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Periodic solutions of second order differential equations 
with superlinear asymmetric nonlinearities 

By 

C. FABRY and P. HABETS 

1. Introduction. Consider the scalar boundary  value problem 

(1) x"  + f ( t , x )  = 0,  

(2) x (0) = x (2 n), x '(0) = x ' (2  n). 

We are interested in cases where f is asymmetric. Such systems were considered first by 
N. Dancer  [1] and S. Fu~ik [7] who called t hem  jumping nonlinearities. A simple situation 
of that type occurs, for instance, when 

(3) f ( t , x )  = m+ x + ( t ) - -  m_ x -  (t) + ~ ( x )  + e( t ) ,  

where x + (t) = max (x (t), 0), x - (t) = max ( -  x (t), 0), ~b being a bounded function. 
S. Fu~ik [7] has shown that, with such a function f ,  problem (1), (2) has a solution if there 
exists an integer n such that 

2 1 l 2 
(4) m + > 0 ,  m _ > O  and n + l - - < - - + 7 ~ - m ~ _  < - x ~ +  _ _  n" 

The following generalization appears in P. Drfibek and S. Invernizzi [4]. Instead of 
supposing f to be of the form (3), assume that positive numbers A_,  A +, B_,  B+ exist 
such that 

A + < lim inf f (t, x) < lim sup f - ( t '  x) < B +, 
x ~ + o o  X x ~ + m  X 

A _ < lira inf f (t, x) < lira sup f (t, x) < B_ 
x-+ --cO X x~ --o0 X 

the limits being uniform in t. If for some integer n, the relations 

I I 2 

I I 2 
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hold, problem (1), (2) has a solution. The result of S. FuSik [7] corresponds to the 
particular case 

A+ = B +  = m + ,  A _  = B _  = m _ .  

A complementary result was obtained by J. Mawhin and J. Ward [12] who considered a 
Li6nard equation together with an assumption of the type 

(7) A+ > 0 ,  A_ > 0  and B_ < 1 / 4 .  

A similar case refers to A+ > 0, A_ > 0 and B+ < 1/4. In these situations the function 
f is possibly superlinear on one side. Concerning this problem, one must also notice the 
early work of K. Schmitt [15] and R. Reissig [14]. 

Conditions (5), (6) or (7) are easily understandable in the m+, m_ plane. In assumption 
(5), (6) one imposes that the box [A+, B+] x [A_, B_] does not intersect the Fu6ik spec- 
t rum which consists of the lines 

and 

C O = { (m+,rn_)]m+ = 0 or m_ = 0} 

n =  1,2,3 . . . .  

36 

25 

16 �84 

9 i16 2t5 .... 36 

Figure 1: Fu~ik curves C, 
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Condition (7) means that the box [A+, + oe[ x [A_, B_] remains between C o and C1o 
Looking at the Fu~ik spectrum, one can expect that the same idea applies between two 
successive curves C, and C, + 1. The aim of this paper is to study such a situation. 

Let us also mention that another type of generalization was considered by L. Fernan- 
dez and E Zanolin [6]. These authors considered a boundary value problem 

x" + f (x) = e (t), 

x (0) = x (2 =), x '  (0) = x '(2 7 0 ,  

together with an assumption such as 

r . o2F(x)  
lm l n l ~  < ~,  

x ~ + c c  X 

x 

where F (x) = S f (x) dx. We do not consider here such possible assumptions. 
o 

Our main result requires f to satisfy the following L~-CarathOodory conditions: 
(a) f ( . ,  x) is measurable on [0, 2~], for all x E IR; 
(b) f ( t , . )  is continuous on IR, for a.e. t e [0, 2=]; 
(c) for all R > 0, there exists a positive constant H such that ] f  (t, x)[ < H, for all x with 

]xl < R and for a.e. t el0, 2=]. 

Theorem 1. Assume that the function f : [0, 2 n] x ]R -~ N satisJies E*-Carath~odory 
conditions. Let  a + , b +, a_ be L~-functions such that 

(8) a + (t) =< lim inf f (t, x) < lim sup - -  f (t, x) _-< b + (t), 
x-* + oo X x ~ + : c  X 

(9) a_ (t) < lim inf f (t, x ) ,  
x ~  -oo  X 

the limits being uniform in t. Suppose also that 

(10) lim inf sgn (x) f (t, x) > O, 
t x [ ~ + ~  

uniformly in t. Moreover, assume that positive numbers A +, B + , A_ exist, with A+ <= B+ 
such that, for some integer n, 

(11) m i n % ( t ) , a  (t) dr> + 
o ( A +  A_ ' 

1 %.(0 [ 1 
max - -  1 dt~.. 

(12) ~ o ~  [ B + ' J 2 x/~-+ 

Then, problem (1), (2) has a solution. 
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R e m a r k s. Assumption (10) implies that 

lim inf f ( t '  x) > O, lim inf f ( t '  x) > 0 
x ~  + c o  X x ~  - c o  X 

and we can assume a+ (t) > 0, a_ (t) > 0. However,  we must notice that (10) does not 
follow from these last conditions. This is clear from the example f (t, x) = - t a n -  1 x. 

The following Corollary, which is an immediate consequence of the above Theorem, 
relates it to the result of P. Drfibek and S. Invernizzi [4]. 

Corollary 1. Assume that f satisfies L~-Carath~odory conditions, as well as condition 
(10). Let a + , b + , a_ be L~-functions such that (8), (9) hold. Assume that there exist positive 
numbers A +, B +, A_ such that, for a.e. t ~ [0, 2 n], 

A+ <=a+(t)<=b+(t)<B+, A_ < a _ ( t ) .  

Then, problem (1), (2) has a solution if for some positive integer n, 

(13) - - 1  1 2 ( n + l ~  2. 
~ + + - - <  B+ < 

~fA _ - ' n k Z /  

The above result clearly appears as a limiting case of the result of P. Dr~tbek and 
S. Invernizzi [4], when B_ is allowed to go to infinity. If we interpret (13) in the plane of 
Figure 1, one sees that the box [A+,B+]•  + oo[ has to stay between the two 
sucessive Fu~ik curves C, and C n_ 1. Actually, if f satisfies (8), (9) and if there exists an 
integrable function b_ such that 

f (t, x) 
lira sup < b_ (t), 

x-- r  - - ~  X 

S. Invernizzi [9] has proven the existence of a solution for problem (1), (2), assuming that, 
for a.e. t ~ [0, 2~], the (variable) rectangle [a+ (t), b+ (t)] • [a_ (t), b_ (t)] is included in a 
(fixed) rectangle [A +, B + ] • [A_, + oo [, which does not intersect Fu~ik curves. Although 
that result also involves an unbounded rectangle between Fu~ik lines, it differs from 
Corollary 1 by the fact that  it requires f (t, x) to grow at most  linearly in x. 

With respect to the existence conditions of Corollary 1, the conditions (11), (12) of 
Theorem I even allow the rectangle [a + (t), b + (t)] • [a_ (t), + c~ [ to cross Fu~ik curves 
for some values of t. Such integral conditions have already been considered by C. Fabry  
[5] for problems where f is growing at most  linearly. 

2. A priori bounds for solutions having at most 2 n zeros. The proof  of Theorem 1 is 
based on an auxiliary result, which is of independent interest. Roughly speaking, it states 
that, if x f (t, x) is positive and bounded away from 0 for large Ix I, a solution of (1) cannot  
escape to infinity without having an infinite number  of zeros. The idea of this result can 
be traced back to P. Ha r tman  [8]. Notice that  a similar argument  can be found in T. Ding 
and E Zanolin [3]. 
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A priori bounds  will be needed not  only for equat ion (1), but  for a family of equat ions 
with a parameter  2 ~ [0, 1]. So, we consider the differential equat ion 

(14) x" + f (t, x, 2) = 0. 

In the sequel, F will be defined on [0, 2~z] x lR x [0, 1]. However ,  it is convenient  to extend 
F to I (  x ~ x [0, 1], by periodicity in t. In the next lemma, we will assume such a funct ion 
F to be 27r- periodic in its first variable, and to satisfy a uniform L~ 
condition, by which we mean here that  
(a) F( . ,  x, 2) is measurable  on [0, 2 ~r] for all (x, 2) s IR x [0, 1]; 
(b) F(t , . ,  2) is cont inuous  on N for a.e. t e [0, 2~r] and for all 2 e [0, I]; 
(c) for all R > 0, there exists H such that, for a.e. t E [0, 2~r], for all 2 ~ [0, 1], for all x 

with ]x[ < R, 

tF(t, x, Z)[ _-< H .  

L e m m a  1. Assume that F : ~ x ~ x [0, 1] -* IR is 2 7r-periodic in its first variable and 
satisfies uniform L~-Carath~odory conditions. Assume that there exists a number ~l > 0 such 
that 

(15) lira inf sgn (x) F (t, x, 2) >__ ~1, 

uniformly in t, 2. Then, for any 0 > 0, there exists R > O, such that, for any solution 
x : [t o, co] ~ ]R of (14) with co > to, ]x (to)[ _-> R, x'  (to) = 0 and x 2 (co) + x'2 (co) < 02 there 
exists t I E (to, co) such that: 

(a) x has at least two zeros in [to, h] ,  
(b) for all t c  [to, tl], x2(t)  + x'2(t)_>- 02 , 
(c) Ix(t l) l  => ~, x ' ( t 3  = 0. 

P r o o f. Take e ~ (0, U2). Define a funct ion go : IR ~ R by 

(16) go(x )=min{~ /2 ,  e s s in f {F( t ,~ ,2 ) - -~ l t~ IR ,~>=x ,  2~[O, 1]}}. 

Notice that  F (t, ~, 2) - e becomes larger than q/2 for large positive 4, so that  g0 (x) = q/2 
for large positive values of x. By construct ion,  9o is nondecreasing and such that, for all 
2 e [0, 1], a.e. t e [0, 2 ~z] and  all x ~ IR, 

(17) go(X) < F(t, x, 2) - ~. 

It is easy to deduce from 9o a cont inuous  nondecreasing function g such that  g (x) < go (x) 
for all x ~ R and 9 (x) = t//2 for large positive values of x. For  example, one can take 9 
piecewise linear such that, for all n e N,  9 (n + 1) = go (n). Similarly, a cont inuous  non-  
decreasing function h can be built such that, for all 2 ~ [0, 1], a. e. t E [0, 2 7r] and all x ~ R ,  

F (t, x, 2) + e _-< h (x) 

and  h (x) = - U2 for large negative values of  x. In t roduce  the convex functions G, H 
defined by 

G (x) = i 9 (u) du, H (x) = i h (u) du. 
o 0 
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It is clear tha t  

(18) G(x)<H(x) for x > 0  an d  G(x)>H(x) for x < 0 .  

Moreover ,  since g (x) = r//2 for large posit ive values of x, we have 

lira G ( x ) =  + o o ;  
x --* + oo  

similarly, we can  write 

l im H ( x ) =  + o o .  
x - - +  - - o o  

Let B 0 = {(x, y) I x 2 + yZ =< 0 2} a n d  choose k > 0 such that,  for all (x, y) e B~, 

y2 y2 
~- + H(x) < k, 5- + G(x) < k. 

Let e < 0  be such that  
l im H (x) = + oc. Define 

x ~ - - o o  

H ( e ) =  k; such a n u m b e r  exists since H ( 0 ) = 0  and  
next  curves F i,  F z in the (x, y) p lane  by 

+ H (x) = H (cQ, y ~ 0} 

+ G (x) = G (.), y _-< 0}. 

Possible  curves are shown in Fig. 2. Since the funct ion  H is convex, for any  y e IR, there 

are at mos t  two poin ts  x l ,  x 2 such that  (x 1 , y) e F~, (xz, y) e F 1 . The same holds true for 
F 2. Clearly, there exists fl > ~ such that  H(fl) = H(c 0. There  also exists 7 > ~ such that  
G (7) = G (cr > H (c~). Since G (x) < H (x) for x < 0, we will have 7 > ft. Now,  let x be a 
so lu t ion  of (14). If the curve t ~ (x(t), x'(t)) crosses F1, the crossing mus t  be from the 
"inside" towards  the "outside".  Indeed,  a long  solut ions  of (14), we have, for x '  > 0, 

d t \  2 +H(x =x ' (h(x) -F( t ,x ,  2))>O, 

showing that,  at points  of E l , the vector  field associated to the differential equa t ions  (t4) 
poin ts  outwards.  A similar  result  holds for F 2. Also, the vector  field points  downwards  
a long  the half-line {(x, 0 ) ]x  > 7}. Indeed,  if a so lu t ion  curve crosses that  half-line at a 
po in t  x > 7, we have 

x" = - F (t, x, 2) < -- g (x) < -- g (7) 

and  g (7) > 0, since, otherwise, we would  have G (7) < 0. Consequent ly ,  if x : [t o, o2] ~ IR 
is a so lu t ion  of (14) with co > to, X ( t o ) > 7 ,  x ' ( t o ) = 0  , one  sees that  the curve 
t~-~ (x(t), x'(t)) must  circle at least once a r o u n d  B o before crossing the segment  
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k 

Figure 2: The curves F 1 and F 2 

{(x, 0)[fi  _<_ x < ~} and enter ing the bal l  B 0. A s imi lar  cons t ruc t ion  takes  place for 
so lu t ions  x with x (to) < 0, x '  (to) = 0. Hence,  by  choos ing  R large  enough,  the conclus ion  
follows. [ ]  

By i t e ra t ion  of L e m m a  1, we can p rove  the next  l emma.  

L e m m a  2. Assume that F : IR • R • [0, 1] ~ R is 2 n-periodic in its f irst  variable and 
satisfies uniform L~-Carath~odory conditions. Assume further there exists a number ~ > 0 
such that (15) holds uniformly in t, 2. 

Then, for  any n ~ N and any 0o > 0, there exists a number Re > 0 such that, for  
any solution x: [to, co] --+ IR o f  (14), with t o < co, IX(to)[ > R o , x ' ( t o )  = O, either 
x 2 ( t ) +  x '2 ( t )>O~ for  all r e [ t o ,  co], or x has at least 2n zeros on an interval 
[to, t ,]  c [to, co] and, for all t ~ [to, t , ] ,  x 2 (t) + x '2 (t) > 02. 

P r o  o f .  Let  R,  = 0o- G iven  Ri(i = n, n - 1 . . . . .  1), we choose  0 = Ri in L e m m a  1, 
f rom which we get R and  let Ri_ ! = R. Then,  if x :  [to, co] --* N is a so lu t ion  of (14) with 

t o < c o , [ x ( t o )  [ > R o ,  x ' ( t o ) = O ,  

ei ther  x2( t )  + x'Z(t) >= 0~ for all t ~ [t o, co], or  there  exists t 1 < t 2 < .. .  < t,, such tha t  
(a) x has  at  least  two zeros in [ti_ 1, t~] for i = 1 . . . . .  n; 
(b) for all t ~[t~_l, t i] ,  xZ(t)  + x'Z(t) > R 2 > 02; 

(c) [x(ti)[ > Ri, x '  (ti) = O. [] 

Since the hypo theses  a b o u t  F are unaffected by  a t ime reversal ,  the above  L e m m a  can 
be r ephrased  as follows, after some easy modif ica t ions .  

L e m m a  3. Let  F : ~ • IR • [0, i] -~ IR be 2 n-periodic in its f irst  variable. Assume it 
satisfies uniform L~-Carath~odory conditions and there exists a number ~l > 0 such that (15) 
holds uniformly in t, 2. 
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Then, for  any n ~ N and any Oo > O, there exists  a number R o > 0 such that, i f  
x" [t o, ~o] -+ IR is a solution o f  (14) with x z (to) + x '2 (to) < 42, having at most  2 n zeros, we 

have, for  all t ~ [to, co], 

x2(t) + x'2 (t) __< Rg.  

Lemma 3 shows that, under condi t ion (15) an a priori  bound can be found for the 
solutions of equat ion (14), which enter the ball  B e at some time to and have less than some 
given number  of zeros. Lemma 2 and 3 have been written using the euclidean norm in 
the phase plane. That  norm could obviously be replaced by any other norm. 

3. Proof  of Theorem 1. Take m+ ~ [A+, B+], m_ > A_.  It results immediately from 
hypotheses (11), (12) that  

2 1 1 2 
(19) - -  < - -  + < - 

n + l  tx/~++ ~ -  n '  

F o r  2 z [0, 1], define the function F by 

F ( t , x ,  2) = 2 f ( t , x )  + (1 - 2) [m+ x + - m_ x - ] ;  

by 27z-periodicity in t, that  function will be extended to N x ]R x [0, 1]. By degree theoretic 
arguments,  the theorem will be established if we can find a praori bounds,  in the sup-norm, 
for the solutions of 

(20) x" + F (t, x, 2) = 0 

(21) x(O) = x(2~),  x'(o) = x ' (2~) ,  

independent ly  of 2 ~ [0, 1] (see [9] or [10]). It results indeed from (19) that, for 2 = 0, the 
degree is equal to 1. By adding or substracting a small positive constant  to the functions 
a+, b+, A _ ,  we can assume that  (11), (12) still hold and replace (8), (9) by the stronger 
assumption that, for some constant  K > 0, 

(22) a +  ( t ) x  2 - -  K < x f ( t ,  x) < b+ (t) X 2 + K 

for all x > 0 ,  fo ra . e ,  t e [0 ,2z~] ,  

(23) a_ (t) x 2 _ K < x f (t, x) for all x < 0, for a.e. t e [0, 2 7r]. 

Let x be a solution of (20), (21) such that, for some to e [0, 2 7r], x 2 (to) + x '2 (to) > R2o. We 
will show that  such a solution cannot  exist i fR o is large enough. The method used is based 
on a count of the number  of revolutions of the orbit  in the phase plane or, equivalently, 
in a plane (/ix, x'), where /i is an arbi t rary  positive number.  Using Prfifer's change of 
variables [13] 

# x = 0 s i n 0 ,  x ' = 0 c o s 0  

it is easy to see that 

/ ix ~ cos 0 - x"  sin 0 - x x "  + x '2 

0' = 0 = # /i2x2 + x '2 " 

Archiv der Mathernatik 60 18 
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Hence if an orbit (x(t), x'(t)) makes k revolutions in the phase plane on the interval 
[0, 2~], and if x 2 + x '2 does not vanish, we will have 

l* 2~=-xx" + x'2dt = I~ 2.~xF(t,x, 2)+ X'2dt 

for any # >= 0. Looking at the half planes x > 0 and x < 0, and letting 

I+ = {rE [0, 2To]Ix(t) > 0}, 

we also have 

I_ = {t ~[O, 2=]lx(t) ~ 0}, 

k t~ xF(t, x, 2) + x '2 
- = - -  S+ dt, (24) 2 2= /22X 2 -}- X t2 

k v xF(t, x, 2) + x 'z dt, 
(25) 2 - 2-~z ~ vZ x z + x '2 i_ 

where # and v are arbitrary positive numbers. We will find a priori bounds of the solutions 
of (20), (21), distinguishing two cases, depending on the nnmber  of zeros of the possible 
solution in [0, 2 =]. In the sequel, the number  n is the integer appearing in hypotheses (11), 
(12). 

1 s t  C a s e .  The solution x has at most 2n zeros in [0, 2~[. 

Take ~o o large enough so that 

1 2~min~a+(t!,a_(t ) 1 } d t _ K  n ( ~ +  ~A__) 
(26) ~ 0 ( A+ A_ ' 0~o > 2  + ' 

Because of hypothesis (10), we can apply Lemma 2. Since the solution x is assumed to 
have at most 2 n zeros in [0, 2 ~r], a number  R can be found, using Lemma 2, such that, 
if ]x(to)l>R, x ' ( t o ) = 0  for some t o e [ 0 , 2 ~  ], then A+x2(t)+x'2(t)>=o~ 2 and 
A_ x 2 (5) q- X'2 (5) ~ 0 2, for all t e [0, 2 rt]. If  k is the number  of revolutions of that solution 
in the phase plane, we see, using (22) and (24) with/~ = , ,~++, that 

k x~+  2[a+(t)xZ-K]+(1 -)')m+x2+X'2dt 
~> - ~ A+x2+x,7  = 2= I+ 

= 2~ ~ §  A+ 1 dt - -  S ,A+xg+x,2dt  

>.~A+ m i n { ~ + )  l}dt xflA+K 
= 2= ~+ ' 2r~ 0~ mes(I+)"  

Similarly, by (23) and (25) with v = x /A_ ,  we get 

(28) ~ >  min ,1 dt 2= 0 2 m e s ( I - ) "  
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Combining (27) and (28), we obtain 

[ 1 1 "~k 1 ~'a+(t) a_(t)  t K 
(29) k ~ ~ )  > 2f min 1~ dt . 

- - + - -  2= o ( A + ' A _ '  
Confrontat ion with (26) shows that k > n, leading to a contradiction. Hence, we conclude 
that Ix (t) l _-< R for all t c [0, 2 7~], if x has at most 2 n zeros in [0, 2 re]. 

2 n d c a s e. The solution x has at least 2 n + 2 zeros in [0, 2 ~z [. 

Take Qo large enough so that 

(30) 2rc max ,1 d r + e 2  < 2 ~ +  

The solution x is now assumed to have at least 2 n + 2 zeros in [0, 2 7r]. Using Lemma 2 
again, a number  R can be found such that, if for some t o c [0, 2 rc] we have I x (to) l > R, 
x'  (to) = 0 then B+ x 2 (t) + x '2 (t) > Q2 on some interval J, on which x has at least 2 n + 2 
zeros. Since x is assumed to have at least 2 n + 2 zeros in [0, 2 re], using the periodicity, 
we can take J c [to, to + 2 re]. As above, if J+  = {t c J [ x (t) > 0}, we have 

k v xF( t ,  x, 2) + x '2 
- dr, 2 2~z}+ V2X2 -}- X '2 

k being the number  of revolutions in the phase plane when t travels through J. We will 
use that formula with v = .,f~-+. Taking (23) into account, this leads to 

k < ~ + +  S ) ' [ b + ( t ) x Z + K ] + ( 1 - - ,  • ) rn+x2+x '2  . . . . .  dt 
= 2~z s+ B + X 2 + x  2 

2~ j+ 2~ 0o 2mes ( J+ ) "  

But, because of (30), this would imply k < n + 1, leading to a contradiction. Hence, we 
must have, in this case also, Ix (t) l < R for all t c [0, 2 ~z]. []  

R e m a r k 1. The hypotheses of Theorem 1 can be slightly weakened. Indeed, a 
careful analysis of the proof  shows that, the inequality (27) can be replaced by a strict 
one if a+ (t)4: A+ on a subset of I+ of positive measure. A similar Remark holds 
for (28). On the other hand, either m e s ( I + ) >  7t or mes( I  )=> ~. Consequently, if 
mes{t~[O,  2~z]la+ (t) 4= A+} > ~ and mes{ tc[O,  2~]la_(t)  4= A_}  > 7~, relation (29) 
can be replaced by a strict inequality, which allows hypothesis (11) to be replaced by a 
nonstrict inequality. 

R e m a r k 2. A result similar to Theorem 1 can also be obtained for other boundary  
value problems, when the boundary  conditions can be put in relation with a count of the 
number  of revolutions in the phase plane. This is the case, for instance, of the Neumann  
problem 

x" + f ( t , x )  = O, 

x '  (0) = x '  (2 ~) = 0. 

18" 
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R e m a r k 3. It is also possible to extend the result of Theorem ~ to differential 
equations with a damping linear term, i.e. 

x" + cx '  + f ( t ,  x) = O. 

Indeed, the change of variable x (t) = exp ( -  ct/2) u (t) transforms the differential equation 
into 

u" + exp (ct/2) f (t, u e x p ( -  ct/2)) - c 2 u/4 = O, 

whereas the periodic boundary  conditions become 

u (0) = exp ( -  c T/2) u (T),  u' (0) = exp (--  c T/2) u ' ( T ) .  

Although the problem is no longer a periodic boundary  value problem, the number  of 
revolutions in the phase plane must still be an integer. Hence, the method of Theorem I 
applies and existence condit ions can be written, replacing )c(t, x) by f (t, x) - c ~ x/4. 

R e m a r k 4. At last, let us point  out that results in the line of Corol lary  I have been 
recently obtained by D. de Figueiredo and B. Ruf [2]. 
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