 8C[G(t)G(s)] = ~EQ2[(xt 2 1 _ = EQa[XtXs]. 

For f in L2([0, T]), let P ( f )  be the restriction on [0, T] of  the law of the 
diffusion 

dxt : - V U ( x t ) d t  + dBt + f l f ( t ) d t ,  
Law of  x0 = #0, 

and let PH be the partially averaged law 

PH = gG[P(G + H)] .  

Then, one can improve Theorem 6.1: 

Theorem 6.2 Let r be an integer, and suppose that rfi2A2T < 1. 
Then, for any functions ( f l , . . . ,  fm)  C cgO(w A) 

Nlim f f fi(xi)dp3J(J(c~ d 7 ( c ~  I~ ~ [ ( f  f i dPH)  r] . 
i=1 

Proof. Theorem 6.2 is based on the observation that, for any number r of  
replica, Qr = o~H[Pffr]. [] 

Theorem 6.2 is a good lead to the following: 

Conjecture 6.3. The law of  a single spin x 1 converges to PH, almost surely 
with respect to the random interaction. 
There is one case where Theorem 6.1 can be very simply used: 

Theorem 6.4 I f  Q2- (Q1) | and 2f12A2T < 1, for any bounded measurable 
functions ( f l  . . . . .  Jm) on W A, ( m ) 

l i m  7 co/ f i(xi)dP~j(J(c~ - I~Y > ~  = 0 .  
= i=1  
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Proof If Q2 = Q1 ~2, then H is null and PH = Q1. Then, by Theorem 6.1, 
f f l ( x l )  . . .  fm(xm)dp~ converges in L2(7) to  the constant ]-[mi=l f f z  dQ, and 
so converges in probability as stated in Theorem 6.4. [] 

It remains of  course to understand the condition Q2 = (Q1)| For this, we 
state (without proof). 

Proposition 6.5 
(1) Q~ = Q ~  iff f xtdQ1 = 0 Vt < T. 
(2) In particular, i f  the potential U is even and the initial distribution #o 
symmetric then Q~ = Q~r and Theorem 6.4 applies. 

Remark 6.6. If  one is interested by the convergence of  the law of  a single 
spin, one can prove that, if  Q2 = (Q1)| and 2f12AZT < 1, for any t < T, 

lira 7 (co/ IlP~j(J(co))o(x]) 1 _ Q1 o (xt)-l[lse > e) = 0 
N___+o o 

where II �9 I1~ is the norm on J/C~-([-A,+A]) defined by 

II ll  = sup Iffd l 

where the supremum is taken on the Lipschitz functions f such that 

sup If(x)l  + sup I f (  x ) -  f ( Y ) l  < ! . 

xE[--A,A] x ,ye[ -A ,A  l Ix - Y[ - 

Of course this statement is also valid for n times and m spins, as stated in 
Theorem 2.10. 

Appendix A 

Let p be a probability measure on W~. Let Ku be a symmetric definite positive 
kernel on [0, T] 2 defined by: 

K.(s, t) = fx x, du(x). 

Obviously, K~ is continuous and bounded on [0, T] 2. 

We introduce a covariance operator K~ on L2([0, T]). 

T 
K n f ( s )  = fK~(s, t ) f ( t )  dt 

o 

K~ is a positive self adjoint trace class operator on L2([0, T]). Let (h~)n>__o be 
an orthonormal basis of  eigenfunctions of  K~ associated with the eigenvalues 

/~ ,u p 
(2~)~>__0. Let g~ = V/~hn.  

Then: Ku(s,t) = ~g~n(s)g~n(t) 
n>O 
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and the convergence is uniform (by Mercer theorem, see [10, Proposition 3.7, 
p. 42]). 

As a consequence: K~(s,s) = E (gnU(S)) 2 
n>0 

and the trace of the operator K~ is equal to t r (K , )=  ~n>0 2~. 
Of course, one knows that, given a covariance K~, there exists a gaussian 

centered process (O, sg, 7, G )  with covariance K~, and that, for any such pro- 
cess, if H~ denotes the gaussian space associated, i.e. the L2(O,d ,y)  closed 
linear span of (Gt)0_<t_<r, then H~ is isomorphic to the autoreproducing Hilbert 
space J{~ associated to K~ by 

z --, e[ZG]. 

Here, the space ~ C L2([0, T]) (more precisely, Jt~ c C([0, T])) admits 
(g~)n__>o as an orthonormal basis. If ~ = ~b-l(g~), then (~.~)n__>o is a sequence 
of i.i.d N(0, 1 ) random variables in Hu and one has 

G - -  ~g~(s)ed, 
n>O 

where the convergence is in H ~ (or in L2(~2,~r see [10, Prop. 3.7]). 

Moreover, let us consider the new trace class symmetric operator K~ on 
L2([0, T]) given by 

m 
KI~ = (Id  -~- fl2/~u)-I K ,  

and let Kv be its kernel: 

g~(s)g~(t) 
G ( s , t ) =  s (70) 

The autoreproducing Hilbert space associated to ~ is (Id + f12~#) ' j/old; SO 
that one sees that if G is a centered gaussian process with covariance K~, then 

Lemma A.1 

g [GsGtexp {-Tao/~2 frG2ds~ls j j  

E[exp{-~fTG2sds}]  

Let us give a very short proof 
# *'# 

Let c~ be a real number and G x = ~o<_,<_N gn(s)r 
Then a simple computation shows that 

=Ku(s,t) .  
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g[exp{c~GN-~-i(GN)2ds}] 

: Eexp   0 . .   0S. 
= I~C exp e g ~ ( s ) ~ - ~ 2  ~ , 2  

n=0 

( n ~ i : 0 ) - - , / 2  0(2 { g~(s)2 } 
= = (1 ~- fi2,~n# ) exP2 0<n~<N 1 + fi22~ " 
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The same formula shows that the sequence exp {c~G N - @ Jor(G N)2 ds} is 

bounded in Ll+a(~,ag,7), for any positive real number 6, so that this se- 
quence is uniformly integrable. It converges in probability to exp{eGs- 

~2 fr:m ~2 ds} Hence, we deduce TJO ~ s :  

d~ [exp { ~Gs -- fl2f(Gs)2ds'~l=(~(lq-fi2"~n)) - 1 / 2 2  0 JJ exp~-r n>~_-o _ _  

In particular, 

gnU(S) 2 
1 + f12}~ I J" 

f12 T 2 = fl2.~n~)) -1/2 (71) o~Iexp{-~f(Gs) ds}l ( ~ ( 1 +  

= exp.- 1 -}- fl22# (72) 

~T. Hence, the process G, under the new law 7~. 

f12 T 2 exp{-TfoG~ds } 
~ r _  d~[ expJ'l,-T30~2frG2ds)] 7 ~ s  

is a centered gaussian process. Its covariance is easy to compute since it is 
enough to derive (72) two times in c~ = 0 to obtain 

~ rG2ds c~2{n>~__o }1+fl22~ 
- 7 . o  -=  g~(~)~ fG2d7~= [exp /32 = }1 expy 

which gives Lemma A.1 by polarization. [] 



502 G.B. Arous, A. Guionnet 

It is clear that the last results do not depend on the choice of  the time T. More 
I t  

precisely, let t __< T. Let K~ be the integral operator on L2([0,t]) with kernel 
~ t  

K,.  I f  we define a new trace class symmetric operator K~ on L2([0, t]) by 

~ t  ( 2__t ) l - - t  
g,, = Id + fl X .  K~ 

~ t  
and if we denote Kv its kernel, then: 

Lemma A.1 bis 

I . - T J 0 %  ~ t  

8[exp{_~ foG~ds}]  =K~(s ,u) .  

We can also deduce from the proof  of  Lemma A.1 (see, for instance, (70)) 
the following: 

Lemma A.2 
~ t  

Vs < t K~ (s,s) <= XAs, s) 

Moreover: 

Lemma A.3 
(1) For any real number ~, ~A2T < 1 

g[exP{2i(G~)2ds}]  

(2) For any real number c~, ~A2T < 1, there exists a finite constant C~ such 
that 

Proof The first point is a direct consequence o f  the proof  of  Lemma A. 1, 
(71). 

For the second point, we notice that, since the 2~ are positive, 22 < 

~ n > 0 2 ~  = tr K,  = g [for (Gs) 2 ds I <= A2T. But, for any strictly positive real 
- l o g  6 number b < 1, x/1 - x  __> e - ~ x  if x < 1 - b with 7a - 20-a) '  so that Lemma 

A.3(1) implies Lemma A.3(2) with C = CI_~2 ~. [] 

Let dt be the Vaserstein distance on W/, i.e.: 

I. s<t ) 

where the supremum is taken on the probability measure r on W[ x Wt A with 
~ t  

marginals /~ and v. We prove that K~ is Lipschitz for this metric: 
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Lemma A.4 There exists a finite constant k such that, for any t E [0, T], for 
any probability measures (1~, v) on W A, 

~ t  ~ t  
supIK , ( s , u ) - K v  (s,u) I < kdt(t~,v). 

~ t  
Proof We can give another formula for K~ which does not depend on the 
choice of  the basis (h#),__>o of  L2([0, T]). Since any x E W A is in L2([0, T]), 
we can write - - t  ( 2__t) -1 

K. (s, u) = fx (s )  Icl + ~ I G x(u)cl~(x) . 

Hence, for any probability measures v and # on wA: 

~ ( s ,  u) - ~ ' ( s ,  u) 

< Id + fl K ,  x(u) d(# - 

-~- f X(S) I 2__ t --1 2-- t (Id +fl  Ku) - (Id +fl  Kv) -1}x (u )  dr(x) . (73) 

To bound the first term in the right hand side of  (73), we first prove that, 

( :)' for any u < t f~(x) = Id + f12g x(u) is a lipschitz function on W A = t , e n -  
dowed with the uniform topology, and bound its lipschitz constant indepen- 
dently of  the probability measure p on W A. 

we denote [1112 the norm in L2([O.t]); 11ft12 = ~ / ~ f 2 ( s )  ds, for any x E 
i 

If 

L~([O.t]) .  we have 

Ix>)l 
/ 2__ t -- 1 

X(U) 2 t 2--' - l x ( s ) a s  = - e ( i d  + 
0 

2 1  t \ -1 
=< ]x(u)l + flzAZv~II (ld + fl K , )  xll 2 . 

- - t  
But K ,  is a positive operator so that 

If~(x)l < Ix(u)l + 112A2vqllxH2 < Ix(u)l + fi2AZtsuplx(s)] . (74) 
s<=t 

Thus, f~  is Lipschitz, with lipschitz constant (1 + flZAZt). Hence, for any prob- 
ability measure ~ with marginals # and v, we have: 

f X(S ) ( Id  -}- f l 2 K ; ) - I  x ( u ) d ( ~ -  1,')(x) 

= If(x(s) - y(s))f~(x) + y(s) (f~(x) - f~(y))  d{(x, y)[ 

<= (A + flZABt)flx(s) - y(s)[d~(x, y) 

+ A f  ( I x ( u ) -  y(u)[ § fi2A2tsup Ix(s) - y(s)[~ d{(x,y)  
\ s<=t / 

__< 2(A + ~2A3t)f sup [x(s) - y(s)[d~(x,y) 
s ~ t  
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Since this inequality holds for any ~ with marginals v and #, we get: 

Id § fl K~ x(u)d(# =< 2A2(1 § fi2A2t)dt(#, v) . 

We now bound the second term in the right hand side of  (73). 

( ] d @  2- - t \  -1 f l2~tv)-I  f12 (1 d 2 - - , \  -1 - t  --t 

2-- t - 1 

So that, for any x C W A, 

But 

x(s) ( (Id 2--t ~-1 (Id 2--t t + [3 K~) - + [3 K~) } x ( u )  

fl2 A: 2-- l \ - 1  --t --t -1 x( u ) 

- t  - t  2 - ,  l x ( ~ )  

<= 2Ax/tllxll2d,(12, v) <= 2AZtd,(#, v) . 

So that, for any x ~ Wr A, 

(75 )  

(76) 

p K,,) } x(.) = 2p2A3t(1 + p2A2Od,( ,v). 

According to (74), we conclude that, for any probability measures v and/2 on 

<= 2f12Agt(1 4- fl2A2t)dt(t~, v).  (77) 

Equations (73), (75), (77) give Lemma A.4. [] 

We state Lemmas A.2, A.3 and A.4 in the time discretized setting. Let A,, = 
{0 = to < tl < . . .  < t,+i -- T} be a subdivision of  [0, T]. We recall that we 

denote t (~) = max{tk r A,, tk < t}. We define a covariance K'~f" by: 

K .  ~ (~', u )  = 
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~ t  n 
It is obvious that the lemmas of  this appendix are also valid for K**' : 

Lemma A.5 
~ t ,  rt 

(1) w __< t, K~ (~,~) _<_ K~(~,~). 
(2) There exists a finite constant k such that, for any t E [0, T], for any 
probability measures/2, v on W A, 

~ l  n ~ t , n  
sup IK~' (s ,u)-K~ (s,u)l < kdt(/2,v). 

s,u<-t 

Appendix B 

Lemma B: Define 

H;~ �9 ~ + ( w r  [o, co] 

~ ' I ( /21P) -F~( /2  ) when I(/21P) < co, 
/2 --+ [. +co  otherwise, 

/~2 
where F~(/2) = f l o g ( f  exp{fi f (  Gt(,,)dBt(x ) - T f r  G}n) dt}dyv) d/2(x)" 
Then H i is the entropy relative to the probability measure Q',~ on W~: 

Q~ = f e x p  fi G,(,) dB, - G ,) dt dyvP. 

Proof 
- I t  is clear that Q~, ~ P .  So that whenever /25{<P, then /2~<Q~ and 

I(/2]P), I(/21Q~) are both infinite so that H~(/2 ) = I(/21Q~). 
- Ig on the contrary, /2 << P, we first remark that the proof would be clear if 

dOn 
d~- was bounded. In fact, we would then write 

i ( /2 ,p)=f logd/2  { d/2 dQ~} g~ d/2 = f log ~ + log 7 F  d/2 = I(/21Q~) + r~(/2). 

Though F~(/2) would then also be bounded, we would get H~, ~ = I(IQ~). 
Our proof will need a deeper study of  the probability measures Q~. 

Lemma B.1 Let v E Jg+(W~). Then 
d Q  n f12A2 T (a) f f  > e x p - ~ -  , 

(b) I(O~lP ) < co. 

Proof 
(a) Gaussian computations give 

dQ~ f12 T 2 
dP - - ( f e x p { - 2 f G t ( " ) d t }  dyv) )2} 

x exp f (fGt(,,dBt dye, r,, 
\ 0  

(7s) 
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so that, Jensen inequality implies 

[ fl2r 2 ) 
dQ~d~ => e x p -  ~ f - f  foGt(,~dtdTv => e x p -  fi2A2T2 " 

(b) Equation (78) becomes, after some gaussian computations (see Lemma 
5.15): 

dQ~, _ exp fi2 f ttt(=~(Q~)dBt - H,(=~(Q~,)Z dt 
dP k 0 

t(~ )'n( t(n ) ' s( n ) ) where Ht,=,(Q'~) = f Gt(=~ J o ~ G=(=) dB, dT_,(=~,= = Jo'(")~ dB=. 
Kv 

Thus, Girsanov theorem implies that, under Q,=,, there exists a brownian motion 
W such that 

t 
B, = Wt + flZ fH=(=~(Q~)ds (79) 

o 

which shows that B is a linear function of W, so that, it is, under Q~, a centered 
gaussian variable. 

Hence B has finite moments and, in particular, 

I(Q~IP ) = f l o g  dQ~ dO~ 

{ 2 i }  f l 2 ( i  )2 fl 2 n 
= l o g f e x p  - 2  G, . dt dTv+yff  ff, . aB, a mT=aQ, 

is finite. D 

We now prove that, when/t  << P, 

/(/tiP) = I(/tlQT) + F7(/t). (80) 

Let/to = OQ'~ + (1 - O)/t for 0 E [0, 1]. We notice that duo > 0, which allows ~ =  
us to write 

I( / t~176176 { -vd/t~ dfi-dQ~} d/to = f l o g ~ + l o g  d#o . 

But auo > 0 and don > exp - ~A2T by Lemma B.l(a), so that both integrals 
~ T f =  -YF= 

in the last formula are lower bounded and 

d/to d/to f log ~dQ~ d = I(/to[P)= f log-d~-(~ + #o = I(#o[Qn) + Fv(/to) . (81) 

The next step is to check the two following points: 

lim I(/totQ~) = I(plQ~) . (82) 
0--~0 

lim I(#olP) = I ( / t [ P ) .  (83)  
0---,0 
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- Equation (82) was proved in [5, Lemma 3.2.13]. 
- Using the convexity of  x log x and Jensen's inequality, one finds 

I(#olP) < (1 - O)I(#IP ) + OI(Q~IP ) . 

Hence, according to Lemma B. 1 (b), lim0--+0 I(#o ]P) < I(#1P). 
Moreover 

d#o 
- 0 dQ'~ + (1 - 0 ) - -  0exp - •2A2r + (1 - O)d P 

- ~  dP = 
so that, using the concavity of  log x, we get 

~p  duo 
I(#0[P) = Of log dQ~ + (1 - O)f log dfi- d#  

= > O{logOexp-~fi2A2T} 

+ ( 1 -  O) { ( 1 -  O)I(#IP) + O (-~fiZA2T) } 

and limo__+oI(#olP ) >/(piP),  which achieves the proof of  (83). 
For the same reasons, as F~ is linear, 

V~(#o) = (1 - O)V'~(#) + OI(Q'~]P) ---+ F~(#) . (84) 
o-+o 

Hence, letting 0 --+ 0 in (81), (82), (83), (84) imply (80), for all # << P:  

I (# [P )  = I(#[Q~') + V~;(#). 

But, we remark as in Lemma 3.3(4) that F~(#) < o~I(#1P ) + ~1 for an c~ < 1 
so that if I(#[P) < oc, then H~(#) = I (# [P)  - F,',(#) and F~(#) < oc, and 
finally, using (80) 

I(#[Q~) = H~(# ) .  (85) 

We finally handle the case where # << P but I(#[P) = oo. Then H~(#)  = oo. 

~ dQ'~ "} #M I1AM #. p(ACM) ----+ O, #(ACM) Let AM = [. d P <  M ,  and = Then, as 
#(AM ) v--+ 

, 0, so that # v  converges to # when M -+ oc. 
M - - - + o o  

Using standard monotone convergence arguments, one finds that 

n ______+ n I(#MIP) M~LI(glP) = OC ; I(#MlOu) M__+ooI(#1Qv) 

But 

1 fllAMdO'~ F~(#M) -- #(A.)  ~ d #  < M .  

Hence, using (85) and again the fact that Fn(#) < M(g[P)  + t/ for an c~ < 1, 
we get 

I(#MlQnv ) = I(#MIP) -- F,n(#M) ~ (1 -- O:)I(#MIP) -- t l 

which implies that 

n lim I ( # M I Q ~ )  = I ( # l O ~ )  = e c  = H ; ( # )  . 
M---+ oo 
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Thus, we proved that 

-:C(w;) n 

G.B. Arous, A. Guionnet 

A p p e n d i x  C 

Proof of Theorem 2. 6 
(1) Let 6 > 0, and B(Q, 6) be an open ball of radius 6 in a metric which is 
compatible with the weak topology, for instance the Vaserstein's metric (see 
its definition in Sect. 3). B(Q, 6) is an open subset of J~+(W A) for the weak 
topology, which contains Q. Hence, inf,(Q,6)c H is strictly positive since H is 
a good rate function. But, according to the large deviation principle established 
in Theorem 2.3(2), 

�9 1 
l i ra  ~logQ~V(~ NEB(Q,6)  c) < -  inf H <  0 

: B ( Q ,6 ) c  

which proves the convergence result. 
(2) Since Qy are symmetric measures, the propagation of chaos may be de- 
duced from (1) as in Sznitman [15, Lemma 3.1]. [] 

Proof of Theorem 2.7. Theorem 2.7 can be deduced from Theorem 2.3 by 
Borel Cantelli lemma. Let F be a closed subset of dg+(W~ ). If infF H = 0, it is 
clear that (5) is satisfied. Otherwise, infFH > 0. Then, Tchebyshev inequality 
implies that, for any integer p, 

: exp{ (  
But Theorem 2.3(1) implies that, for any integer p, for N large enough, 

H~,T(F)_< e x p { - N ( 1 - } ) i n f H }  . 

Thus, for N large enough, 

finite so that Borel Cantelli lemma implies that, for almost all J ,  

l i r a  ~ logP~(J ) (~N E F )  < - 1 -  i n f H  

Letting p -~ cx~, we get Theorem 2.7. [] 
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Proof of Theorem 2.8 
(1) The proof  is very similar to that of  Theorem 2.6(1), we omit it. 
(2) Let f be a bounded continuous function on W A such that f f  dQ = 0 and 
let t?p be the set of  all the J's such that 

l im 1 ~v ( i f  1 )  N-~oo ~ logP (J) fd '~NI  > < -- inf S .  
{v/ ISfd~l _-> -~ } 

But inf{,,/lyfd#f>~}H is strictly positive for any finite integer p by  Theorem 

~ : l f ( x  ) 2.4. Thus for any J E Np~C~p, Borel Cantelli lemma implies that 1 N i 

converges to zero when N tends to infinity almost surely. Finally, i f  fi2A2T < 1, 
Theorem 2.7(2) implies that y ( t ? p ) =  1 so that fa = np~p has probabili ty 
one. [] 
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