Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities

By

C. FABRY and P. HABETS

1. Introduction. Consider the scalar boundary value problem

(1)
$$x'' + f(t, x) = 0$$
,

(2)
$$x(0) = x(2\pi), \quad x'(0) = x'(2\pi).$$

We are interested in cases where f is asymmetric. Such systems were considered first by N. Dancer [1] and S. Fučík [7] who called them *jumping nonlinearities*. A simple situation of that type occurs, for instance, when

(3)
$$f(t, x) = m_{+} x^{+}(t) - m_{-} x^{-}(t) + \psi(x) + e(t),$$

where $x^+(t) = \max(x(t), 0)$, $x^-(t) = \max(-x(t), 0)$, ψ being a bounded function. S. Fučík [7] has shown that, with such a function f, problem (1), (2) has a solution if there exists an integer n such that

(4)
$$m_+ > 0, m_- > 0$$
 and $\frac{2}{n+1} < \frac{1}{\sqrt{m_+}} + \frac{1}{\sqrt{m_-}} < \frac{2}{n}.$

The following generalization appears in P. Drábek and S. Invernizzi [4]. Instead of supposing f to be of the form (3), assume that positive numbers A_- , A_+ , B_- , B_+ exist such that

$$A_{+} \leq \liminf_{x \to +\infty} \frac{f(t, x)}{x} \leq \limsup_{x \to +\infty} \frac{f(t, x)}{x} \leq B_{+},$$
$$A_{-} \leq \liminf_{x \to -\infty} \frac{f(t, x)}{x} \leq \limsup_{x \to -\infty} \frac{f(t, x)}{x} \leq B_{-},$$

the limits being uniform in t. If for some integer n, the relations

(5) $\frac{1}{\sqrt{A_+}} + \frac{1}{\sqrt{A_-}} < \frac{2}{n},$

(6)
$$\frac{1}{\sqrt{B_+}} + \frac{1}{\sqrt{B_-}} > \frac{2}{n+1},$$

$$A_{+} = B_{+} = m_{+}, \quad A_{-} = B_{-} = m_{-}.$$

A complementary result was obtained by J. Mawhin and J. Ward [12] who considered a Liénard equation together with an assumption of the type

(7)
$$A_+ > 0, A_- > 0$$
 and $B_- < 1/4$.

A similar case refers to $A_+ > 0$, $A_- > 0$ and $B_+ < 1/4$. In these situations the function f is possibly superlinear on one side. Concerning this problem, one must also notice the early work of K. Schmitt [15] and R. Reissig [14].

Conditions (5), (6) or (7) are easily understandable in the m_+ , m_- plane. In assumption (5), (6) one imposes that the box $[A_+, B_+] \times [A_-, B_-]$ does not intersect the Fučík spectrum which consists of the lines

$$C_0 = \{(m_+, m_-) | m_+ = 0 \text{ or } m_- = 0\}$$

and

$$C_n = \left\{ (m_+, m_-) \left| \frac{1}{\sqrt{m_+}} + \frac{1}{\sqrt{m_-}} = \frac{2}{n} \right\}, \quad n = 1, 2, 3 \dots \right\}$$

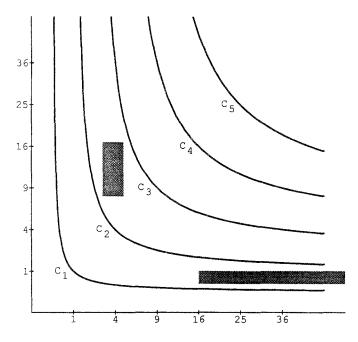


Figure 1: Fučík curves C_n

Let us also mention that another type of generalization was considered by L. Fernandez and F. Zanolin [6]. These authors considered a boundary value problem

$$x'' + f(x) = e(t),$$

$$x(0) = x(2\pi), \quad x'(0) = x'(2\pi),$$

together with an assumption such as

$$\liminf_{x \to +\infty} \frac{2F(x)}{x^2} < \frac{1}{4},$$

where $F(x) = \int_{0}^{x} f(x) dx$. We do not consider here such possible assumptions.

- Our main result requires f to satisfy the following L^{∞} -Carathéodory conditions:
- (a) f(., x) is measurable on $[0, 2\pi]$, for all $x \in \mathbb{R}$;
- (b) f(t, .) is continuous on \mathbb{R} , for a.e. $t \in [0, 2\pi]$;
- (c) for all R > 0, there exists a positive constant H such that $|f(t, x)| \le H$, for all x with $|x| \le R$ and for a.e. $t \in [0, 2\pi]$.

Theorem 1. Assume that the function $f:[0, 2\pi] \times \mathbb{R} \to \mathbb{R}$ satisfies L^{∞} -Carathéodory conditions. Let a_+, b_+, a_- be L^{∞} -functions such that

(8)
$$a_+(t) \leq \liminf_{x \to +\infty} \frac{f(t,x)}{x} \leq \limsup_{x \to +\infty} \frac{f(t,x)}{x} \leq b_+(t),$$

(9)
$$a_{-}(t) \leq \liminf_{x \to -\infty} \frac{f(t, x)}{x},$$

the limits being uniform in t. Suppose also that

(10)
$$\liminf_{|x|\to+\infty} \operatorname{sgn}(x) f(t,x) > 0,$$

uniformly in t. Moreover, assume that positive numbers A_+, B_+, A_- exist, with $A_+ \leq B_+$ such that, for some integer n,

(11)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \min\left\{\frac{a_{+}(t)}{A_{+}}, \frac{a_{-}(t)}{A_{-}}, 1\right\} dt > \frac{n}{2} \left(\frac{1}{\sqrt{A_{+}}} + \frac{1}{\sqrt{A_{-}}}\right),$$

(12)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \max\left\{\frac{b_{+}(t)}{B^{+}}, 1\right\} dt < \frac{n+1}{2} \frac{1}{\sqrt{B_{+}}}.$$

Then, problem (1), (2) has a solution.

R e m a r k s. Assumption (10) implies that

$$\liminf_{x \to +\infty} \frac{f(t, x)}{x} \ge 0, \quad \liminf_{x \to -\infty} \frac{f(t, x)}{x} \ge 0$$

and we can assume $a_+(t) \ge 0$, $a_-(t) \ge 0$. However, we must notice that (10) does not follow from these last conditions. This is clear from the example $f(t, x) = -\tan^{-1} x$.

The following Corollary, which is an immediate consequence of the above Theorem, relates it to the result of P. Drábek and S. Invernizzi [4].

Corollary 1. Assume that f satisfies L^{∞} -Carathéodory conditions, as well as condition (10). Let a_+ , b_+ , a_- be L^{∞} -functions such that (8), (9) hold. Assume that there exist positive numbers A_+ , B_+ , A_- such that, for a.e. $t \in [0, 2\pi]$,

$$A_{+} \leq a_{+}(t) \leq b_{+}(t) \leq B_{+}, \quad A_{-} \leq a_{-}(t).$$

Then, problem (1), (2) has a solution if for some positive integer n,

(13)
$$\frac{1}{\sqrt{A_+}} + \frac{1}{\sqrt{A_-}} < \frac{2}{n}, \quad B_+ < \left(\frac{n+1}{2}\right)^2.$$

The above result clearly appears as a limiting case of the result of P. Drábek and S. Invernizzi [4], when B_{-} is allowed to go to infinity. If we interpret (13) in the plane of Figure 1, one sees that the box $[A_{+}, B_{+}] \times [A_{-}, +\infty[$ has to stay between the two successive Fučík curves C_{n} and C_{n-1} . Actually, if f satisfies (8), (9) and if there exists an integrable function b_{-} such that

$$\limsup_{x \to -\infty} \frac{f(t, x)}{x} \leq b_{-}(t),$$

S. Invernizzi [9] has proven the existence of a solution for problem (1), (2), assuming that, for a.e. $t \in [0, 2\pi]$, the (variable) rectangle $[a_+(t), b_+(t)] \times [a_-(t), b_-(t)]$ is included in a (fixed) rectangle $[A_+, B_+] \times [A_-, +\infty[$, which does not intersect Fučík curves. Although that result also involves an unbounded rectangle between Fučík lines, it differs from Corollary 1 by the fact that it requires f(t, x) to grow at most linearly in x.

With respect to the existence conditions of Corollary 1, the conditions (11), (12) of Theorem 1 even allow the rectangle $[a_+(t), b_+(t)] \times [a_-(t), +\infty]$ to cross Fučík curves for some values of t. Such integral conditions have already been considered by C. Fabry [5] for problems where f is growing at most linearly.

2. A priori bounds for solutions having at most 2n zeros. The proof of Theorem 1 is based on an auxiliary result, which is of independent interest. Roughly speaking, it states that, if x f(t, x) is positive and bounded away from 0 for large |x|, a solution of (1) cannot escape to infinity without having an infinite number of zeros. The idea of this result can be traced back to P. Hartman [8]. Notice that a similar argument can be found in T. Ding and F. Zanolin [3]. A priori bounds will be needed not only for equation (1), but for a family of equations with a parameter $\lambda \in [0, 1]$. So, we consider the differential equation

(14)
$$x'' + F(t, x, \lambda) = 0.$$

In the sequel, F will be defined on $[0, 2\pi] \times \mathbb{R} \times [0, 1]$. However, it is convenient to extend F to $\mathbb{R} \times \mathbb{R} \times [0, 1]$, by periodicity in t. In the next lemma, we will assume such a function F to be 2π - periodic in its first variable, and to satisfy a *uniform* L^{∞} -Carathéodory condition, by which we mean here that

- (a) $F(., x, \lambda)$ is measurable on $[0, 2\pi]$ for all $(x, \lambda) \in \mathbb{R} \times [0, 1]$;
- (b) $F(t, .., \lambda)$ is continuous on \mathbb{R} for a.e. $t \in [0, 2\pi]$ and for all $\lambda \in [0, 1]$;
- (c) for all R > 0, there exists H such that, for a.e. $t \in [0, 2\pi]$, for all $\lambda \in [0, 1]$, for all x with $|x| \leq R$,

$$|F(t, x, \lambda)| \leq H$$
.

Lemma 1. Assume that $F : \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$ is 2π -periodic in its first variable and satisfies uniform L^{∞} -Carathéodory conditions. Assume that there exists a number $\eta > 0$ such that

(15)
$$\liminf_{|x|\to\infty} \operatorname{sgn}(x) F(t, x, \lambda) \ge \eta,$$

uniformly in t, λ . Then, for any $\varrho > 0$, there exists R > 0, such that, for any solution $x: [t_0, \omega] \to \mathbb{R}$ of (14) with $\omega > t_0, |x(t_0)| \ge R, x'(t_0) = 0$ and $x^2(\omega) + x'^2(\omega) < \varrho^2$, there exists $t_1 \in (t_0, \omega)$ such that:

- (a) x has at least two zeros in $[t_0, t_1]$,
- (b) for all $t \in [t_0, t_1]$, $x^2(t) + x'^2(t) \ge \varrho^2$,
- (c) $|x(t_1)| \ge \varrho, x'(t_1) = 0.$

Proof. Take $\varepsilon \in (0, \eta/2)$. Define a function $g_0 : \mathbb{R} \to \mathbb{R}$ by

(16)
$$g_0(x) = \min\left\{ \eta/2, \operatorname{essinf}\left\{F(t, \xi, \lambda) - \varepsilon \,|\, t \in \mathbb{R}, \, \xi \ge x, \, \lambda \in [0, 1]\right\}\right\}.$$

Notice that $F(t, \xi, \lambda) - \varepsilon$ becomes larger than $\eta/2$ for large positive ξ , so that $g_0(x) = \eta/2$ for large positive values of x. By construction, g_0 is nondecreasing and such that, for all $\lambda \in [0, 1]$, a.e. $t \in [0, 2\pi]$ and all $x \in \mathbb{R}$,

(17)
$$g_0(x) \leq F(t, x, \lambda) - \varepsilon.$$

It is easy to deduce from g_0 a continuous nondecreasing function g such that $g(x) \leq g_0(x)$ for all $x \in \mathbb{R}$ and $g(x) = \eta/2$ for large positive values of x. For example, one can take g piecewise linear such that, for all $n \in \mathbb{N}$, $g(n + 1) = g_0(n)$. Similarly, a continuous nondecreasing function h can be built such that, for all $\lambda \in [0, 1]$, a.e. $t \in [0, 2\pi]$ and all $x \in \mathbb{R}$,

$$F(t, x, \lambda) + \varepsilon \leq h(x)$$

and $h(x) = -\eta/2$ for large negative values of x. Introduce the convex functions G, H defined by

$$G(x) = \int_{0}^{x} g(u) du, \quad H(x) = \int_{0}^{x} h(u) du.$$

It is clear that

(18)
$$G(x) < H(x)$$
 for $x > 0$ and $G(x) > H(x)$ for $x < 0$.

Moreover, since $g(x) = \eta/2$ for large positive values of x, we have

$$\lim_{x \to +\infty} G(x) = +\infty;$$

similarly, we can write

$$\lim_{x \to -\infty} H(x) = +\infty.$$

Let $B_{\varrho} = \{(x, y) | x^2 + y^2 \leq \varrho^2\}$ and choose k > 0 such that, for all $(x, y) \in B_{\varrho}$,

$$\frac{y^2}{2} + H(x) < k, \quad \frac{y^2}{2} + G(x) < k.$$

Let $\alpha < 0$ be such that $H(\alpha) = k$; such a number exists since H(0) = 0 and $\lim_{x \to -\infty} H(x) = +\infty$. Define next curves Γ_1, Γ_2 in the (x, y) plane by

$$\Gamma_{1} = \left\{ (x, y) \left| \frac{y^{2}}{2} + H(x) = H(\alpha), y \ge 0 \right\}$$

$$\Gamma_{2} = \left\{ (x, y) \left| \frac{y^{2}}{2} + G(x) = G(\alpha), y \le 0 \right\}.$$

Possible curves are shown in Fig. 2. Since the function H is convex, for any $y \in \mathbb{R}$, there are at most two points x_1, x_2 such that $(x_1, y) \in \Gamma_1, (x_2, y) \in \Gamma_1$. The same holds true for Γ_2 . Clearly, there exists $\beta > \varrho$ such that $H(\beta) = H(\alpha)$. There also exists $\gamma > \varrho$ such that $G(\gamma) = G(\alpha) > H(\alpha)$. Since G(x) < H(x) for x < 0, we will have $\gamma > \beta$. Now, let x be a solution of (14). If the curve $t \mapsto (x(t), x'(t))$ crosses Γ_1 , the crossing must be from the "inside" towards the "outside". Indeed, along solutions of (14), we have, for x' > 0,

$$\frac{d}{dt}\left(\frac{x'^2}{2}+H(x)\right)=x'(h(x)-F(t,x,\lambda))>0,$$

showing that, at points of Γ_1 , the vector field associated to the differential equations (14) points outwards. A similar result holds for Γ_2 . Also, the vector field points downwards along the half-line $\{(x, 0) | x \ge \gamma\}$. Indeed, if a solution curve crosses that half-line at a point $x \ge \gamma$, we have

$$x'' = -F(t, x, \lambda) \leq -g(x) \leq -g(\gamma)$$

and $g(\gamma) > 0$, since, otherwise, we would have $G(\gamma) \leq 0$. Consequently, if $x: [t_0, \omega] \to \mathbb{R}$ is a solution of (14) with $\omega > t_0$, $x(t_0) \geq \gamma$, $x'(t_0) = 0$, one sees that the curve $t \mapsto (x(t), x'(t))$ must circle at least once around B_{ρ} before crossing the segment

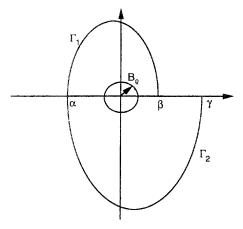


Figure 2: The curves Γ_1 and Γ_2

 $\{(x, 0) | \beta \le x \le \gamma\}$ and entering the ball B_{ϱ} . A similar construction takes place for solutions x with $x(t_0) < 0$, $x'(t_0) = 0$. Hence, by choosing R large enough, the conclusion follows. \Box

By iteration of Lemma 1, we can prove the next lemma.

Lemma 2. Assume that $F : \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$ is 2π -periodic in its first variable and satisfies uniform L^{∞} -Carathéodory conditions. Assume further there exists a number $\eta > 0$ such that (15) holds uniformly in t, λ .

Then, for any $n \in \mathbb{N}$ and any $\varrho_0 > 0$, there exists a number $R_0 > 0$ such that, for any solution $x: [t_0, \omega] \to \mathbb{R}$ of (14), with $t_0 < \omega$, $|x(t_0)| \ge R_0, x'(t_0) = 0$, either $x^2(t) + x'^2(t) \ge \varrho_0^2$ for all $t \in [t_0, \omega]$, or x has at least 2n zeros on an interval $[t_0, t_n] \subset [t_0, \omega]$ and, for all $t \in [t_0, t_n], x^2(t) + x'^2(t) \ge \varrho_0^2$.

Proof. Let $R_n = \varrho_0$. Given $R_i (i = n, n - 1, ..., 1)$, we choose $\varrho = R_i$ in Lemma 1, from which we get R and let $R_{i-1} = R$. Then, if $x : [t_0, \omega] \to \mathbb{R}$ is a solution of (14) with

$$t_0 < \omega, |x(t_0)| \ge R_0, \quad x'(t_0) = 0,$$

either $x^2(t) + x'^2(t) \ge \varrho_0^2$ for all $t \in [t_0, \omega]$, or there exists $t_1 < t_2 < \ldots < t_n$ such that (a) x has at least two zeros in $[t_{i-1}, t_i]$ for $i = 1, \ldots, n$;

- (b) for all $t \in [t_{i-1}, t_i], x^2(t) + x'^2(t) \ge R_i^2 \ge \varrho_0^2;$
- (c) $|x(t_i)| \ge R_i, x'(t_i) = 0.$

Since the hypotheses about F are unaffected by a time reversal, the above Lemma can be rephrased as follows, after some easy modifications.

Lemma 3. Let $F : \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$ be 2π -periodic in its first variable. Assume it satisfies uniform L^{∞} -Carathéodory conditions and there exists a number $\eta > 0$ such that (15) holds uniformly in t, λ .

Then, for any $n \in \mathbb{N}$ and any $\varrho_0 > 0$, there exists a number $R_0 > 0$ such that, if $x: [t_0, \omega] \to \mathbb{R}$ is a solution of (14) with $x^2(t_0) + x'^2(t_0) \leq \varrho_0^2$, having at most 2 n zeros, we have, for all $t \in [t_0, \omega]$,

$$x^{2}(t) + x'^{2}(t) \leq R_{0}^{2}.$$

Lemma 3 shows that, under condition (15) an a priori bound can be found for the solutions of equation (14), which enter the ball B_{ϱ} at some time t_0 and have less than some given number of zeros. Lemma 2 and 3 have been written using the euclidean norm in the phase plane. That norm could obviously be replaced by any other norm.

3. Proof of Theorem 1. Take $m_+ \in [A_+, B_+]$, $m_- \ge A_-$. It results immediately from hypotheses (11), (12) that

(19)
$$\frac{2}{n+1} < \frac{1}{\sqrt{m_+}} + \frac{1}{\sqrt{m_-}} < \frac{2}{n}.$$

For $\lambda \in [0, 1]$, define the function F by

$$F(t, x, \lambda) = \lambda f(t, x) + (1 - \lambda) [m_+ x^+ - m_- x^-];$$

by 2π -periodicity in *t*, that function will be extended to $\mathbb{R} \times \mathbb{R} \times [0, 1]$. By degree theoretic arguments, the theorem will be established if we can find a priori bounds, in the sup-norm, for the solutions of

(20)
$$x'' + F(t, x, \lambda) = 0$$

(21)
$$x(0) = x(2\pi), \quad x'(0) = x'(2\pi),$$

independently of $\lambda \in [0, 1]$ (see [9] or [10]). It results indeed from (19) that, for $\lambda = 0$, the degree is equal to 1. By adding or substracting a small positive constant to the functions a_+, b_+, A_- , we can assume that (11), (12) still hold and replace (8), (9) by the stronger assumption that, for some constant K > 0,

(22)
$$a_{+}(t)x^{2} - K \leq x f(t, x) \leq b_{+}(t)x^{2} + K$$

for all $x \geq 0$, for a.e. $t \in [0, 2\pi]$

(23)
$$a_{-}(t) x^{2} - K \leq x f(t, x) \text{ for all } x \leq 0, \text{ for a.e. } t \in [0, 2\pi].$$

Let x be a solution of (20), (21) such that, for some $t_0 \in [0, 2\pi]$, $x^2(t_0) + x'^2(t_0) \ge R_0^2$. We will show that such a solution cannot exist if R_0 is large enough. The method used is based on a count of the number of revolutions of the orbit in the phase plane or, equivalently, in a plane ($\mu x, x'$), where μ is an arbitrary positive number. Using Prüfer's change of variables [13]

$$\mu x = \varrho \sin \theta, \quad x' = \varrho \cos \theta$$

it is easy to see that

$$\theta' = \frac{\mu x' \cos \theta - x'' \sin \theta}{\varrho} = \mu \frac{-x x'' + x'^2}{\mu^2 x^2 + x'^2}.$$

Archiv der Mathematik 60

Hence if an orbit (x(t), x'(t)) makes k revolutions in the phase plane on the interval $[0, 2\pi]$, and if $x^2 + x'^2$ does not vanish, we will have

$$k = \frac{\mu}{2\pi} \int_{0}^{2\pi} \frac{-xx'' + x'^{2}}{\mu^{2}x^{2} + x'^{2}} dt = \frac{\mu}{2\pi} \int_{0}^{2\pi} \frac{xF(t, x, \lambda) + x'^{2}}{\mu^{2}x^{2} + x'^{2}} dt$$

for any $\mu \ge 0$. Looking at the half planes $x \ge 0$ and $x \le 0$, and letting

$$I_{+} = \{t \in [0, 2\pi] \, | \, x(t) \ge 0\}, \quad I_{-} = \{t \in [0, 2\pi] \, | \, x(t) \le 0\},\$$

we also have

(24)
$$\frac{k}{2} = \frac{\mu}{2\pi} \int_{I_+} \frac{xF(t, x, \lambda) + {x'}^2}{\mu^2 x^2 + {x'}^2} dt,$$

(25)
$$\frac{k}{2} = \frac{v}{2\pi} \int_{I_{-}}^{I_{-}} \frac{xF(t, x, \lambda) + x'^{2}}{v^{2}x^{2} + x'^{2}} dt,$$

where μ and v are arbitrary positive numbers. We will find a priori bounds of the solutions of (20), (21), distinguishing two cases, depending on the number of zeros of the possible solution in $[0, 2\pi]$. In the sequel, the number n is the integer appearing in hypotheses (11), (12).

1 st Case. The solution x has at most 2n zeros in $[0, 2\pi]$.

Take ϱ_0 large enough so that

(26)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \min\left\{\frac{a_{+}(t)}{A_{+}}, \frac{a_{-}(t)}{A_{-}}, 1\right\} dt - \frac{K}{\varrho_{0}^{2}} > \frac{n}{2} \left(\frac{1}{\sqrt{A_{+}}} + \frac{1}{\sqrt{A_{-}}}\right).$$

Because of hypothesis (10), we can apply Lemma 2. Since the solution x is assumed to have at most 2n zeros in $[0, 2\pi]$, a number R can be found, using Lemma 2, such that, if $|x(t_0)| \ge R$, $x'(t_0) = 0$ for some $t_0 \in [0, 2\pi]$, then $A_+ x^2(t) + x'^2(t) \ge g_0^2$ and $A_- x^2(t) + x'^2(t) \ge g_0^2$, for all $t \in [0, 2\pi]$. If k is the number of revolutions of that solution in the phase plane, we see, using (22) and (24) with $\mu = \sqrt{A_+}$, that

(27)

$$\frac{k}{2} \ge \frac{\sqrt{A_{+}}}{2\pi} \int_{I_{+}} \frac{\lambda [a_{+}(t) x^{2} - K] + (1 - \lambda) m_{+} x^{2} + {x'}^{2}}{A_{+} x^{2} + {x'}^{2}} dt$$

$$\ge \frac{\sqrt{A_{+}}}{2\pi} \int_{I_{+}} \min \left\{ \frac{a_{+}(t)}{A_{+}}, 1 \right\} dt - \frac{\sqrt{A_{+}}}{2\pi} \int_{I_{+}} \frac{K}{A_{+} x^{2} + {x'}^{2}} dt$$

$$\ge \frac{\sqrt{A_{+}}}{2\pi} \int_{I_{+}} \min \left\{ \frac{a_{+}(t)}{A_{+}}, 1 \right\} dt - \frac{\sqrt{A_{+}}}{2\pi} \frac{K}{\varrho_{0}^{2}} \operatorname{mes}\left(I_{+}\right).$$

Similarly, by (23) and (25) with $v = \sqrt{A_-}$, we get

(28)
$$\frac{k}{2} \ge \frac{\sqrt{A_{-}}}{2\pi} \int_{I_{-}} \min\left\{\frac{a_{-}(t)}{A_{-}}, 1\right\} dt - \frac{\sqrt{A_{-}}}{2\pi} \frac{K}{\varrho_{0}^{2}} \operatorname{mes}\left(I_{-}\right).$$

Combining (27) and (28), we obtain

(29)
$$\left(\frac{1}{\sqrt{A_{-}}} + \frac{1}{\sqrt{A_{-}}}\right)\frac{k}{2} \ge \frac{1}{2\pi} \int_{0}^{2\pi} \min\left\{\frac{a_{+}(t)}{A_{+}}, \frac{a_{-}(t)}{A_{-}}, 1\right\} dt - \frac{K}{\varrho_{0}^{2}}.$$

Confrontation with (26) shows that k > n, leading to a contradiction. Hence, we conclude that $|x(t)| \leq R$ for all $t \in [0, 2\pi]$, if x has at most 2n zeros in $[0, 2\pi]$.

2nd case. The solution x has at least 2n + 2 zeros in $[0, 2\pi]$.

Take ρ_0 large enough so that

(30)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \max\left\{\frac{b_{+}(t)}{B_{+}}, 1\right\} dt + \frac{K}{\varrho_{0}^{2}} < \frac{n+1}{2} \frac{1}{\sqrt{B_{+}}}.$$

The solution x is now assumed to have at least 2n + 2 zeros in $[0, 2\pi]$. Using Lemma 2 again, a number R can be found such that, if for some $t_0 \in [0, 2\pi]$ we have $|x(t_0)| \ge R$, $x'(t_0) = 0$ then $B_+ x^2(t) + x'^2(t) \ge \varrho_0^2$ on some interval J, on which x has at least 2n + 2 zeros. Since x is assumed to have at least 2n + 2 zeros in $[0, 2\pi]$, using the periodicity, we can take $J \subset [t_0, t_0 + 2\pi]$. As above, if $J_+ = \{t \in J \mid x(t) \ge 0\}$, we have

$$\frac{k}{2} = \frac{v}{2\pi} \int_{J_+} \frac{xF(t, x, \lambda) + {x'}^2}{v^2 x^2 + {x'}^2} dt,$$

k being the number of revolutions in the phase plane when t travels through J. We will use that formula with $v = \sqrt{B_+}$. Taking (23) into account, this leads to

$$\frac{k}{2} \leq \frac{\sqrt{B_+}}{2\pi} \int_{+}^{} \frac{\lambda [b_+(t)x^2 + K] + (1 - \lambda)m_+ x^2 + x'^2}{B_+ x^2 + x'^2} dt$$
$$\leq \frac{\sqrt{B_+}}{2\pi} \int_{+}^{} \max\left\{\frac{b_+(t)}{B_+}, 1\right\} dt + \frac{\sqrt{B_+}}{2\pi} \frac{K}{\varrho_0^2} \max\left(J_+\right).$$

But, because of (30), this would imply k < n + 1, leading to a contradiction. Hence, we must have, in this case also, $|x(t)| \leq R$ for all $t \in [0, 2\pi]$.

R e m a r k 1. The hypotheses of Theorem 1 can be slightly weakened. Indeed, a careful analysis of the proof shows that, the inequality (27) can be replaced by a strict one if $a_+(t) \neq A_+$ on a subset of I_+ of positive measure. A similar Remark holds for (28). On the other hand, either mes $(I_+) \ge \pi$ or mes $(I_-) \ge \pi$. Consequently, if mes $\{t \in [0, 2\pi] | a_+(t) \neq A_+\} > \pi$ and mes $\{t \in [0, 2\pi] | a_-(t) \neq A_-\} > \pi$, relation (29) can be replaced by a strict inequality, which allows hypothesis (11) to be replaced by a nonstrict inequality.

R e m a r k 2. A result similar to Theorem 1 can also be obtained for other boundary value problems, when the boundary conditions can be put in relation with a count of the number of revolutions in the phase plane. This is the case, for instance, of the Neumann problem

$$x'' + f(t, x) = 0,$$

 $x'(0) = x'(2\pi) = 0.$

R e m a r k 3. It is also possible to extend the result of Theorem 1 to differential equations with a damping linear term, i.e.

$$x'' + cx' + f(t, x) = 0$$
.

Indeed, the change of variable $x(t) = \exp(-ct/2)u(t)$ transforms the differential equation into

$$u'' + \exp(ct/2) f(t, u \exp(-ct/2)) - c^2 u/4 = 0,$$

whereas the periodic boundary conditions become

 $u(0) = \exp(-cT/2)u(T), \quad u'(0) = \exp(-cT/2)u'(T).$

Although the problem is no longer a periodic boundary value problem, the number of revolutions in the phase plane must still be an integer. Hence, the method of Theorem 1 applies and existence conditions can be written, replacing f(t, x) by $f(t, x) - c^2 x/4$.

R e m a r k 4. At last, let us point out that results in the line of Corollary 1 have been recently obtained by D. de Figueiredo and B. Ruf [2].

References

- N. DANCER, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 76, 283–300 (1977).
- [2] D. DE FIGUEIREDO and B. RUF, Communication at Equadiff 91. Barcelona 1991.
- [3] T. DING and F. ZANOLIN, Subharmonic solutions of second order nonlinear equations: a time-map approach. Preprint Udine University 1991.
- [4] P. DRABEK and S. INVERNIZZI, On the periodic boundary value problem for forced Duffing equation with jumping non-linearity. Nonlinear Anal. 10, 643-650 (1986).
- [5] C. FABRY, Periodic solutions of the equation x'' + f(t, x) = 0. Séminaire de Mathématique 117, Louvain-la-Neuve 1987.
- [6] L. FERNANDES and F. ZANOLIN, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term. Arch. Math. 51, 151–163 (1988).
- [7] S. Fučík, Solvability of Nonlinear Equations and Boundary Value Problems. Holland 1980.
- [8] P. HARTMAN, On boundary value problems for superlinear second order differential equations. J. Differential Equations 26, 37-53 (1977).
- [9] S. INVERNIZZI, A note on nonuniform nonresonance for jumping nonlinearities, Comment. Math. Univ. Carolin. 27, 285-291 (1986).
- [10] N. G. LLOYD, Degree Theory. Cambridge 1978.
- [11] J. MAWHIN, Compacité, monotonie et convexité dans l'étude de problèmes aux limites semilinéaires. Sém. Anal. Moderne 19, Sherbrooke 1981.
- [12] J. MAWHIN and J. R. WARD JR, Periodic solutions of some Liénard differential equations at resonance. Arch. Math. 41, 337-351 (1983).
- [13] L. C. PICCININI, G. STAMPACCHIA and G. VIDOSSICH, Ordinary Differential Equations in Rⁿ, Problems and Methods. Berlin-Heidelberg-New York 1984.
- [14] R. REISSIG, Periodic solutions of a second order differential equation including a one-sided restoring term. Arch. Math. 33, 85-90 (1979).
- [15] K. SCHMITT, Periodic solutions of a forced nonlinear oscillator involving a one sided restoring force. Arch. Math. 31, 70-73 (1978).

Eingegangen am 25. 11. 1991

Anschrift der Autoren:

C. Fabry and P. Habets Institut de Mathématique pure et Appliquée Chemin du Cyclotron 2 1348 Louvain-la-Neuve Belgique