
Engineering with Computers (I996) 12:!44-t54
�9 1996 Springer-Verlag London Limited Engineering

C(~mputers

Two and Three-Quarter Dimensional Meshing Facilitators

t M . W h i t e l e y , 1D. W h i t e , ~S. B e n z l e y a n d 2T. B l a c k e r

i Brigham Young University, Provo, USA; 2 Sandia National Labs, Albuquerque, USA

Abstract. This paper presents generated enhancements for
robust 'two and three-quarter dimensional meshing', including:
(1) automated interval assignment by integer programming for
submapped surfaces and volumes, (2) surface submapping, and
(3) volume submapping. An introduction to the simplex
method, an optimization technique of integer programming, is
presented. Simplification of complex geometry is required for
the formulation of the integer programming problem. A
method of 'i-j unfolding' is defined which explains how
irregular geometry can be realigned into a simplified form
that is suitable for submap interval assignment solutions. Also
presented is the processes by which submapping eliminates
the decomposition of surface geometry, through a pseudo-
decomposition process, producing suitable mapped meshes.
The process of submapping involves the creation of 'interpo-
lated virtual edges', user d@ned 'vertex types' and ' i - j-k
space' traversals. The creation of 'interpolated virtual edges'
is the method by which submapping automatically subdivides
surface geometry. The 'interpolated virtual edge' is formulated
according to an interpolation scheme using the node discret-
ization of curves on the surface. User defined 'vertex types'
allow direct user control of surface decomposition and interval
assignment by modifying ~ space' traversals. Volume
submapping takes the geometry decomposition to a higher
level by using 'mapped virtual surfaces' to eliminate decom-
position of complex volumes.

Keywords. Automatic mesh generation; Mesh control;
Mapped meshing

1. Introduction

The finite element method, although powerful and
versatile, has long been plagued with the problem
of effective discretization of geometry. The need for

Correspondence and offprint requests to: Dr D. R. White, Sandia
National Laboratories, PO Box 5800, Albuquerque, NM 87185-
0441, USA.

more powerful meshing aigorithms continues, but no
one technique has appeared which can fill the needs
of all meshing tasks. Therefore. various mesh gener-
ation research efforts continue in an attempl to
automate these meshing processes (Fig. 1). The
transformation of a two dimensional (2D) mesh into
a three dimensional (3D) volume and shell elements
has long been a useful tool in the arsenal of algorithms
available for 3D meshing [1], A 2D mesh simply
extruded in some general third dimension produces
what is termed a two and one half dimensional (2.5D)
volume mesh. However, any number of these 2.5D
pieces can be combined to form extremely complex
meshes as shown in Fig. 2. As can be seen ,~n this figure.
these pieces can be extruded in logically orthogona!
directions with respect to each other. We have termed
this general meshing method of combimng orthog-
onally independent 2.5D pieces as being two and three
quarter dimensional (2.75D).

Fig. t. Mesh generation using automated interval assignment and
submapping tools.

Two and Three-Quarter Dimensional Meshing Facilitators 145

Fig. 2. An example of a complex
2.75D mesh.

In their simplest form, 2.5D tools depend only on
a 2D mesh as input. Thus they have often been
developed independent of any formal geometric
description of the 3D geometry. This disconnection
from the actual geometry presents problems in
generalizing the algorithms to general sweeps, in
accurately combining nodes shared between merged
pieces, and in applying and verifying boundary
conditions. It also prevents the effective use of general
3D CAD data when available.

Another limitation that comes from the dis-
connection from actual geometry is that any decom-
position into a 2.5D piece must propagate through
the entire geometry as shown in Fig. 3. The example
shown in this figure is simplistic; however, it is easy
to envision the difficulties caused by propagating
decompositions in more complex geometries. With

the proper tools, including those described in this
paper, the propagation can be largely eliminated.
Figure 4 shows how these tools would be effective at
reducing the decomposition of this object to only one
cut. Implicit for this type of decomposition to work
effectively would be the use of the following techniques
which are presented in this paper.

| Automated interval assignment. Automated assign-
ment of edge discretization levels (interval assign-
ment) is necessary for any type of efficient use. With
the submapping tool this is especially important to
automate correctly, as interval propagation is
nontrivial.

| N-edged surface mapping and submapping. Enhanced
mapping and submapping techniques allow the
necessary regular grid to be established on surfaces

146 M. WhiteleY et ai.

/ /

/

Fig. 3. Simple geometry showing the effect of propagating decompositions,

7

/
Fig. 4. Non-propagating decomposition allowed with the proper 2.75D meshing tools.

Two and Three-Quarter Dimensional Meshing Facilitators I47

containing any number of edges (n-edged) but with
block-like characteristics. The surface between the
two blocks in Fig. 4 is such a surface. This tool
eliminates the need to break this surface into only
four-sided divisions.

| User defined surface vertex types. To insure that the
required mesh can always be obtained from the
mapping and submapping tools, the user may need
to specifically identify the type of mapping desired
at certain vertices. That is true where vertex angles
atone are insufficient to determine the desired
behavior.

| N-faceted volume mappin 9 and submapping. When a
propagation limiting decomposition is undertaken,
many of the bodies resulting from the decomposition
are block-like in nature, but are multifaceted (more
than just 6 faces/block). The volume mapping tool
must be robust enough to handle these geometries.
A volume submapping algorithm is likewise useful
in eliminating the need for many decompositions.

�9 N-faceted sweeping. As with mapping, to limit
decompositions, the 2.5D sweeping tools must also
handle multifaceted/multi-segmented sweeps such
as the lower volume shown in Fig. 4. The sweep
from the front surface to the back will require the
tool to traverse two surfaces along the top, but only
one surface on the left, right and bottom.

This paper discusses these tools and their interaction.
First, the idea of 'surface vertex types', ' i - j -k '
traversals, and 'hard and soft interval settings' will be
defined. These definitions are needed for proper
discussion of both the automated interval assignment
process and submapping techniques. Finally, the
n-faceted volume mapping, submapping and general
sweeping tools are discussed.

2. Definitions

The definitions of 'surface vertex types', ' i - j -k tra-
versals' and 'hard/soft' interval settings are introduced
in this section. They are essential for the proper
presentation of automated interval assignment and
submapping tools.

2.1. Surface Vertex Type

The 'surface vertex type' provides the absolute classifi-
cation of the interior surface angles (end, side, corner,
reversal) at specified vertices. The 'surface vertex type'
allows the user to control the mapping and sub-
mapping algorithms. The following are possible
'surface vertex types' (see Fig. 5):

o End (normally re/2): An end vertex is a vertex at
which only one element is inserted. A row of quad-
rilateral elements terminates at an end vertex.
Side (normally ~c): A side vertex is a vertex which is
attached to two quadrilateral elements. A row of
elements continues past a side vertex.

| Corner (normally 3rc/2): A corner vertex is a vertex
which is attached to three quadrilateral dements.
A row of elements turns a logical corner around the
corner vertex.

o Reversal (normally 270: A reversal vertex is a vertex
which is attached to four quadrilateral elements. A
row of elements reverses direction at a reversal
vertex.

The 'surface vertex type' classifications control the
~ traversals of the automated interval assignment
and submapping algorithms (defined in Section 2.2).
It also controls which vertices will be selected as
'logical corners' for the mapping algorithm.

CORNER

J

END

j REVERSAL

SIDE

END

,4

REVERSAL

END / / SIDE

Fig. 5. Surface vertex type examples.

148

The interior surface angle at a vertex may not fail
into a single specific classification. Several categories
are possible depending on the topology and geometry
of the model. For instance, depending on the geometry,
an angle of 270 ~ may be classified as either a corner,
side or reversal. The 'surface vertex type' is necessary
to allow explicitly defining interior surface angles that
may fall into a 'fuzzy' classification. The user can
specify the 'surface vertex type' to classify these 'fuzzy'
angles, thus providing the control to produce the
desired meshing results. In all cases the algorithms
will classify all vertices based on their interior surface
angle measure unless the 'surface vertex type' has been
specified to explicitly classify the vertex.

2.2. i - j - k Traversals

The ' i - j -k ' traversals are based on a local ' i - j -k '
cartesian coordinate system. The coordinate system is
local to the surface or volume geometry that is being
evaluated. The traversal classification definition is the
same for both automated interval assignment and
submapping algorithms, although they are imple-
mented for different purposes. For surface mapping/
submapping and for automated interval assignment
only a 2D subset (i.e. ' i-j ' traversals) are necessary,
while the 3D submapping requires fult 3D ' i - j -k '
traversals.

The ' i-j ' traversals classify geometric curves on
each surface as ' + i ' , ' + j ' , ' - i' o r ' - j ' in the local ' i-j '
coordinate system. The classification of the surface
curves, in the local ' i-j ' coordinate system, is based
on the 'sarface vertex type' at each geometric vertex.
The classification process starts at an arbitrary vertex
and traverses the surface vertices in a counter-
clockwise (CCW) direction. The first curve is arbitrarily
assigned to be in the ~ direction. As the geometric
boundary curves are traversed, the next curve is
classified based on the 'surface vertex type' of the
vertex between it and the previous curve. For example,
if a curve was classified as ' + i' and if the next CCW
curve was attached to the previous carve With a
'surface vertex type' of type end, then the forward
curve would be classified as ' + j ' . The traversals in
~i-j ~ space are shown in Table i. Using this table in
the example just given, the vertex is an end case, the
input state was ' + i ' , so the new direction can be
determined from the table as ' + j ' . Note: for side case
(normally 180~ the ' i - j ' classification does not
change from curve to curve.

During submapping, not only is it important to
know a direction, but an actual (i, j) coordinate value.
This assignment is straightforward~ assuming an edge
mesh has been generated using appropriate interval

M. Whiteley eg aL

Table !. Traversa[sables

Input state End Side Corner Reversal

+i +j +i - j - i
+j - i +j + i - j
- i - j - i +j §
- j + i - j - i + j

assignments. The node at the first vertex is assigned
a coordinate of (0, 0) in ' i - / ' space, and nodes along
the first curve (assumed to be in the '-~ i' direction)
are incremented in ' i ' (e.g. (1, 0), (2,0), etc.). As
vertices are reached which change the ' i-j ' direction.
as described above, the appropriate coordinate is
incremented or decremented. Extending the previous
example, if an end vertex is reached and the node at
that vertex was assigned (9, 0) as its (i, j) coordinate,
the next node would increment in the , j direction
(i.e. its ~i-j' coordinate would be (9, 1))/see Table 1).
Surface vertex classifications and ' i - j ' traversals
provide a method to classify surface boundary curves
and to assign all meshed nodes on the surface
boundary an ' i-j ' coordinate in the local 'i-j" co-
ordinate system.

3.3. Hard and Soft Interval Settings

In the meshing procedure, the user often desires
varying levels of control. For interval assignment, this
translates to allowing the user to specify an exact
number ('hard') or an approximate number ('soft') of
intervals.

'Hard ' set intervals are defined as an absolute
number of intervals that are assigned to a curve.
Intervals that are designated as ' ha rd ' are not
adjusted by the automated interval assignment
algorithm.

'Soft ' set intervals are defined as an approximate
number of intervals that are assigned to a curve,
surface or volume rather than an absolute number.
Intervals that are designated as 'soft' are taken as a
lower bound by the automated interval assignment
algorithm. If a curve is not defined, the interval
assignment defaults to a 'soR' that produces one
interval on the curve. Adjustments to 'soft ' curves are
minimized by the automated interval ass,2gnment
algorithm while satisfying dependencies and com-
patibility constraints for all geometric surfaces.

3. A u t o m a t e d I n t e r v a l A s s i g n m e n t

Appropriate interval assignment is critical to producing
high quality meshes for mapped and submapped

Two and Three-Quarter Dimensional Meshing Facilitators 149

surfaces or volumes. It can be a tedious and time
consuming process to manually designate interval
settings on all curves of complex geometry, especially
since satisfying compatibility for meshing primitives
is required to produce acceptable mapped meshes for
a number of existing algorithms [2]. The automated
interval assignment process insures that surface and
volume compatibility are automatically maintained,
based on a minimal number of initially defined
interval settings. The automated interval assignment
tool is based on an optimization method known as
linear programming [3]. The linear programming
procedure produces a solution set of intervals for each
curve that satisfies multiple geometric dependencies
and subgeometric compatibility constraints.

The term linear programming (LP) describes a
particular class of extremization problems in which
the objective function and the constraint relations are
linear functions. The general form of the (single
objective) linear programming model can be stated
mathematically as: find x = (x 1, x2 , . . . , x,) t so as to
opt imize (either maximize or minimize) the objective
function subject to the specified constraints. Note that
each constraint may be of type I (inequality, <),
type II (inequality, >_), or type III (equality, =).

o p t i m i z e . " z = t i n 1 -~- c 2 x 2 -~ �9 �9 �9 -~- CnX n

subject to: a.~,lxl + a~,zx2 + " " " + a l , , x , (<_, = , >_ }b~

a2 ,1x 1 q- a2 ,2x 2 + - . �9 -[- a 2 , n x " (~ , = , >_ }b;

am, t X 1 + am,ZX 2 + " " " -t- am, nX n (~ , = , >_ } b m

x l , x 2 , . . . , x n ~ O

Because the necessary conditions for an interior
minimum is the almihilation of the first derivative of
the function with respect to the design variables, linear
programming problems have a special feature. That
is, the derivatives of the objective function with respect
to the design variables are constants which are not
necessarily zeros. This implies that the extremum of
the linear programming problem cannot be located in
the interior of the feasible design space and, therefore,
must lie on the boundary of the design space described
by the constraint relations. Since the constraint
relations are also linear functions of the variables,
the optimum design must lie at the intersection of two
or more constraint functions, unless the binding
constraint is parallel to the contours of the objective
function. The class of linear programming problems,
involving large numbers of variables and constraints
are usually solved by an extremely efficient and
reliable method known as the simplex method [4].

The development of appropriate constraint equa-
tions is the foremost concern when formulating linear

X1,

%1,

x i is replaced by
contraints

programming problems for general meshing algor-
ithms. The use of integer programming has been
explored by Tam and Armstrong [21, and is extended
here for use by the pseudo-decomposition, submapping
algorithm. The method of "i-j unfolding' is presented
as a novel technique for reorganizing surface geometry
for the purpose of formulating constraint equations
that are conducive to producing submapping solution
sets. As described in Section 2.2, the purpose of the
~ traversals is to classify geometric curves of each
surface ('+ i', '+j ' , ' - i ' , or ' - j ') as they relate to the
local ' i - j ' coordinate system.

The classification process starts at an arbitrary
vertex and traverses the surface vertices in a counter-
clockwise direction. The first curve is arbitrarily
assigned to be in the '+ i' direction. As the geometric
boundary curves are traversed, the next curve is
classified based on the 'surface vertex type' of the
vertex between it and the previous curve. Figure 6
(left) shows an ' i - j ' classification of a surface in its
local ' i - j ' coordinate system. After the classification
of curves is complete, the unfolded surface geometry
can be formulated. The unfolded surface geometry is
built by taking all curves classified as [+ i] and
grouping them into one side of the unfolded geometry
while all curves classified as [- i] are grouped into
another side that is opposite the [+ i] curves. The
curves classified as [+ j] and i - j] are grouped into
the unfolded geometry in a similar manner. Figure 6
(right) shows the placement of the curves in the
resulting 'unfolded' geometric surface (left).

The method of ' i - j ' traversal classifications elimin-
ates the need for surface or volume decomposition
prior to solving for interval division solutions. Linear
constraints can be directly formulated from the
resulting 'unfolded' surface geometry. The 'unfolded'
surface geometry reflects a four sided surface with
multiple curves on each side. The constraint equations
for the 'unfolded' surface are easily developed (i.e.
[2 +is] = [2 - i s] and [2 + J s] = [2 - J s] . The
following constraint equations were developed using
the ~ surface geometry in Fig. 6.

max imi ze : z = x l + x2 + x3 + x4 + xs + x6 + x7 + xs
minimize: z (x) = - z (x)

subject to." x l = xa + xs + xv

x2 + x6 = x 4 + x8

. . . . xm} > 1, or, xl > bi
bi > 1 f o r 'soft set ~ curves

. . . . x m } = b~

xl = bi f o r 'hard set ' curves

b i f o r 'hard set ' curves in all equal i ty

150 M. Whitetey et aL

. . . . - ~ 7 J - " ~ x \ xi defines curves 1 to 8
on front surface

Corner

End

o[

xs

x7 xs x3
[-i'sl

"Unfo lded" Surface
G e o m e t r y

Constraittt Equations:

[]~+i's] = [Z- i ' s]

[E+j'sl = [E-j,s]

[+i's]
Xl

x6

>

Fig. 6. Local i-j traversaI classifications and resulting 'unfolded' surface geometry.

*Hard set intervals Am other curves assigned
Other curves Soft set with automated solution

Fig. 7. Initial intervat settings and final intervai assignment.

The initial interval settings are shown in Fig. 7 (left).
The curves indicated with a ' * ' are 'hard' set curves,
the other curves indicated are 'soft ' set based on curve
length. The linear program is formulated assuming
that the remaining curves have a lower bound interval
setting of one. After the linear programming problem
is formulated, it is then solved using the simplex
method. The resulting solution set is then applied to
the respective curves. The curves now have interval
assignments that are conducive to submap meshing.
An automatic pseudo-decomposition is formed by the
submappings tool based on the interval division
solution derived for each curve. The resulting mesh is
shown in Fig. 7 (right).

As seen from the resulting mesh Fig. 7 (right), curve
x2 was adjusted to nine intervals and curve x 8 was

adjusted to I8 intervals to provide a mesh solution
that was compatible for submapping. The remaining
curves not initially set were assigned intervals based
on the linear programming solution. In all, four curves
were 'hard' set, five curves were 'soft ' set, and 20
curves had interval assignments determined by the
linear programming solution. It can be seen from the
resulting mesh (right) and initial interval settings (left),
that a minimal number of intervals are required to
produce a compatible mesh that propagates over the
entire volume, these properties of compatibility and
propagation can also be extended to several connected
and interconnected volumes as well. The resulting
mesh also shows that the automated interval assign-
ment algorithm, using the 'unfolded' surface geometry
method, is conducive to producing submap meshes.

Two and Three-Quarter Dimensional Meshing Facilitators 151

4. N-Edged Surface Mapping and
Submapping

To make mapping and submapping more efficient
and reduce propagation of dissections, the surfaces
involved must not be limited to a certain number of
edges. For example, mapping requires four logical
sides, but any number of physical edges are allowed
to lie on those sides. Submapping is a direct approach
to limiting decomposition of geometry but it is
dependent on the n-edged mapping algorithm to map
any surface that does not contain corners or reversals .
These two tools then work together to provide a
reduction in the propagation of dissections.

4.1. N-Edged Surface Mapping

The designation of a logical quadrilateral, fit to the
surface, is required for the mapping of an n-edged
surface. Four vertices are selected that best translate
the surface into a logical quadrilateral. These four
vertices are selected as the logical corners and are
defined with a surface vertex type of end. The surface
vertex type functionality, defined in Section 2.1, can
be used to simplify the process in cases where the
surface geometry could have multiple logical quadri-
lateral fits. The curves between the logical corners are
grouped as a logical side. The logical rectangle that is
formed, is meshed using the two-dimensional mapping
transformations as discussed by Cook and Oaks [-5].
The mapping algorithm works for surfaces where one
logical quadrilateral can be formulated, but where
there are corners or reversals, n-edged submapping is
needed.

4.2. N-Edged Submapping

Many current meshing techniques require the decom-
position of surface geometry into four sided divisions
before the mesh generation can be applied. Sub-
mapping automates the geometry decomposition of
surfaces that contain corner s or reversals; an example
of this is shown in Fig. 8 (left). This automation
is done by breaking the geometry into pseudo-
quadrilateral regions and then mapping these regions
by the standard mapping transformations [5]. A
regular distribution of the grids is produced by
submapping, as is shown in Fig. 8 (right). Using ' i - j '
traversals, submapping locates corners or reversa l s
where the surfaces should be cut and creates virtual
edges to divide the surface into n-edged mappable
regions.

The submapping algorithm assumes that the edges
of the surfaces have already been meshed before it
begins. This enables the submapper to be geometry
independent and use a nodal loop to define the
geometry. A nodal loop is a linked list in which all of
the nodes around the edge of the surface are stored
in a counter-clockwise order. The loop containing the
edge nodes, is then traversed using the ' i - j ' traversals
described in Section 2.2. When corner and reversal
nodes are found they are stored and become the
starting points where pseudo-cuts wilt be made to
divide the surface into simple mappable regions. The
end points, or cut nodes, of the virtual edges, are then
found by their position in ' i - j ' space (see Fig. 9).

To find the 'cut node' in ' i - j ' space each node in
the nodal loop is given an 'i-j ' coordinate according
to the ' i - j ' space traversals for submapping as defined

L_

i i : 1 2:,1

.-..-.,..s-.~.s..~

f ' l " F r '7"" i " " F - ~ ~ ' ~ I ~ i r ~
I..-.~...+...~...4... ,~...

Fig. 8. Example of submapping geometry and resulting mesh.

152 M. Whitetey etai.

(i~ut, J2)
~ (ic~ ~

Virtual Edge

Fig. 9, Corner and cut node.

in Section 2.2. To insure successful surface meshing,
the submapping algorithm insures that the traversal
finishes with the coordinate 10, 0) at the end of the
loop. If incorrect intervals have been assigned, or
some of the interior angles are fuzzy, then the submap
tool will stop. The fuzzy angles can be set by assigning
vertex types to the fuzzy vertices as defined in Section
2.1. Vertices need to be defined properly so that the
~i-j' traversal ends at zero and the submap tool can
successfully mesh the surface. The "i-j ' coordinates
of the nodes are then stored in an ordered 2D array.
The ordering ts simultaneous with the nodes in the
list.

The nodal loop defining the surface is then traversed
to find a matching cut node for the corner node or
reversal node. The cut node is generally defined as the
next closest node that has a matching ' i ' or 'j"

coordinate with the corner or reversal. In Fig. 9 the
corner node is matched up with the next closest node
that has the same 'j ' coordinate as the cut node. Once
a good cut node has been found, a virtual edge is
formed to divide the surface. New nodal loops are then
formed which define the new regions. When a virtual
edge is made, two regions are forme& If both of the
regions still contains corners or reversals, both regions
will be stored and the submapping algorithm will
process one of them until no corner or reversals exist.
Submapping will then return to work on the second
loop until it is finished. If a formed region has no
reversals or corners, the mapping transformations [5]
are applied. If the region still has corners or reversals,

the new nodal loop is stored and the process continues
reeursively. Submapping ~s finished when there are no
regions with corner or reversal nodes and all pseudo-
regions have been meshed.

The virtual edges are interpolated curves, rather
than being straight lines between the cut and corner

nodes. The interpolation occurs in two-dimensions
using the relative position of the cut and corner nodes
and the bounding nodes along the edges that are

between the cut and corner nodes. The virtual edge is
made by interpolating each node in the edge by its
bounding nodes and the corner and cut nodes. Figure
10 shows that the node located at (i Jnow) is
interpolated from the bounding nodes and the cut and
corner nodes. The other nodes between the corner and
cut nodes are created similarly and are then used to
create the virtual edge.

The equations to calculate the interpolated nodes
depend on the ~ direction of the cut and the sign
of the direction. For the case where the cut is in the
' + i ' direction (see Fig. 10), the nodes for the
interpolated edge are found by the following equation:

(x Y Z.ow)

== X (x , y, z)(ibounI, j l) X (J2 - -Jnow)

1 i~ (Low - J l) ' t
- • (x , y , z)(0ooo2,J) • -U;3 /

2 ,

X ~ (X, y, Z)(l l , J) x
-t- 2 , (i 2 - i l) j

! ~" x (i,ow : / 1)) • ~ (x, y, z)(iz, icu~)
2 , (iz - il) /

For each new node, the boundary node's ~i-j'
coordinates change along with its projected (i J, ow)
position. The equation then determines the real space
position of the nodes. With this, the new node is

~h created and then moved onto ~ e surface. After the
nodes are created, they are linked together to define
the virtual edge. Interpolated virtual edges are useful
to help the mesh follow the geometry by mimicking
the node positions around the cuts.

Finally, submapping can be performed for n-
numbers of corners or reversals. As shown in Fig. I 1,
the geometry can have many different features if the
submapper can determine the vertex types success-
fully, either by interior angles or surface vertex types.
Submapping uses interpolated virtual edges to perform
pseudo-decomposition of the surface geometry; it then
maps the decomposed surfaces without physically
altering the geometry. This tool is very powerful in
preventing propagation of geometry decompositions
and leads to volume submapping, which can eliminate
the need for time consuming geometry decomposition.

5. N-Faceted Volume Mapping
and Submapping

To eliminate the need for geometry decomposition.
true 3D mapping is needed. N-faceted volume mapping

Two and Three-Quarter Dimensional Meshing Facilitators 153

+i

+j
' (i2, Jcut)

t

(ibounl, Jl)

O

(inovo Jnow)

(iboun2, J2)

Fig. 10. Node interpolation for virtual edges.

[(il Jcomer)

~ l l l l l l ! ~ I III
l l l l l l l I I I I l l

[l l l l J I I I I l
11 [I I I J

I l l I i l l
I l l I i l l
l i t J i l l

I / II[II I ~II I I I /
Fig. 11. Example of N-number of concavities in geometry.

is a usable toot that automates 3D meshing for objects
that have n-number of faces. Where surface mapping
requires a logical quadrilateral, volume mapping
requires a logical hexahedral. Volume submapping is
another step to further improve 3D meshing. Volume
submapping will automatically use pseudo decompo-
sition, like submapping (see Section 4.2), to break
volumes down into logical hexahedrons.

5.1..~:Faceted Volume Mapping

The volume mapping algorithm has been derived from
the three dimensional mapping transformations [5].
This algorithm picks eight vertices of a volume based
on the number of face elements attached to each
vertex. The 'eight vertices' must only have three faces
attached. This translates the n-faceted volume into a
logical hexahedral. Volume mapping depends on all
of the surfaces of the volume being mappable. Figure
12 (left), displays a volume that is mapped by the

volume mapping tool. This figure shows that a volume
can have many different defining surfaces, yet one
logical cube can be derived that defines the body.

5.2. N-Faeeted Volume Submapping

The ultimate goal in automated mesh generation is to
minimize the manual operations required to produce
quality mesh. Volume submapping will mesh volumes
that contain more than eight 'logical corners' by using
virtual surfaces analogous to submapping using
virtual edges. Unlike submapping however, the virtual
surfaces will be true maps rather than interpolations.
It will also introduce the need for ' i-j-k' traversals
to locate areas where the virtual surfaces should
be placed. Volume submapping is currently under
development. The goal for volume submapping is to
improve usability and reliability in 3D meshing where
uniform grid-like characteristics are desired. An
example of the type of geometry that will be volume
submapped is shown in Fig. 12 (right). This volume
is currently just surface meshed using automated
interval assignments and submapping. The imple-
mentation of volume submapping will eliminate the
need for geometry decomposition on such bodies. This
will be performed by surface submapping, and virtual
surfaces that automatically dissect the volume into
n-faceted volume mapping regions.

6. Conclusions

New tools have been created to enhance finite element
meshing. These tools are automated interval assign-
ment, n-edged mapping and submapping, n-faceted
sweeping, volume mapping and volume submapping.
These tools simplify the mesh generation by auto-
mating many tasks previously done manually.

154 M. Whitetey et al.

Fig. 12. Volume mapping and volume submapping.

Automated interval assignment provides a number
of benefits to 2.5D, 2.75D and 3D meshing: Automated
interval assignment eliminates the tedious and time
consuming process of manually designating interval
settings on all curves of complex geometry. It also
minimizes the number of intervals that are required
to produce a compatible mesh that propagates over
an entire volume. These properties of compatibility
and propagation extend beyond a single volume and
make it possible to produce interval assignment
solutions for several connected and interconnected
volumes. Finally the unfolded geometry method based
on ' i - j ' traversals provides an extremely efficient
method for formulating linear programming solutions
that are conducive to submap meshing.

N-edged mapping and submapping reduce the need
for costly manual surface geometry decompositions.
N-edged mapping requires no decomposition when
one logical quadrilateral can be formed on the surface.
Submapping uses n-edged mapping to reduce manual
surface decomposition by automating the process,
using pseudo-cuts called interpolated virtual edges.
The ' i - j ' traversal method is an effective means to
identify the cut nodes relative to the corner or reversal
nodes. In cases where fuzzy angles exist around
vertices, surface vertex settings can be used to improve
the mesh. Submapping produces regular quadrilateral
element distribution with very little use interaction.

True 3D mesh generation has often been limited to
geometry that has been dissected into hexahedral

volumes. N-faceted volume mapping and submappmg
are algorithms that automate this process when
block-like elements are desired. N-faceted volume
mapping is a_n application of the 3D mapping trans-
formations derived by Cook and Oaks [5], in which
volumes are translated into a [ogical hexahedron.
Volume submapping is the next step in the automation
of the volume mapping of volumes that contain more
than one logical hexahedral subvotume. Volume
submapping takes the pseudo-decomposition method
to a higher level by using mapped virtual surfaces to
reduce decomposition of volumes. It uses ~i- j -k '
traversals to locate the regions for cutting. Volume
submapping is currently in the developmental stage
and is not currently functional.

References

!. Gilkey, A.P.; Sjaardema, G.D, (1989) GEN3D: A GENESIS
Database 2D to 3D transformation program. Technical Report
SAND89-0485, Sandia National Laboratories, Albuquerque,
New Mexico, March

2. Yam, T.K.H:; Armstrong, C.G. (1993) Finite element mesh
control by integer programming, International Journal for
Numerical Methods in Engineering, 3~, 2581-2605

3. Wolfe, C.S. (t985) Linear Programming Algorithms, Prentice-
Hall, Virginia

4. Haftka, R.T.; Gurdal, Z. (1992) Elements of Structural Optimiz-
ation, Kluwer Academic Publishers, Massachusetts

5. Cook, W:A:; Oaks, W.R. (1983) Mapping methods for generating
three-dimensional meshing, Computers in Mechanical Engin-
eering, I, 67-72.

