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Abstract. This is the second of two papers that deal with the 
problem of modeling contact (impact, sliding, rolling) between 
unconstrained rigid bodies, including friction. In a companion 
paper 1-1] we showed that the main underlying problem 
concerns the ability to do efficient contact mechanics when 
bodies interact through impact and~or sustained contact. 
Contact mechanics involves two aspects: detection of contact 
between bodies and estimation of contact forces. These forces 
are complicated in character and difficult to estimate because 
they depend on the material response of  the contacting objects, 
on the duration of contact (very short duration impact, or 
more sustained contact),frictional interaction at the surfaces, 
geometry of  contact, etc. In 1-1] we proposed a conceptual 
model in which linear elastic (springs) and viscous (dampers) 
elements acting at points of  contact between objects generate 
all contact forces. In this paper we describe how the contact 
model has been implemented in the software of a working 
computer simulation system. The major aspects of  this process 
are: formulation of a discrete version of the contact model; 
calculation of model parameters to reflect material properties; 
geometric representation of  objects (in our system, objects are 
modeled as convex polyhedra); algorithms to detect and 
evaluate contacts among objects (a process called contact 
analysis); and estimation and control of  model response for 
stable numerical integration of equations of  motion. A graphi- 
cal user interface displays a three-dimensional (3-D) perspec- 
tive animation of the solution using full color shaded surface 
images. While the simulation may not be accomplished in real 
time, solutions can be saved in files for real-time visualization. 

Keywords. Animation; Contact analysis; Contact de- 
tection; Convex polyhedra; Material parameters; Nu- 
merical integration 

1. Introduction 

We have developed a software system for simulating 
the dynamics of a system of freely interacting rigid 
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bodies including frictional forces. Systems like these 
have wide ranging applications as a software labora- 
tory for prototyping, automation, analysis, education, 
training and entertainment - issues that we have 
discussed in more detail in a companion paper [11. 
We also showed in [11 that the main underlying 
problem concerns the ability to do efficient contact 
mechanics when bodies interact through impacts and/ 
or sustained contact. From the point of view of 
simulation this involves two aspects: detection of 
contact between bodies and the estimation of appro- 
priate contact forces. These forces are complicated 
in character and difficult to estimate because they 
depend on the material properties of the contacting 
objects, on the time duration of contact (very short 
duration impact or a more sustained contact), fric- 
tional interaction at the surfaces, geometry of contact, 
etc. In essence, material interaction during contact 
accomplishes transfer of momentum and dissipation 
of energy. There are two broad approaches to esti- 
mating contact forces: the soft contact approach that 
estimates forces by modeling localized deformation in 
the vicinity of the contact, and the traditional hard 
contact approach that calculates forces on the 
assumption that bodies are infinitely rigid and do not 
penetrate each other. 

In [1] we described some issues pertaining to both 
of these approaches. We then proposed a contact 
model based on the soft contact approach that gener- 
ates contact forces (including Coulomb-like dry fric- 
tion) by modeling localized non-permanent material 
deformation of the contacting surfaces. In this paper 
we describe the implementation of our contact scheme 
in a software system. 

Previous work on the dynamics of interacting rigid 
bodies owes much to efforts of late 19th century 
mechanicians such as Routh [21, and more detailed 
recent compilations [31. The subject has recently 
received increased attention in the Computer Science 
community because of its relevance to the generation 
of realistic computer graphics animations. Hahn [41 
has described a method using impact analysis and 
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collision detection to obtain approximate solutions 
for rigid body interactions, and Armstrong and Green 
[5] apply simplified approximations to the animation 
of human figures. Baraff [6] has described an analyti- 
cal method for calculating forces between systems of 
rigid bodies in resting (i.e. non-colliding) contact that 
requires solution of a quadratic programming prob- 
lem or, if a heuristic approach is taken, a linear 
programming problem. Walton et al. [7] have re- 
ported two-dimensional applications in connection 
with the response of rock formations to explosions, 
and Cundall [8] and Cundall and Strack [9] have 
described work using soft contact models for rock 
mechanics applications. 

Primarily, our software system demonstrates the 
feasibility of obtaining detailed and robust simula- 
tions of the motion of interacting rigid bodies by using 
a conceptually consistent spring-damper model for 
estimating contact forces. It does not have the com- 
binatorial complexity associated with the quadratic 
program in the traditional approach, nor does it 
require different formulations for treating impacts and 
sustained contacts. Our contact model explicitly in- 
cludes the effects of friction (which have not been 
treated adequately previously) and energy loss during 
impact, and contains parameters (coefficient of fric- 
tion, spring and damper coefficients) that can be 
related to measurable properties of real materials and 
impact events (e.g. Young's modulus and the coeffi- 
cient of restitution). We describe some experiments for 
choosing model parameters to produce behavior con- 
sistent with specific materials. Since we treat all 
contacts as having a finite duration and multiple 
simultaneous contacts are allowed, it is also possible 
to examine in detail the time-varying dynamic loads 
that occur during complex impacts. This is a very 
useful feature for purposes of analysis and mechanical 
design, which is not available with the traditional 
approach of modeling impacts singly through instan- 
taneous momentum impulses. 

Our simulation program consists of two independ- 
ent modules that interact through well defined inter- 
faces. They are: 

1. The dynamics module that formulates the governing 
equations for the system, estimates the contact 
forces and other loads (forces and moments) based 
on information provided by the geometry module, 
and integrates the equations of motion to syste- 
matically update the state of the system. 

2. The geometry module that models the shape, mass 
and inertial attributes of each body. The 'world' of 
objects is restricted to a subclass of convex poly- 
hedra, which leads to simpler (and faster) geometry 

algorithms. The main geometric problem, called 
contact analysis, involves detecting the onset of a 
contact, evaluating details of the contact, tracking 
it through the entire contact episode and determin- 
ing (with the aid of the dynamics module) the end 
of contact. Detecting initial contact is an exercise in 
collision detection, a subject that has been discussed 
extensively in the literature. We have our own 
method for solving this problem, but it is similar 
to previously described techniques. However, con- 
tact analysis, including the logic used to convert 
geometric interference information into a list of 
active contacts for the force model, involves sub- 
stantially new issues. The geometry module also 
provides a display system that renders the results 
of the simulation in the form of an interactive 
animation on a computer display terminal. 

Our paper describes this subject matter in several 
sections. Section 2 presents an explanation of the 
overall program structure. Section 3 describes the 
dynamics module, including sub-sections on the dis- 
crete contact model that we implement and its asso- 
ciated state equations, details about tuning model 
parameters and estimating and controlling model 
response for numerical stability. Section 4 presents the 
details of geometric processing, including object repre- 
sentation, the equation integration/geometric analy- 
sis paradigm, contact analysis and special cases that 
must be considered. Section 5 describes the simulation 
system environment, section 6 discusses performance 
issues and section 7 presents our conclusions. 

2. Simplified Overall Program Structure 

To put the different functions in our software system 
in proper perspective, a simplified flowchart is shown 
in Fig. 1. At program initiation, the geometry module 
reads a user-specified input file to create a world of 
convex polyhedra. The file contains object shape 
specifications, initial positions and velocities, and 
material and frictional properties. Masses and inertias 
are computed from this information. The dynamics 
of the system are simulated by integration of the 
Newton-Euler equations of motion, where each rigid 
polyhedron is considered to be moving freely under 
the effect of gravity (and perhaps other body forces) 
and contact loads [1]. 

The equations of motion are straightforward and 
not subject to any explicit constraints, since the 
constraints are enforced automatically by the contact 
loads. This is an advantage of the soft contact ap- 
proach because formulation of the intermittent con- 
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SIMPLIFIED PROGRAM STRUCTURE 

Fig. 1. Simplified overall program 
structure. 
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tact constraints for bodies that move while maintain- 
ing point contact can be quite complex [10, 11]. 
However, the contact forces, and thereby the accelera- 
tions, can evolve rapidly during contact, leading to 
stiff differential equations of motion [11]. The loads 
on every polyhedron being known, their accelerations 
can be calculated from the equations of motion. 

Integration of the accelerations and velocities over 
a small time interval yields the proposed new state 
(velocities and positions) of the system at the end of 
the interval. For stable integration of the stiff differen- 
tial equations, we use an adaptive time step fourth- 
order Runge-Kut ta  scheme. The state of every rigid 
body is maintained as a list of 13 numbers - 3 for 
linear velocity, 3 for angular velocity, 3 for position 

and 4 for orientation in terms of a quaternion. Our 
integration scheme is a substantially modified version 
of the algorithm presented in [12]. The proposed new 
state is passed to the geometry analysis module which 
determines the corresponding geometric relationship 
(contacts etc.) between the objects. If there is no 
change in the topology of contact, i.e. the complete 
list of VF or EE contacts (see section 3.1) between all 
pairs of objects, then the proposed state is accepted 
as a new state and time is incremented. In the case 
when new contacts are detected, the system inter- 
polates to approximate the time of precise onset of 
the earliest new contact and the equations of motion 
are reintegrated up to this time. Broken contacts are 
dropped from the 'contact list'. 
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The flow of control during geometric contact analy- 
sis is more involved than that shown in the simplified 
flowchart of Fig. 1. Details of these operations are 
described below in section 4. 

As part of the geometric contact analysis, the module 
produces and updates a contact list containing de- 
tailed geometric information about all active contacts 
among the bodies. The dynamics module scans the 
contact list and calculates contact forces at every 
contact. The estimation of contact forces fl'om geo- 
metric information and material parameters is based 
on an implementation of the contact model proposed 
in [1]. The contact loads, in turn, feed into the 
equations of motion and the integration loop pro- 
ceeds. In the following section we explain our imple- 
mented contact model and the associated material 
parameters. 

3. Dynamics  Module 

3.1. Control Model 

In [1] we presented a conceptual model for formulat- 
ing material behavior during contact between poly- 
hedral objects. There is no restriction on the size or 
number of faces in these polyhedra. In principle, 
objects with smooth surfaces can be approximated by 
polyhedra with arbitrarily large numbers of faces, so 
our contact model can apply to all solid objects 
without restriction. In practice, the number of faces 
must be constrained to limit the computational effort 
in the geometry module. It is shown in [1] that at the 
expense of an arbitrarily small displacement error 
(either angular or translational), all types of contact 
between a pair of polyhedral objects can be analyzed 
as a combination of discrete vertex-face (VF) and/or 
edge-edge (EE) contacts. Hence the polyhedral fea- 
tures of primary interest in our discrete model, de- 
scribed below, are vertices, edges and faces. 

3.1.1. Ver tex-Face  Contacts 
The microscopic vicinity of each VF contact is modeled 
through a 'massless mechanism' composed of springs 
and dampers as shown in Fig. 2. The polyhedron with 
the vertex has been labeled 1 and the polyhedron with 
the face as 2. The outside normal to the face is the 
contact normal n and the plane of the face defines the 
tangent plane P~ at contact. Actual contact between 
the vertex and the face occurs through massless rigid 
planes called surface elements (SE, see Eli). The SEs 
are constrained to remain parallel to P~ throughout 
the contact episode. The contacting surface elements 
do not penetrate each other and neither do they 

separate, but they can slip against each other. So all 
relative motion between the SEs occurs in the plane 
Pt- Both n and P~ can be evolving (changing location 
and/or orientation) in inertial space during a contact 
episode as the pair of contacting polyhedra move in 
space. 

The SE associated with the vertex is connected to 
it through two pairs of massless springs and dampers. 
One of the spring damper pairs, called the normal 
spring (kin) and damper (cln), is constrained to be 
along n. The only deformation permitted for the 
normal spring is compressive. This is because objects 
do not pull at each other at contact, but push. The 
other pair, the tangential spring and damper (kit and 
clt), always stays in a plane parallel to Pt- Their 
orientation in this plane is parallel to the direction of 
slip between the contacting SEs. A similar arrange- 
ment of springs and dampers connects the SE asso- 
ciated with the face. Spring and damper constants for 
each element can be tuned to model material behavior 
of the underlying polyhedra, as shown in succeeding 
sections. Given this mechanism, a typical VF contact 
would evolve as follows. 

At the onset of contact there is no slip (relative 
tangential velocity) between the SEs, and springs are 
at their equilibrium lengths. The relative velocity of 
the vertex with respect to its associated SE causes the 
intervening springs to deform; similarly, relative velo- 
city of the face with respect to its SE deforms the other 
set of springs. The component of relative velocity 
along n causes the normal springs, kin and k2,, to 
deform and the tangential component deforms kit and 
k2t. Deformed springs and velocities at the dampers 
produce forces that balance the contact force F~ 
between the SEs. Since the entire mechanism of 
springs, dampers and surface elements that exists at a 
contact is massless, there are no net forces or moments 
acting on it. Net loads on a massless body would yield 
infinite accelerations. From Coulomb's law of friction, 
for a given normal force and coefficient of friction the 
maximum friction force that can be generated between 
the contacting SEs is the product of the two. 

When the force produced by the tangential elements 
equals the maximum friction force that can be sus- 
tained between the SEs, slip occurs. The force pro- 
duced by the springs and dampers, which equals the 
contact force between the SEs, is in turn applied to 
the interacting polyhedra. The point of application C 
of the contact force is always taken to be the position 
of the vertex in a VF contact. 

The VF contact ceases to exist if either the deforma- 
tion of both the normal springs becomes tensile or the 
geometry computations indicate that the vertex has 
slid off the face. 
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plane Fig. 2. (a) Schematic drawing of a 
vertex-face contact. The face and its 
normal n determine the plane of 
contact and the contact normal. 
(b) Magnified view of the microscopic 
contact device, consisting of springs, 
dampers and rigid surface elements, 
at the VF contact. 

3.1.2. Edoe-Edge Contacts 
The microscopic region surrounding an EE contact  is 
modeled identically to that  of a VF contact ,  as shown 
in Fig. 3. Pt is the plane containing the two edges and 
n is the normal  to this plane. The point  of  applicat ion 
of the contact  force is the actual point  of contact  
between the two edges, which is determined by geo- 

metric computa t ions  and changes as the edges slip 
against each other. 

Each individual VF or EE contact  is tracked through 
four state variables that  are appended to the state 
variable ar ray  for the entire system. They are sin, s2, 
to t rack the lengths of  the normal  springs k l .  , k2. , and 
sit, Szt to t rack the lengths of the tangential springs kit 
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Fig. 3. (a) Schematic drawing of 
an edge-edge contact. The plane 
containing the two edges and its 
normal determine the plane of 
contact and the contact normal. 
(b) Magnified view of the 
microscopic device at the EE 
contact, analogous to that at a 
VF contact. 

and k2t. They are initialized to zero at beginning of 
contact. The fact that only compressive deformation 
of normal springs is allowed implies that sl=.n _< 0 
and S2n'n ~ O. 

3.1.3. Contact Force and Equations of State 
We will now derive expressions for calculating the 
contact force and the rate of change of the springs in 
the 'contact mechanism'. The expressions apply with 
equal validity to both VF and EE contacts. The 
derivation follows the same steps as in [1]. However, 
there are some simplifications that arise because of 
differences between the implemented model and the 
general model proposed in [1]. The presentation 
below concentrates mostly on these differences. 

The contact force Fc has two components: the 
normal component F n along n and the frictional 

component F t in the tangential plane of contact. For 
reference, we shall follow the schematic of the VF 
contact of Fig. 2. Here Fc represents the force that is 
applied by polyhedron 2 (containing the face) to 
polyhedron 1 (containing the vertex). It should be 
noted that, in turn, polyhedron 1 applies a contact 
force of - F  c to polyhedron 2. The absolute velocity 
of the contact point C on polyhedron 1 is denoted by 
ul and on polyhedron 2 by u2. The absolute velocities 
of the two SEs are denoted by wl and w2. Figure 4 
shows these velocities. Subscripts n and t specify 
components along n and in the plane Pt, respectively. 
Bold letters specify vector quantities, (") = d( )/dt and 
i = 1, 2. F, and Ft are given by 

F,~ = - - k l n S l n  - -  C ln S ln  "~" k2nSzn + C2nS2n (1)  

F t = - k l t S l t  - CltSlt = kEtSEt -i t- CEt~2t (2) 
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Fig. 4. Schematic drawing of a 
vertex-face contact showing the 
various elemental velocities at the 
contact point C, with 
Aw n = Wln -- W2n = 0. 

and 

gin = ui~ - w~n, sit = u .  - wit (3) 

With A u = u l - u 2 ,  A w = w l - w 2  and A w . = 0  
(no relative motion between the SEs along n), sub- 
stitution into equations (3) yields 

gin --  S2n : AUn, Slt --  S2t : mut --  Awt (4) 

To proceed further, we have to branch into the various 
cases delineated below. 

3.1.4. All Dampers Non-zero 
This is the case when ct , ,  c2,, c~t, c2t > 0. Through 
manipulation of equations (1), (3) and (4) we obtain 

F, = - b., F, = - bt + c*Aw t (5) 

where 

C* -- Cits ' / 

Clt + C2 t [ 
/ 

1 

b n -- _ _ . C l  n "~- C2n (C2nklnSln --  Clnk2n$2n -~- ClnC2nAun) ~[ 

! 

(c2tkltSlt  - -  Cltk2ts2t + c l tc2Aut)  / bt 
c l t  + c2t d 

(6) 

If # is the coefficient of friction between the two 
surfaces and 2 is a non-negative real variable, then the 
friction law can be expressed as: 

[Ftt --< #IF.I, Aw t = - -2F o 3o _> 0 (7) 

In equations (5), (6) and (7), c* is a constant, and b, 
and b t can be calculated from known information at 
every time step. This implies that F, is known. The 

only remaining unknowns are Ft, Aw t and 4. Substitu- 
tion of equations (5) and (6) into equations (7) gives: 

Ib, I 

(1 + 2c*) 
s ~tbnl (8)  

As in [1], at every time step we first check if 
Ibt[ ~ plbnl. If so, then the SEs are in a state of stick 
and we set 2 = 0 and A w  t = 0. This implies that 
Ft = - b  t can be calculated. 

If Ibd >/~]b.l, then we determine the value of 2 that 
makes jbt]/(1 + 2c*) = #[b.l, which is: 

2 - [ b t l - / ~ [ b ~ l  
(9) 

c*~lb.I 

Once 2 is known, the other unknowns can be calcu- 
lated from 

bt 2b t 
E -  (1 +2c*)' Aw, (I +2c*) (10) 

The state of the springs in the contact mechanism 
is tracked with the following differential equations, 
obtained from equations (1), (2) and (4): 

Sin - -  C2~ Aun 1 (kinSin + kznS2n), 
s Cln"l-C2n 

~. _ c2, (An,  - A w , )  1 ( k l t s x t  + k2 t s : t )  
Clt "l- C2t Clt "t- C2t 

S2n-- --Cln Aun I (k lnS lnWk2ns2n) ,  
Cl~'-[-C2n Cln-[-C2n 

�9 --clt (A u t -  Awt) 1 s2~ - - -  (k l ,S l~  + k2~s2~) 
Clt ~- C2t Clt -~- C2t 
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3.1.5. Zero Damping 
In the extreme case of completely elastic contacting 
materials (no damping), Aw, cannot be determined 
uniquely without adding extra equations and is hence 
set to zero. The contact model becomes: 

F n : - k l n S l n  =- k2nS2n , 

--kin 
S2n --  Aun ,  

k i n  -~- k2n 

subject to 

k2n 
Sln - -  - -  AUn, 

kl~ + k2n 

F, = - k l t S l t  = k2ts2t  

k2t 
IEI ~ ~lFnl, g~ - An,, 

klt + k2t 

ka, ~lF~l 
s 2 t -  Au, and N i l - < -  

kit ~- k2t klt  

3.1.6. Both Non-zero and Zero Dampers 
For contacts that have a mix of non-zero and zero 
dampers, the equations are combinations of the two 
cases cited above. For  example, for the case of Cl. = 
c2t = 0 and c2,, c2, ~ 0, the model is: 

F, = b~ = - k l . s l , ,  

1 
gln = Aun - - -  ( k l n s l n  + k2nS2n) ,  

C2n 

1 
S2n --  ( k i n S i n  + k2nS2n)  

C2n 

F t = - - k l t S l t  = kz ts2 t  -1- c2,s2t  

subject to 

IFtl < #Enl, 
1 

Sit = Aut  - -  ( k l t S l t  "~ k2 t s2 t ) ,  
C2t 

1 
S2t --  ( k l t S l t  + k2 t s2 t )  

c2t 

Now we tackle the issue of tuning our model 
parameters, the spring and damper constants, to 
reflect material behavior. 

3.2. Specifying Material Parameters 

The constituting elements of our model simulate 
specific object responses during contact. Their values 
can also be set to 'match'  certain material properties 
of the interacting objects. Springs (elastic elements) 
keep the bodies from inter-penetrating, and accom- 
plish momentum transfer through absorption and re- 
lease of kinetic energy. They also model the 'elastic 
feel', i.e. the hardness or the softness of the material, 

and can be compared to the Young's modulus for the 
material [13]. Energy dissipation is accomplished 
through dampers and friction. The damper constants 
can be related to the coefficient of restitution or the 
energy loss that occurs during an impact. 

3.2.1. Spring Constants 
All objects in our simulation are modeled as 'hard '  
rigid objects. Hence spring stiffnesses are set quite 
high. In particular, normal spring stiffnesses k, are 
based on permissible deformation and the required 
energy absorption capacity. If Em, x is the energy to be 
stored for a spring deflection of 6 . . . .  then energy 
balance gives: 

2Emax 
k n - (11) 

6~m.x 

Ema x is the maximum kinetic energy that the body can 
have and is determined by its mass (m) and maximum 
velocity (Vm,~) as  Ema x = �89 . The allowable spring 
deflection 8~,,~ is set to be a small fraction of some 
representative linear dimension (average dimension) 
of the object. Small spring deflections are desirable for 
geometric reasons: they lead to robust geometric 
contact analysis algorithms and a realistic visual 
perception of interacting rigid bodies in the displayed 
animations. 

In the interests of isotropy, kt is set equal to k~ 
although it can just as easily be set to a different value. 
Setting damper constants is a bit more involved. 

3.2.2. Damper Constants 
Even in the absence of friction, energy loss during 
impact is difficult to quantify simply. It is a complex 
function of material properties, geometry of contact, 
duration of impact, etc. Traditionally, a non-zero 
coefficient of restitution er is used to account for 
energy lost during impact (I-14]). For  setting the 
normal damper constant cn to achieve a desired 
energy loss for a material, one can consider an 
experiment involving a frictionless impact between a 
sphere of mass m falling on a stationary horizontal 
plate made of the same material. Since the sphere and 
plate have identical material properties, their inter- 
action is equivalent to the single spr ing-mass-damper 
system of Fig. 5. The single spring and damper shown 
in Fig. 5 have half the stiffness and damping of the 
actual material. If v a is the velocity of the sphere after 
impact and Vb before impact, then the energy retained 
during impact, E,, and the coefficient of restitution, 
% are related by: 

�89 4 
' (12) E r --  _ _ e r 1 2 ~ m v  b v 2 
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kn 

/ / / / / / / / / / / / /  

Fig. 5. Single spring-mass-damper system. 

Referring to Fig. 5, if x(t)  is the displacement of the 
sphere from the equilibrium position of the normal 
contact spring, then it feels a force F = - c , 2  - knx.  

Its equation of motion is: 

mY + c . 2  + k . x  = 0 

With natural frequency 

damping ratio 

and 

O n = 

Cn 

2 m o n  ' 
(0 < ~ N 1), 

o a  : o . , / 1  - , 

the solution to (13) is 

(13) 

x(t)  = V b e_r sin(oat). 
Od 

Contact between the sphere and plate is broken when 
F(t)  = 0. This occurs at time t* such that 

tan(oat*) = 2 ~ f ,  

(14) 
t* ln(Er) |  

Er  = e - 

Manipulation of equation (14) gives 

ln(Er) - 4r _a(X/1 -- ~ 2 ) 
x / 1 - ~ 5  tan ( (15) 

The transcendental equation (15) can be solved, 
numerically, for cn. Equation (15) is plotted in Fig. 6. 
It shows that ~ = cn = 0 gives a completely elastic 
impact, i.e. Er = 1 and there is no dissipation of 
energy. However, ~ = 1.0 does not yield the expected 
plastic impact where the bodies do not separate after 
impact (i.e. v, = 0). This is because we break contact 
at F ( t ) =  0; with non-zero k, and Ca, this always 
occurs with Va > 0. In fact, equation (15) shows that, 
limr 1 ln(Er) = - 4 ,  or E r ~ 0.01832. A truly plastic 
impact, if desired, can be obtained by setting k, = 0 
and with high damping. 

The tangential damper % along with friction, damps 
energy in the Pt plane. In our implementation, its 
primary function is to damp out frictional oscillations. 
Hence it is either set from the energy analysis of 
equation (15) or to the critical damping value of 
4 , , / /~ t  for shortest time to attain equilibrium in the 
Pt plane. 

It is important to note, however, that the preceding 
energy loss analysis is limited to the idealized impact 
shown in Fig. 5. In a generalized 3-D impact,, actual 
energy loss in the simulation is a complicated fflnction 
of several factors: the normal and tangential damper 
constants of both the contacting bodies, their effective 

masses at the point of contact and the coefficient of 
friction. As shown in Appendix A, effective mass is a 
function of geometry and inertia distribution and can 
change even during the contact episode as a result of 
relative rotation of the contacting bodies. Because of 
all these complex factors, a simple expression for 
energy loss at impact in terms of spring and damper 
constants is usually not possible. 

3.3. Estimating and Controlling the Time Response 
of Contact Behavior 

Spring-mass-damper systems, like that of Fig. 5, have 
natural frequencies associated with their response 
[15]. Meaningful numerical integration requires that 
the time step of integration At be several times smaller 
than the smallest time period Zml. (or time constant) 
associated with these natural frequencies. 

Among other things, these time constants depend 
on the ratio of effective masses to material stiffnesses 
for each body. The minimum effective mass mini n for 
a body, depending upon its geometry as shown in 
Appendices A and B, can become extremely small. 
Material stiffnesses are usually quite high because we 
model the bodies as hard rigid objects. These two 
factors can lead to an arbitrarily small Zmln, requiring 
an even smaller At for stable integration. Very small 
time steps are undesirable for two reasons. Firstly, 
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program solution speed is affected adversely because 
smaller time steps require more steps in the simulation 
and hence more computation. Secondly, very small 
time steps can lead to a destabilizing accrual in 
round-off errors in numerical computations. 

To address these problems we limit the minimum 
allowed time step (Attain) and suppress behavior that 
cannot be integrated meaningfully with it. Non- 
integrable high-frequency model response is sup- 
pressed by altering appropriate model parameters. 
Broadly, there are two types of time constants that we 
check for: those that are associated independently 
with the material for each body and time constants 
that arise because of interaction between materials. 

3.3.1. Time Constants associated with Each Body 
Based on the material model that we implement for 
contact, each body has a set of two sp r ing-mass -  
damper systems - one in the Pt plane and the other 
along n. From the solution of equation (13) it can be 
seen that the response of the sp r ing -mass -damper  
system is governed by two time constants, 1/(c9 n and 
2re/COn. In terms of material stiffness and minimum effec- 
tive masses mmin (calculated as shown in Appendices 

A and B), they are ~ = 2r~ m ~ i . / k  and ~ = 2(mmiJC ). 
The program checks to see that Atmi n is less than these 
values o f z  for k = k n ,  k = k t ,  c = c .  and c = %  If 
Atmin is greater in any of these cases, the corre- 
sponding stiffness/damping is decreased appropriately. 
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However, the actual time constants that the integrator 
experiences are the pairwise material interaction time 
constants at contact, as described below. 

3.3.2. T ime Cons tan t s  at  Con tac t  
The contact models of Figs 2 and 3, either along n or 
in the P, plane, can be analyzed as an interacting 
system of two pairs of spring-mass-dampers (see Fig. 
7). The equation of motion for such a system can be 
obtained as a third-order linear differential equation. 
When contact is made the characteristic equation 
associated with this differential equation can be solved 
numerically to estimate its time constants. However, 
if the stiffnesses and masses of the contacting bodies 
are comparable, then most of the time constants 
for the contact model are close to the time con- 
stants estimated for the individual bodies, as obtained 
above. 

One of the time constants also involves the response 
of the massless contacting surface elements when 
subjected to the spring and damper forces from both 
bodies, and it can be obtained as the response of the 
elements shown in Fig. 7. If x ( t )  is the displacement 
of the contacting surface elements from their equi- 
librium position then their equation of motion is 
given by 

(C1 ~- C2))~ "~ (/s -~- /s x = 0 (16) 

It should be noted that since the contacting surface 
elements are massless they should always be at their 
equilibrium position, but numerical discretization can 
lead to drift from this position. The solution to 
equation (16) is an exponential decay which has the 

form 

C 1 -+- c 2 
x( t )  = x(0) e -t/~, z - (17) 

/s @ /s 

Our software system checks to make sure that Atmi n 
is less than ~, both along n and in the Pt plane. If 
Atmi. > z in the normal direction, we set the normal 
dampers to be zero (Ca, -- CZn = 0). If the same holds 
true in the Pt plane, we decrease the tangential stiff- 
nesses (kit and kz~) of the contact model appropriately. 
Incidentally, these corrections can lead to a substan- 
tial difference in the outcome of impacts involving 
marginally damped material (from the expected out- 
come in terms of energy loss) because the low damping 
specified for the materials in the normal direction 
jumps to zero damping, implying elastic material. And 
low damping specified in the tangential direction can 
jump to much higher effective damping when the 
corresponding stiffnesses are reduced. The above 
analysis does not apply, and is not necessary, for the 
damperless case. Besides estimating and controlling 
the time response at contact, our integration scheme 
performs some additional adjustments to achieve and 
enhance stability, as described below. 

3.4. Additional Adjustments for Numerical Stability 

Finite precision dictates that non-zero thresholds be 
set for deciding different cases, for instance choosing 
between an elastic and a damped impact for very small 
damper values. Contact springs are 'adjusted' at the 
end of every time step. The normal and tangential 
springs are realigned to lie along the updated n and 
Pt plane respectively. In addition, the direction of the 
tangential springs is made parallel to the direction of 
slip between the bodies and their magnitude kept 
within the f r i c t ion  cone. 

Throughout the integration, normal contact springs 
are never allowed to have tensile deformation. In 
addition, the integration time step is refined adapti- 
vely for several causes: reversal in spring deforma- 
tion directions, 'zero crossings' of tangential springs, 
velocity reversals, etc. 

4. Geometry  Module  

4.1. Object Representation 

The major geometric computation addresses the ques- 
tion of exactly where bodies make contact. Here a 
representation decision must be made, since determin- 
ing spatial relationships depends on exactly how the 



186 S. Goyal et al. 

objects are represented geometrically. For  example, 
algebraic surfaces could be used to represent the 
objects. Contacts would then be determined by solv- 
ing pairs of non-linear algebraic equations, possibly 
of high order. Analytic solutions of such equations are 
usually not possible, and iterative techniques must be 
used that can be quite slow computationally. 

The representation we have chosen is that of convex 
polyhedra. This restricts the complexity of objects that 
can be simulated for two reasons. Firstly, some objects 
one might want to include in a simulation are not 
convex. Secondly, smoothly continuous surfaces, such 
as spheres and cylinders, cannot be represented 
exactly. Smooth surfaces can be approximated closely 
(closely in the sense of spatial error between a point 
in the polyhedron and the corresponding point of the 
modeled smooth object - discontinuities in surface 
normals that occur at edges can never be eliminated, 
although their magnitude can be limited) if desired, 
by using large numbers of faces in the polyhedron. 
Issues of computational performance limit the number 
of faces that can be used in a practical application, 
However, in favor of polyhedral representations is the 
fact that most geometric calculations only require 
solutions of linear equations. Since similar computa- 
tions are required for all faces (or all edges or all 
vertices) of an object, many similar simple computa- 
tions are performed. In principle, this leads to a form 
of problem that is well suited for solution by massively 
parallel computers. Advances in computer architec- 
ture and VLSI processing speeds that will occur 
during the next few years can be expected to result in 
real-time simulation capabilities for many problems 
of interest. 

Before contact analysis begins, the geometry module 
computes the invariant inertial properties (masses and 
moments of inertia) of the convex polyhedra in the 
simulation, based on their geometries. During the 
simulation, a detailed description of the body's shape 
and location (the location of an object specifies all six 
of its degrees of freedom - 3 Cartesian coordinates for 
its center of mass and 3 orientation angles) is used to 
determine when and where contacts occur. 

4.2. Integration/Contact-analysis Loop 

Integrating the equations of motion is an initial value 
problem. (Figure 8 explains the computational flow 
of contact analysis as it supplements this integration.) 
From the known system-state at time to, we integrate 
forward to time t~ = t o + dt. If the integration step is 
valid, we now have the system-state at tl, and the 
process can be repeated. The system state at time t o 
has two components: the dynamic-state, D o , and the 

contact-state, Co. Do specifies the positions and veloci- 
ties (both linear and rotational) of all objects at t o . C o 
specifies the state of each contact that exists at to 
including, for each contact, which objects are involved 
and the exact state of the contact (e.g. the edges and 
vertices involved, and the location and status of the 
contact). The contact-state is represented by a list of 
contact-blocks, each specifying the above information 
for one contact. Based on Co, the dynamic equations, 
E o, at time to can be specified including all active 
inter-object spring and damper forces. We now inte- 
grate forward, using E o, to time tl. The result at t 1 
will be a new dynamic-state, D~, and a corresponding 
new contact-state, C 1. Contact analysis at t 1 deter- 
mines C1, which can then be compared with C o. If the 
set of contacts in C1 and C o are the same, then no 
change in contact-state occurred, so C1 and D~ can be 
accepted as valid starting points for the next integra- 
tion step (the inner loop shown in Fig. 8). 

On the other hand, if C~ and C o differ in the set of 
contacts they contain, then either a new contact 
appeared or an existing contact disappeared (i.e. was 
broken) during the integration interval. Broken con- 
tacts are normally determined by the dynamics module 
based on when the normal force acting at the con- 
tact goes to zero. (For certain exception conditions 
described later, geometric conditions must be used to 
determine broken contacts.) Such an event is easily 
handled by removing the corresponding contact- 
block from the contact-state list. New contacts, how- 
ever, have to be analyzed in detail. In particular, the 
earliest new contact event during the dt interval is 
determined. Assuming this contact occurs at some 
fraction ~ of the whole interval (0 < ~ _< 1), we can 
integrate forward to time t c = to + 6" dr. The resulting 
dynamic-state, De, and contact-state, Co, at t~ can be 
accepted as valid starting points for the next integra- 
tion step, since no contact event occurred during the 
interval to -< t _< t~ (the outer loop shown in Fig. 8). 

All contacts between the polyhedra must be identi- 
fied and tracked. At every time step, the geometry 
module accomplishes this through contact analysis. 
Contact analysis consists of interference detection 
(detecting whether objects are in contact) and main- 
taining the interference information in a list of active 
point contacts (the contact-state) that the dynamics 
module uses to calculate contact forces. 

4.3. Interference Detection 

The interference detection algorithm [-16] looks for a 
separating plane that partitions space with all vertices 
of one object (say, object A) on one side of the 
separating plane and all vertices of the other object 
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Fig. 8. Simplified flow diagram of computation. 

(say, object B) on the other side of the plane. Each 
edge of A is examined in turn to see if it supports such 
a separating plane, i.e. if there is a plane that contains 
the edge and that is a separating plane. As soon as 
such a plane is found, the algorithm terminates and 

reports success. If no separating plane is supported by 
any edge of A, the process is repeated, but this time 
looking for a separating plane supported by an edge 
of B. Again, success is reported as soon as such an 
edge is found. If no such edge is found, the algorithm 
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reports failure, i.e. that the objects interfere with each 
other. 

Since each edge is considered in turn, and for each 
edge all vertices of the other object are considered, the 
algorithm is of complexity O(n 2) in the number of 
vertices of the objects involved. (For convex poly- 
hedra, the number of object edges E, faces F and 
vertices V are related linearly by E = F + V -  2, so 
n can be used generically to represent the number of 
edges, faces or vertices in complexity expressions.) In 
principle, each possible pair of objects in the scene 
must be examined. Again, this requires O(k 2) com- 
parisons, where k is the number of objects in the scene. 
The overall complexity is the product of these two 
complexity results, or O(N 2) comparisons, where N 
is the total number of vertices in all objects being 
considered. 

Fortunately, it is possible to reduce the amount of 
computation required for interference detection sub- 
stantially. Firstly, objects are divided into two classes: 
moving and fixed. Fixed objects are used to represent 
stationary obstacles in the simulation space or walls 
bounding the possible motion of objects. Interference 
computations are not needed between fixed objects. 
Only moving-moving and moving-fixed object com- 
parisons are made. Secondly, very fast bounding- 
box screening tests are performed on candidate 
object pairs before detailed interference calculations 
are undertaken. These tests look for separating planes 
that are orthogonal to the world coordinate reference 
frame axes. Since bounding-box extents are stored in 
the data structure representing an object's geometry, 
these tests are done in constant time for each object 
pair, independently of the number of vertices. The 
bounding-box extents must be updated for every 
moving object at each time step, an amount of 
computation that grows only linearly with the number 
of objects. The number of bounding-box tests still 
grows as the square of the number of moving objects. 
The relatively expensive separating plane test is only 
performed on the smaller number of object pairs not 
eliminated by the bounding-box test. 

4.4. Determining the Contact-state 

Interference detection (often called collision detection) 
is computationally the most expensive part of contact 
analysis, but much of the useful information for the 
force model is obtained by determining the contact- 
state. Interesting new problems arise in the context of 
generating and updating the contact-state. 

Many pairs of objects may be in contact simul- 
taneously, and an object may be involved in several 
contacts simultaneously, either with one or several 

other objects. For example, an FF  contact between 
two cubes will appear as four VF contacts if all the 
contacting face vertices of the smaller cube lie within 
the contacted face of the larger cube. Or, such a 
contact may appear as two VF contacts and two EE 
contacts if the contacting face of the smaller cube 
extends past an edge of the face of the larger cube. 
Each such VF or EE contact is identified by its 
contact-id, which is a unique 6-tuple of information: 

1. The index of the first object, say object A, among 
all possible objects. 

2. The index of the second object, say object B, among 
all possible objects. 

3. The type of the contacting element of A - F (face), 
V (vertex) or E (edge). 

4. The type of the contacting element of B - F (face), 
V (vertex) or E (edge). 

5. The index of the contacting element among all 
elements of that type in A. 

6. The index of the contacting element among all 
elements of that type in B. 

Information describing each contact is stored in a data 
structure called a contact-block. The contact-block 
contains the contact-id and additional information 
about the contact, including: 

1. The location of the point of contact. 
2. The direction along which the normal impact force 

acts. For VF contacts, this is the direction of the 
normal to the contacted face. For EE contacts, this 
direction is obtained by taking the cross product 
of the two edge-vectors involved. 

3. The type of the contact: new if initial contact 
occurred after the beginning of the previous inte- 
gration step; or continuing if the contact existed at 
the beginning of the previous integration step. 

The contact-state of the system consists of a list of 
contact-blocks, one for each active contact in the 
system, ordered by contact-id. To maintain the con- 
tact-state list, it is necessary to determine when a 
contact first occurs (initial-contact) and when it ends 
(broken-comact), i.e. when the two objects separate at 
that specific contact. These occurrences are known 
as contact-events. Initial-contacts are determined by 
purely geometric considerations. When an initial- 
contact occurs, a new contact-block is added to the 
contact-state list. Broken-contacts are determined and 
deleted from the contact-state list based on either dy- 
namic or geometric considerations, as explained later. 

4.4.1. Determining Initial Contacts 
When two objects approach each other and their 
motion is approximated by integration with a finite 
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time step, actual contact will, in general, occur some- 
time during the integration interval. Since the behavior 
of the contacting objects can be extremely sensitive to 
exactly when and where each contact occurs, it is 
essential to approximate the time and position of 
initial contact accurately. This could be done by an 
iterative process such as time-halving the integration 
steps. Unfortunately, such trial-and-error approaches 
can require many iterations to reach an acceptably 
accurate result. 

To reduce the amount of computation, we replace 
iteration by interpolation. Consider the case of a VF 
contact where vertex v of object A strikes the face of 
object B whose normal points in the direction n. At 
the start of the integration step, time tl, the objects 
do not interfere, v is at location vl and face F is at 
location F~ with face normal nl. At time t2, the end of 
the proposed integration interval, v has penetrated F, 
and the corresponding quantities are v2, F 2 and n 2. At 
some intermediate time t~, the objects must have 
experienced initial contact, with v, F and n assuming 
values of vc, F~ and n~. Contact analysis then deter- 
mines tc through linear interpolation. The method 
used is described in Appendix C. 

4.4.2. Tracking Contacts 
Contacts must be tracked, i.e. their positions and 
orientations must be determined, through several 
(possibly many) integration steps for two reasons. 
Firstly, even during impacts where bodies rapidly 
bounce off each other, the contact model requires 
several time steps to stably integrate the rapidly 
evolving forces. Secondly, contacts of extended dura- 
tion will occur when bodies slide along each other. 
The integration time step is automatically adjusted to 
a small value upon encountering a new contact. The 
dynamics integrator then gradually increases the time 
step within the limits of accuracy constraints. 

VF a n d  EE contacts are tracked differently. VF 
contacts are tracked by the dynamics module. The 
vertex position and face normal vector involved in a 
VF contact are reported to the dynamics module in 
a new contact-block when the contact is first detected. 
At to, the time at which the new contact occurred, the 
following information is known: 

Rvo rotation specifying the orientation of the object 
whose vertex is involved in the contact (from 
the dynamic-state at to); 

r o location of the center of mass of the above object 
(from the dynamic-state at to); 

v o location of the contacting vertex (from the 
contact-block at to); 

Rfo rotation specifying the orientation of the object 
whose face is involved in the contact (from the 
dynamic-state at to); 

n o normal to the contacted face (from the contact- 
block at to). 

The dynamics module can independently determine 
the contacting vertex position and face normal orien- 
tation at any subsequent time tl. Using object rota- 
tions Rv~ and Rf~ and center of mass r~, which are 
known from the dynamic-state at tl, the vertex posi- 
tion v~ and face normal n~ at tl are: 

v l  = r t  + R v l R v o l ( V o  - ro) (18a) 

n 1 = RflRf~lno (18b) 

EE contacts are tracked by the geometry module. 
This is necessary because the contact location can 
occur anywhere along the edges involved, and the 
dynamics module has no information about the inter- 
nal geometry of objects. As in the VF case, the two 
edges involved are reported in the contact-block 
generated when the contact is first detected. Sub- 
sequently, as long as the contact is in effect, the 
geometry module determines the location on each 
edge that is closest to the other edge. The point 
halfway between these two locations is taken as the 
point of contact. The contact normal is formed by 
taking the cross product of the two edge direction 
vectors. The signs are selected so that each normal 
points away from its object. 

4.4.3. Special Cases during Contact Analysis 
Special situations arise during contact analysis that 
have to be recognized and afforded special treatment. 
They occur for two reasons: firstly, because of the 
interpolation technique used to determine initial con- 
tact locations; and secondly, because of the polyhedral 
representation used, which can result in exceptional 
relationships between the vertices and edges of pairs 
of objects. 

Virtual contacts due to interpolation. Virtual contacts 
are contacts that must be included in the contact state 
even though there is actually no interference between 
the objects involved. They can arise when the location 
of an initial contact is determined by linear interpola- 
tion, as shown in Fig. 9a. The system is integrated 
forward by the current integration time step, dt, from 
t 1 to t2. At q,  with the vertex at vl, there is no 
interference between objects A and B. At t2, with the 
vertex at v2, there is interference. Linear interpolation 
predicts motion along the dotted line, resulting in a 
predicted initial contact at time tc(t ~ <<_ tc <_ t2). The 
equations of motion are now integrated forward to t~, 
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Fig. 9. Special contact analysis cases. 

with the vertex reaching position vc. It is possible, 
however, that we have backed up too far, and no 
interference occurs at t,, as shown in Fig. 9a. None- 
theless, we assume that the one-step interpolation 
technique achieved sufficient accuracy and include the 
contact as a new contact in the contact-state, Co, at 
time to. The contact is treated as if initial contact 
occurred at the interpolated position. The virtual 
contact remains in the contact-state at subsequent 
times as a continuing contact as long as the spring- 
damper force for the contact remains positive (com- 
pressive). 

Maintaining face continuity in a VF contact Consider 
a continuing contact in which vertex v of object A 
slides along face/;1 of object B. As shown in Fig. 9b, 
the penetrating vertex is located at Vl at time tl, and 
moves along the dotted line to location v 2 at time t2. 

At tl, v is unambiguously closest to face /71. If the 
sliding persists long enough, the vertex will eventually 
cross the plane that bisects the angle between faces F1 
and F 2 (represented by the dotted angle bisector), 
reaching a location such as v 2. At this point, v is closer 
to F a than to F~, which would normally be reported 
as a contact between v and/72. 

This error is avoided by requiring that a contacting 
vertex remain in contact with the same face of the 
contacted object for the entire duration of a con- 
tinuing contact. Whenever a vertex v is found to 
penetrate an object in a new dynamic state, the 
previously accepted contact-state list is scanned for an 
occurrence of a contact involving v. If the vertex is 
found, the object it is in contact with is determined. 
If the old contacted object is the same as the new 
contacted object, the new penetrated face is taken to 
be the same face that was penetrated in the old 
contact. 

Breaking contacts when an edge is crossed Normally, 
a contact is broken when the dynamics module reports 
a zero or negative (tensile) inter-object normal contact 
force. A negative force would imply an attractive 
rather than repulsive, interaction, which is a physical 
impossibility. For  continuing contacts, however, a 
geometric condition requiring that the contact be 
broken may occur before the contact force condition 
is satisfied. Specifically, for a VF contact, the vertex 
crossing an edge of the contacted face's polygonal 
boundary implies that it is no longer in contact with 
the face. Figure 9c shows how this happens for a VF 
contact. Vertex v of object A is stably sliding along 
face F1 of object B, starting at location vl at time tl. 
It has penetrated B to the depth of the dotted line, 
thereby producing an upward contact force that 
exactly balances the downward gravity force. At time 
t 2 it reaches the location v z, which is beyond the 
perimeter of Fl'S face polygon. Clearly, v can no longer 
be in contact with F1. Therefore, a VF contact is 
broken for geometric reasons if the contacting vertex, 
when projected normally onto the plane contain- 
ing the contacted face, does not lie inside the face 
polygon. 

A similar geometric condition may have to be used 
to break an EE contact for geometric reasons. Con- 
sider each edge to be a finite segment along an infinite 
line vector. Next consider the line segment that joins 
the two infinite lines that is mutually perpendicular 
to both of them (i.e. it joins the closest point on each 
of the infinite lines). It interesects the infinite line 
segments containing edges E~ and E 2 at points u~ and 
u2, respectively. The geometric condition for breaking 
the EE contact is that u~ lies outside the finite extent 
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of edge El, or that u2 lies outside the finite extent of 
edge E 2. 

5. Simulation System Environment 

The simulation system is implemented on a Silicon 
Graphics Power Series | 4D/340 system with a 
33 MHz MIPS3000 | microprocessor for standard 
mathematical computing, and high performance cus- 
tom VLSI processors for graphics processing. The 
software is implemented in C and runs in a standard 
Unix | environment. 

The program is initialized from an input file that 
contains the simulated objects' geometries, their initial 
positions and velocities, material properties, and other 
parameters that control the simulation such as time 
step, integration error tolerance, etc. Unspecified 
parameters receive default values. 

5.1. Input File and Program Initialization 

The essential contents of the input file are object 
geometries. An object's geometry is defined by object 
definition primitives, such as cube or prism. Objects 
are defined in a body centered coordinate system 
whose origin is at the object's geometric center. The 
axis of symmetry for prism type objects is always the 
z-axis. A primitive objective has a 1 meter extent along 
the x and z axes, and a known extent (exactly or 
approximately 1 meter, depending on the specific 
object definition) along the y-axis. Additional para- 
meters of the object primitive specify three scale 
factors that size the object along the x, y and z axes. 
For example, the command 

prism block red 6 0.25 O. 50 O. 75 

defines a right rectangular prism named 'block' whose 
color is red. The bottom and top faces are polygons 
orthogonal to the z-axis. The first of the four numeri- 
cal parameters specifies the number of edges, 6 in this 
case, in the bottom and top polygons. The next three 
parameters are x, y and z scale factors for sizing the 
object. Each object's initial position and velocity are 
specified using the loc and vel commands. For example 

loc x y z 0 u v w 

positions the body with its center of mass at (x, y, z) 
in the world coordinate system, and rotates the body 
by 0 degrees about the vector (u, v, w), and 

vel x y z 0 u v w 

gives the body an initial linear velocity of (x, y, z) 
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(meters/second) and an initial angular velocity of 0 
(degrees/second) about the body fixed axis (u, v, w). 

Inertial properties are computed automatically 
from the shape and dimensions specified for each 
object. Objects are assumed to be of uniform density 
which, by default, is that of water (103 kg/m3). A 
different density can be set using the spgrav command. 
Exact values for inertial properties are computed 
for non-tapered polyhedra. For tapered objects, an 
approximation is used to simplify the calculation. The 
inertial properties computed are those of the trun- 
cated elliptical cone that circumscribes the defined 
polyhedron and has the same height (z dimension) as 
the tapered prism. 

An object's material properties affect the contact 
forces that occur when it interacts with other objects. 
The mu command sets a body's base coefficient 
of friction. Since the coefficient of friction used in 
Coulomb's law really applied to an interaction 
between two bodies, the actual # used at a contact is 
the geometric mean of the two bodies' individual base 
coefficients of friction. The kn, kt, cn and ct commands 
set, respectively, the normal and tangential spring 
constants and the normal and tangential damper 
coefficients associated with an object's surface ele- 
ments. Integration control parameters specified in the 
input control file include an error tolerance para- 
meter, an initial time step, and minimum and maxi- 
mum time step limits. During initialization, the 
minimum time step is checked against the time con- 
stants of the object's surface elements. If necessary, 
appropriate changes are automatically made to the 
object's material parameters to make the surface 
element time constant sufficiently larger than the 
minimum integration step. During the simulation, 
an adaptive fourth-order Runga-Kut ta  integration 
scheme controls the time step. 

5.2. Interactive Visualization 

Results are visualized through an interactive animated 
display on the CRT of the simulation workstation. 
The animation can be automatically recorded on 
video tape, if desired. The visualization is based on a 
system that was developed previously for displaying 
simulated robot manipulators [17, 18]. Objects can 
be displayed with solid colored surfaces illuminated 
by a Phong lighting model [19] or, optionally, as 
wireframe models. 

Results can be visualized either during simulation 
or later in a movie playback mode. In the latter case 
one can control the rate of frame display to play at 
various speeds, for example in slow motion. 
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6. System Performance 

Ideally, we would like simulations to run in 'real- 
time', i.e. at the same rate that events occur in the 
physical world. The integration time steps we use 
range from about 0.01 ms (when objects are in con- 
tact) to 1 ms (when there are no contacts). This means 
that for real-time performance the system must per- 
form calculations for 1000 to 100,000 integration steps 
per second, including equation integration, contact 
analysis and image rendering. Not surprisingly, real- 
time performance is not achieved even for simulations 
involving small numbers of objects (e.g. 10 or fewer 
moving objects and a comparable number of fixed 
objects). Computation time to real-time ratios are, 
rather, observed to be between 20:1 and 500:1 for such 
simulations, depending on details of the simulation. 

Equation integration and 3-D contact analysis of 
this complexity would not have been feasible a decade 
ago on anything but the highest performance super- 
computers. Fortunately, sufficient performance for 
such computations is available today using high 
performance workstations. 

Simulation performance is difficult to characterize 
simply, but three factors are dominant: 

N the total number of moving vertices; 
the fraction of total simulated time that objects 
are in contact; and 

c~ the number of active contacts at any time. 

As we saw earlier, interference detection computa- 
tions at each time step grow as N z. The hierarchical 
test strategy used makes the computation extremely 
fast for well separated objects. In crowded environ- 
ments (which are often of most interest), however, the 
detailed interference detection algorithm must be 
used. Additional fixed objects also increase computa- 
tion. However, their effect grows only linearly, so they 
are inherently less of an issue than moving objects. 

is important for two reasons. Firstly, because the 
integration time step while any contact exists is 
typically an order of magnitude or more smaller than 
when no contacts are in effect. All other things being 
equal, this slows progress by at least a factor of 10. 
Secondly, the most complex geometric computation, 
contact analysis, must be performed while objects are 
in contact. 

is significant because it determines the amount of 
contact analysis computation that must be performed. 
When objects are bouncing off each other and impact 
is the dominant contact mode there are few simul- 
taneous contacts. However, for simulations with energy 
loss, bodies eventually stop moving and come to rest 
on some supporting surface. Toward the end of such 

a simulation, many bodies have multiple continuing 
contacts with the supporting surface. Even though 
nothing much is happening, all of these contacts 
must be tracked, slowing the simulation considerably. 
When ~ is substantial and at the same time there are 
many active contacts, the situation is doubly difficult. 
As contact activity gets large, more and more compu- 
tation goes into contact analysis. 

7. Conclusions 

We have successfully implemented a discrete version 
of the contact model proposed in [1] in a software 
system for simulating the dynamics of freely interact- 
ing rigid bodies, including friction. Such 'contact 
mechanics oriented simulation systems' can be 
applied in areas such as CAD/CAM, automation, 
rapid prototyping, animation, biomechanics, educa- 
tion and 'virtual reality'. Computing contact mech- 
anics is difficult because of the complexity of material 
behavior and the detailed geometric calculations 
required to determine contact forces. 

We estimate contact forces by modeling localized 
material deformation in the vicinity of contact. Imple- 
mentation of the contact model involved the formula- 
tion of its discrete version, tuning of model parameters 
to reflect the essence of material behavior, control of 
these parameters to achieve stable and meaningful 
numerical integration and construction of a geometry 
analysis subsystem to deal with issues involved in 
contact analysis. We tested our system on several 
simulations that provide strong visual validation on 
its 'correctness'. Additionally, it performed very well 
on the Gedanken experiments detailed in [1]. 

We were interested in the quality of the simulation 
results, in terms of the naturalness and correctness of 
the resulting motions, and in understanding the diffi- 
culties that might arise computationally from integrat- 
ing stiff differential equations that change at discrete 
contact events. The results on both counts have been 
positive. Simulated motions are extremely realistic. 
Even with the current single processor workstation 
implementation, performance is reasonable for 
modest numbers of objects, requiring 20 to 500 times 
real-time to obtain results. The interactive visualiza- 
tion capabilities provide a very convenient user inter- 
face with great flexibility for focusing on particular 
objects or particular areas of space of interest. With 
the movie playback capability, real-time visualization 
is easily obtained, as is slow motion or fast motion 
playback. 

Further work on system optimization could lead to 
improved performance in several areas. Interference 



Dynamics of Interacting Rigid Bodies II 193 

detection and contact analysis algorithm improve- 
ments are possible, such as partitioning space to limit 
the number of interfering object pairs that must be 
considered at any time. Also, available information 
about active contact elements (i.e. vertices, faces and 
edges) from the previous contact-state can be used to 
guide the computation for the current contact-state, 
a technique called temporal coherence. Research that 
would lead to linear or n-log(n), rather than n z, 
complexity in the interference and contact analysis 
algorithms would bring major improvements. Finally, 
adding multiprocessing capability to the software 
would have direct and substantial benefits. The nature 
of the problem and of the simulator design is such 
that multiprocessing is a readily achievable objective. 
Many computations involve identical computations 
that are applied to different faces, edges and vertices. 
These could be parallelized with modest effort and 
substantial pay-off. The dynamics integration pro- 
gram could obtain similar advantage by applying 
different processors to different objects. 
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Appendix A: Effective Mass during 
Off-centric Impact 

The effective mass of a body along a certain direction, say n, at a 
contact point C, is the point mass men whose acceleration along n 
is identical to that of body fixed point C when they are both (body 
and point mass) subjected to the same force at C. 

We shall derive the expression for m~ff during impact for the body 
shown in Fig. I0. All non-scalar quantities are expressed with 
reference to the body fixed xyz coordinate system with its origin at 
the CM (center of mass) at O. Let J be the inertia tensor for the 
body, m its mass, ~ and 09 its angular acceleration and velocity 
respectively, ao and v o the acceleration and velocity of its CM 
respectively, and f, the contact force at re. Considering a >> co during 
impact, the equations of motion for the body are f~ = mao, Ja = 
rcx fo, and the acceleration a~ of point C is given by ac  = ao + 
ct x ro. With I as the identity matrix, these equations can be 
combined to give: 

ac  = f c  + ( J - 1 ( r ~  x f ~ ) )  x r c 
m 

= 1 1 lrr j - l r c r r  rcrcrj-a ( ( m  + re-re t r ( J - ) -  r~rJ - + + 

- -  t r ( J - 1 ) r c r / -  (re.re)J-1)f~ (19) 

If acn = a~-n and fc = fo,,n then the effective mass can be 
obtained from: 

1 
m e f f a e n :  fc .  ==~ mef f - -  (20) 

nT Mn 



'0 '  center of mass 

'C' contact point 

Fig. 10. Estimating effective mass  of body at point C along n. 
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Appendix B: Estimate of Minimum 
Effective Mass 

Given the geometry and the principal inertias of a convex homogen-  
ous body, as in Fig. 10, equation (20) allows us to estimate the 
min imum effective mass rnm~ ~ that the body could have at a point 
on its surface. Let I~, Iy, I, be the principal mass  moments  of inertia, 
r~ = [r~, ry, r~] and n = [n~, ny, n~]. Then 

1 1 (nrr  ~ --  n~l;,) z (n~r~ --  n~r~) z (n~r r --  nyrx) 2 
- ~ ~ + ( 2 1 )  

mo. m 1~ I, I~ 

Note that m~i ~ is the min imum reef f that can be obtained from 
equation (21). So rnmj . can be obtained by maximizing the right- 
hand side (R.H.S.) of equation (21). An approximation can be found 
as follows. If n is any one of the principal directions, then two 
out of its three scalar components  are zero and the R.H.S. of 
equation (21) involves two scalar components  of re (that have 
to be maximized) and two principal inertias (that have to be 
minimized). 

Now let us consider the example of a body with I x >_ Iy >_ I=. The 
point furthest away from O is most  likely to have r, >_ r r > rx. 
Equation (21) shows that for this body, mm~, is attained along the 
direction n = [1, 0, 0] and is given as 

raly I~ (22) 
gg/min  = ir i~ + m(r~ly + r~l=) 

In words, equation (22) implies that  the min imum effective mass  is 
felt along the direction of max imum inertia and at the furthermost 
point from the axis of max imum inertia. 

Appendix C: Determining Initial Contact 
through Interpolation 

The time and location of initial contacts are determined by 
interpolation (see Fig. 11). We know the positions of objects A and 
B at times t~ and t2, the start and proposed end of an integration 
interval, respectively. Therefore, n~, n2, v~ and v 2 are known. 
Furthermore,  we know the positions of a specific point on the 

penetrated face, say one of the vertices of the face polygon. Let this 
point be located at u 1 at time tl, and at u 2 at time t 2. We assume 
that v and u translate linearly, and n rotates linearly between t 1 
and t2, a reasonable approximation if the time interval t 2 - tl is 
small. Then  v, n and u can each be expressed in terms of a linear 
interpolation parameter  t (0 _< t _< 1): 

v = (1 -- t)v 1 + tv2, n = (1 -- t)nl + tn2,~ 
(23) 

u = ( 1 -  t )u~  + tu2 

The equation stating that at contact the vertex must  lie exactly on 
the face is n -y  = n-u. Substituting from (23) leads to the following 
quadratic equation in t: 

at  z + b t  + c = 0 (24) 

where 

a (n2 - n l ) "  [ (v2  - v l )  - (u~ - n l ) ]  

b - (n2 - n O ' ( v ~  - n O  + n l  'E(v~ - v O  - (u2 - n O ]  

c - n l " ( v l  - u 0  ( 2 5 )  
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a) Vertex-Face position at start of 
integration interval, t = t 1 

"c 

b) Vertex-Face position at contact, t = t 
C 

C) Vertex-Face position at end of 
integration interval, t = t 2 

Fig. 11. Interpolation between times t 1 (no in ter ference)  and  t 2 
(interference) to determine the time to and location %, n c of a 
vertex-face contact. 

\A/ l 
v 2 
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d 1 

~b 

d 2 

qn 

- -  a 2 

Fig. 12. Edge-edge contact determination, viewed along edge b, 
which is fixed in this coordinate system. 

Equation (24) is easily solved for t. When the time interval t z - t a 

is small, exactly one of the two solutions lies in the range 0 < t < 1. 
Note that if the penetrated body does not rotate o 2 = nx, so a = 0 
and (24) reduces to an even more easily solved linear equation in t. 

Interpolation is also used to determine the time and location of 
EE contacts. The computation is performed in a coordinate system 
in which one object, say object B, remains fixed, and only object A 
moves. After solving for the time and location of initial contact in 
this coordinate system, the location is transformed to its proper 
value in the world coordinate system. The method used homo- 
geneous transforms (HTs) as explained below. 

HTs are used in the geometry module to specify object locations 
and orientations. An HT is a 4 x 4 matrix which includes a 3 x 3 
rotation matrix and a 3 x 1 spatial displacement. The effect of 
applying (we-multiplying) the transform to any point is to rotate 
the point about the coordinate system origin as specified by the 
rotation matrix, followed by translating the point as specified by 
the spatial displacement. Each object is initially defined in its own 
local reference frame whose origin is at the object's geometric center. 
At every integration time step, an HT is known for each object that 
takes it to its correct spatial location. In terms of HTs, the following 

method converts the location of object A from its location before 
interference to its equivalent location in a coordinate system where 
object B remains fixed at its post-interference location. 

Let R~ and R2 be HTs that position object A just before (time 
t~) and just after (time t2) interfering with object B, respectively. 
Let S~ and $2 be HTs that position object B at times t~ and tz, 
respectively. Then S z is used to position B, which remains fixed; R 2 
is used to position A at t2; and Ro = S2S~aR~ is used to position 
A at ta. 

The computation in the fixed coordinate system is illustrated in 
Fig. 12, where edge b is the fixed edge of object B, while edge a of 
object A moves from location al at time t~ to a: at time t2. Again, 
it is assumed that motions during this small time interval are linear 
(i.e. uniform translation and rotation during the time interal). Since 
the equations for edge a are known at times t~ and t2, it is easy to 
solve for d~ and dz, the distances between a and b at t~ and t2, 
respectively. It is also straightforward to compute p~ and P2, the 
points on b that are closest to a~ and aa, respectively. The time of 
contact, to, and point of contact on b, p~, are then determined by 
linear interpolation to be: 

d 1 

tc - d l  + d2 ,  Pc = (1 - to)p1 + top 2 (26 )  

Knowing to, linear interpolation can be applied to the HTs to 
obtain Rc and St, the transforms for A and B, respectively, at the 
time of contact. Linear interpolation between two HTs involves 
independent interpolation of the displacement and rotation compo- 
nents. Assume the initial and end times are normalized to 0 and 1, 
respectively. Let x0 and Q0 be the displacement and rotation 
components at t = 0, xl and Q1 be the displacement and rotation 
components at t = 1, xo and Qo be the interpolated displacement 
and rotation components at the time of contact tc (0 < t~ _< 1), and 
q be the incremental rotation between Q0 and Q1, i.e. q = QxQo ~. 

For  interpolation purposes, we interpret q to be a rotation by an 
angle 0 about a fixed axis v, which we can express as rot(v, 0). The 
displacement xo and rotation qc at contact are just 

x c = (1 -- tc)x 0 + t~xl, qc = rot(v, toO)  (27) 


