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Summary. We study the asymptotic behaviour of asymmetrical spin glass
dynamics in a Sherrington—Kirkpatrick model as proposed by Sompolinsky—
Zippelius. We prove that the annealed law of the empirical measure on path
space of these dynamics satisfy a large deviation principle in the high tem-
perature regime. We study the rate function of this large deviation principle
and prove that it achieves its minimum value at a unigue probability mea-
sure ) which is not markovian. We deduce that the quenched law of the
empirical measure converges to dp. Extending then the preceeding results to
replicated dynamics, we investigate the quenched behavior of a single spin.
We get quenched convergence to () in the case of a symmetric initial law and
even potential for the free spin.
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1 Intr_oduction

The Sherrington—Kirkpatrick model is a mean field simplification of the spin
glass model of Edwards—Anderson. The behaviour of its static characteristics
such as its partition function has been intensively studied by physicists (see
[9] for a broad survey). There are few mathematical results available (except
for [1,3,17]).

In [9], it is argued that studying dynamics might be simpler since it avoid-
susing the “replica trick” and the Parisi ansatz for symmetry-breaking which
are yet to be put on firm ground. It seems that, in the physics literature,
the first attempt to study the dynamics of Sherrington—Kirkpatrick is due to
Sompolinsky and Zippelius (see [16]), who chose a Langevin dynamics scheme.

We follow here this strategy with some technical restrictions explained
below.

Our aim was to understand Chap. V of [9] from a mathematical point of
view.
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Roughly speaking, the first conclusion to be drawn from [9] is that the
limiting dynamics are not markovian and seem rather mysterious. One of our
goals is to derive the law of those dynamics by means of a large deviation
principle.

Our approach builds upon the strategy developed for a much simpler mean-
field dynamics problem; i.e. the large deviation approach to study propaga-
tion of chaos for mean field interacting diffusions, and subsequently conver-
gence to McKean—Vlasov dynamics (see [2,4,15,18]). To be more specific,
let us recall that the Sherrington—Kirkpatrick hamiltonian is given by H;(x) =
ﬁ Zi’j-]jjx,'.xj', for x = (x1,...,xy) € {—1, 1}", where the randomness in the
spin glass is here modelled by the (J;;);<; which are i.i.d. standard centered
gaussian random variables, and where J;; = J;. The Gibbs measure one would
like to study (for N large) is given by

where « = %(5,1 + 01) and B is the inverse of temperature.
Zy(J) is the partition function:

1
Il J) = — —pH;(x)
(/) 2Nx€{§’l}Ne

If one replaces the hard spins {—1,+1} by continuous spins, i.e. by spins
taking values in IR, or as we shall see in a bounded interval of IR, and if one
replaces the measure o = (8- + 8;) by o0 = €72V [ ¢72VEMx gy where U
is, for instance, a double well potential on IR, then, the Langevin dynamics for
this problem are given by

dxl = dB) - VUGt - L= 53 ga, M

\/ngigN

where B is a N-dimensional brownian motion.

We want to understand the limiting behavior (for large N) of this system
of randomly interacting diffusions.

We will need two simplifying features:

First, we will study only bounded spins, i.e. we will assume that U(x)
is defined on a bounded interval [—4,4] and tends to infinity when [x| — 4
sufficiently fast to insure our spins x/ stay in the interval [—4,4].

The second simplifying feature is that we will assume that the whole matrix
(Jiy)i; is made of iid N(0,1) random variables and we will not impose the
symmetry Ji; = Jj.

Our first goal is to study the empirical measure " = %Zf\lzl 0, on path
space. There is no reason for this to be a simple problem, since, for fixed
interaction J, the variables (x!,...,x") are not exchangeable. So, we first study
the law of the empirical measure iV averaged on the interaction.

The main result of this paper is a large deviation principle for this averaged
law in a large temperature (or short time) regime °4%T < 1 which entails the
convergence of the empirical measure to the unique minimum of the good
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rate function which governs this large deviation principle. This minimum is a
probability measure, say O, on path space that we describe explicitly as the
law of a non-markovian, highly non-linear, solution of a stochastic differential
equation. The existence and uniqueness problems for this limit law are not
obvious and are the analogue here of the existence and uniqueness problem
for McKean—Vlasov diffusions in the mean field interacting diffusion context
as obtained in [14].

As a consequence, we show that the quenched law (i.e. the law with given
interaction) of the empirical measure converges exponentially fast to d¢ in
the high temperature (or short time) regime. In particular, if f?4°T < 1, Q
describes the asymptotic mean behavior of spin glass dynamics since, for
any bounded continuous function f on W%, for almost all J, for almost all
(' NgizN,

1y
Nlin;o]v;f(X):ffdQ.

Since the variables (x!,...,x") are not exchangeable, this result is not enough
to get convergence for the quenched law of a single spin. Thus, we investigate
the quenched behavior of a single spin using replicated systems and get only
very preliminary results.

It might well be that the model we have chosen is unnecessarily complicated.
The difficult features are here due to the fact that we are working in continuous
time, and on a continuous spin state space with boundary problems. The same
study on discrete space, or compact manifolds, is of course possible and might
be easier and more transparent.

The organization of the paper is as follows:

We give the notations and the results in Sect. 2.

In Sect. 3, we establish a large deviation principle for a time discretization
of the system, which represents only a necessary technical step.

In Sect. 4, we get from Sect. 3 the full large deviation principle in the high
temperature (or short time) regime.

In Sect. 5, we study the minima of the rate function which governs those
large deviations results, show their uniqueness, and give a pathwise non-
markovian description of this probability measure on path space.

Finally, in Sect. 6, we introduce replica to get a first understanding (in
tune with [9]) of the nature of this limit law and also to get some preliminary
quenched results. We thank gratefully the referees for their very competent
reading and their suggestions.

2 Statement of the results

We begin by describing the system of randomly interacting diffusions we want
to study.

Let 4 be a strictly positive real (4 > 1) and U be a C? function on the interval
] —4,4[ such that U tends to infinity, when |x| — A4, sufficiently fast to insure
that
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‘l‘im ky(x) =400,
x| —4
<

where ky(x) =2 [ exp2U(y) ([ exp —2U(z)dz) dy.

Remark. . We can take U(x) = —log(4® — x?).
For any number N of particles, any temperature (= %) and J = (Jyj)i=ij<n €

RY*N, we consider the following system ¥'(J) of interacting diffusions:

. ) . N )
dx] = —~VU(x)ydt +dB + iNZJﬁx;dz VI<i<N,

i=1

SR =
Law of xo = ug?N ,

where (B/)1<;<y is a N-dimensional brownian motion and gy a probability
measure on [—A, 4] which does not put mass on the boundary {—4,+4}.

Proposition 2.1 For each J € RY®V, #Y(J) has a unique weak solution.

In the following pages, we shall focus on the evolution of this system until
a time 7. We will call Pj(J) the weak solution of &}'(J) restricted to the

g-algebra o(x!, 1 £ i < N,s < T).
Proof of Proposition 2.1. Proposition 2.1 is a direct consequence of Girsanov

theorem and of the following very classical lemma (see [13, p. 357] (Criterion
for explosions)).

Lemma 2.2 Let (I',(%)i20,%, p) be a probability space on which a brow-
nian motion (B;);xo lives. Then there exists a unique strong solution to the
stochastic differential equation (&):

dx, = _VU(X[)dt “+‘ dBt N

() = {Law of xo = lo .

Moreover, if T, = inf{s/|x;| = 4 —¢}. ThenVT, P(T, <T)= 1—%, 50
that P (limglo T, = +OO) =1.

Notation. We shall note P the law of this solution restricted to the o-algebra
Fr = o(x5,s £ T). Lemma 2.2 implies that P is a probability measure on the
space W3 of continuous functions on [0, 7] with values in [—4,4].

As a consequence, Girsanov theorem shows that, for any J € RV®Y, PY(J) is
a probability measure on (W7 )V.

We want to study the behaviour of the empirical law Ziy = %Zf’:] 0., under
P’ﬂ" (J), when J is a random matrix with independent standard centered gaussian
entries (J;; ~ N(0, 1)).

We will first study the law of 7y averaged on J, and then deduce some

quenched results, i.e. the results we can find for a given interaction (or disorder)
shape (i.e. the J almost sure properties).

More precisely, let (£, #,y) be a probability space and J;; be i.i.d random vari-
ables on & such that the J;; are, under y, standard centered gaussian variables.
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We first remark that P;,Y (/) is a measurable function of J, indeed Girsanov

theorem shows that Pf}’ (J) is absolutely continuous with respect to P9V and
that:

2k ] ) ] ) )

and it is obvious that this density is a measurable function of J.
Hence, we can define a probability measure O} on (W7)" by

0} = [P{(J(0))dy(w).

Let II}  be the law of the empirical measure under QF. IT}  is a probability

measure on the set .#;(W#) of the probability measures on W7 which is
defined by

my (B) = 0§ (" € B)
= [P{U (@)@ € B)dy(w)
for any measurable subset B of ] (Wi).
The main result of this paper is:

Theorem 2.3 There exists a good rate function H on MT(W}) such that if

BPAT < 1, T} ; satisfies a full large deviation principle with rate function
H, ie:

1
For any open subset O of T (W) Qm ﬁlogﬂﬁT(O) = —irolfH

For any closed subset F of /%T(W;‘) 11m — logH (F) £ irF1fH

A complete description of A is given in Sect. 4, Theorem 4.1.

The proof is given in Sect. 4, Theorem 4.1, after a preliminary study in Sect. 3
of a time discretized version of the dynamics.

To get a convergence result for ITY 57> We need to investigate the minima of H.

Theorem 2.4 H achieves its minimal value at a unique probability measure
Q on W# which is implicitly given by the following procedure:

Let P(h) be the law of the diffusion on W# solution of

dx, = —VU(x,)dt + dB, + Bh, dt,
Law of xo = o

for a determinist process h in L*(J0, T, dt).

Then, Q satisfy the non-linear equation

Q = [P(G(w))dyo(w),
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where g is the law of a centered gaussian process G with covariance
fGSGt dyQ = fxsx, dQ .

We can elucidate the non-markovian character of O by

Theorem 2.5 Q is the unique solution of the stochastic differential system:

!
Xy =Xx9 — fVU(xs)ds—i—Bt,
0

ts_
By =W, + B[ [Ky(s,u)dB, ds,
00
Ko (t,s) = [xx;dQ(x),
Law of x=0Q, Qlz = tho »

where (W, ),zo is a brownian motion under Q, and, for any continuous covari-

ance K on [0, TP, for any t < T, K" is the covariance given by

[exp {—/’; fO’Gg(m)du} Go(0)Go @) dy(w)
Jexp {—ﬂz—zfotGg(w)du} dyx(w)

j{vt(s,u) =

where G is, under yx, a centered gaussian process with covariance K.
Theorems 2.4 and 2.5 are proved in Sect. 5.
As a consequence, one finally gets the propagation of chaos result:

Theorem 2.6 (1) If p2A’T < 1, then Hg” 7 converges weakly to &g ie.

1N
VF € Cy( AT (W) Nli_)moo f (fF (Niljéxi) 5(J (@) (dx)) dy(w) = F(Q).
2)
In particular, if f € Co(W#),
1N .
Nh_f}gof (fﬁgf(x’)Pﬁ(J(w))(dx)) dy(w) = [f(x)dO(x). (3)
(2) As a consequence, if BPA’T < 1,Vk € N, Y(f1,..., fr) € Co(Wi ),

k
Nllmoof(ffl(xl)---fk(xk)Pf;v(J(w))(dX)) dy(w) = gffi(x)dQ(x)- 4)

The proof of Theorem 2.6 is very classical, its main arguments are recalled in
Appendix C.

Of course, one can deduce from Theorem 2.3 that the quenched law of the
empirical measure satisfies a large deviation upper bound, i.e.:
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Theorem 2.7 There exists a good rate function H such that if f?A*T < 1,
Jor any closed subset F of M+ (W), for almost all J,
- < —
N11—1>noo i logPg(J)(u" € F) = u}fH. (5)
The proof of Theorem 2.7 relies on Borel Cantelli lemma and is given in
Appendix C.

A consequence of Theorems 2.7 and 2.4 is that the quenched law of the em-
pirical measure converges exponentially fast to dp so that:

Theorem 2.8 If f2A4°T < 1
(1) For any bounded continuous function F on M (W$), for almost all J,
Jim JF@YYaP{(J)y = [fdQ.

(2) For any bounded continuous function f on W, for almost all J, for
almost all ((x')1<i<n)INeN,

A
Jm ﬁ;f(f) = [fdo.

Theorem 2.8 is proved in Appendix C.

Since P;}’ (J) is not exchangeable, we cannot deduce from Theorem 2.8(1) that

Pfg’ (J) is @ chaotic as in Theorem 2.6. Thus, we introduce replica to get a

better understanding of the quenched asymptotic behavior of a single spin.
We will identify in Sect. 6 a gaussian external magnetic field H and a
probability measure Py on W7 which depends on H such that:

Theorem 2.9 For any integer r such that rp*A*T < 1, for any functions
(15> fm) €CYWT)

J (f ﬁﬁ(x’dP;X(J(w))(dx)) dy(w) — ﬁé”’f [(/fidPa)] .

where & denotes the expectation on the gaussian process H.

The law of H and Py are described in Sect. 6 as the unique solution of the
following non-linear procedure: Let (H, G) be two independent centered gaus-
sian processes and denote &7 (resp. £¢) the expectation over H (resp. G). For
/in L2([0,T7), let P(f) be the restriction on [0, T'] of the law of the diffusion

dx, = —=VU(x)dt +dB, + pf(t)dt
Law of xo = po -

Then, the covariances of (H,G) are defined non-linearly by

8°1G,G,] = &" 6 [ fxx, dP(G + H)]
— 6" [89 [[x,dP(G+H)] 6° [ [x/dP(G+ H)]] ,

EHIHH,] = 6" [6° [[x,dP(G + H)] 6% | [x,dP(G + H)]] .
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Finally Py is given by
Py = &°[P(G + H)J.

Theorem 2.9 enables us to prove that, in general, P;}/ (J) is not Q chaotic but
that, if U is even and gy is a symmetric law, Pﬁf (J) is @ chaotic in the
following weak sense:

Theorem 2.10 Suppose that 2p?A*T < 1, that U is even and py is a symmetric
law. Then, for any times (ti,...,4;)E[0,TT, there exists a subsequence
(Np)pzo such that, for almost all J, for any integer m, the law of (x; ,...,x,,

N
m m P 1 c el m m
...,xtl,...,x,k) under Pﬁ (J) converges to the law of(x,l,...,x,k,...,xll,...,x,k)

under Q%™ when p tends to infinity.

A more detailed result is given in Sect. 6.

3 A technical step: large deviation principles for discretized systems

As mentioned at the end of Sect. 1, we prove here a large deviation principle
for the measures H]g r after a time discretization. In this section, an integer »

will be fixed. We introduce a version yg"’(.] ) of the stochastic system V]/}’ )

where the interaction has been discretized in time. Let A" = {0 =1 < f;--- <
tpy1 = T} be a partition of [0, T} and define

dx = —VUGI)dt + dBl + l‘ﬁ;@ix;(n) i, 1<j<N,
Z
%N’n(J) 1 = sup{t, € A"/t < t},

Law of xp = uZ" .

As in Proposition 2.1, it is clear that %N’”(J )} has a unique weak solution for
any J € RV*¥ We will denote Pgl’"(J ) its restriction to (W4 )V.

We will call Q[;’” the probability measure on (W#)" defined by

0" = [P (@) dy(w).

Let finally Hg; be the law of the empirical measure under Q!]}/’":

n a1
VA € BTV, TgHA) = QF (ﬁ Zléxp € A) .
=

To state the main result of this section, i.e. a large deviation principle for Hgf’;,
we first introduce the rate function.

Recall here that P is the law of the diffusion process solution of

dx, = =-VUMx)dt+dB, 0Zt=T
Law of xp = o -
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If ue M7 (W3, let I(u|P) be the relative entropy with respect to P, i.e.:

du .
+00 otherwise .

And define

"y =f (logfexp {ﬁéGt"(w)(Bt"“ — By )(x)

n

2
- EZGtzk(w)(ka - lk)} dVKp(w)> dux),
k=0 ‘

where G is, under VK, @ centered gaussian process with covariance K, (s,1) =
Jxex du(x) and B,(x) = x; — xo + J3 VU(x;) ds.
We then define, for p € 4T (W),
w0 = {T0P =T i 101P) < oo,
00 otherwise .

The aim of this section is to prove the following large deviation theorem for
the discretized systems.

Theorem 3.1
(1) H" is a good rate function, i.e. VL > 0, {H" < L} is a compact set.

(2) H;;V; satisfies a weak large deviation principle with rate function H".

(3) If BPA*T < 1, Hf;; satisfies a full large deviation principle with rate
function H".

We first give another description of I for which we need some prelim-
inary notations.

We recall that, for any probability measure y on W, we define the covariance
K, by

Ku(s,1) = [xx,du(x).

Moreover, for any ¢ < 7, we define a map ¢"” in the set of covariances (i.c.
of symmetric positive kemels) on [0, 7] x [0, T'] such that, for any covariance
K, K"" is given by

2
exp {—%ngsz(n) ds}
2
Jexp {_%ngf(n) ds} dyk
2 n
exp {—%ZOGfk(tkH AL =1 A t)}

2 1
Jdyk exp {_%ZoGi(’kﬂ ANt —1t A L)

K*"(s,u) = [G,G, dyx

- [G,G, } dyk .

In particular, for any probability measure u on W#, for any t < 7, we denote
Ln

KNﬂ R ’Vt,n(K#).
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We remark that, for any probability measure p on W{?, for any s,t £ T,
|I’{7,t’n(s,s)| =< |Ku(s,s)| (see the proof in Appendix A, Lemma A.5), so that

the covariance If{vut’n is bounded by 4%
Let

2 n
() = log fexp {_%]gGi(w)(Ik-&-l - l‘k)} dyk,(®)

2 " 2
=247 ( 3 Gu(@)(By., () - Btk(x))) Ay ra(@) dp(x)

Standard gaussian calculus gives (see Neveu [10, Proposition 8.4]):

Property 3.2
I'(p) = I'i(p) + I3 (w) -
NotationIn short, we shall write y, for yg,.
In order to prove Theorem 3.1, we first study the continuity properties of the
applications I'f and I']:

We will denote dr the Vaserstein distance on .# T(Wf’ ), i.e.

12
dr(u,v) = inf{f sup [x; — y|* dé(x,y)}
t<T

The infimum being taken on the laws ¢ with marginals v and p.
dr is a distance on .# (W) which is compatible with the weak topology (see
[6, Theorem 2]).

Lemma 3.3
(1) I't is a bounded Lipschitz function from (MT(W#),dr) to (R,] |). It is
therefore continuous. More precisely:
(a) —;fA°T < I < 0.
(b) There exists a positive constant Cr, depending on T but not on n,
such that: \T'(p) — IM)| = Crdr(p, v).
(2) I'} is lower semi-continuous.
(3) I'" £ I(|P), i.e. H" is positive. Hence I'" is finite whenever I(|P) is.
(4) There exist real constants « < 1 and n > 0 such that I'" < oI (|P)+ 9.

Proof. We recall here that ¢ = sup{#;/t; < t} so that fOT @t ="
Gtzk(tk+1 — #) for instance.

Proof of Lemma 3.3(1). By Jensen inequality

Ii(p) = log fexp {~——ﬁ fGt(,,) } dy,

[\

T
—%ﬁzf {fGt(") } dy, = “é‘ﬁzf {fx?(”) dt} d
0

1o
—=p°A°T
2

IV
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So that |
—BAT ST S0 Yue Mf(wy).
Moreover
2 T
Jexp {—%—fo Gl dt ) d(yy — 1)

feXP{ fo 1) }dVv

\C1(pw) = I{)| = [log | 1+

< el/zﬁzAzT

27
fexp{—ﬁz——OfGtZ(n) dt} Ay =) -

Let ¢ be a probability measure on Wi x W3 with marginals v and p.
Then

Ke(s,t) = (fxsx; d&(x,y)  [xm dé(x,y))

Jxysdé(x,y)  [ysyidé(x, y)

defines the covariance of a bidimensional centered gaussian process (G, G').

Remark that the law of G (resp. G') is y, (resp. y,) and denote y; the law of
(G,G"). Then

BT,
Jexp — 7fGt(n) ded(y, — )
Q

:‘f{exp{———fG(n) }‘GXP{ fG(n> }}d%

= —f”G,(n) G| dt dye
g r 1/2
é -2_ I}zl <f{(Gt(n) -+ SG;(M))Z dtd')/f)
&=
by Cauchy—Schwarz inequality.
But
7 ;N2 L 2 )
fof (G + Gy)” drdy; = fof (x4 yym)” dtdé(x,y) S 44°T,
T N2 T s
S (G — Giw) dtdy: = [ [(xem — yum Y dtd&(x, y).
0 0
Hence,

1/2

T

TG = M| = ﬂZAx/Texp%/ﬁAzT (f JGn = i dtdé(x,y)>
0

(6)
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So that, taking the infimum on the measures &, we find

T3 — P < {ﬁ"ATeXP %/MT} dr(nv).

Proof of Lemma 3.3(2). We define
r 2
= [f (g‘ Gy (®) d&(x)) AM dyra(@) dp).

=Tn . .
We state in Appendix A, Lemma A.5, that u — K, s Lipschitz for the weak
distance so that it is continuous for the weak topology. Hence u — Vg T is
o

continuous for the weak topology.
2
But (w, x) — ( fOTGt(n)(CU)dBt(X)) AM is a bounded continuous function.

Therefore, I'y" is continuous from .4, (W7) into R.

Finally, by monotone convergence theorem, when M grows to infinity, I’ ;”M
grows to I}, so that I} is lower semi-continuous.

Proof of Lemma 3.3(3). Let
T 27
F(x) =log[exp {/)’fG{(,,) dB(x) — ifo(,,) dt} dy, .
0 0

It is well known (see [5, Lemma 3.2.13] for instance) that

I(uP) =sup | [ ¢du—log [ exppdP; ¢ € 6,(W7)
&i Wi

so that, by bounded convergence, for any bounded measurable function ¢ on
W#, we have

J ddu—log [expdpdP < I(ulP). (7)
w4 w

For instance, if we define, for a positive real number M,

T 2 o7
Fil(x) =log [ <M/\ exp {ﬁfo Gy dB,(x) - & b Giw dt}) dy,, we find
that, for any positive real number q,

afFY(x)u(dx) < I(u|P) + log fexpaF) (x)dP(x).
So that monotone convergence gives
a[F,(x)u(dx) < I(u|P) + log [exp aF,(x)dP(x). (8)

By Jensen inequality, Va = 1,

2T
JexpaF(x)dP(x) £ [ [exp {ab’}Gt(n) dB,(x) — a%fGtz(,,) dt} dP(x)dy, .
0 0
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But, under P, B, is a brownian motion and
T AR T
Jexp {aﬁfG,(n) dB,(x)} dP(x) = exp { fGt(,,) }
0
so that, Va = 1, (8) implies

2 T
a[Fu(x)du(dx) < I(u|P) + log [exp {(cﬂ - a)ﬁ7 Ofc;f(n) dt} dy..  (9)

We have chosen F), so that I""(u) = fFﬂ(x)u(dx); letting @ = 1 in (9) proves
that I'" < I(|P).

Proof of Lemma 3.3(4). According to Lemma A.3(2) of the Appendix, if
b= (a®> — a)p?A’T < 1, we can find a finite constant ¢ such that

fexp{ a —a)—fGt(,,) } dy, < expch,
so that, (9) becomes

1 cb
') < 1Py + <. O
a a

To circumvent the fact that I} is not continuous, we approach this function by
linear applications

Lemma 3.4 Let v be a probability measure on W.
(1) Define Iy, = MT(W{)— R by

2 n 2
=" ( 3G (@)(By, () - B,k(x))) @y 1) d(x).
Then, there exists a constant Cr, such that, for any integer n,
I3 (0) — I = Cr(1+I(ulP))dr(p, v).

(2) Let I'(p) = I'T(v) + I'; (p). Then we can define a probability measure
Q" on W# by

dQ;(x) = exp I'1(6,) dP(x) (10)
B
= fexp {ﬁ{Gt(W) dB,(x) — ~2—fGt<,,) dt} dy, dP(x) . (1)
0
Then, the relative entropy, I(p|Q)), of u with respect to Q7 is equal to H!":
Hy o MY (Wy) — [0,00]

- {1<u|P)—F:f<u> if I(ulP) < oo,
+o0 otherwise.

As a consequence, H!! is lower semi-continuous.
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Proof of Lemma 3.4(1).

2 T 2
2p) -y (p) = 5][ (fG;o«) de) d(ygrn —Vera)du.
0 " v

Pick, as in the proof of Lemma 3.3(1), a probability measure ¢ on Wi x W3
with marginals u and v and let y; be the law of a bidimensional centered
gaussian process (G, G’) with covariance K.

Let X
exp {—%fOTGtz(,,) dt}
HG) = > |
Jexp {"Tfo G(n) dt} dye
Then
3(n) — I7,(w)]
B T 2 T 2
— 5 ff{ @) ({Gt(n)d3t> —A’}(G') (E)[Gt/(n) dBt> } dye du
r 2
ff\/l (G — ARG (fon) de) dyedy
0
7 T
+- ff/l (G") f(sz + Gy ) dBy| x f( () — Gl dBy| dyzdy.
(12)
Let
2 T 2
B = jffIA';(G) — AL(G")] <0sz(n> de) dyedu,
, 112
B, ( [A(G' Y ( [(Gm + th(,l))dB,> dye dp) .

If we apply Cauchy—Schwarz inequality in the second term of the right hand
of (12), we find that

|P5(u)y — I3, (1)| < B+ B, (13)
We first bound B;. Remark that
|A7(G) — A(G)]

exp {“FT(#) fGtm } —exp { riev) - —sz«n) }l

eXP{E AT }( f|G,(n) G

IA

di+ | 7(u)~r'f(v>|) (14)
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so that, if ¢ = $8%(1 + Lp%)exp 1 47T,
r 2
B1 5 i)~ 1S ([Godse) dyca
0

2

T T
tef[[ |Gy — G| dt (fGt(”) de) dyedu. (15)
0 0

Moreover, one can deduce from (7) that, for any probability measure p on
W4, for any function % in L*([0,T],dt), for any C > 2, we have

2
/ (fT h dB[) de < CQ1L+ IGP) [ dr (16)
0 0

We come back to Eq. (15). We first integrate with respect to g and use the
independence of G and B to apply Eq. (16). We then find a constant ¢7 such
that

By < er(1+I(p|P)) (If'f(u)— 10|

T T
+/ ( {Gf(,,) dt> 0f|G§§,,, -G

So that, using Lemma 3.3(1), we deduce that we can find a constant ¢} such
that

dt dyg) .

By < cjdr(uv)(1+ K(|P)).
We can bound similarly B, so that inequality (13) gives the result, i.e. that
we can find a finite constant Cr such that, for any integer number » and
() € MT(TH):
|53(w) = T3,(0)| £ Crdr(pv)(1+1(ulP)).
Remark. 3.5. We could also have remarked that

2 n —~Tn —~T.n
s - sl = B8 R R ok
kk'=1

x [ ‘(B,Hl ~B,) (B,k,+l AB,k,) du.

And, since we state in Appendix A, Lemma A.5, that X, " s Lipschitz for
the Vaserstein distance, we should have found a finite constant Cy such that

2
P30 =13, 0| < GCrartun) s (B, ~B . ()

Proof of Lemma 3.4(2). The equality between the two definitions, (10) and
(11), of the density dQ%/dP is due to standard gaussian computations (see,
for more details, the proof of Lemma 5.15). We deduce from the martingale
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propeities of this density that OF is in fact a probability measure. The equality
between J(|Q7) and H} is proved in Appendix B.

We can now prove Theorem 3.1.

Proof of Theorem 3.1(1). We first prove that H" is lower semi-continuous.
Take a sequence (u,) of probability measures on W# converging to u and
choose a subsequence (pip,, ), such that lim, H"(u,,,) = Lim , H™(pp).

Then, we distinguish the case where the sequence I(u,,,|P) stays bounded for
large m from the case where we can find a subsequence ( P )uren such that
I(Up, 4y |P) tends to infinity when M does.

— In the first case, with the notations of Lemma 3.4,

lim 1%(up) = Hm(/ — I")(pp,) 2 lim (7 — I'}) (1p,,) + Lim (I = T™) () 5
14 m m

As I(up,,|P) is finite for large m, Lemma 3.4(2) implies
tim (44, |P) = Fy(1tpn ) = lim Hap, ) 2 Hj (k) = H" (1)

Moreover, Lemmas 3.3(1) and 3.4(1) imply that we can find a finite constant
C such that

|Fn(l’tﬂm) - FZ(:upm)’ é C(l + [(lupm |P))dT(;u>.upm) -

Therefore, (11, |P) being bounded for large m, lim,, (I', — I'") (up,) = 0.
Hence lim ,H"(1,) = H"(u).

— Suppose now that we can find a subsequence ( pmar))men such that limp .o
I (upm(M) |P) = oo. Then, according to Lemma 3.3(4), limy/H” (‘upm(M)> =
400, s0 that

lim H* (1) = lim ' (s1,) = 1 B" (5,0 ) = +00 = H'(1).
P

Hence, we proved that, for any sequence (41, )peN converging to p, lim H"(u,)
= H"(u). This means that H" is lower semi-continuous, and, equivalently that,
for any positive real number M, {H" < M} is closed. Moreover, by Lemma
3.3(4), we also know that the entropy relative to P is bounded on {H" < M}
so that this set is in fact compact.

Proof of Theorem 3.1(2). The demonstration of the large deviation principle
will follow the following classical steps:

First of all, we shall compare our system with the system without interaction
Y. We shall state

dITY () = exp{NT" (1)} dITY 1 (n) (18)

Then, we shall prove, without any restriction as f24°T < 1, that a weak large
deviation principle holds; we give a lower bound inequality:

1
For any open set O of .4 (W), ~ing” < lim ﬁlogﬂg‘;(O). {19)

N—oo
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And an upper bound for any compact set K:

T 1 N,n . n
NIEEO]VIOgHB,T(K) < —12fH . (20)

In a second step, we shall prove an exponential tightness lemma for which we
need the condition B*4°T < 1:

3o >13C < oo sup(fexp{an™@)}dP®¥)'™N < expC.  (21)
N,n

So that, if 6 = 1 — a~!,VB € B(MT (W),

IyLB) < explCN x I +(B) . (22)

But, by Sanov exponential tightness property, we know that, for any positive
integer L, we can find a compact set K; such that

— 1
Jim log Y r(Kf) < -

Hence, VL, there exists a compact set K YL+ such that

—’OO

1 W,
hm logHﬁ,’; ( %(Hc/a)) < —L. (23)
Then, Egs. (20) and (23) give the upper bound for any closed set F:
= = 1 N,n :
VF=F Nh—I>I<1>o NlogHB,T(F) < - 12fH" . (24)

The following lemma allows us to compare our system with the system without
interaction and is the key of the whole approach of this paper:
Lemma 3.6 Note 0" = [P{"(J(w))dy(w). Then Q)" < PN and

aonr R
e I

Proof. By Girsanov theorem, for all J € R¥*¥, P;;]’"(J ) < PN and

dPy™(J) , 2
v = ow A8 (g ) abl = B F (ot ) arh

n

dP¥ ()
Applying Fubini theorem to the positive function £®N , we find that QN <
POV and

dgy” | N .
PN fexPZ 5f (“N;in(w)x}n)) dB;

2 T

2
2 Of (fZJJ'(“’)xtm) dt} dy(w).
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But, under y, the J;; are independent, so that

doy" T/ N 4 .
“pen = Hlfexp ﬁof (—-}Vaigﬂi(w)x;(n)) dB,
= i=

2T I N ) 2
L (Gripers) dr} D).

Moreover, under v, the law of (ﬁ Efv:l inxj(,,)) is Vals ie. {ﬁ Zf\/:l Jj,-x;(n),
t =T } is a centered gaussian process with covariance f X, 0m) X () di¥ (x) =
N Z?il Xy Xy
Hence
ng*” B N T BT,
JpaN = P (j;logfexp {,Bth(,,) dB) — ngr(") dt} dyyv)
—exp{NI"(E)} . O
We prove here the lower bound (19):
Lemma 3.7 If O is an open set of MT(W3), then

1
~inf A" £ lim < log IT7(0).

N-—oo

Proof. According to Lemma 3.6

m37(0) = g exp{NI" (")} dP®" (x).

But, by Lemma 3.2, I =TI'f + ' and I'} + I'} is lower semi-continuous ac-
cording to Lemma 3.3(1) and (2). We can therefore apply [5, Theorem. 2.1.7],
to obtain the result. [J

The next step is to prove the weak upper bound (20):
Lemma 3.8 For any compact subset K of 4 (W3),
T 1 N7n . n
NleOo Nlogﬂﬁ’T(K) = —lng .
Proof. Take 6 > 0. We can find an integer p and a family (v;)i;<, of
probability measures such that
p >~
K C UB(V[, a) >
i=1
where B(v;,8) = {u/dr(u,v;) < 8} is an open ball in #[(Wf) for the

Vaserstein’s metric, so that

T 1 N, n Toor i N,n
lim N log Iyp(K) = 1Iéliagxp l1m]~v— log Hﬂ,T(K N B(v;,0)). (25)
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Let v be a probability measure on W7j.

OYHKNBM,8) = [ exp{NI™(w)}dl}(p).
KOB(,6)

We noticed in Remark 3.5 that there exists a finite constant C such that
F3() = "] < € max [(By,, — By ) dpdr(p,y).
Thus
37K N B(, )
< [ exp {NC& max [(B,,, — B, ) du +NF(Z(;1)} dIly(1). (26)
KNB(.5) Iskzn

But, for any probability measure v, Q" = exp {NI'*(i")}. PN = (01)®" is
a probability measure on (W#)" (see Lemma 3.4.2).

Hence, (26) implies that for any conjugate exponents (p,q),
H%;(K NB(v,0)) < [ exp {NC5 max [By,, — By ) dﬁN} dohn
W €KNB(v,5) =r=

oy" (" € K N B(v,8))"*

A

1/g
x (f exp {NqCé wax JBy., — B, dﬁN} dQC’,n) )
(27)
To get an upper bound for the right hand side of (27), we need:
Lemma 3.9 Whenever ¢ =2 max; |ty — ] gCo(1 + f24%) < 1,
1 N
2 N N,
e {NaCo s [(8y,, - B Pa' f agt = ()

Proof. As we remark in Appendix B, (79), the processes B' are, under (Q")®",
independent gaussian processes.

Moreover, its covariance is given by

f(Blk_H - Blk )2 dQ:l

T ﬁ2 T
:f (f(Btk_H _sz)zexp{ﬁ{Gt(n)dB[— 7'0[G12(,,)dt} dP) d’)}v

But Girsanov theorem implies that, for given G, if W denotes the Wiener
measure:

T ﬂZ T
J(B,,, — B, ) exp { B {G,(n) dB, — > Ofo(,,) dt} dpP

2
kt1
=/ (Wfk+1 —wy =B [ Guw dS) aw(w)
i
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so that
2
5 ., Yy
JBy,, =B YdO, = (| [ (W,kH —wy, —f [ G ds) aw | dy,
73

S U+ 0Nt — 1) = (1+ FA?)max g0 ~ 4]
Classical integrability properties of gaussian variables (see [8, Lemma 3.1], for
instance) end the proof. [

To bound the first term in the right hand side of (27), we finally remark
that, according to Sanov theorem, { Q" o (")~!'} satisfies a large deviation

principle with good rate function J(|Q7). Moreover, we saw in Lemma 3.4(2)
that

ny — ppngy = S PY =T (u) whenever I(|P) < oo,
I(u| Q) = Hy() = { +00 otherwise .

As a consequence:
o 1 - .
lim — log Q™" ¢ KNB(1,8)) < — inf_(J-T"). (28)
N KNB(3)
Hence, if we fix (p, ¢) and choose & small enough, Egs. (27), (28) and Lemma
3.9 give
1Trr—1l log I "(K NB(¥,8)) < — ! inf (I-TI7)— ! log(1 — &)
N aT T presem 24 '

Thus, Eq. (25) implies

1 N 1 1
lim— log I70(K) £ max | —— inof {I({P)-T") | — — log(l - &).
N g ﬂ’T( ) = léiép( PKmB(v,-,a)( (£ v')) 2q 2 )

But, as a consequence of Lemmas 3.3 and 3.4:
() ~ ()| < Cdr(p,vi)(1+ (1| P)).
Therefore
=1 Non 1. 1
— ’ < —— - C - I - —1 - &).
th log ITg7(K) = pn}l(f((l COHI(|P)—T")+ Cé 37 og(1 —¢&)
Let 6\, 0: as I < al(|P)+# for an & < 1, we can prove that
%1—13)1111(1"((1 ~CHI(P)—T") = 1111<f(1(|P) —-I").
Letting p ™\, 1, we proved Lemma 3.8. [

Proof of Theorem 3.1.3. To prove Theorem 3.1.3, we have seen (see (24))
that it is enough to prove the following exponential tightness lemma:



Large deviations for Langevin spin glass dynamics 475

Lemma 3.10 If f*A?T < 1, 3a > 1,
s]:,lp ([ exp {aNI"(1")} dP®N)1/N < 00
n
Proof.
Let By = [exp {a NI"(i")} dP®N
27

:fﬂ_ (fexp{ﬂf (n)dBt ZJ(G{("))z dl} d}))“dp@]v,

where G/ = le Jixt. If & = 1, we use Jensen inequality and Holder in-
equality with conjugate exponents (p,q) to get

By < Jgﬁ_z Sr ? v dP®N
v < [exp ocﬁE fGl(n)dBt 3 ocEf( t(")> dty dydP
=10
MCOSY "
é <f exp {O‘ﬁqz fGt(n) dB{ : q Zf( t(")> } d'))dP®N>
0

Jj=1

I/p
L vz N
X (fexp{iocﬂ plgo— 1) Z::{( (n)) }dydP ) .

By supermartingale properties, the first term is bounded by one.

Moreover, since the G/ are i.i.d,

2 N T
fexp{%p(qcx~l)2f( (n))2 }dydP@N
0

j=1
N

:f<fexp{a7ﬁzp(qa 1)[( Glw) d }dy) dp®V .

Furthermore,
Tl N 2
ff( (n)) dtdy= [— (x’(’n)) dr < 4°T,
0 ! 0 Np:l g

P®N _almost surely, so that, whenever aff? p(qax — 1)TA> < 1, we can find a fi-
nite constant C(«, p) (see Appendix A, Lemma A.3.2)), which does not depend
on n, such that

feXP{ 5 Plge— l)f (G,<n>)2 dt} dy < £ poN 4 ¢

But o 82 p(qgo — 1) T4? — BPAT so that, if B2A2T < 1, there exists a real
o, g—>

number «, & > 1, and conjugate exponents (p, q) such that C(«, p) is finite.
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Then, for any integer n,

[exp {ocNF"(ﬁN)} dP®N < exp C(a, p)N . [

4 Large deviation principles in the high temperature regime

We remove here the cut-off in the time variable, i.c. the discretization in the
interaction and prove a large deviation principle for Hg -

Theorem 4.1
(a) Let

r:{I(P) <o} —R ) -
u—>flog(fexp{ﬁfG,dBt—7fGt2dt} dyu> du,
and define ° 0
H(#):{l(#IP)—F(M) if we {I(|P) < oo},
400

otherwise .

Then H is a good rate function.
(b) If PPA’T < |, 1T}, satisfies a full large deviation principle with rate
function H.

Remark. 4.2: Let p be in {I(|P) < oo}
(1) u < P so that Girsanov theorem imply that {B;},<r is a semimartingale

under 4. In particular, the stochastic integral [ g G;dB, is well defined for
any G in L*([0,T]), i.e. for y,-almost all G( ji g G,dB, is, given G, a centered

gaussian variable with covariance [ g G? dt). In particular, it implies that I" is
well defined when the entropy relative to P is finite. Moreover, we can see, as
in Lemma 3.3, that I is finite whenever /(| P) is finite.

(2) Moreover, we notice in the proof of Lemma A.1l, Appendix A, that there
exists a sequence of centered gaussian process GM which converges in proba-
bility (and even almost surely) to G such that:

Gl = Y gus)Eh,

0<n<M

where (& )azo are iid N(0,1) and (gi(s))szo are determinist functions in
L*([0,T]).

It is obvious that [ g GM dB; is, conditionally to B, a centered gaussian variable
and that

T BZ T 2
fexp{och?” dB, — 7[ (GM) ds} dyy,
0 b
2
2 ( [agk(s) st)

— (i ICX {“ﬂ—zf(GM)z ds ; dy
20§n§M 1+ﬁ215 p 20 s /,U.
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T
The same formula shows that, for almost all B, <exp {oc I GM dB,—

2

% f g (GM )2 ds}) is bounded in L'*°(Q, o, ), for any positive real num-
Mz20

ber o, so that this sequence is uniformly integrable. Thus

T 27
fexp {oc JGydB; — EI(GS)Z ds} dyy
0 )

2
T u
2 (fogn(s)st) 2
= €Xp TnEOW fexp {—‘7‘({((;3) ds} d'yﬂ .

Hence, under the new law
2
exp{—%ngszds}
Yu
2 T
& [exp {—%fo G? ds}]
f g G,dB; is, conditionally to B, a centered gaussian variable with covariance

2
T
J(JoGsaB,)" dif.
We will here follow the pattern of the proof used in Sect. 3. We first dwelve
on the properties of the rate function H.

Vi =

In the following pages, we will choose the subdivisions 4, such that |4,] =
maxXo<k<n [tit+1 — t| tends to zero when » tends to infinity.

Proposition 4.3 (1) On the compact set K = {I(|P) £ L}, I'"" converges
uniformly to I

As a consequence, lim, .o, infr H" =infr H, for any closed set F, and
lim, o, info H" < infg H for any open set O.

(2) Ve e {I(|P) < oo}, I'(p) = I'(p)+ I'o(p) where

2T
)= 1ogfexp{—%fG§ds} dy,,
0
2

BZ T
rao =5 g1 (fGian.) g du.

B)Ir =I|Pyand 3o < 1,4 >0/ < al+n

(4) H is a good rate function.

Proof.

(1) We will show that I'f and I} introduced in Property 3.2 are uniformly
Cauchy on Kj:

— By an argument similar to the one used in the proof of Lemma 3.3(1), we
see that there exists a finite constant C such that

1,2
|(F§’ — F?er) (ﬂ)| =C {ISEIT) lxz(n+p) _xt(")|2 dﬂ}
t=

1/2
gc{f sup Ix,—xs|2du} ) (29)

[t—s] < |4n]
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— Similarly, as in Lemma 3.4, we find a finite constant C such that

1/2
IFQ(M)—FZ”(M)éC(IH(uIP)){f sup |xt_xs|2d/l} . (30)

[t—s} <14

But, according to (7), for any «, we know that

af sup |x,~x5|2du§I(,u|P)+10gfexp{zx sup |x,'xs|2} dpP.

[t—si<|dn] [t—5| £|4n]
(31)
And, by bounded convergence theorem, for any o,
lim log fexp{a sup |x, —x|*p dP=0. (32)
mmee [t=s] S ]4n]

Let ¢ > 0, choosing = % in (31), one sees that there exists an integer n(e)
&

depending on ¢ but not on u such that, for n = n(e):

sup o —x,[Pdp < (I(u| P)+1)e.

[t=s| < |4a]

Using this last estimate in (29) and (30), one gets that, for any n = n(g), any
integer p, and any u € K;:

[T1(w) — TP ()|
3wy — Iy P ()] < ¢+ LY.

A

C(1+ L),

IA

As a consequence, I'" converges uniformly in K; to a limit which is obvi-
ously TI'.

We now study the behaviour of infg H”, when n grows to infinity, for a mea-
surable set B. We distinguish the case where infz H is finite from the case
where it is not.

Suppose first that infg H = oo. Then, for all g in B, I(u|P) =00 so that
H"(1) = oo, and, of course, infz H” = co. Hence infzp H = infz H”.

If infgH < 0o, we can find a positive number M such that infpH =
infpn(r<ary H. But, recalling Eqgs. (29) and (30), one sees that

lim inf H"= inf H. (33)
n—oo BN{I <M} Bn{i=M}

But infpn<yy H" = infp H" so that Eq. (33) implies

lim mf A" £ mwf H=inf H. (34)
n—oo B BN{I =M} B

Moreover, we stated in Theorem 3.1 that H” is a good rate function so that it
achieves its minimal value on B, if B is closed. Let i be a probability measure
such that infgz H" = H"(y"). Then Lemma 3.3(4) shows that there exists a real
o, o < 1, and a finite real n such that H"(u") = (1 — a)(u"| P) — 5. So that,
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using Eq. (34), we see that we can find a finite constant M’ such that, for n
large enough,
I(W'|Py s M. (35)

Hence, for n large enough, infp H" = infpn;<pry H”, and Eq. (33) gives, for
any closed set B,
lim inf H" = iréf H. (36)

n—oo B

(2) We can obviously identify the limits

2T
Jim I(p) = logfeXp{~%fodS} dy,=T1(n),
*© 0

2 T 2
Jim I3(p) = 7] (szdBt> dpdyzr = o).
0 L

Similarly,

lim I"() = [ <log [ exp 18] G.dB, - ﬁ;f G2 ds} dn) dp=T()
A—oo 0 0

which proves that I'(x) = I'1(u) + I2(p), using Lemma 3.2. Another proof
would be to use directly Remark 4.2(2).

(3) The proof is identical to Lemma 3.3(3) and (4).

(4) The proof of this last point is very similar to the proof of Theorem 3.1(1);
it relies on the convergence of the lower semi-continuous rate functions H"
to H on the compact sets K; (Theorem 3.1(1) and 4.3(1)) and then on
Proposition 4.3(3). We leave it to the reader. [

We now turn to the proof of Theorem 4.1(b). We recall that, if f?4°T < 1,
we have the following exponential tightness lemma (see Lemma 3.10):

Lemma 4.4 Jdo > 1

sup ([ exp {aNT (7V)} dP®N)1/N < oo,
N

Therefore 3C, 3y > 0, VB € B(MT(W4)),
13 (B) £ NI (B)" .
Moreover, we have the following crucial result:

Lemma 4.5 Let 6 > 0 be given:

— 1
lim Tim = log PN - I"[(7Y) > 6) = —c0.

n—oo N—oo

N
Proof of Lemma 4.5. Let Y} = %Z;v:l SUD|, ) <], (x{ —xé) . Then, for any
real number #:

PEV(I — (@) > 8)

S PO —I"|(@Y) > & Yy <)+ PNy > ). (37)
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We first estimate the tail of YJ:

Lemma 4.6 Vi > 0 VR € R* In(R,n) VYn = n(R,n)
PON(YR > ) < exp —RN . (38)
Proof VE e RY

PEN(YE > ) < exp — néN [exp {NEYE} dP®N
N N
N
=exp — N (feXp{é sup  (x —xs)z}dP>
li—s| |du

so that (32) gives (38).
We now estimate the first term of the right hand side of (37). O

Lemma 4.7 For any R > 0, there exists n(R) > 0 and n(R) € N depending
on R but not on N, such that, for any n £ #(R), any n 2 n(R),

POV — (@YY > & Y& < ) < exp{—RN}. (39)

Proof. By Tchebyshev inequality, it is enough to show that we can find a
constant C such that, for any «, when # is small and » large,

Epon [Ty <qoxp {aV|T = I"|G@)}] < €.
It is of course, since [I' — I'"| < | — I'}| + |I', — I'}|, enough to prove, for
i=1,2:

Epaw [lly;:,qexp{otNIFi - r;f|(ﬁ”)}] <V, (40)
Inequality (40) with i =1 is obvious since we can show as in the proof of

Lemma 3.3(1) that

N

. 1
AC /M =THEYY S G =3 sup
N i1 sl < u]

X — X

5 1/2
) = C (Y2, (41)

Moreover, to prove inequality (40) with i = 2, we follow the lines of the proof
of Lemma 3.4(1) so that we find a finite constant ¢ (c=($?/2+ 1) exp 3 824°T)
such that

2 o
Elfz—le(uN)
2

T
< e[ 1 =131 ([Gun d.) e i
0

2

T T T
+cf f‘ [GE, dt — [G}dt ( G dBt> dygy ¥
0 0 0]

+ [ [4r(G) dy diY . (42)

T
J(Gaw — Gr)dB,
0

T
f(G, m+ G:)dB,
0
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According to (41), the first term in the right hand side of (42) is bounded by

2

T 1 N 2
I ( OfG,(,,) a’B,) dyw dp’ < Ci(Yi)'? ( N2 ( Jx) dB’) )
iy=1

(43)
We now focus on the second term in the right hand side of (42):

T T 2
o dt — OfG,Z a’t‘ ( OfGtm dB,) dyyy di

ol

2

1N T ) T ) T .
'N‘Zf fGt(,,)dt - sz dt (fGt(")dB{> dVﬁN
Jj=1 0 0 (]
1 N T 1/2
j=1 0

T T 4 2
X (ff(Gt(n) + Gt)z dt (fGt(n) dB{) dVﬁN> .
0 0
But
T ) 1 N T —
[[(Gw — G dt= Nzlf(x} —xm) dtdyyy S TYy
0 i=10
and, for any centered gaussian variables X and Z, we know that
E[7*XY £ 156[24161X

so that, for any t < T

4

T N 2 2
5 (f (G + G, dvﬁw) (f (f G dB ) dv,;»«)
0

N 2
1
604° (N, 1(fx(,,)dB/> )

We conclude that we can find a finite constant C, so that

IIA

IIA

2

T
( G dB,) dypy dpV
0

2
< Cy(YT)2 (1\} > (fxt(,,) dB’) ) (44)

T T
[ |fGiar - [ata
0 0
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Similarly, we find

T
Jai® Jdvn Ar(G) |]

Lo o\ 172
=0 (Nzu 1 (f(xt(” +xt)dBj> )
. N o\ 12
(NZ (f(xt(,,) xj)dBf) )
ij=1

1 ) 1 X
= Ecﬂ’l/ {Nz (f(x,(m —f—x)dB/)

1;1

1 N \2
T nTNz 1 (f(xtm x;)dB{> } ) (45)
ij=

Thus, if we recall the main steps (42),(43),(44) and (45), we can find a

oy — Gy dB;

T
[(Gywy + G)dB,
0

2

finite constant C4 such that, on the subset {Y < 5} = {% j.vzl SUP|_s| <4,

2
<}

2 ~
E|F2~F§|(MN)

x| —x

LA NG
< Ccy'? (fxt(n)dB{) + Cyn'?
N i,j= l

L& ’
NZ .4 (f(xt(n)+xt)dB/>

i,j=1
2
Z (f(x,(,,) x,)dB/> } : (46)

l}“

* TN2

It is now quite easy to deduce (40) with i =2 from (46) since, for any pre-
visible processes (#')1<;<n such that %Z(h’ Y is uniformly bounded by one,
i=1
1
for any ¢ < VL
2 N

€
[ exp {2N

We can now prove Theorem 4.1(b). Let us first verify that the upper bound
of the large deviation principle holds.

2
( [ dBf) } dP®N < (1 —42T)y™M4. 1O

i,j=1

Let B be a closed set of . (W#). For any integer number n, for any positive
real number J,

g p(B) = feXP {NI(E")} dP®Y

< f exp {N[(Z¥)}aP®N + [ exp {NI(@")}dpP®Y
{r-resins |T"—T>8
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so that

Jim 7 logl{exp {NI(z")}dP
— 1
< : - n N RN,
< max {5 +]}me N loggexp {NI"(u")} dP®";

— 1 N
lim —log [ exp{NI(@")}dP®" } .
N—=oo N7 p_fnjss

But, by Theorem 3.1(3),
= | ~N QN =— 1 N,n :
J— n e J— ’ < — n
ngnco N logl[exp {NI"(")} dp Nleoo N log ITy’7(B) < 1%fH
so that
Tm - log ITY (B)
N—>moo N 08 hT

—— 1 N
< max { 6 —inf H"; lim —log [ exp{NT(@)}dP®N . (47)
B N—=oo N a5

Moreover, by exponential tightness Lemma 4.4, 9y > 0 3C < oo

[ expNIF(")dP®Y = 1T} ,(I" — T'| > §)
|r"—r|>é

SexpCN x IIY (I — I > 6)".
which, according to Lemma 4.7, implies

1
lim lim — log Iy (|/I" = T| > &)= —o0. (48)

n—o0 N—oo N

Finally recalling that we proved in Proposition 4.3(1) that lim, ... infg H" =
infp A and letting n — 400, and then letting 6 — 0, (47) becomes

— 1 N .
— < _
Nh—l?goN log IT; r(B) < 1r11;fH.
We shall now prove the lower bound; i.e. if O is an open set of .4 (W#),

1 . 1 ~ .
Iim — logH][}/T(O) = lim —log fexp {NI'(")}dP® = —infH .
N ’ Nooo N 0 o

N—oo
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But, by Theorem 3.1, for any integer number #, for any positive real number 9,

. . 1 N
—inf H" £ lim - log [exp {NI"(&")} dP®"
1 —~
< max {5 + lim — log [exp {NI'(7")} dP®";
N—oo N 8]
1

v log T 7(\1Tn — I > 5)} .

lim
N—r00
So that, using Proposition 4.3(1) and again Lemmas 4.7 and 3.10 as in (48),

and letting n — oo, 6 — 0, we get,

. . 1 N
—11(1)fH < lim ﬁlogﬂﬁ’T(O). O

N—o0

5 Existence, uniqueness and description of the limit system

In this section, we study the minima of H. First, we characterize these minima
through a variational study of H. We show that any minimum of H is solution
of the non-linear equation:

dQ T B2T
Q<P —:fexp{ﬁstst~—fGSZdS}dyQ. (49)
dP h 2%

Secondly, we prove that there exists a unique probability measure Q on W3
which satisfies (49). We proved in Sect. 2, Theorem 2.6, that this implies that
Qf,y is Q-chaotic. We finally give a pathwise description of Q.

5.1 Variational characterization of the minima of H

We shall prove:

Theorem 5.1 H achieves its minimum value (= 0) on the subset M of prob- -
ability measures on Wi which is given by

w-{ocutorpio<r
d T 2 T
d—g = [exp {BOstst— TOIGSZdS} a’yQ}.

Proof of Theorem 5.1. We first establish that any minimum of A is equivalent
to P. To do so, we give the following technical lemma:

Lemma 5.2 Let Q be a probability measure on W3 which minimizes H. Then:
(1) Q < P. (2) Denotes B = {®/*2(@) = 0} and & = P(B). Then
(a) I (Q}Ljfg” |P) = I(Q | P) + 56 log s+ O(s).

() I (ijfgp) = I'(0) + O(s).
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Q+S]13P
1+sd

Remark. Since Q minimizes H,I(Q | P) is finite so that I ( |P) is also
O+slpp )
1+so
is well defined and finite. We recall that this was in part made possible by the
semi-martingale properties of B under the measures of entropy relative to P

finite, which allowed us to define stochastic integrals against this process.

Proof of Lemma 5.2. We denote OQ° = QTing.
Proof of (I). Since I(Q | P) is finite, 0 < P.

Proof of (2)(a). One can compute:

finite for any s. According to Proposition 4.3, we then know that I (

log(1 + 59) 50 log S
1450 T+s6 S1+s0

1
I(QS|P):m1(Q|P)—

which gives (2)(a).

Proof of (2)(b). To get the Taylor expansion for I' at Q, we remark first
that, if G and V are independent centered gaussian processes with covariances

G+ sV
Eplx,x,] and EﬂB.P [x,x/], then G* = ﬁ

is a centered gaussian process

with covariance [x,x, dQ(x).
Hence, we can write

T 2T
r@) = [ (1og foo {pJc1a8, - £ fGirar} avo @ my ) a0
0 0
We compute the Taylor expansion of the last term in the right hand side of

the last quality so that we find, for any real number s, a random variable R(s)
such that

T 2T
exp {ﬁf ;s ~ 5oy ar
0

TG, + /5, 270G+ 5V
oot -] () o)

— (1 + 5R(s) (1 " \/E{ﬂthde e th:}>
0 0

T 2 T
X exp {ﬁfG, dB, — 7f(Gt)2 dt} .
0 0

Then, a detailed analysis of R(s) using that G and V' are gaussian processes
with bounded covariances and that the mean quadratic variation of B under (°
is also bounded! shows that

[ [1log(1 + sR(s))| dyo & 1, pdQ° = O(s).

! Since Q' < P, Girsanov theorem (see Chap. 12 in [7]) implies that we can find
a previsible process b and a brownian motion w such that B, =w, + fot by ds. Then,

Bo [ ) vas| s 1@ 1 Py
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We then get
T ﬁZ 7
Q") = [ log [exp {ﬁfthB, - Ef(G,)zdt}
0 0
X <1—|—\/§{,BfTthBt—ﬂszV,G,dt}>
0 0
x dyg @ yuzpdQ° + O(s) .

Integrating with respect to yy, p, and taking into account the fact that G and
V are independent and centered, we prove the result, i.c.:

T 2T
reH)={ <logf exp {ﬁbfGt dB, — 70f(G,)Z dt} dyQ> dO + O(s)
=T(Q)+0(s). O

Lemma 5.3 If Q minimizes H, Q ~ P.

Proof. If Q minimizes H,

. 1 Q“—SHB‘P _
i (1 (2257 ) <o

But, Lemma 5.2(2) implies that

L/, (O+slpP -

so that & = P(B) = 0, which is just what we need to prove the claim. []

lltfo) for positive

bounded measurable functions ¢ such that [ ¢dQ = 1. We denote Q; the

" _ 1ts¢
probability measure O = 17 0.

To characterize O, we study the Taylor expansion of H <

Lemma 5.4 Let ¢ be a positive and bounded measurable function on Wi such

that [ $dQ = 1. Denote y = ¢ — 1.

dg

(D) 1{Q5|P) =1 (Q|P)+s [Ylog—=
dP

@) r(03) =)

+s <log [exp{B [ GidB, — L [ G?dr}dyo + YT) YdO+ 0 (s).

where (Y;),<r is an adapted process with finite variation.

d0+0(52).

Proof. The first point is left to the reader. To prove the second point, we
consider, as in Lemma 5.2(2), the independent centered gaussian processes G
and V with covariances Ep [x,x;] and Ey.g [X:x;], and write
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rg;) = f(logfexp{ﬁf G\t/i;/t dB,

__..g‘< \/i;/’) }dyg®y¢.g> oy .

We repeat the proof of Lemma 5.2(2):

Jexp {ﬁfG\t/T—;[—m - —f (G%> dt}dvg@@w-g

T 27
= [dyo ® y4-0 exp{ﬁfG,dB, - ifodt}
0

x( {f ,dB; — z"V,G,dt}

0
B 2 T
+s{——fthB,——fV,2dt}) +0(s%) .
20 2 0

So that, integrating with respect to yp ® 4.0 and taking into account the fact
that G and V are independent and centered, we find that

2 T

T
F(Qj,) :F(Q)—i-s{f <logfexp {ﬁofG,dB,— ?OfG,Zdt}dyQ) vdo

+ [ Xr(x, d))dQ(x)} +0 (s%)

where

2 T 2 T

Xr (x5 $) = {—% [ Goon aB,) + B [ Gon)tds
0 0

T T 2
+ % <ﬂf Vi(w)dBy(x) — B[ Gs(wz)Vs(wl)dS) }
0 0

X dyg.g(wr)dy*(w2)

and

exp {MT Gy(wn) dBy(x) — & [ Gy(on)? ds}
dy* _ b 0
T (7)) =
Yo

T T ’
[exp {ﬂf G, dB(x) — & [ Gy(w,)? ds} dyg(w;)
0 0

We now observe that X7(x, ¢) must be linear in = ¢ — [ $dQ so that
[ Xr(x, $)dOGx) = [Y(»)Yr(»)dO(y),
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where, according to the definition of X7(x, ¢), Y7 is given by

1 T T 2
Yr(y) = Eff (ﬁf Vs dBs(x) ~ ﬂz f Gs(w2)ys dS) Ay (w2)dQO(x).
0 0
Since B is, under Q, a semi-martingale with bounded quadratic variation, it is
clear that (Y;),, has finite variations. [
We can now prove that Q satisfies (49), i.e. Theorem 5.1.

Since Q minimizes H,

lim © (H (Q5) — H(Q)) = 0.

s—0 8

But, Lemma 5.4 implies that

H(be)—H(Q)
dQ T 2 T
:f{logm ~Iogfexp{ﬂfG;de— ~fGt2dt}dVQ_YT}
dP 0 2 0

xyd0+ O (s)

so that we can find a constant Cp such that, O-almost surely, and so P-almost
surely by Lemma 5.2,

d T 2 T
log;i%(x) = log [ exp {ﬁstst(x)‘ ’:‘Z*fodS} dyg + Yr(x) + Cy.
0 0

But (%%
Chap. VIIT]).
Since (f exp {ﬂfoz G,dB; — [;—2 [, G? ds} dyQ)t<T is a local martingale and

(Y1),<r @ process with finite variation, by uniqueness of semimartingale de-
composition, we find

) must be a (W#,(#),<r,7r, P) local martingale (see [13,
#) <1 =

dQ p [
E:[exp ﬁfG,dB,-—z—fGldt dyg. O
0 0

5.2 M is reduced to one probability measure Q

We shall use a fixed point argument to prove that H admits a unique
minimum, i.e.:

Theorem 5.5 The set M is reduced to a probability measure Q, i.e., there
exists a unique probability measure Q on Wi which is implicitly defined by

dQ T 2 T
g<P ——= = [exp {ﬁst(w)st - ~—fo(w)dS} dyo(®).
dP o 25
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For p€ M} (W), let L(1) be the measure defined by

T ﬁ2 T
dL(p) = [exp {ﬁf G,dB, — —2~fG,2a’t}dy#dP,
0 0

where 7, is the law of a centered gaussian process G with covariance
JGGidy, = [xsx dp(x).

We want to characterize M as the set of the fixed points of the map L, which

needs that L maps 4§ (W4) into 4] (W§), ie.:

Lemma 5.6 For any probability measure u on Wi, L{n) is a probability

measure on Wi.

Proof. For any p € 4T (W#), it is clear that L(u) is a positive measure on

W4 so that we only need to prove that L(u) (W7) = 1. But Fubini Theorem
implies that

T 2 T
Ly (W) = | {fexp {/Sof Gy dB, %JGSZ ds} dyu} ap
T 21
:f{fexp{B{Gsst~?Ostds}dP}dy,,.
¢ ng H 2 . . . .
And (exp { B J, GsdBs — 5 [ G: ds}) is a uniformly integrable P-martin-
(<T

gale as soon as fOT G2 ds is finite (see, for instance, Novikov criterion, Proposi-
tion 1.15 in [13]) so that, yo almost surely, [ exp {ﬁ fOT G;dB, — %2 fOT G? ds}
dP = 1. Hence L(p) (W#)=1. O
Thus, it is clear that Theorem 5.5 is equivalent to:

Theorem 5.7 L admits a unique fixed point Q.

We shall prove Theorem 5.7 through a contraction argument.
Let (#;),<r be the natural filtration on .4, (W) defined by

%:O‘(X’S, S§t)

We will denote in this section P, the restriction of P to the o-algebra
F(P=Pr).

Let /7 be the subset of .47 (W#) made of the probability measures which
are absolutely continuous with respect to Py.

Let Dy be the variational distance on .# (W#) defined by

V(wv) € AT (W) Dr(mv)=sup|ffdu— [fdv|,

where the supremum is taken on the measurable functions on W3 which are
uniformly bounded by one.

It is well known (see [12, Corollary 6.1.1]) that the variational distance is
stronger than the Vaserstein distance, i.e. that:

V(uv) € M (W) dr(uv) < Dr(uv). (50)
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On /7, one can see that

d
V(‘U,V)GJZ{T DT(,LL,V) f‘—-d—P‘;’ ap

In the following pages, for probability measures y and v in /7 and for t £ T,
we will denote D, (g, v) instead of D, (p]4, v|#) for simplification.

We then prove that:

Proposition 5.8 We can find a strictly positive real number g and a finite con-
stant A such that for any probability measures p and v absolutely continuous
with respect to Pr, for any t < T,

Dy (L), LY < 2] Dy (o) ds.
0

L'

Proof of Proposition 5.8. We first give another formula for P

Fr

For v € [0, T] and p € .47 (W{), we recall that we define a covariance K

by
exp {—ﬁ; [, G? ds}

J exp{—%zfov Gszds} dy,

K(s, u) = | GG, dyy .

Then:
Lemma 5.9 For any pc M7 (W$) and any t £ T,

dL (u)
dPr

%

4 ¢ 2
= {ﬁszKS(s u)dB,dB, — b f <fKS(s u)dB) s} )

Proof. We first notice that, for any time t < T,

aL ! 21
U _ rexplpfc,as, L [c2as\ay,
P |4 4 2%

2
ie. that (g, = [ exp {ﬁfo’ G,dB, - & [! G2 ds} dyu)tST is a tue %-
martingale. N
In fact, (&;),<, 18 a supermartingale such that &, = 1, so that it is enough to

prove that E[&;] = 1, which can be proved as in Lemma 5.6.
Finally, we prove in Lemma 5.15 (in the case y = Q) that

t 2 ¢
[exp {ﬁst dB, — -2—fo ds} dy,
0 0

. 2
=exp {ﬂszKs(s u)dB,dB; — ﬁAf <fKS(s u)dB, ) ds} . B
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We denote 7, the law of a centered gaussian process with covariance K, -
Let

ts__ 4 s 2
XMx) = ﬁszKZ(S,M)dBu dB, — %f (fKZ(s,u)dBu> ds
00 0 \0
Then:

Lemma 5.10 For any conjugate exponents ( p,q), for any probability measures
pand v on Wi:

DUL(u),LO) < (fIXF = x?)7dp,) "

1 /p
X (f ([ exp pX,’udP,)l_OC ([ exp pX;' dP,)" doc) .
0

Proof. Let p,v € M, (W3).

dL' (1) di(v)
Dt(Ll(//‘)aLI(V)) = f dP; - dPr dp;.
F #
But, according to Lemma 5.9,
dL) ()
— ) =expX}.
dP; - pA;

Hence:

DAL (@), L' (1) = [l expX/'(x) — exp X} ()] dPi(x)
1

= [ () — X 00) [ exp{oe) + X, (x) — X} (x)} dedPi(x)
0

Let ( p,g) be conjugate exponents (i.e. p~! + ¢~ = 1). Holder inequality gives

DAL (), L) < (X = x) dP) "

1 /p
X (ff exp p{ X/ + o(X,) — X/)} dotht)
0

We obtain Lemma 5.10 using Holder inequality with conjugate exponents
(_L 1).
l—a? o )"

Jexp p{Xf + (X = X{)} dP, < (fexp pXFdP,)' ([ exp pX?dP)*. O

We first bound the second term in the right hand side of the inequality of
Lemma 5.10:

Lemma 5.11 If p — 1 is small enough (B?>p(p — 1)A2T < 1), we can find a
finite constant Cy such that, for any p € MT(W}), for any t < T,

Jexp{pX/'} aP: = C,.
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Proof.
t 2 ¢ P
fexp{pX/'} dP, = [ (f exp {ﬁst dB(x) — 7fG§ ds} dy#> dP,(x)
0 0
t 2 ¢
< [[exp { pB[GsdBy(x) ~ Py [G? ds} dy, dP,(x)
0 0
p f 2
:fexp{yp(p—l)stdS}dvu- (51)
0
Moreover, if p — 1 is small enough so that
t t
Brp(p = 1) [Gidsdy, = fp(p— D[ [xidsdp < fp(p— DAT < 1.
0 0

Then, we prove in Appendix A, Lemma A.3, that we can bound (51) by a
finite constant C; which only depends on p. O

We will suppose in the following pages that p has been chosen so that

Lemma 5.11 holds and, for later convenience, so that ¢ = ;{—1 > 2.

We now focus on the first term in the right hand side of the inequality of
Lemma 5.10:

Lemma 5.12 We can find a finite constant C, such that for any (u,v) €
MTIE)

! ~ ~ q
[IXF —X}9dP, < C,f sup ‘Kﬁ(u,s) — K¥u,s)| du.
0 s=u

Proof.

JIX — x!aP,

= oS | [] (Rt - Ki(ws)) dB.as,
00
ﬁZ tu o, - u o, - q
—7{ Of (K,‘j(u,s) - Kv”(u,s)) dB; ,Of (K;:(u,s) + K:f(u,s)) dB,du| dP,
tu - q
< Pt [ (Eg(u,s)—Kg(u,s)) dB,dB,| dP,
00
4q tu o, -
+ ﬁ—z— TS (Riws) - Kitws)) db,
00
U o, — q
x [ (K;;(u,s) +K:f(u,s)) dB,du| dP, . (52)
0
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We first focus on the first term in the right hand side of (52). We apply
Burkholder—Davis—Gundy inequality to the martingale M; = fol Jo (K¥(u,s) -
I?f,‘(u,s))st dB, so that we find a finite constant ¢, such that

J

q
dP,

[ (Rt 5) ~ Rew ) dBaB,
00

! u 2 92
; Cf?f (bf (f (I%Z(u,s)—f{v”(u,s)) dBS> du) dP,

0

Since we supposed g = 2, we can use Jensen inequality:

J

q
dP,

if (Riws) — Kiw.s)) dByaB,
00

t u q
< CqTq/Z—lg‘f ‘bf (]?;‘(u,s) —IN(j’(u,s)) dB;| dP,du . (53)

Moreover, since B is a brownian motion,
u o~ —~
G, = (K;;(u,s) - K:,'(u,s)) dB,
0
18 a centered gaussian process with covariance
u o, - 2 u o, . 2
I ( | (K;;(u,s) —K;*(u,s)) st> ap, = [ (K;;(u,s) —K;'(u,s)) ds
0 0
~ - 2
< Tsup ‘Kl'j(u,s) - K;‘(u,s)‘
sSu
so that we can find a finite constant ¢, such that
u o~ —~
I } ( I (K;;(u,s) — K;’(u,s)) dBS)
0

(53) and (54) allow us to conclude that we can find a finite constant c; such
that

J

q
dP, < c;sup

SSu

Ko(us) — fq(u,s)‘q (54)

q !
dP; < c3 fsup

0s=u

[ (Ricws) - Rews)) B, as,
00

T T 9
K¥(u,s) —Kv(u,s)‘ du .

(55)

Similarly, we can bound the second term in the right hand side of (52) and
find a finite constant ¢4 such that, for every ¢t < T,

q

tu o, —~ u . ~
I ‘ If (K;;(u,s) - K;'(u,s)) dB, [ (K;;(u,s) n K;'(u,s)) dBdu| dP,
00 0
t o~ o~
< cafsup |Kji(u,s) — Ké‘(u,s)‘q du . (56)
0s=Zu

Thus, (52), (55), and (56) achieves the proof of Lemma 5.12. O



494 G.B. Arous, A. Guionnet

Thanks to Lemmas 5.10, 5.11 and 5.12, we conclude that we can find a positive
real number ¢ (¢ = 2) and a finite constant K such that, for any + < 7, for
any p,v € M7 (WH),

DAL () L (W)Y < K [sup |[R¥(u,s) — R2(urs)| du (57)

0s=u

Finally, we prove in Appendix A, Lemma A.4, that y — I~<;j is Lipschitz
for the distance D,,:

Lemma 5.13 We can find a finite constant k such that, for any u < T, for
any probability measures u,v € S/,

sup |Ki(,5) ~ Ki(u,s)| < kDu(1,)
sSu

Hence, inequality (57) implies that we can find a positive real number g and
a finite constant A such that, for any ¢+ < T :

DAL(,LO)Y < AfDy(v)idu. O (58)
0

Proof of Theorem 5.7. 1t is now classical to deduce Theorem 5.7 from Propo- .
sition 5.8:
We construct a sequence (i, )nen Of probability measures on W3 as follows:

Ho = Pr, Hnp1 = L(,un) .

We notice that, for any integer n, 4, belongs to /7.
We deduce from Proposition 5.8 that, for any integer #,

Dr(tart, i) 27 [ Dy (L(P),PY]]ds; < 20 I (59
0<sy T i=1 (n—1)!

A

1A

Sn

A

Thus, inequality (50) implies

()»T)n l/q
o)

Thus, (u,)sen is a Cauchy sequence in the complete metric space (4 (W3),
dr), so that this sequence converges to a probability measure Q. O is a fixed
point of L.

Using Gronwall Lemma and Proposition 5.8, we see that L admits a unique
fixed point. O

dT(,un+17,un) § 2 (

5.3 Characterization of M as the set of weak solutions of a (non-markovian)
stochastic differential equation

We interpret here the clements of M as the weak solutions of a non-linear,
non-markovian, stochastic system S defined, on the time interval [0, T], by
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t
X, =Xy — [VU(X,)ds + B, ,
0

ts __ 60
=W, + B[ [K}(s,u)dB, dt (€0)
00

Law of (X) =0, Ol#, = 1o ,
where W is a brownian motion.

Theorem 5.14
o (a) If Q belongs to M, then Q is solution of S.
o (b) Reciprocally, If S admits a weak solution Q, then O € M.

To prove Theorem 5.14, we first give another formula for Z—%.
Lemma 5.15

do . 4 T 2

7% e [ [Rytuoram.ap, - L | < SR, s)dB) ar\
Proof of Lemma 5.15. Gaussian properties (see [10, Proposition 8.4]) show
that, under the probability measure

2
ex 2 OGS ds

Jexp — TIOGsZ dsdyg

G is a centered gaussian process with covariance KQ Hence, according to
Remark 4.2:

dQ T 2 7 )
7P :fexp{ﬁgﬂthB,—é—ofG, dt} dyg

= | fexp< — = [Gidt;dyg expﬁZTTK (t,s)dB;dB, . (61)
& [1%;

Let
exp {—gngfdt}
Ar = P .
Jexp {—7f0 G? dt} dyg
Then
K)(t,5) = [G,G,Ardyg
so that

TT._ T 2
[JK)(t.5)dBsdB, = [ < stst) Ardyg . (62)
00 0
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Its formula implies that

2

T T t T
(stst) =2[G,[GsdB,dB, + [G*dt , (63)
0 0 o 0
ﬂz r Tt 2
A =1+ 7({& (KQ(t,t) - Gt) di (64)

So that (62) becomes

TT_
K5(t,sYdBsdB, = [ |2 AG, GdB dB,+ Aszt
0

00

i)

= ij"ftKQ(t s)dBsdB, +fKQ(z t)dt

/
|

0

( [G,dB ) A, (1~<’Q(t,t) - Gf) dt) dyo

2
L [dyg f st dB, ) A, (f(fQ(t,t) - G,Z) dt.  (65)
2 0 0
We now observe that for any (s,r,£u) € [0, T]%,
[ [G2G.G,| diy = Ki(s,5)Kh(r, u) + 2K5(r, 5)K (s, 1)
So that we can compute the last term in the right hand side of (65):
T /¢ 2 _ T/t 2
[f (fGSst> A, (Ry(t1) ~ G2) dedyg = ~2 <fK’Q(t,s)st) dt . (66)
0 0 0 0

Finally, we can prove by the integration by parts formula that

Bz T ﬁ2 T
fexp {——2—fo dt} dyg = exp {—TIK’Q(t,t)dt} : (67)
0 0
Hence, according to (61), (65), (66) and (67), we have proved that

dQ T 2T 5
ﬁ—:fexp{ﬁfthB,——fGt dt}dyQ

‘32 TT__
<fexp {———IGZ dt} dyQ> exp —ffKQ(t s)dB.dB,

I

2
exp {ﬁszKQ(t s)dBsdB, — 4} (fKQ(t s)dB) dt}
X (fexp {‘ijtZ dt} dyQ> exp {—Tfl?’g(t,t)dt}

0

0

Tt ﬁ4T t 2
exp ﬁszK[Q(t’S)stdBf_Tf(f (ts)dB) dt ;. O
00 0
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Proof of Theorem 5.14.

e Proof of (a): Since Q < P, this point is a direct consequence of Girsanov
theorem according to Lemma 5.15 (see [13], Theorem 1.12, p. 306).

o Proof of (b): Reciprocally, if Q is a weak solution of S, 0 belongs to M as

soon as
T

s 2
Ay = | <j1~<5(s,u)d3u) ds (68)
0

0

is O almost surely finite (see Jacod [7, Theorem 12-57b]).
Since Q is solution of S,

ts
W, =B — B [ [Ky(s,u)dB,ds
090

is a O brownian motion. Then
s 2 s 2
f (f]N{é(s,u)dBu) dg<2f <fK5(s,u)dW,,) do
0 ]
s u __ 2
+2p4 [ ( JKy(s,u) [ Kb(u,v)dB, du) do .
0 0

We recall that Lemma A.2 in Appendix A, implies that I?é(s,u) is bounded
by 42, so that we conclude

2

8 2 N u
f ( f]?é(s,u)dBu) dQ < 24%5+ 2B 42 [ | ( f[?g(u,u)dBv> dQdu .
0 0 0

~ 2
Thus, Gronwall lemma shows that f ( fos Ké(s,u)dBu> dQ is uniformly boun-

ded when s < T so that f A7 dQ is finite, and so A7 is Q almost surely finite.
[l

6 Higher moments and quenched results using Replica

To improve our study of the quenched laws P;}’ (J), we shall study the asymp-

totic behaviour of annealed replica laws Q;;N on (Wﬁ)@

Q5" = [ PY(J(0))® dy(w).

Q;’N is the annealed law of r independent replica of spin glass dynamics.

This analysis enables us to get convergence results for higher moments of
random variables like [ H:":l f ,—(x’)de{ (J), where (f1,...,fm) are bounded

continuous functions on W#. Namely:

Theorem 6.1 For any integer number r, there exists a probability measure
O, on (W) such that, whenever rB24*T < 1, for any bounded continuous
Sunctions (f1,..., fm) on W&,

[ (1L rearyo@n) avw) — 111 siwrao,
i= i= j=
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Moreover, Q. is characterized as the unique solution of the non-linear equa-
tion

0, < P®" i = [ex ﬂfT<G dB)——szHG“Zdt d (69)
r dPo®r p J A Dy 2 s t Y0

where B is a r-dimensional brownian motion under P®" and G is, under 7o,
a centered r-dimensional centered gaussian process with covariance

[GiGldyy, = [xix]dOy(x), 1<i,j<r.

The proof is derived from a large deviation principle for the law of the empir-
ical measure under QZ;N and is similar to the case r = 1 (see Theorem 2.6);
we omit it.

If O, is the unique solution of (69) (with r = 2), let (G,H) be independent
gaussian centered processes with covariance

EIG(NG()] = %’EQQ[(X; —x))x —x)],  EF[HOH()] = Eg,[x/x]]-

For f in L*([0,T]), let P(f) be the restriction on [0,7] of the law of the
diffusion

dx, = —VU(x,)dt + dB; + Bf(t)dt ,
Law of x¢ =y,

and let Py be the partially averaged law

Py = 6°[P(G + H)] .

Then, one can improve Theorem 6.1:

Theorem 6.2 Let r be an integer, and suppose that rf*A*T < 1.
Then, for any functions (f1,..., fn) € €2WF)

lim [ < [ f{l f,-(xf)dPIﬁV(J(w))> dy(w) = ﬁ@@H [([ fiaPu)'] .

N—o0

Proof. Theorem 6.2 is based on the observation that, for any number r of
replica, 0, = £7[PY"]. O

Theorem 6.2 is a good lead to the following:

Conjecture 6.3: The law of a single spin x! converges to Py, almost surely
with respect to the random interaction.
There is one case where Theorem 6.1 can be very simply used:

Theorem 6.4 If O, = (01)%? and 25°A*T < 1, for any bounded measurable
Sfunctions (f1,..., fm) on W,
> s) =0.

li

I f{lfi(xl’)dpﬁ () - f{l [f:d0:
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Proof. If Oy = 0%, then H is null and Py = Q;. Then, by Theorem 6.1,
TG fu(x™)dP) converges in L2(y) to the constant [[i-, [ f;dQ, and
so converges in probability as stated in Theorem 6.4. [

It remains of course to understand the condition O, = (Q;)®?. For this, we
state (without proof).

Proposition 6.5
D) Q=0 iff [xd01 =0Vt <T.

(2) In particular, if the potential U is even and the initial distribution ug
symmetric then Q, = Q%" and Theorem 6.4 applies.

Remark 6.6. If one is interested by the convergence of the law of a single
spin, one can prove that, if O, = (0;)®? and 2°4°T < 1, for any ¢t < T,

Jim y (@ / [PF (@) o )™ = Qro () le > ) =0,
where || - || ¢ is the norm on .47 ([—4,+A4]) defined by

Il = sup |[fdu

where the supremum is taken on the Lipschitz functions f* such that

SO -fol o,

sup [f(x)|+ sup
xE[—A,4] xLy€l—4,4] bx — |

Of course this statement is also valid for » times and m spins, as stated in
Theorem 2.10.

Appendix A

Let u be a probability measure on W#. Let K, be a symmetric definite positive
kernel on [0, 7]* defined by:

Ku(s,t) = [xx,du(x) .
Obviously, K, is continuous and bounded on [0, T]?.

We introduce a covariance operator K, on L*([0,T]). .
N T
Kuf(s) = [Ku(s,0) f(2)dt
0

I?,, is a positive self adjoint trace class operator on L*([0, T]). Let (A% Jnzo be
an orthonormal basis of eigenfunctions of K, associated with the eigenvalues

(#)nzo- Let gh = v/A5H.

Then: K,(s,t) = gogﬁ,‘(s)gﬁ(t)
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and the convergence is uniform (by Mercer theorem, see [10, Proposition 3.7,
p- 42]).

As a consequence: K,(s,s) = > (g"(s))
nz0

and the trace of the operator K, is equal to or (K,) =, - 4n-

Of course, one knows that, given a covariance K, there exists a gaussian
centered process (€2, .«7,y, G;) with covariance K,,, and that, for any such pro-
cess, if H, denotes the gaussian space associated, i.e. the L2(Q, o,y) closed
linear span of (G;)o<<7, then H, is isomorphic to the autoreproducing Hilbert
space ), associated to K, by

¢ H,— A,
7 — 8[ZG] .

Here, the space #, C L*([0,T]) (more precisely, #, C C([0,T])) admits
(g8)nz0 as an orthonormal basis. If & = ¢~ 1(gy), then (& )azo is a sequence
of i.i.d N(0,1) random variables in H, and one has

Gy = > gn(s)&y

nz=0

where the convergence is in H* (or in L>(Q,#,y), see [10, Prop. 3.7]).

Moreover, let us consider the new trace class symmetric operator ]f(v,, on
L([0,T]) given by

K, = (ld + p°K,) 'K,
and let i{\; be its kernel:

. e ool
Ku(s,t) = ;0%%%”/(1—? . (70)

. . . ~ . — -1
The autoreproducing Hilbert space associated to K, is (Id + f*K,)  H#y; so
that one sees that if G is a centered gaussian process with covariance K, then

Lemma A.1
8 [6.Gexp -5 Jy G2as}]
& {exp {—E;foerzdsH

Let us give a very short proof.

= Ku(s,1) .

Let o be a real number and GY = 37, _y gn(s)&.
Then a simple computation shows that
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& [exp {ocGﬁv — %2}(@\’)2 ds}]
0

0<n=EN 0=nsEN

eXp{ 2 g - Z ey H

n=0

_ u 2 I o gn(sy
a <nl;lo(1 th iﬁ)) Py og;gzvl + %

N _ B TNy :
The same formula shows that the sequence exp{ocGS =5 Jo (G) ds} is
bounded in L'*9(Q,.«7,7), for any positive real number J, so that this se-

N [)»2
_11¢ {exp{agff@)éf: B ey }]

quence is uniformly integrable. It converges in probability to exp{och-

%ifOT(Gs)Z ds}. Hence, we deduce

2 T —12 2 He N2
3 [exp {aGS — %—OI(GS)Z dsH = <];[(1 + 5%5)) exp% {ngo%} .

In particular,

ﬂz T . —1/2
oo Llora)] - (maswm) T
0 n

¢l (oG - F i Gas}] “—Z{Z e } (72)

5 = exp —_—
& [GXP{_%IOTGE ds}] 2 izl + 5
Hence, the process G, under the new law }75 :
2 T
. exp{—%fo G? a’s}
Ve = 2
& [exp {~ﬁ7f0TGS2 ds}]

is a centered gaussian process. Its covariance is easy to compute since it is
enough to derive (72) two times in o = 0 to obtain

Yu

& [exp {—ngTGS2 ds}] P2

which gives Lemma A.1 by polarization. [

gn(s)*
ngol + ﬂzlﬁ }
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It is clear that the last results do not depend on the choice of the time 7. More
precisely, let t < T. Let I?L be the integral operator on L2([0,¢]) with kernel

K,. If we define a new trace class symmetric operator kv#t on L2([0,¢]) by

£

7 N
K. = (1 +FK,) K,

: L
and if we denote K, its kernel, then:

Lemma A.1 bis
& [GSGM exp {—E;folez dsH
& [exp {—%fothz dsH

We can also deduce from the proof of Lemma A.l (see, for instance, (70))
the following:

Lemma A.2

= kvut(s, u) .

Vs St K, (5,5) £ Ku(s.s)
Moreover:

Lemma A.3
(1) For any real number o, xA*T < 1

o T —1/2
& [exp {Ef(c;s)2 dsH = (1‘[(1 - ocxf;)>
0 n

(2) For any real number o, 0aA*T < 1, there exists a finite constant C, such

that
al
& [exp {—fGSZ dsH
2%

Proof. The first point is a direct consequence of the proof of Lemma A.l,

(71).

For the second point, we notice that, since the M are positive, 1 <
S =K, =8 [fOT(GS)2 ds} < A’T. But, for any strictly positive real

number § < 1,v/1 ~x Z e 7 ifx < 1~ 8 with y5 = 5’(—:"5—3, so that Lemma
A.3(1) implies Lemma A.3(2) with C = C,_,p5 O

lIA

exp {caa(g’ [fT(GS)Z ds” < exp{aC,A°T} .
0

Let d, be the Vaserstein distance on W/, i.e.:
di(p,v) = sup {fsgplxs = s dé(x,y)}
SEt

where the supremum is taken on the probability measure ¢ on W/ x W/ with
—~ . . -
marginals y and v. We prove that K, is Lipschitz for this metric:
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Lemma A.4 There exists a finite constant k such that, for any t € [0,T], for
any probability measures (u,v) on Wi,

sup|K, (s,u) — K, (s,u)| < kdy(m,v) .

su=t

Proof. We can give another formula for i(v”t which does not depend on the
choice of the basis (4% ),»0 of L*([0,T]). Since any x € W4 is in L*([0,T1]),
we can write

i i\l
K, (s,u) = [x(s) (Jd + ﬂzKﬂ) x(w)du(x) .

Hence, for any probability measures v and y on Wi
= ~—t
‘K#(s, W) — K, (s, u)l

=

-
[x(s) (Id + ﬁzKﬂ) x(w) d(g — v)(x)

o\l -1
+ [ x(s) { <Id + /321(;> - (Id + ﬁzK‘v) }x(u)
To bound the first term in the right hand side of (73), we first prove that,

dv(x). (73)

N
for any u < 1 f¥(x) = <Id + ,BZKL) x(u) is a lipschitz function on W/, en-

dowed with the uniform topology, and bound its lipschitz constant indepen-
dently of the probability measure u on W.

If we denote |||, the norm in L2([0,1]); || fll2 = \/fot Sf?(s)ds, for any x €
L°°(]0,1]), we have

4] = s ~ K, (12 + FK,)  xtw)

)~ ] (303 du») (14 + R,)  xt5)ds

-1
< x(w)| + B2V (1d + B, ) xlo
But K L is a positive operator so that ,
[7i)] = k)l + BAVxll2 < k@) + A% suplx(s)] . (74)
s=t

Thus, f% is Lipschitz, with lipschitz constant (1 + §24%¢). Hence, for any prob-
ability measure ¢ with marginals x and v, we have:

-
[x(s) (Id + ﬂzKﬂ) xX(w)d(u — v)(x)

= [ [(&x(s) = ¥()) S14x) + y(s) (F40x) — £40)) dECx, p))|
< A+ A [|x(s) — p(s)|dE(x, y)

+4f (Ix(u) — y(u)| + ﬁzAzthp x(s) — y(S)l) dé(x, y)

<24+ A S sup pe(s) — p(s)IdE(x, y)
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Since this inequality holds for any £ with marginals v and p, we get:

[x(s) (Id + ﬁZE;) - x(u)d(u — v)(x)| £ 2421 + B2A%)d (u,v) . (75)

We now bound the second term in the right hand side of (73).
(1 + pK,) o (1a + F°K) g (1 + pK,,) B (x.-%.)
X (Id + ﬁzftv> -

So that, for any x € W4,

x(s) { (Id + ﬁZEL) T (ld + ﬁzl?;) - } (1)

< B4 1 (ld n ﬁZE;) - (‘16; - Ei) (Jd + ﬁzki,) " )

But

I (E; - Eﬁ,) (Id,+ ,82751) @)

! _, 1
= L)f S ysyud(p —v)(») (Id + ﬁzKV) x(s)ds

< 24V1t||x|ad (1, v) < 24%td (u,v) . (76)

So that, for any x € W4,

< 282431 (1 + BPA%)d (1, v) .

x(s) { (Id + ﬁzk;) T <Id + 52@) - } x(u)

According to (74), we conclude that, for any probability measures v and y on
W4

J

dv(x)

x(s) { <Id + /32?;) T (ld n ﬁsz - } (1)
< 2RPA%( + BPAMd (u,v) . (77)

Equations (73), (75), (77) give Lemma A.4. [

We state Lemmas A.2, A3 and A4 in the time discretized setting. Let 4, =
{0=14 <t < <ty =T} be a subdivision of [0, 7]. We recall that we

N

denote 1™ = max{t, € 4,4 < t}. We define a covariance X, by:

2 A
& {Gs(n)Gu(n)exp{—% N Gsz(n)ds}]

2 af(n)
@@[exp{~ﬁ7 Ot GS2<n)dSH

K (s,u) =
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It is obvious that the lemmas of this appendix are also valid for ]’(’\;[’n

Lemma A.5 i

(HVs <1, K, (s,5) < Ky(s,s).

(2) There exists a finite constant k such that, for any t € [0,T], for any
probability measures u,v on W3,

sup [K, " (s,u) — Ky (s,u)| < Kdi(p,v) -

sust

Appendix B
Lemma B: Define

H - MT(Wf) — [0,00]

{I(ﬂlP) — () when I(u|P) < oo,
p— :
+o0 otherwise,

T
where (1) = [ log ( [ exp{B J GumdBix)— & [ G2, dt}dyv) du(x).
Then H} is the entropy relative to the probabzlzty measure Q" on Wi

T
= fexp {5{61@) dB, — fGt(n) } dy,P

Proof.

— It is clear that O} ~P. So that whenever u &« P, then u &« Q) and
I(u|P), I(p|QF) are both infinite so that H'(u) = I(¢|QF).

— If, on the contrary, u < P, we first remark that the proof would be clear if

ddQ; was bounded. In fact, we would then write
du du 104
I(u|P) = —du= 1 du=1 " "
(ulP) = [log -5 dp f{ong3+10g <5 (A= IO+ T(w)
Though I'?(x) would then also be bounded, we would get H] = I(|0}).

Our proof will need a deeper study of the probability measures 0
Lemma B.1 Let v € 4T (W}). Then
doy P
X > exp— D AT
(@) S5 z exp— AT,
(b) I(Q}|P) < oo

Proof.
(a) Gaussian computations give

4 jo S}

I :
xexp{ f(fGN.) dB,) d'ykv‘T,n} (78)
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so that, Jensen inequality implies

d 2 T 2
7}-} > exp — <I?JGi") dtdw) > exp — —2—A2T

(b) Equation (78) becomes, after some gaussian computations (see Lemma
5.15):

aQy 2 f n gl 132
=exp B [Hu (@) dB, — = [Hw(Qy Y dt ¢,
dP ) 24
(1) me (M)
where H,,(Qy) = fGtm)fo Gym dBs d}’~,<n> .= K, smyaB,,

Thus, Girsanov theorem implies that, under Q7 there exists a brownian motion
W such that

By = W, + B [Hon(O) ds (79)
0

which shows that B is a linear function of W, so that, it is, under Q”, a centered
gaussian variable.
Hence B has finite moments and, in particular,

H@ilp) = 108 “2 ag
2 T 2
= log fexp{ fGt(,,)dt} dy, + fff (OfG,(n) a’B,) dyl?vr,n dQ’
is finite. [
We now prove that, when p < P,

I(u|P) = I(ulQ)) + (1) - (80)
Let py = 680" + (1 — 0)u for 6 € [0,1]. We notice that dg‘} 6, which allows
us to write
1ulP) = [ log 0y = | {log Lo +log O } i
But jg‘f, > 6 and {g > exp — ﬁ—ZZAZT by Lemma B.1(a), so that both integrals

in the last formula are lower bounded and

" dyp + log P dyy = Iual @) + o) . (81)

d g
I(M,IP):flog 1P

aQr

The next step is to check the two following points:

lim I(uolQy) = 1(ul Q) - (32)

lim (uolP) = 1(uP). (83)
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— Equation (82) was proved in [5, Lemma 3.2.13].
— Using the convexity of x log x and Jensen’s inequality, one finds

I(pg|P) = (1 = OI(plP) + 0I(Q}|P) .

Hence, according to Lemma B.1(b), limg_o I(19|P) < I(p|P).
Moreover
dpo _ g0
dP dP
so that, using the concavity of log x, we get

du L, du
_ _ > _ — — _
+(1 G)dP = fexp 2/3A T4+(Q1 G)dP

ulP) = 0] Tog 222 a0+ (1~ 0) f10g %12 4y
=0 {10g(9€xp — EﬁzAzT}

+(1—6) {(1 —I(u|P)+6 (—%ﬁ2A2T> }

and limy_, 7(us|P) = I(u|P), which achieves the proof of (83).
For the same reasons, as I is linear,

I (pe) = (1 — O)I(u) + 61(O)|P) iR (84)
Hence, letting 8 — 0 in (81), (82), (83), (84) imply (80), for all u < P:

I(ulP) = I(|O)) + T (1) -

But, we remark as in Lemma 3.3(4) that I'"(p) < of(p|P)+n for an o < 1
so that if J(u|P) < oo, then H?(u) = I(u|P) — I''(¢) and I'(1) < oo, and
finally, using (80)

I(ulQF) = H}(1) - (85)
We finally handle the case where p < P but I(u|P) = oo. Then H}'(p) = o0

d 1

Let Ay = { dPV < M} and pM = (A )u Then, as P(45, ) —a 0, p(A5)

Pl 0, so that u™ converges to u when M — co.

Using standard monotone convergence arguments, one finds that

1GMIPY — 1lP) =005 1100 — I(rlO})

But

d V
n(.“M)_mfAMd du =M.

Hence, using (85) and again the fact that I'*(u) < af(p|P)+ 4 for an o« < 1,
we get

(M| Ony = I(M|P) — Ti(uw) = (1 — ) (M |P) — 1
which implies that

Jim 1(eM107) = I(u|Q)) = 00 = H}'()
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Thus, we proved that
Yue (W7 H)(w)=Ioy). O

Appendix C

Proof of Theorem 2.6

(1) Let 6 > 0, and B((Q,9) be an open ball of radius ¢ in a metric which is
compatible with  the weak topology, for instance the Vaserstein’s metric (see
its definition in Sect. 3). B(Q,8) is an open subset of 4 (W#) for the weak
topology, which contains Q. Hence, infpg sy H is strictly positive since H is
a good rate function. But, according to the large deviation principle established
in Theorem 2.3(2),

— 1 N (~N i
— ‘ = - f
i log Op (17 € B(Q,0)) = — inf H <0

which proves the convergence result.
(2) Since Q;}V are symmetric measures, the propagation of chaos may be de-
duced from (1) as in Sznitman [15, Lemma 3.1]. [

Proof of Theorem 2.7. Theorem 2.7 can be deduced from Theorem 2.3 by
Borel Cantelli lemma. Let F be a closed subset of 4 (W#). If infr H = 0, it is
clear that (5) is satisfied. Otherwise, infr H > 0. Then, Tchebyshev inequality
implies that, for any integer p,

y (J/P;;V(J)(ﬁN € F) > exp {—N (1 ~ 3) ian})
14 F

lIA

exp {N (1 - %) iI}fH} [PY@EY € FYdy

2.
= exp {N (1 - ;> lrFlfH} Iy (F) .
But Theorem 2.3(1) implies that, for any integer p, for N large enough,
1
N .
Iy (F) < exp {—N <1 — ;) 11}fH} .
Thus, for N large enough,

y (J/Pg(J)(;EN EF) > exp{—N (1 - %) ing}) < exp{—N% ir}fH} )

As a consequence y ¥ (J/P;}V(J)(/’iN €F) > exp {—N (1 - %) inpr}) is
finite so that Borel Cantelli lemma implies that, for almost all J,

— 1 B s N 2\,
< —_
th I log Pg(J)(" € F) = (1 p) H}f H.

Letting p — 00, we get Theorem 2.7. O
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Proof of Theorem 2.8

(1) The proof is very similar to that of Theorem 2.6(1), we omit it.

(2) Let f be a bounded continuous function on W4 such that [fdQ =0 and
let Q, be the set of all the J's such that

inf H.

— 1 1
lim ~logPN(J)< fdp¥| = —> < -
N—oo N ¢ g | {wts rdplz 5}

p

But inf H is strictl itive fi finite int by Th
ut in (w1 sz 3 H 18 strie y positive for any finite integer p by Theorem

2.4. Thus for any J € () Q,, Borel Cantelli lemma implies that N= jita)
pp N Zui=1

converges to zero when N tends to infinity almost surely. Finally, if f24%T < 1,
Theorem 2.7(2) implies that y(2,) =1 so that Q@ =) pQ » has probability
one. L[]
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