
Engineering with Computers (I996) 12:!44-t54 
�9 1996 Springer-Verlag London Limited Engineering 

C(~mputers 

Two and Three-Quarter Dimensional Meshing Facilitators 

t M .  W h i t e l e y ,  1D. W h i t e ,  ~S. B e n z l e y  a n d  2T. B l a c k e r  

i Brigham Young University, Provo, USA; 2 Sandia National Labs, Albuquerque, USA 

Abstract. This paper presents generated enhancements for 
robust 'two and three-quarter dimensional meshing', including: 
(1) automated interval assignment by integer programming for 
submapped surfaces and volumes, (2) surface submapping, and 
(3) volume submapping. An introduction to the simplex 
method, an optimization technique of integer programming, is 
presented. Simplification of complex geometry is required for 
the formulation of the integer programming problem. A 
method of 'i-j unfolding' is defined which explains how 
irregular geometry can be realigned into a simplified form 
that is suitable for submap interval assignment solutions. Also 
presented is the processes by which submapping eliminates 
the decomposition of surface geometry, through a pseudo- 
decomposition process, producing suitable mapped meshes. 
The process of submapping involves the creation of 'interpo- 
lated virtual edges', user d@ned 'vertex types' and ' i - j-k 
space' traversals. The creation of 'interpolated virtual edges' 
is the method by which submapping automatically subdivides 
surface geometry. The 'interpolated virtual edge' is formulated 
according to an interpolation scheme using the node discret- 
ization of curves on the surface. User defined 'vertex types' 
allow direct user control of surface decomposition and interval 
assignment by modifying ~ space' traversals. Volume 
submapping takes the geometry decomposition to a higher 
level by using 'mapped virtual surfaces' to eliminate decom- 
position of complex volumes. 

Keywords. Automatic mesh generation; Mesh control; 
Mapped meshing 

1. Introduction 

The finite element method, although powerful and 
versatile, has long been plagued with the problem 
of effective discretization of geometry. The need for 
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more powerful meshing aigorithms continues, but no 
one technique has appeared which can fill the needs 
of all meshing tasks. Therefore. various mesh gener- 
ation research efforts continue in an attempl to 
automate these meshing processes (Fig. 1). The 
transformation of a two dimensional (2D) mesh into 
a three dimensional (3D) volume and shell elements 
has long been a useful tool in the arsenal of algorithms 
available for 3D meshing [1], A 2D mesh simply 
extruded in some general third dimension produces 
what is termed a two and one half dimensional (2.5D) 
volume mesh. However, any number of these 2.5D 
pieces can be combined to form extremely complex 
meshes as shown in Fig. 2. As can be seen ,~n this figure. 
these pieces can be extruded in logically orthogona! 
directions with respect to each other. We have termed 
this general meshing method of combimng orthog- 
onally independent 2.5D pieces as being two and three 
quarter dimensional (2.75D). 

Fig. t. Mesh generation using automated interval assignment and 
submapping tools. 
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Fig. 2. An example of a complex 
2.75D mesh. 

In their simplest form, 2.5D tools depend only on 
a 2D mesh as input. Thus they have often been 
developed independent of any formal geometric 
description of the 3D geometry. This disconnection 
from the actual geometry presents problems in 
generalizing the algorithms to general sweeps, in 
accurately combining nodes shared between merged 
pieces, and in  applying and verifying boundary 
conditions. It also prevents the effective use of general 
3D CAD data when available. 

Another limitation that comes from the dis- 
connection from actual geometry is that any decom- 
position into a 2.5D piece must propagate through 
the entire geometry as shown in Fig. 3. The example 
shown in this figure is simplistic; however, it is easy 
to envision the difficulties caused by propagating 
decompositions in more complex geometries. With 

the proper tools, including those described in this 
paper, the propagation can be largely eliminated. 
Figure 4 shows how these tools would be effective at 
reducing the decomposition of this object to only one 
cut. Implicit for this type of decomposition to work 
effectively would be the use of the following techniques 
which are presented in this paper. 

| Automated interval assignment. Automated assign- 
ment of edge discretization levels (interval assign- 
ment) is necessary for any type of efficient use. With 
the submapping tool this is especially important to 
automate correctly, as interval propagation is 
nontrivial. 

| N-edged surface mapping and submapping. Enhanced 
mapping and submapping techniques allow the 
necessary regular grid to be established on surfaces 
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Fig. 3. Simple geometry showing the effect of propagating decompositions, 
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/ 
Fig. 4. Non-propagating decomposition allowed with the proper 2.75D meshing tools. 
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containing any number of edges (n-edged) but with 
block-like characteristics. The surface between the 
two blocks in Fig. 4 is such a surface. This tool 
eliminates the need to break this surface into only 
four-sided divisions. 

| User defined surface vertex types. To insure that the 
required mesh can always be obtained from the 
mapping and submapping tools, the user may need 
to specifically identify the type of mapping desired 
at certain vertices. That is true where vertex angles 
atone are insufficient to determine the desired 
behavior. 

| N-faceted volume mappin 9 and submapping. When a 
propagation limiting decomposition is undertaken, 
many of the bodies resulting from the decomposition 
are block-like in nature, but are multifaceted (more 
than just 6 faces/block). The volume mapping tool 
must be robust enough to handle these geometries. 
A volume submapping algorithm is likewise useful 
in eliminating the need for many decompositions. 

�9 N-faceted sweeping. As with mapping, to limit 
decompositions, the 2.5D sweeping tools must also 
handle multifaceted/multi-segmented sweeps such 
as the lower volume shown in Fig. 4. The sweep 
from the front surface to the back will require the 
tool to traverse two surfaces along the top, but only 
one surface on the left, right and bottom. 

This paper discusses these tools and their interaction. 
First, the idea of 'surface vertex types', ' i - j -k '  
traversals, and 'hard and soft interval settings' will be 
defined. These definitions are needed for proper 
discussion of both the automated interval assignment 
process and submapping techniques. Finally, the 
n-faceted volume mapping, submapping and general 
sweeping tools are discussed. 

2. Definitions 

The definitions of 'surface vertex types', ' i - j -k  tra- 
versals' and 'hard/soft' interval settings are introduced 
in this section. They are essential for the proper 
presentation of automated interval assignment and 
submapping tools. 

2.1. Surface Vertex Type 

The 'surface vertex type' provides the absolute classifi- 
cation of the interior surface angles (end, side, corner, 
reversal) at specified vertices. The 'surface vertex type' 
allows the user to control the mapping and sub- 
mapping algorithms. The following are possible 
'surface vertex types' (see Fig. 5): 

o End (normally re/2): An end vertex is a vertex at 
which only one element is inserted. A row of quad- 
rilateral elements terminates at an end vertex. 
Side (normally ~c): A side vertex is a vertex which is 
attached to two quadrilateral elements. A row of 
elements continues past a side vertex. 

| Corner (normally 3rc/2): A corner vertex is a vertex 
which is attached to three quadrilateral dements. 
A row of elements turns a logical corner around the 
corner vertex. 

o Reversal (normally 270: A reversal vertex is a vertex 
which is attached to four quadrilateral elements. A 
row of elements reverses direction at a reversal 
vertex. 

The 'surface vertex type' classifications control the 
~ traversals of the automated interval assignment 
and submapping algorithms (defined in Section 2.2). 
It also controls which vertices will be selected as 
'logical corners' for the mapping algorithm. 

CORNER 

J 

END 

j REVERSAL 

SIDE 

END 

,4 

REVERSAL 

END / . . . . /  SIDE 

Fig. 5. Surface vertex type examples. 
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The interior surface angle at a vertex may not fail 
into a single specific classification. Several categories 
are possible depending on the topology and geometry 
of the model. For instance, depending on the geometry, 
an angle of 270 ~ may be classified as either a corner, 
side or reversal. The 'surface vertex type' is necessary 
to allow explicitly defining interior surface angles that 
may fall into a 'fuzzy' classification. The user can 
specify the 'surface vertex type' to classify these 'fuzzy' 
angles, thus providing the control to produce the 
desired meshing results. In all cases the algorithms 
will classify all vertices based on their interior surface 
angle measure unless the 'surface vertex type' has been 
specified to explicitly classify the vertex. 

2.2. i - j - k  Traversals 

The ' i - j -k '  traversals are based on a local ' i - j -k '  
cartesian coordinate system. The coordinate system is 
local to the surface or volume geometry that is being 
evaluated. The traversal classification definition is the 
same for both automated interval assignment and 
submapping algorithms, although they are imple- 
mented for different purposes. For  surface mapping/ 
submapping and for automated interval assignment 
only a 2D subset (i.e. ' i-j '  traversals) are necessary, 
while the 3D submapping requires fult 3D ' i - j -k '  
traversals. 

The ' i-j '  traversals classify geometric curves on 
each surface as '  + i ' , '  + j ' , ' -  i' o r '  - j '  in the local ' i-j '  
coordinate system. The classification of the surface 
curves, in the local ' i-j '  coordinate system, is based 
on the 'sarface vertex type' at each geometric vertex. 
The classification process starts at an arbitrary vertex 
and traverses the surface vertices in a counter- 
clockwise (CCW) direction. The first curve is arbitrarily 
assigned to be in the ~  direction. As the geometric 
boundary curves are traversed, the next curve is 
classified based on the 'surface vertex type' of the 
vertex between it and the previous curve. For  example, 
if a curve was classified as ' + i' and if the next CCW 
curve was attached to the previous carve With a 
'surface vertex type' of type end, then the forward 
curve would be classified as ' + j ' .  The traversals in 
~i-j ~ space are shown in Table i. Using this table in 
the example just given, the vertex is an end case, the 
input state was ' + i ' ,  so the new direction can be 
determined from the table as ' + j ' .  Note: for side case 
(normally 180~ the ' i - j '  classification does not 
change from curve to curve. 

During submapping, not only is it important to 
know a direction, but an actual (i, j )  coordinate value. 
This assignment is straightforward~ assuming an edge 
mesh has been generated using appropriate interval 
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Table !. Traversa[ sables 

Input state End Side Corner Reversal 

+i  +j  +i  - j  - i  
+j - i +j  + i - j  
- i  - j  - i  +j  §  
- j  + i - j  - i + j  

assignments. The node at the first vertex is assigned 
a coordinate of (0, 0) in ' i - / '  space, and nodes along 
the first curve (assumed to be in the '-~ i' direction) 
are incremented in ' i '  (e.g. (1, 0), (2,0), etc.). As 
vertices are reached which change the ' i-j '  direction. 
as described above, the appropriate coordinate is 
incremented or decremented. Extending the previous 
example, if an end vertex is reached and the node at 
that vertex was assigned (9, 0) as its (i, j )  coordinate, 
the next node would increment in the , j  direction 
(i.e. its ~i-j' coordinate would be (9, 1))/see Table 1). 
Surface vertex classifications and ' i - j '  traversals 
provide a method to classify surface boundary curves 
and to assign all meshed nodes on the surface 
boundary an ' i-j '  coordinate in the local 'i-j" co- 
ordinate system. 

3.3. Hard and Soft Interval Settings 

In the meshing procedure, the user often desires 
varying levels of control. For interval assignment, this 
translates to allowing the user to specify an exact 
number ( 'hard') or an approximate number ('soft') of 
intervals. 

'Hard '  set intervals are defined as an absolute 
number of intervals that are assigned to a curve. 
Intervals that are designated as ' ha rd '  are not 
adjusted by the automated interval assignment 
algorithm. 

'Soft '  set intervals are defined as an approximate 
number of intervals that are assigned to a curve, 
surface or volume rather than an absolute number. 
Intervals that are designated as 'soft' are taken as a 
lower bound by the automated interval assignment 
algorithm. If a curve is not defined, the interval 
assignment defaults to a 'soR' that produces one 
interval on the curve. Adjustments to 'soft '  curves are 
minimized by the automated interval ass,2gnment 
algorithm while satisfying dependencies and com- 
patibility constraints for all geometric surfaces. 

3. A u t o m a t e d  I n t e r v a l  A s s i g n m e n t  

Appropriate interval assignment is critical to producing 
high quality meshes for mapped and submapped 
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surfaces or volumes. It can be a tedious and time 
consuming process to manually designate interval 
settings on all curves of complex geometry, especially 
since satisfying compatibility for meshing primitives 
is required to produce acceptable mapped meshes for 
a number of existing algorithms [2]. The automated 
interval assignment process insures that surface and 
volume compatibility are automatically maintained, 
based on a minimal number of initially defined 
interval settings. The automated interval assignment 
tool is based on an optimization method known as 
linear programming [3]. The linear programming 
procedure produces a solution set of intervals for each 
curve that satisfies multiple geometric dependencies 
and subgeometric compatibility constraints. 

The term linear programming (LP) describes a 
particular class of extremization problems in which 
the objective function and the constraint relations are 
linear functions. The general form of the (single 
objective) linear programming model can be stated 
mathematically as: find x = (x 1, x2 , . . . ,  x,) t so as to 
opt imize  (either maximize or minimize) the objective 
function subject  to the specified constraints. Note that 
each constraint may be of type  I (inequality, <), 
type II (inequality, >_), or type  III (equality, =). 

o p t i m i z e . "  z = t i n  1 -~- c 2 x  2 -~ �9 �9 �9 -~- CnX n 

subject  to: a.~,lxl + a~,zx2 + " " " + a l , , x ,  (<_, = ,  >_ }b~ 

a2 ,1x  1 q- a2 ,2x  2 + -  . �9 -[- a 2 , n x "  ( ~ ,  = ,  >_ }b; 

am, t X  1 + am,ZX 2 + " " " -t- am, nX  n ( ~ ,  = ,  >_ } b m  

x l ,  x 2 ,  . . . , x n ~ O  

Because the necessary conditions for an interior 
minimum is the almihilation of the first derivative of 
the function with respect to the design variables, linear 
programming problems have a special feature. That 
is, the derivatives of the objective function with respect 
to the design variables are constants which are not 
necessarily zeros. This implies that the extremum of 
the linear programming problem cannot be located in 
the interior of the feasible design space and, therefore, 
must lie on the boundary of the design space described 
by the constraint relations. Since the constraint 
relations are also linear functions of the variables, 
the optimum design must lie at the intersection of two 
or more constraint functions, unless the binding 
constraint is parallel to the contours of the objective 
function. The class of linear programming problems, 
involving large numbers of variables and constraints 
are usually solved by an extremely efficient and 
reliable method known as the simplex method [4]. 

The development of appropriate constraint equa- 
tions is the foremost concern when formulating linear 

X1, 

%1, 

x i is replaced by 
contraints  

programming problems for general meshing algor- 
ithms. The use of integer programming has been 
explored by Tam and Armstrong [21, and is extended 
here for use by the pseudo-decomposition, submapping 
algorithm. The method of "i-j  unfolding' is presented 
as a novel technique for reorganizing surface geometry 
for the purpose of formulating constraint equations 
that are conducive to producing submapping solution 
sets. As described in Section 2.2, the purpose of the 
~ traversals is to classify geometric curves of each 
surface ( '+ i', '+j ' ,  ' - i ' ,  or ' - j ' )  as they relate to the 
local ' i - j '  coordinate system. 

The classification process starts at an arbitrary 
vertex and traverses the surface vertices in a counter- 
clockwise direction. The first curve is arbitrarily 
assigned to be in the '+  i' direction. As the geometric 
boundary curves are traversed, the next curve is 
classified based on the 'surface vertex type' of the 
vertex between it and the previous curve. Figure 6 
(left) shows an ' i - j '  classification of a surface in its 
local ' i - j '  coordinate system. After the classification 
of curves is complete, the unfolded surface geometry 
can be formulated. The unfolded surface geometry is 
built by taking all curves classified as [ + i ]  and 
grouping them into one side of the unfolded geometry 
while all curves classified as [ - i ]  are grouped into 
another side that is opposite the [ + i ]  curves. The 
curves classified as [ + j ]  and i - j ]  are grouped into 
the unfolded geometry in a similar manner. Figure 6 
(right) shows the placement of the curves in the 
resulting 'unfolded' geometric surface (left). 

The method of ' i - j '  traversal classifications elimin- 
ates the need for surface or volume decomposition 
prior to solving for interval division solutions. Linear 
constraints can be directly formulated from the 
resulting 'unfolded' surface geometry. The 'unfolded' 
surface geometry reflects a four sided surface with 
multiple curves on each side. The constraint equations 
for the 'unfolded' surface are easily developed (i.e. 
[ 2  +is] = [ 2  - i s ]  and [ 2 + J s ] = [ 2 - J s ] .  The 
following constraint equations were developed using 
the ~ surface geometry in Fig. 6. 

max imi ze :  z = x l  + x2 + x3 + x4 + xs  + x6 + x7 + xs  
minimize:  z ( x )  = - z ( x )  

subject  to." x l  = xa + xs  + xv  

x2 + x6 = x 4 + x8 

. . . .  xm} > 1, or, xl  > bi 
bi > 1 f o r  'soft set  ~ curves 

. . . .  x m }  = b~ 

xl = bi f o r  'hard set '  curves 

b i f o r  'hard set '  curves  in all equal i ty  
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. . . . - ~ 7  J - " ~  x \ xi defines curves 1 to 8 
on front surface 

Corner 

End 

o[ 

xs 

x7 xs x3 
[-i'sl 

"Unfo lded"  Surface 
G e o m e t r y  

Constraittt Equations: 

[]~+i's] = [Z- i ' s ]  

[E+j'sl = [E-j,s] 

[+i's] 
Xl 

x6 

> 

Fig. 6. Local i-j traversaI classifications and resulting 'unfolded' surface geometry. 

*Hard set intervals Am other curves assigned 
Other curves Soft set with automated solution 

Fig. 7. Initial intervat settings and final intervai assignment. 

The initial interval settings are shown in Fig. 7 (left). 
The curves indicated with a ' * '  are 'hard' set curves, 
the other curves indicated are 'soft '  set based on curve 
length. The linear program is formulated assuming 
that the remaining curves have a lower bound interval 
setting of one. After the linear programming problem 
is formulated, it is then solved using the simplex 
method. The resulting solution set is then applied to 
the respective curves. The curves now have interval 
assignments that are conducive to submap meshing. 
An automatic pseudo-decomposition is formed by the 
submappings tool based on the interval division 
solution derived for each curve. The resulting mesh is 
shown in Fig. 7 (right). 

As seen from the resulting mesh Fig. 7 (right), curve 
x2 was adjusted to nine intervals and curve x 8 was 

adjusted to I8 intervals to provide a mesh solution 
that was compatible for submapping. The remaining 
curves not initially set were assigned intervals based 
on the linear programming solution. In all, four curves 
were 'hard' set, five curves were 'soft '  set, and 20 
curves had interval assignments determined by the 
linear programming solution. It can be seen from the 
resulting mesh (right) and initial interval settings (left), 
that a minimal number  of intervals are required to 
produce a compatible mesh that propagates over the 
entire volume, these properties of compatibility and 
propagation can also be extended to several connected 
and interconnected volumes as well. The resulting 
mesh also shows that the automated interval assign- 
ment algorithm, using the 'unfolded'  surface geometry 
method, is conducive to producing submap meshes. 
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4. N-Edged Surface Mapping and 
Submapping 

To make mapping and submapping more efficient 
and reduce propagation of dissections, the surfaces 
involved must not be limited to a certain number of 
edges. For example, mapping requires four logical 
sides, but any number of physical edges are allowed 
to lie on those sides. Submapping is a direct approach 
to limiting decomposition of geometry but it is 
dependent on the n-edged mapping algorithm to map 
any surface that does not contain corners  or reversals .  
These two tools then work together to provide a 
reduction in the propagation of dissections. 

4.1. N-Edged Surface Mapping 

The designation of a logical quadrilateral, fit to the 
surface, is required for the mapping of an n-edged 
surface. Four vertices are selected that best translate 
the surface into a logical quadrilateral. These four 
vertices are selected as the logical corners and are 
defined with a surface vertex type of end. The surface 
vertex type functionality, defined in Section 2.1, can 
be used to simplify the process in cases where the 
surface geometry could have multiple logical quadri- 
lateral fits. The curves between the logical corners are 
grouped as a logical side. The logical rectangle that is 
formed, is meshed using the two-dimensional mapping 
transformations as discussed by Cook and Oaks [-5]. 
The mapping algorithm works for surfaces where one 
logical quadrilateral can be formulated, but where 
there are corners or reversals, n-edged submapping is 
needed. 

4.2. N-Edged Submapping 

Many current meshing techniques require the decom- 
position of surface geometry into four sided divisions 
before the mesh generation can be applied. Sub- 
mapping automates the geometry decomposition of 
surfaces that contain corner s  or reversals;  an example 
of this is shown in Fig. 8 (left). This automation 
is done by breaking the geometry into pseudo- 
quadrilateral regions and then mapping these regions 
by the standard mapping transformations [5]. A 
regular distribution of the grids is produced by 
submapping, as is shown in Fig. 8 (right). Using ' i - j '  
traversals, submapping locates corners  or reversa l s  
where the surfaces should be cut and creates virtual 
edges to divide the surface into n-edged mappable 
regions. 

The submapping algorithm assumes that the edges 
of the surfaces have already been meshed before it 
begins. This enables the submapper to be geometry 
independent and use a nodal loop to define the 
geometry. A nodal loop is a linked list in which all of 
the nodes around the edge of the surface are stored 
in a counter-clockwise order. The loop containing the 
edge nodes, is then traversed using the ' i - j '  traversals 
described in Section 2.2. When corner and reversal 
nodes are found they are stored and become the 
starting points where pseudo-cuts wilt be made to 
divide the surface into simple mappable regions. The 
end points, or cut nodes, of the virtual edges, are then 
found by their position in ' i - j '  space (see Fig. 9). 

To find the 'cut node' in ' i - j '  space each node in 
the nodal loop is given an 'i-j '  coordinate according 
to the ' i - j '  space traversals for submapping as defined 

L_ 

i i : 1 2:,1 

.-..-.,..s-.~. .......... ..s..~ 

f ' l " F r  '7"" i " "  F - ~  ~ ' ~ I ~ i  ........ r ........ ~ .... 
I..-.~...+...~...4... ,~... 

Fig. 8. Example of submapping geometry and resulting mesh. 
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(i~ut, J2) 
~ (ic~ ~ 

Virtual Edge 

Fig. 9, Corner and cut node. 

in Section 2.2. To insure successful surface meshing, 
the submapping algorithm insures that the traversal 
finishes with the coordinate 10, 0) at the end of the 
loop. If incorrect intervals have been assigned, or 
some of the interior angles are fuzzy, then the submap 
tool will stop. The fuzzy angles can be set by assigning 
vertex types to the fuzzy vertices as defined in Section 
2.1. Vertices need to be defined properly so that the 
~i-j' traversal ends at zero and the submap tool can 
successfully mesh the surface. The "i-j '  coordinates 
of the nodes are then stored in an ordered 2D array. 
The ordering ts simultaneous with the nodes in the 
list. 

The nodal loop defining the surface is then traversed 
to find a matching cut node for the corner node or 
reversal node. The cut node is generally defined as the 
next closest node that has a matching ' i '  or 'j" 

coordinate with the corner or reversal. In Fig. 9 the 
corner node is matched up with the next closest node 
that has the same 'j '  coordinate as the cut node. Once 
a good cut node has been found, a virtual edge is 
formed to divide the surface. New nodal loops are then 
formed which define the new regions. When a virtual 
edge is made, two regions are forme& If both of the 
regions still contains corners or reversals, both regions 
will be stored and the submapping algorithm will 
process one of them until no corner or reversals exist. 
Submapping will then return to work on the second 
loop until it is finished. If a formed region has no 
reversals or corners, the mapping transformations [5] 
are applied. If the region still has corners or reversals, 

the new nodal loop is stored and the process continues 
reeursively. Submapping ~s finished when there are no 
regions with corner or reversal nodes and all pseudo- 
regions have been meshed. 

The virtual edges are interpolated curves, rather 
than being straight lines between the cut and corner 

nodes. The interpolation occurs in two-dimensions 
using the relative position of the cut and corner nodes 
and the bounding nodes along the edges that are 

between the cut and corner nodes. The virtual edge is 
made by interpolating each node in the edge by its 
bounding nodes and the corner and cut nodes. Figure 
10 shows that the node located at (i . . . .  Jnow) is 
interpolated from the bounding nodes and the cut and 
corner nodes. The other nodes between the corner and 
cut nodes are created similarly and are then used to 
create the virtual edge. 

The equations to calculate the interpolated nodes 
depend on the ~ direction of the cut and the sign 
of the direction. For the case where the cut is in the 
' + i '  direction (see Fig. 10), the nodes for the 
interpolated edge are found by the following equation: 

(x . . . .  Y . . . .  Z.ow) 

== X (x ,  y, z)(ibounI, j l  ) X (J2 - -Jnow) 

1 i~ (Low - J l ) '  t 
- • ( x ,  y ,  z)( 0ooo2,J ) • -U;3 / 

2 , 

X ~ (X, y, Z)( l l ,  J . . . . . .  ) x 
-t- 2 , (i 2 - i l )  j 

! ~" x (i,ow : / 1 ) )  • ~ (x, y, z)(iz, icu~) 
2 , (iz - il) / 

For each new node, the boundary node's ~i-j' 
coordinates change along with its projected (i . . . .  J, ow) 
position. The equation then determines the real space 
position of the nodes. With this, the new node is 

~h created and then moved onto ~ e surface. After the 
nodes are created, they are linked together to define 
the virtual edge. Interpolated virtual edges are useful 
to help the mesh follow the geometry by mimicking 
the node positions around the cuts. 

Finally, submapping can be performed for n- 
numbers of corners or reversals. As shown in Fig. I 1, 
the geometry can have many different features if the 
submapper can determine the vertex types success- 
fully, either by interior angles or surface vertex types. 
Submapping uses interpolated virtual edges to perform 
pseudo-decomposition of the surface geometry; it then 
maps the decomposed surfaces without physically 
altering the geometry. This tool is very powerful in 
preventing propagation of geometry decompositions 
and leads to volume submapping, which can eliminate 
the need for time consuming geometry decomposition. 

5. N-Faceted Volume Mapping 
and Submapping 

To eliminate the need for geometry decomposition. 
true 3D mapping is needed. N-faceted volume mapping 
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' (i2, Jcut) 
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(iboun2, J2) 

Fig. 10. Node interpolation for virtual edges. 
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I l l  I i l l  
I l l  I i l l  
l i t  J i l l  

I /  II[II I ~II I I I /  
Fig. 11. Example of N-number of concavities in geometry. 

is a usable toot that automates 3D meshing for objects 
that have n-number of faces. Where surface mapping 
requires a logical quadrilateral, volume mapping 
requires a logical hexahedral. Volume submapping is 
another step to further improve 3D meshing. Volume 
submapping will automatically use pseudo decompo- 
sition, like submapping (see Section 4.2), to break 
volumes down into logical hexahedrons. 

5.1..~:Faceted Volume Mapping 

The volume mapping algorithm has been derived from 
the three dimensional mapping transformations [5]. 
This algorithm picks eight vertices of a volume based 
on the number of face elements attached to each 
vertex. The 'eight vertices' must only have three faces 
attached. This translates the n-faceted volume into a 
logical hexahedral. Volume mapping depends on all 
of the surfaces of the volume being mappable. Figure 
12 (left), displays a volume that is mapped by the 

volume mapping tool. This figure shows that a volume 
can have many different defining surfaces, yet one 
logical cube can be derived that defines the body. 

5.2. N-Faeeted Volume Submapping 

The ultimate goal in automated mesh generation is to 
minimize the manual operations required to produce 
quality mesh. Volume submapping will mesh volumes 
that contain more than eight 'logical corners' by using 
virtual surfaces analogous to submapping using 
virtual edges. Unlike submapping however, the virtual 
surfaces will be true maps rather than interpolations. 
It will also introduce the need for ' i-j-k' traversals 
to locate areas where the virtual surfaces should 
be placed. Volume submapping is currently under 
development. The goal for volume submapping is to 
improve usability and reliability in 3D meshing where 
uniform grid-like characteristics are desired. An 
example of the type of geometry that will be volume 
submapped is shown in Fig. 12 (right). This volume 
is currently just surface meshed using automated 
interval assignments and submapping. The imple- 
mentation of volume submapping will eliminate the 
need for geometry decomposition on such bodies. This 
will be performed by surface submapping, and virtual 
surfaces that automatically dissect the volume into 
n-faceted volume mapping regions. 

6. Conclusions 

New tools have been created to enhance finite element 
meshing. These tools are automated interval assign- 
ment, n-edged mapping and submapping, n-faceted 
sweeping, volume mapping and volume submapping. 
These tools simplify the mesh generation by auto- 
mating many tasks previously done manually. 
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Fig. 12. Volume mapping and volume submapping. 

Automated interval assignment provides a number 
of benefits to 2.5D, 2.75D and 3D meshing: Automated 
interval assignment eliminates the tedious and time 
consuming process of manually designating interval 
settings on all curves of complex geometry. It also 
minimizes the number of intervals that are required 
to produce a compatible mesh that propagates over 
an entire volume. These properties of compatibility 
and propagation extend beyond a single volume and 
make it possible to produce interval assignment 
solutions for several connected and interconnected 
volumes. Finally the unfolded geometry method based 
on ' i - j '  traversals provides an extremely efficient 
method for formulating linear programming solutions 
that are conducive to submap meshing. 

N-edged mapping and submapping reduce the need 
for costly manual surface geometry decompositions. 
N-edged mapping requires no decomposition when 
one logical quadrilateral can be formed on the surface. 
Submapping uses n-edged mapping to reduce manual 
surface decomposition by automating the process, 
using pseudo-cuts called interpolated virtual edges. 
The ' i - j '  traversal method is an effective means to 
identify the cut nodes relative to the corner or reversal 
nodes. In cases where fuzzy angles exist around 
vertices, surface vertex settings can be used to improve 
the mesh. Submapping produces regular quadrilateral 
element distribution with very little use interaction. 

True 3D mesh generation has often been limited to 
geometry that has been dissected into hexahedral 

volumes. N-faceted volume mapping and submappmg 
are algorithms that automate this process when 
block-like elements are desired. N-faceted volume 
mapping is a_n application of the 3D mapping trans- 
formations derived by Cook and Oaks [5], in which 
volumes are translated into a [ogical hexahedron. 
Volume submapping is the next step in the automation 
of the volume mapping of volumes that contain more 
than one logical hexahedral subvotume. Volume 
submapping takes the pseudo-decomposition method 
to a higher level by using mapped virtual surfaces to 
reduce decomposition of volumes. It uses ~i- j -k '  
traversals to locate the regions for cutting. Volume 
submapping is currently in the developmental stage 
and is not currently functional. 
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