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Periodic solutions of second order differential equations
with superlinear asymmetric nonlinearities

By

C. FaBry and P. HABETS

1. Introduction. Consider the scalar boundary value problem
(1) x"+ f{t,x) =0,
(2) x(0)=x(2n), x'(0)=x"(2n).
We are interested in cases where f is asymmetric. Such systems were considered first by

N. Dancer [1] and S. Fucik [7] who called them jumping nonlinearities. A simple situation
of that type occurs, for instance, when

G fe,x)=m x" () —m_x" (1) + ¥ (x) + e(®),

where x* () = max(x(t),0), x () = max(—x(t),0),¢ being a bounded function.
S. Fudik [7] has shown that, with such a function f, problem (1), (2) has a solution if there
exists an integer #n such that

2 - 1 N 1 - 2
n+1 /m., \/;ni n
The following generalization appears in P. Drabek and S. Invernizzi [4]. Instead of

supposing f to be of the form (3), assume that positive numbers A_, 4., B_, B, exist
such that

€] m,>0,m_>0 and

L, . A
A, gliminfM§hmsupL(—x)§B+,
x—= +ow X x— + oo X

t t
A <timint LY <timsup Y < B,
X

X = X x> —©

the limits being uniform in ¢. If for some integer n, the relations

1 t 2
5 D T — )
) T 7R

1 1 2
©)

/B++ /B_>n+1’
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hold, problem (1), (2) has a solution. The result of S. Fudik [7] corresponds to the
particular case

A, =B.=m,, A_=B_=m_.

A complementary result was obtained by J. Mawhin and J. Ward [12] who considered a
Liénard equation together with an assumption of the type

7 A, >0, A_>0 and B_ <1/4.

A similar case refers to 4, >0, A_ > 0 and B, < 1/4. In these situations the function
f is possibly superlinear on one side. Concerning this problem, one must also notice the
early work of K. Schmitt [15] and R. Reissig {14].

Conditions (5), (6) or (7) are easily understandable in the m, , m_ plane. In assumption
(5}, (6) one imposes that the box [4., B;]x[4_, B_] does not intersect the Fucik spec-
trum which consists of the lines

Co={m,,m_)m, =0o0rm_ =0}
and

1 1 2
Cn={(m+,m-)l—+—=}, n=1,2,3....
n

251
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44
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Figure 1: Fucik curves C,
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Condition (7) means that the box {4,, + o[ x[A4_, B_] remains between C, and C,.
Looking at the Fucik spectrum, one can expect that the same idea applies between two
successive curves C, and C,,,. The aim of this paper is to study such a situation.

Let us also mention that another type of generalization was considered by L. Fernan-
dez and F. Zanolin [6]. These authors considered a boundary value problem

X"+ f(x) = ef),
x(0)=x2m), x'(0)=x"(2n),
together with an assumption such as

i .f2F(x) 1
= <

where F (x) = f f(x)dx. We do not consider here such possible assumptions.
0

Our main result requires f to satisfy the following L*-Carathéodory conditions:
(@) f(.,x)is measurable on [0, 2x], for all xeR;
(b). f(t,.)is continuous on IR, for a.e. t [0, 2 7];
(c) for all R > 0, there exists a positive constant H such that | f (¢, x)| £ H, for all x with
|x] £ R and for a.c. t €[0, 27].

Theorem 1. Assume that the function f:{0,2a] xR — R satisfies L*-Carathéodory
conditions. Let a,,b,,a_ be L*-functions such that

8) a, (t) =lim inff—(—t’fx) < lim supM <b,.(,
x-= +w X x— + o X
9) a_(t) < lim inf @ ,

the limits being uniform in t. Suppose also that

(10 Iim inf sgn (x) f (¢, x) > 0,

fxj— +w

uniformly in t. Moreover, assume that positive numbers A, , B, A_ exist, with A, £ B,
such that, for some integer n,

L e

1 2z bt n+t 1
— 1>d —_—
(12) 2n£maX{B+ , r < 5 5

Then, problem (1), (2) has a solution.
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Remarks. Assumption (10) implies that

lim inffM =0, lm infm =0

x> + oo X X— —ow X

and we can assume a, () =2 0, a_ (t) = 0. However, we must notice that (10} does not

follow from these last conditions. This is clear from the example f(z, x) = —tan~!x.

The following Corollary, which is an immediate consequence of the above Theorem,
relates it to the result of P. Drabek and S. Invernizzi [4].

Corollary 1. Assume that f satisfies L*-Carathéodory conditions, as well as condition
(10). Leta,, b, a_ be L®-functions such that (8), (9) hold. Assume that there exist positive
numbers A, , B, , A_ such that, for a.e. t €{0,2n],

Ay sa,O=sb, =B, A_Za_(1).

Then, problem (1), (2) has a solution if for some positive integer n,

1 1 2 +1)2
(13) < B+<<"——>.
n

NZNrs 2

The above result clearly appears as a limiting case of the result of P. Drabek and
S. Invernizzi [4], when B_ is allowed to go to infinity. If we interpret (13) in the plane of
Figure 1, one sees that the box [4,,B,]x[4_, + oo[ has to stay between the two
sucessive Fucik curves C, and C,_,. Actually, if f satisfies (8), (9) and if there exists an
integrable function b_ such that

[t x)

lim sup———— < b_(1),
X

X~

S. Invernizzi [9] has proven the existence of a solution for problem (1), (2), assuming that,
for a.e. t €0, 2 n], the (variable) rectangle [a, (¢), b, ()] x[a_ (¢), b_ (£)] is included in a
{fixed) rectangle [4 ., B.]x[A_, + oo, which does not intersect Fudik curves. Although
that result also involves an unbounded rectangle between Fudik lines, it differs from
Corollary 1 by the fact that it requires f(t, x} to grow at most linearly in x.

With respect to the existence conditions of Corollary 1, the conditions (11), (12) of
Theorem 1 even allow the rectangle [a, (¢), b, (t)] x[a.. (t), + o[ to cross Fudik curves
for some values of ¢. Such integral conditions have already been considered by C. Fabry
[5] for problems where f is growing at most linearly.

2. A priori bounds for solutions having at most 2 zeros. The proof of Theorem 1 is
based on an auxiliary result, which is of independent interest. Roughly speaking, it states
that, if x f (¢, x) is positive and bounded away from 0 for large | x|, a solution of (1) cannot
escape to infinity without having an infinite number of zeros. The idea of this result can
be traced back to P. Hartman [8]. Notice that a similar argument can be found in T. Ding
and F. Zanolin [3].
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A priori bounds will be needed not only for equation (1), but for a family of equations
with a parameter 4 € [0, 1]. So, we consider the differential equation

(14) X"+ F(t,x,4) = 0.

In the sequel, F will be defined on [0, 27] x IR x [0, 1]. However, it is convenient to extend

F to R xR x [0, 1], by periodicity in ¢ In the next lemma, we will assume such a function

F to be 27~ periodic in its first variable, and to satisfy a uniform L*-Carathéodory

condition, by which we mean here that

(a) F(.,x, A)is measurable on [0, 2 ] for all (x, 1) e R x[0, 1];

(b) F(t,.,A) is continuous on R for a.e. t €[0, 27} and for all A0, 1];

(c) for all R > 0, there exists H such that, for a.e. t € [0, 27}, for all 1 €[0, 1], for all x
with |[x| £ R,

\F(t,x, /)| < H.

Lemma 1. Assume that F: R xR x[0, 1] — R is 2 n-periodic in its first variable and
satisfies uniform L°-Carathéodory conditions. Assume that there exists a number n > 0 such
that

(15) lim inf sgn (x) F(t, x, ) = 4,
tx] = o

uniformly in t, A. Then, for any ¢ >0, there exists R > 0, such that, for any solution
x:[ty, 0] > Rof (14) with @ > to, |x(te)] Z R, x' (t,) = 0 and x* (w) + x'* (w) < ¢, there
exists t, € (ty, ) such that:
(a) x has at least two zeros in [ty, t],
(b) Jfor all tety, t,], x* (1) + x* (1) Z 0%,
© [x()l=e x"(t;) =0
Proof. Take e€(0, 5/2). Define a function ¢g,: R - IR by
(16) go (x) = min {/2, essinf {F(t, £, 1) —¢|teR, & = x, A [0, 11}}.

Notice that F(t, &, /) — & becomes larger than #/2 for large positive £, so that g, (x) = #/2
for large positive values of x. By construction, g, is nondecreasing and such that, for all
€[0,1],a.e. te]0,2x] and all xe R,

(17) go(X) S F(t, x, 1) —e.

It is easy to deduce from g, a continuous nondecreasing function g such that g (x) £ g, (x)

for all x e R and g(x) = #/2 for large positive values of x. For example, one can take g

piecewise linear such that, for all ne N, g(n + 1) = g, (n). Similarly, a continucus non-

decreasing function h can be built such that, forall 1[0, 1], a.e.t € [0, 21} and all xe R,
F(t,x,2) +¢& = h(x)

and h(x) = —5/2 for large negative values of x. Introduce the convex functions G, H
defined by

G@:%@M,H@:@@m.
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It is clear that
(18) G(x) < H{x) for x>0 and G(x)> H(x) for x<0.
Moreover, since g(x) = #/2 for large positive values of x, we have

lim G(x)= + o0;

Xx—= +w
similarly, we can write

lim H(x)= 4+ 0.

X — o

Let B, = {(x, )| x* + y* £ ¢*} and choose k > 0 such that, for all (x, y)e B,,

y? y?
THH@ <k, S +GM<k.

Let @ <0 be such that H(x)=k; such a number exists since H{0) =0 and
lim H{(x) = + o. Define next curves /3, I in the (x, y) plane by

X —®

H=%mw

y2
?+HW=H@J2%

B=%%w

2
y7+ G(x)=G),y = 0}.

Possible curves are shown in Fig. 2. Since the function H is convex, for any y € R, there
are at most two points x;, x, such that (x,, y) € I3, (x,, y) € [;. The same holds true for
L. Clearly, there exists f§ > ¢ such that H(ff) = H(x). There also exists y > ¢ such that
G(y) = G(0) > H (). Since G (x) < H(x) for x < 0, we will have y > f. Now, let x be a
solution of (14). If the curve ¢ — (x(t), x'(t)) crosses I3, the crossing must be from the
“inside” towards the “outside”. Indeed, along solutions of {14), we have, for x’ > 0,

d 2
m(xz + H(x)) =x'(ht) = Fit, x, ) > 0,

showing that, at points of I;, the vector field associated to the differential equations (14)
points outwards. A similar result holds for I;. Also, the vector field points downwards
along the half-line {(x, 0)|x = y}. Indeed, if a solution curve crosses that half-line at a
point x = 7, we have

x”: _F(tpxai)éﬁg(x)g_g(y)

and g{y) > 0, since, otherwise, we would have G(y) < 0. Consequently, if x: [ty, ] » R
is a solution of (14) with w >t,, x(tx) =y, x'(ty) =0, one sees that the curve
f+—(x (1), x'(t)) must circle at least once around B, before crossing the segment
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N
\
y

—

Figure 2: The curves I and [,

{(x,0)|f < x =<7y} and entering the ball B,. A similar construction takes place for
solutions x with x (tg) < 0, x'(t) = 0. Hence, by choosing R large enough, the conclusion
follows. [J

By iteration of Lemma 1, we can prove the next lemma.

Lemma 2. Assume that F:R xR x[0,1] > R is 2 n-periodic in its first variable and
satisfies uniform L®-Carathéodory conditions. Assume further there exists a number y > 0
such that (15) holds uniformly in t, A.

Then, for any ne N and any 9o > 0, there exists a number R, > 0 such that, for
any solution x:[ty,w] >R of (14), with t; <, |x{to)] 2 Ry, X' (tg) =0, either
x2(t)+ x"2() = 03 for all te[ty, w], or x has at least 2n zeros on an interval
[tos t,] < [to, @] and, for all t € [ty, t,], x2 () + x"2(f) = @3.

Proof. Let R, =g,. Given R;(i=n,n~—1,...,1), we choose ¢ = R, in Lemma 1,
from which we get R and let R,_, = R. Then, if x: [t,, @] — IR is a solution of {14) with

to <o, X ()l Z Ry, x'(te) =0,

either x? (1) + x'*(t) 2 g} for all t e [z,, ®], or there exists {; < t, < ... <, such that
(a) x has at least two zeros in [t,_;, ;] fori=1,...,n;

(b) foralltelt ;,t], x*(t) + x*(¢) 2 R = 0f;

© Ix@)lzR,xt)=0 O

Since the hypotheses about F are unaffected by a time reversal, the above Lemma can
be rephrased as follows, after some easy modifications.

Lemma 3. Let F:R xR x[0,1] - R be 2n-periodic in its first variable. Assume it
satisfies uniform L®-Carathéodory conditions and there exists a number y > 0 such that (15)
holds uniformly in t, L.
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Then, for any neIN and any g, > 0, there exists a number R, >0 such that, if
x: [ty, ©] = R is a solution of (14) with x*(to) + x'*(to) £ 03, having at most 2 n zeros, we
have, for all t € [ty, w},

x2(@) + x? () £ RE.

Lemma 3 shows that, under condition (15) an a priori bound can be found for the
solutions of equation (14), which enter the ball B, at some time ¢, and have less than some
given number of zeros. Lemma 2 and 3 have been written using the euclidean norm in
the phase plane. That norm could obviously be replaced by any other norm.

3. Proof of Theorem 1. Take m_ e€[{A,,B.], m_ = A_. It results immediately from
hypotheses (11), (12) that
2 1 1 2
— < N + T <.
For 4 €]0, 1], define the function F by
Ft,x, )=Aft,x)+(1 —A)[mix* —m_x"];

(19)

by 2 n-periodicity in ¢, that function will be extended to R x R x [0, 1]. By degree theoretic
arguments, the theorem will be established if we can find a priori bounds, in the sup-norm,
for the solutions of

(20 x"+F(t,x,)=0
21 x(0)=x2n), x(0)=x'(2n),

independently of A € [0, 1] (see [9] or [10]). It results indeed from (19) that, for 4 = 0, the
degree is equal to 1. By adding or substracting a small positive constant to the functions
a.,b,,A_, we can assume that (11), (12} still hold and replace (8), (9) by the stronger
assumption that, for some constant K > 0,

(22) a. Ox?—K2xft,x)<h, ()x* + K
forall x=0, fora.e tel0,2x],
23) a_Ox*—K<xf({tx) forall x<0, forae te[0,27].

Let x be a solution of (20), (21) such that, for some t, & [0, 2 7], x? (£,) + x'*(to) = RZ. We
will show that such a solution cannot exist if R, is large enough. The method used is based
on a count of the number of revolutions of the orbit in the phase plane or, equivalently,
in a plane (ux, x’), where p is an arbitrary positive number. Using Priifer’s change of
variables [13]

ux =g¢sinf, x'=gcosf
it is easy to see that
ux’ cosf — x"sin0 —xx" 4+ x?

0 z'uu2x2+x/2'

9!

Archiv der Mathematik 60 18
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Hence if an orbit (x(f), x'(t)) makes k revolutions in the phase plane on the interval
[0, 27], and if x2 + x'? does not vanish, we will have

uo2E—xx"+x? u 2FxF(t,x, A) + x'?
=5 2.2 At =— 2.2 s dt
2w pxT 4+ x 2wy HExS 4+ Xx
for any 4 = 0. Looking at the half planes x = 0 and x < 0, and letting
I.={tel0,2n]|x(@) =0}, I_={te[0,2n}|x() <0},

we also have

k Ft, x, A 2
(24) S LAy,

2 2np, pExt 4+ x

kv . xF(tx,A)+x"*
25 —=— ) st
( ) 2 27514 v2x2+x’2 ?

where y and v are arbitrary positive numbers. We will find a priori bounds of the solutions
of (20), (21), distinguishing two cases, depending on the number of zeros of the possible
solution in [0, 2 71]. In the sequel, the number n is the integer appearing in hypotheses (11},
(12).

1st Case. The solution x has at most 2n zeros in [0, 27{.

Take g, large enough so that

2z a+(t)a(t) 5 n i 1
9 5y [mn { A A }”" (\/T JT)

Because of hypothesis (10), we can apply Lemma 2. Since the solution x is assumed to
have at most 27 zeros in [0, 2 7], a number R can be found, using Lemma 2, such that,
if ]x(to)l 2R, x (to) 0 for some t,e[0,2n], then A, x*() + x"*(t) 2 0§ and
A_x%@®) + x*(t) = g3, for all ¢ € [0, 2 7). If k is the number of revolutions of that solution
in the phase plane, we see, using (22) and (24) with u = \/—t , that

koA Ma, ()x* — K]+ (1 — m, x* + x7
2_ 2n 7, A, x?+ x?
\/ . +() \/A+ K
min dt —
I 2n “ AL x4 x?
N 3 JAs K
= mm{a;—(),l}dtﬁ *

— mes (I).
2n 1, 27 oO

dt

@7 dt

1\

+

Similarly, by (23) and (25) with v = \/Z, we get

— { min {%@, 1}dt ~A*A_§—mes (I.)
I_ —

21 0}

(28)

NS AR

=
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Combining (27) and (28), we obtain

1 i k_ 12 ty a_ K
(29) 5252 min a+_(),a () dt — .

/ / 2n A, A 0%

Confrontation with (26) shows that k > n, leading to a contradiction. Hence, we conclude
that |x(¢)] £ R for all ¢t [0, 2 =], if x has at most 2n zeros in [0, 2 ).

2nd case. The solution x has at least 2n + 2 zeros in [0, 2 =[.

Take g, large enough so that

1 20 b, (@ } K n+1 1
30 — | max pdt +— < ——
(30) 2nz§ {B+ 2% 2 /B,

The solution x is now assumed to have at least 25 + 2 zeros in [0, 2 7). Using Lemma 2
again, a number R can be found such that, if for some t, € [0, 27] we have |x(¢,)| = R,
x'(to) = O then B, x2(f) + x'? () = o3 on some interval J, on which x has at least 2n + 2
zeros. Since x is assumed to have at least 2# + 2 zeros in {0, 2 ], using the periodicity,
we can take J < [ty, 1, + 27]. As above, if J, = {re J|x(f) = 0}, we have

kv . xF@t,xA)+x?
5T 2.2 2 dt,
2 27TJ VEx© 4+ x

k being the number of revolutions in the phase plane when ¢ travels through J. We will
use that formula with v = /B, . Taking (23) into account, this leads to

k_/B. )[b Ox2+ K]+ (1 —)m, x? + x7?

dt
2~ 27 J+ B x2+x’2
¥ 2 {m { ® 1}01 \/ * mes(J)
TC I + TC QO

- But, because of (30), this would imply k < n + 1, leading to a contradiction. Hence, we
must have, in this case also, |x(t)] £ Rforall t€[0,2xn]. O

Remark 1. The hypotheses of Theorem 1 can be slightly weakened. Indeed, a
careful analysis of the proof shows that, the inequality (27) can be replaced by a strict
one if a, ()& A, on a subset of I, of positive measure. A similar Remark holds
for (28). On the other hand, either mes(/.) = n or mes(I_) = n. Consequently, if
mes{te[0,2n]|a,(t)+ A} >n and mes{te[0,2n]|a_(t) + A_} > m, relation (29)
can be replaced by a strict inequality, which allows hypothesis (11) to be replaced by a
nonstrict inequality.

Remark 2. A result similar to Theorem 1 can also be obtained for other boundary
value problems, when the boundary conditions can be put in relation with a count of the
number of revolutions in the phase plane. This is the case, for instance, of the Neumann
problem

x"+ f{t,x) =0,
x'0)=x"Cn) =

18*
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Remark 3. It is also possible to extend the result of Theorem 1 to differential
equations with a damping linear term, i.e.
x"+ex'+ f(t, x)=0.
Indeed, the change of variable x (¢) = exp (— ct/2) u{z) transforms the differential equation

into
W+ explct/2) f(t, uexp(—ct/2)) — c*u/d =0,
whereas the periodic boundary conditions become
u(0) = exp(—cT/2)u(T), u' (0)=exp(—cT/2)u' (T).
Although the problem is no longer a periodic boundary value problem, the number of

revolutions in the phase plane must still be an integer. Hence, the method of Theorem 1
applies and existence conditions can be written, replacing f(z, x) by f(z, x) — ¢* x/4.

Remark 4. At last, let us point out that results in the line of Corollary 1 have been
recently obtained by D. de Figueiredo and B. Ruf [2].
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