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1 Introduction 

1.1 Sequences, trees and branching sets 

Let N (respectively N + )  be the set o f  non-negative integers (respectively pos- 
itive) with the discrete topology, let T = U~=0N k be the set o f  all finite se- 

quences and let I = N N+ be the set o f  all infinite sequences i = ( ib  i2 , . . . )  
with the product topology; we make the convention that N o contains the null 
sequence (3. I f  i = (i~,i2 . . . . .  in) (n < oo), we write [i] = n for the length o f  
i, ilk = (il,i2 . . . . .  ik) (k < n) for the curtailement o f  i after k terms and, i f  
n < ec,  we put i* = (il . . . .  ,in-bin + 1); for convenience, we define I~l = 0 
and il0 = (~. I f  a c T and ~ E TUI ,  we write a*z for the sequence obtained 
by juxtaposi t ion o f  the terms o f  a and ~. We partially order T by writing a < r 
(or z > a )  to mean that the sequence z is an extension o f  r that is, z = a*z / 
for some sequence rl C T; we use a similar notation i f  cr C T and z E i .  We 
remark that the null sequence (~ < i for any sequence i. Finally, i f  i and j are 
two sequences o f  T or I ,  we write i A j for the common sequence of  i and j, 
that is, the maximal  sequence a such that cr < i and ~ < j. It is easily seen 
that I is metrisable, and a possible choice o f  metric is given by  

d(i,  j)  = 2 -li/ql . 

A tree 3- is a subset of  T such that 

(a) (? e Y; 
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(b) if  a E 3-- then a*i E ~-- if and only if 0 < i < Z a for some Z ~ E N; 
(c) a E J -  implies a '  r 3-  for any ~r' < 

(See Neveu 1986). The sequences o- of J -  may be identified with the vertices 
of a directed graph with o- joined to a*i in the obvious way; the null sequence 
0 corresponds to the root of  the tree; for all o- E J - , Z  * represents the number 
of  edges going out from or. Let 

J - = { i e I :  V n ~ N ,  i t n e J  ) 

be the boundary of Y .  I f  Z ~ < ~ for all o- E Y ,  then as a suhspace o f / ,  J -  
is a separable compact topoloeical space (cf. Liu 1993, chap.l, Lemma 2.2). 

Let (Q, d , P )  be a probability space. Suppose that Pk ----> 0, that ~k-0Pk~176 ---- 1 
and let (Z*) (a E T) be a countable family of independent random variables 
defined on ~2, each distributed according to the law P(Z  = k)  = pk. Let 3-  = 
J (o~)  be the associated random tree; the corresponding boundary ~-- = ~-(co) 
is then called a branchin9 set. Write 

J~ ={G e J :  l< =n}.  

(n >_- 0), then 
Zn = the cardinality of  3--n 

is a Galton-Watson process with Z0 = 1 and offspring having the same distri- 
bution as Z. We only consider the (supercritical) case where 

1 < ~:  = Y~,kpk < cx~, 

We know that the limit 
W = lim Zn/e#g 

n - - + o o  

almost surely (a.s.) exists, and, i f  

pkk log k < oo ,  (Z log Z) 

then ]E(W) = 1 and the extinction probability satisfies 

P(Zn --+ O) = P ( W  = 0) = P(ff-  = 0) (1.1) 

(see e.g. Athrey-Ney 1972). Our interest centers on the Hausdorff measures of 
the branching set if'. 

1.2 Hausdorff measures 

Let (E,d)  be a metric space and f = f ( t )  be a dimension function, that is, 
a positive function defined for all t > 0 sufficiently small, non-decreasing and 
continuous on the right such that f ( 0 + )  = 0. For all A c E, the Hausdorff 
(outer) measure of A with respect to the dimension function f is defined as 

~ f ( A )  = lim -.~J(A), 
6--*0+ 
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where 

~ f ( A )  = inf : A C U U/, [Uil < (3 , 
" =  i = I  

with I u, I representing the diameter o f  Ui. It is known that the quantity ~ f ( A )  
does not change if  in the definition we use covers o f  just open sets or just 
closed sets, or again just subsets of  A, see for example Rogers ( t970).  I f  we 
use covers of  just balls, we obtain the spherical Hausdorffmeasure of  A which 

will be denoted b y ~ f ( A ) ;  we shall also w r i t e ~ f ( A )  for the corresponding 

number o f  2/F/(A). The two measures ~f~f( �9 ) a n d J ~ f (  , ) are not identical 
in general (see Besicovitch 1928, chap. 3); however, we have 

Lemma 0 (a) Let (E,d) be a metric space and f ( t )  > 0 be a dimension 
function such that for some c > 0 and all t > 0 sufficiently small, f ( 2 t )  < 
cf(t). Then for all A C E, 

J~f(A ) =z/~f(A) <= c~f(A). 

(b) For all dimension functions f and all A C_ I, 

= 

A proof  o f  this result can be found in Liu (1993, chap. 1, Lemmas 2.1 and 
2.3). I f  0 < S f ( A )  < ec, we say that f is an exact dimension function of  
A; if f ( t )  = t a (a > 0), we write -_gt~a(A) instead o f  Jut~f(A), and we call it 
the a-dimensional Hausdorff measure of  A. The Hausdorff dimension of  A is 
defined as 

dimA = sup{a > 0 [ ~ ~  = +e~} = inf{a > 01Jf~(A) = 0} .  

Then 2/fa(A) = +oo  i f a  < dimA and idea(A) = 0 i f a  > dimA. All the state- 

ments above hold if ~/df( �9 ) is replaced by2/~f( �9 ), provided that A C I or f 
satisfies the regularity condition in Lemma 0. 

1.3 Main results and examples 

Throughout the entire paper, we use the following conventions, notations or 
definitions: 

a _ 0 and a aO o - -  - -  z z �9 oo ~ ~o i f 0  < a < o o ,  (1.2a) 

log ~ 
c ~ -  and fl = 1 

log 2 

(~o(t)= t~ (loglog ~)  ~ 

ro=sup{t > 0: IE(e  tW~ < ec} if 0 < 0 < o c ;  

7 = s u p { p  > O: IEZ p < co}. 

log ~ 
where IIzlloo = esssupZ < c~ ; 

log Ilzlloo' 
(1.2b) 

(5 and ~o(t)=t ~ log for all 0 C I R ;  (1.2c) 

(1.2d) 
(1.2e) 
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Thus, 

~bp(t) = t ~ loglog ,q~l(t) = t ~ loglog t ' 

etc.; ro is the radius o f  convergence o f  the moment generating function o f  
W~ 7 c [1, oc] is the critical value for existence of moments of  Z or W. 

We first gather some known results as follows: 

Theorem 0 (i) .Jr <= W a.s. (ii) dim~-(a))  = e a.s. on J-(co) , t~.  (iii) 
0 < ~ ( ~ - ( c o ) )  < oc a.s. on ~-(o~)4=0 if  and only i f Z  is a.s. a constant. 

Part (i) is immediate by considering the natural covers of  Zn balls B(a)  = 
{i CI :  i > a} (~r E ~- , )  of  diameter 2 -~ and the fact that Z , ( 2 - ~ ) ~ =  
Zn/II ~ ~ W. Part (ii) was first found by Hawkes (1981) under the condition 
that E p k k  log2k < oe; it was also proved by Falconer (1986, Corollary 5.7) 
and Lyons (1990, Proposition 6.4) in different languages under the only condi- 
tion that 1 < ~ < oo (see also Lyons and Pemantle 1992). The fact that the 
condition 1 < ~ < ec suffices for the dimension result can also be seen by 
an easy truncation argument from Hawkes' result. Part (iii) is a special case 
of  a result of  Falconer (1987, Lemma 4.4). 

Theorem 0 shows that in the non-degenerate case the e-dimensional measure 
of  the branching set vanishes and so the function t ~ is too small to measure 
the set. In the following, we calculate the exact value of the Hausdorff measure 
of  J -  with respect to the function q~0 (0 < 0 < oc); this leads us to a general 
criterion for a function of the form ~o(t) to be an exact dimension function of 
~-. From now on, we always suppose that the moment condition (Z logZ)  is 
satisfied. Thus by (1.1), the events " J - 4 : 0 "  and "W > 0" coincide a.s. 

Theorem 1 For all 0 < 0 < oe, ~ O o ( j - )  = (rl/o)OW a.s. on ~-4=0. 

We notice that by the convention (1.2a), the number (rl/o)~ E [0, o~] 
is a.s. well defined on J -4 :0 ;  the result shows in particular that a.s. on 
J - ~  ~), 2/g4)o(~ -) is zero, positive and finite, or infinite i f  and only i f  the same is 
true for  rl/o; if ]E(Z p) = oo for some p > 1, then rl/o = 0 for all 0 E (0, oc), 

and so j f 00 (~ - - )=  0 a.s. for all 0 > 0; in this case, Theorem 4 below will 
give more precise conclusions. 

Theorem 2 I f  I]Zll~ < 0% then it is ahnost sure that on Y-+O, 

.~4B(J- )  = 1 i f  fi = 0 and ~4)~(~--) =_ (rl/B)~W 

with 0 < rl/~ < oo i f  fl > O. 

Therefore ~b~ is the exact dimension function of ~- if  ~ - ~  0. Noting that 
fi = 0 if  and only if Z is a.s. a constant, we see that the iterated logarithmic 
term disappears in the deterministic case. 

Theorem 3 I f  IIZIIc~ = oc, then it is almost sure that on ~-=~0, 

(i) ~-r 0 if  0 < 1; 
(ii) ~ r  > 0 i f  for  some t > O, lE(e tz) < oo; 
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(iii) ~4~1 (~ )  < ec i f  for  some t > O, IE(# z )  = oc; 

(iv) ~g'c~bl(J -)  = raw  with rl positive and finite, provided that for  some 
but not all t > O, lE(e tz) < ec. 

In the case where Z is o f  geometric distribution (thus rl = 1 ), part (iv) of  
the theorem was proved by Hawkes (1981). 

Theorem 4 It  is almost sure that on 3 - #  (0, 

(i) j f O 0 ( ~ ' ) = 0  t f 0  < 1/7 and ~ 0 0 ( ~ - ) =  oe / f 0  > 1 / ( 7 - I ) ;  

(ii) ~4~'1/(~-1)(5 --) = oc t f  1 < 7 < ee and IE(Z'~) < oc; 

(iii) ~4~1/~(J -) < ~ /f  7 < oc and limsupk~o~{~f=[~ogklP(W > v 1/7) -- 
! logk} > - o c .  
7 

I f 7  = oe, that is, if for all p > 1,IE(Z p) < oc, then part (i) o f  the theorem 
is interpreted as "Z,~00(fi -') = 0 if  0 < 0 and JfOO(K) = oc a.s. on J - # ( 0  if  
0 > 0"; in this case, Theorems 1 and 2 give more precise conclusions under 
stronger conditions. The theorem shows that if 1 < 7 < ec, that is, if for some 
p > 1, IE(Z p) < oc, then there exists a critical value )~ E [1/7, 1/(7 - 1)] such 
that yg~0(~ -) = 0 if 0 < X and 24~4'0(~ - )  = oe a.s. on J ' # ~  if 0 > Z. The 
author believes that this would also be the case if  7 = 1 (thus X = ec)  and that 
Z = 1 / ( 7 -  1 ) in all cases: 

Conjecture 5 ~4,o(~--) = 0 / f 0  < 1/( 7 - 1) andg/fOo(.Y-) = oc a.s. on ~-#~3 
~f0 > 1 / ( 7 - 1 ) .  

Remark  6. I f  the distance d(i , j)  = 2-11Ajl on I is replaced by 

dM(i,j) :=  M -/iAj[ 

for some M > 1, then all the results above hold with ~ replaced by 

~(M) :=  l o g m / l o g M .  

As applications of  the theorems, we give some examples below. 

Example  1 (Embedding in Euclidean space). Suppose that the distribution o f  
Z = Z1 has compact support, that is, ]]ZII ~ < cc or Pk = 0 for k sufficiently 
large. Let M be an integer such that M > Ilztl  (namely pk = 0 for k > M).  
I f  Zl = k we choose at random k distinct integers j l , j2  . . . . .  jk  with 0 < ji < 
M -  1, and let 

ZI 

I1 = U[J i /M , ( j i  + I ) / M ) .  
i=1 

We now treat each interval in Ii as the vertex o f  a tree and proceed induc- 
tively in the same fashion; at the n-th stage we have In as a union of  Zn 
intervals o f  length M n. The limit set K = (7~176 0 In c [0, 1 ] can be described by 

the associated branching set 3 -  o f  the process under the mapping 

f :  ~----+ K, i---~ ~ i k M  -k  . 
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I f  we consider covers o f  K by M-adic sets and if J -  carries the matric 
d~( i , j )  = M-FiAJl, it is then easily seen that the Cantor set K has the same 
exact dimension function as J - ,  given by qb~( t )=  t~(M)(loglog 1) ~, where 

cffM) = log ~ z / l o g M  (cf. Theorem 2 and Remark 6). 
We now give a more explicit construction to explain this. Divide the unit 

interval into three equat parts and retain each independently with probability 
p. Repeat this with the parts that remain, and so on. In this case M = 3, e~ = 
IE(Z) = 3p and Ilzlloo = 3. Then e = log(3p) / log3  = 1 -t- l o g p / l o g 3  and fl = 
1 - log(3p) / log 3 = 1 - e. The exact Hausdorff dimension function of  the re- 

) l-= with c~ = 1 + log p~ log 3. sulting fractal set is then q~l-~(t) = t~(log log 7, 
Graf et al. (1988, p. 89) also calculate this function. So we see that our results 
here are closely related to those o f  Graf et al. (1988). In fact, the author has 
recently developed the ideas o f  the present paper to Euclidian space, and thus 
improved the classical results o f  Graft et al. (see Liu 1993). 

Example 2 (On the conjecture o f  Hawkes).  Hawkes (1981) conjectured that an 
exact dimension function of  ~" would be of  the form h ( t ) =  t~R- l ( log log  1) 
if R ( x ) =  - l o g P ( W  > x) satisfies some regularity conditions at +c~.  We say 
that this is in fact the case if, for example, for some 2 > 0, a > 0 and all 
sufficiently large x > 0, 

P ( W  > x)  = e - ; S  . 

To see this, let us first calculate ra. I f  0 < t < 2, then by integration by parts, 

OO 

IEetWa = fo oo "etx dP(Wa < x) = 1 + t f etXp(W a > x ) d x  < o~ ; 
[ , ) o 

if t > ,~, then for all r > 0 sufficiently large, 

IEe tm~ >f[r ,  oo)et~dP(W ~ < x)  >-_ et~p(w ~ > r ) = e  (t-~> , 

and so lee tw~ = oo by letting r ~ oo, Therefore, r~ = it E (0, co)  and, by The- 
orem 1, 

401/~(t) --- t ~ log log = 2 h(t) 

is an exact dimension function o f  ~-. Moreover, we have the following more 
general result: i f  for  some positive constants 21,22, Cl, c2, a, A and all x > A,  

cle - 2 S  <= P ( W  > x) <-_ C2 e-22xa , 

then 01/a(t) = t~(log log 1 "ll/a is an exact dimension function o f  J-.  This also 7, 
follows from Theorem 1 since a similar calculation as above shows that 

0 < 22 < ra < ,~1 < oo 

Example 3 (Case where the distribution o f  reproduction decreases geomet- 
rically). I f  for some positive constants 21 > 22, cl, cz and A, either 

el e-21k ~ P (Z  = k) <= c2 e-)'zk, Vk ~ A , 



Hausdorff dimension of  a branching set 521 

o r  

vie -'ttk <= P(Z >= k) <= c2e -'~2k, Vk _>- A ,  

then q~l( t )=  t~(loglog ~) is an exact dimension function of  J- .  This follows 
from Theorem 3(iv) since IE(e tz) < oo if t < 22 and IE(e tz) = oo if t > 2~ 
(cf. the calculation in Example 2). This result covers o f  course the case o f  
geometric distribution. 

Example 4 (Case where the distribution of reproduction decreases polynomi- 
ally). I f  for some constants c~ > 0,c2 > 0, 0 > 1 and A > 0, either 

Cl k-(O+l) <= P(Z = k) <= c2 k-(O+l), Vk  > /k , 

clk -~ < P(Z > k) < c2k -~ Vk > A ,  
or  

then 

~0~  (Y-) = 0 if  b < 1/0 and 24~0b(~-)=oc a.s. on ~ - + 0  if b > 1 / ( 0 -  1).  

The result follows from Theorem 5 since IE(ZP)= f o  P(Z > xl/p)dx is 
finite if  p < 0 and infinite if  p > 0. In this case, the existence of  an exact 
dimension function remains open and the author thinks that the answer would 
be negative. 

2 Growth of moments of  the limit of  a supercritical branching process 

Let (Zn) (n > 0) be a Galton-Watson process with Z0 = 1 and 1 < e~ = IEZ1 < 
oc. We shall need some results concerning the growth of  the moments of  the 
limit 

V / =  lim Z . / ~  ~. 
n - - ~ o o  

These results are o f  some interest by their own. 

Theorem 2.1 (Comparison theorem for the radii of  convergence of  W and 
Z1). Denote by r(Z1 ) =  sup {t > 0 '  IE[e tzl ] < oc} the radius of  convergence 
of  the moment generating function IE[e tzl ] of  Z1 and r(W) that of  W, then 

r(W) is zero, positive and finite, or infinite 

if  and only if the same is true for r(Z1 ). 

Proof Since 

and 

t 2 
IE[e tz' ] = 1 + tiE[Z1] + 2.v ]E[Z12] + ' "  

t 2 
IE[e tw] ---- 1 + tIE[W] + 2.v ]E[W2] + ' "  

m [ r r  "] = m [m(w" Im~) ]  __> m [ m ( r / l ~ ]  )"] -- m [ ( z ~ / ~ ) " ]  = ~ - ' ~ m [ z f ] ,  
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where IF1 is the o--algebra generated by Z1, we see by the well known formula 
on the radius o f  convergence of  Taylor series that 

r(w) =< mr(z~), 

So r(Z~) < +e~ implies r ( W )  < + c %  and r (Z t )  = 0 implies r ( W ) - - O .  
We r~ow wave  t~at r (Zl)  > 0 implies r ( W )  > 0. Put 

p ( t )  = lE[t z ' ] ,  

then 
lE[t z.] = ( p ~  , 

where ( p ~  and ( p ~ 1 7 6  (k > 1) Since r ( Z 1 ) >  0, 
there is some rl > 1 such that p ( r l )  < oc. We now choose by induction 
r2,r3, . . .  so that 

p(r2) = r l ,p ( r3 )  = r2 . . . .  ,p ( rn)  = r n - I , - - -  

Since p ( s )  > s for all s > 1, we see that 1 < rn+l < r~ for all n > 1. As 

rn 

r~-i  - 1 = p ( r , ) -  1 = f p ' ( t ) d t  < (r,  - 1)pJ(r~) 
1 

[where p~(t) is the derivative o f  p(t)] ,  by induction on n we obtain that 

rn >= [p ' ( rn ) . . .  p ' ( r z ) ] - l ( r l  - 1) + 1 . (2.1a) 

Notice that for any t > 0 and all n > 2, if  e t/~n < rn then 

lE[e tzd~'~"] = p~ < p~  = rt , (2.1b) 

where the last step holds by the definition o f  {r.}. So by (2. lb) and (2.la),  
to see that r ( W )  > 0~ i.e., lE(e tw)  < oo for some t > 0, it suffices to prove 
that for some t > 0 and all n > 2, 

t im  n < log{1 + [ p ' ( r , ) , . ,  p ' ( r z ) l -~ ( r t  - 1 ) ) ,  

Since log(1 + x )  > �89 for 0 < x < 1, this will be the case if  for some t > 0 
and a l l n  >= 2, 

t /m"  < � 8 9  - 1). 

So it suffices to prove that 

I'[ p ' ( rn)  1 
n=2 r162162 n=2 

We see that this is true because 

Fn 

and 

) + - - f p ' ( t ) d t  < + o c ,  

f p " ( t ) d t  < (r ,  - 1)p"(rn)  < (rn - 1 )p" ( r l )  
1 

1 
r n - - 1  <-- - -  

- # ( 1 )  
( p ( r n ) -  1) = __1 (Fn_  1 - -  l )  < < 4/~n_ ~ (Yl - -  1 ) .  
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It remains to prove that r(Z1) = oc implies r ( W )  = ~ .  To see this, we use 
the well-known functional equation 

f ( ~ t )  = 9 ( f ( t ) )  , (2.2a) 

where f ( t ) - =  lE[e tW] and 9 ( t ) =  lE[e tzl ] [see for example Athreya and Ney 
(1972)]. Since we have shown that r(Z1) > 0 implies r ( W )  > 0, we know 
that f ( t )  < oo for some t > 0. From the functional equation and the fact that 
9(t) < oc for all t > 0 (r (Zl )  = oo), we know iw~ediately that f ( t )  < oo 
for a l l t  > 0. [] 

The following result can be compared to that of  Kahane-Peyri6re (1976) 
obtained for a model o f  turbulence of  Mandelbrot. We recall that 

= 1 - l o g   /logllZl 

and that for 0 < 0 < oc, ro denotes the radius o f  convergence of  the moment 

generating function ]E(e tw~ of  W ~ [so rl = r(W),  and 0 < fl < 1 if and only 
if Z1 is not a.s. a constant]. 

Theorem 2.2 I f  Z1 is not a.s. a constant with [[ZIlt~ < oc, then 

lim log IE(W k) 
- fl and 0 < rl/~ < + o c .  

k ~ + ~  k log k 

P r o o f  (i) We first prove that in both cases I[Z111 ec < oc and IIZ1 ]]ec = 0% 

liminf l~  => ft. 
k--.~ k l o g k  

Let n > 2 be an integer such that Pn = P(Z1 = n) > 0. Since 

Z1 
W = _I ~ W,. (2.2b) 

~v~'z i=1 

with Wi (i > 1) being independent copies o f  W which are also independent 
o f  Zl [cf. (2.2a)], we have 

n 1 k! 

~x+...+k~=~ kl! ~;.k,,! i=1 
O<=ki <k--1 

--> mkn 1E[Wk] + ~ (n k - n) in f  IE[W ki] , (2.3) 
i=1 

where IE[WkIZ1 = n] denotes the conditional expectation o f  W k given Z1 = n 
and the infimum is taken over all (k l , . . . ,  k~) such that kl § ... + k~ = k and 

0 <= ki < k - 1; if k = n/~, this infimum is (1E[Wk]) ~. Hence 

n _ ~ ( n , ~  

:(5) > ( m i m e ] )  . . 
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Therefore 

and so 

~ 

1E[W "~] ____ p.  

1 log IE[W n~] > log n + 1= log IE[W ~] + lOgn/~ pn 
nk ~ k 

Choosing/~ = n r (r E N )  and using repeatedly this inequality, we see that 

n-(r+a)loglE[W ~r+l] > (r + 1)log n_ + logIE[W] + logp~ ~ 1 
r162 n i - -O F/i  " 

Thus for all r >= O, 

n - r l o g l E [ W  nr] > f l o g  n = - -  + C ( n ) ,  (2.4) 

where C(n)  > -cx~ is a constant independent o f  r. Hence 

l iminf l~  > 1 - l o g ~  (2.5) 
~ n ~logn ~ - logn 

Now for each k E N sufficiently large, choose r E IN such that n ~ < k < n ~+l . 
Thus 

l~  - log[lE(Wk)]t/k >_ l~ -- l~ (2.6) 

k log k log k - log n ~+1 n r log n r+I " 

It follows from (2.5) and (2.6) that 

l iminf l~ > 1 - log~-~ 
k--+~ k log k log n 

As this holds for all n > 2 with P(Z1 = n) > 0, we obtain that 

l iminf loglE(W k) > 1 l o g ~  _ ft .  
k ~  k l o g k  - logllZlll~ 

(ii) We now prove that i f  IIZtll~ < ~ ,  then 

limsup log IE(W k) < fl .  
k ~  k log k 

For convenience, we write n = [[Z1 [[~. By (2.2b), for all k > 1 

n 1 k[ 17[ IE[W~q. 
k 1 +.,.+kn =k 
O~ki  < k - - I  

Thus for all k E N sufficiently large (so that ~nk _ n > 0), 

1 ~ ]E[Wki]. 
IE[Wk] --< ~ - n  ~+ +k,=k k l !~ .k , , !  i=~ 

O<=ki <k--1  
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Since the number of  the terms in the sum ~ above is less than k n, writing 
Bk = supe<~ ( IE[Wt] /Y! )  1/~, we have, for all k E N sufficiently large, 

k k B~+ 1 < sup B k , B  k . 

Therefore Bk is bounded. This shows that lE(e tW) < + o o  for sufficiently small 
t > 0. Again from the recursive relation (2.2b), we obtain 

IE(e w~t )  <= (lE(eWt)) '~ . 

So IE(# w) < + o o  for all t > 0 and 

IE[e w~'?t] <= (lE(eWt) ) nk = (IE(eWt) ) *'?c 

for all k C N ,  where 
L = log n / log  ~ .  

Put 
r/(t) = log IE(e tW),  

then t/(~et) < nq( t )  and consequently q ( ~ k )  < n~t/(1). For each k E N,  choose 
an integer i > 0 such that 

r ~ kl/L < r162 . 

Thus 

= = = < IE e w "*~ 

Therefore, using Markov ' s  inequality, we obtain 

OO OO 

0 0 

( 1 ( l < IE e kl/Lvr f e -kl~z//k d t  = 1E e k~/Lv/ k ! / k  k/L 
0 

<__ OE(~W ) 7 ~  k!/~/L . 

That is, for B := (IE(eV/)) ~ E (0, e~) and all k __> 1, 

IE(W k) < B k ( k ! ) / k  ~/L . (2.7) 

Since 1 - 1/L = fi, it follows that 

limsup log 1E(W k) < ft .  
k+oo k log k 

So we have proved the limit result o f  the lemma. 
(iii) It remains to prove that if  ]]Zll[oo < oo, then 0 < r~/~ < +oo.  By 

(2.4), we have, for all r > 0, 
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For all k E N sufficiently large, choose r E N such that n ~ <= k/fl < n r+l . No 
by Stirling's formula we obtain 

limsup (IE(Wk/[~)'~/k > limsup IE[Wn~])I/(n~) 
k - , ~  \ ~ J = k ~  k/e 

(~)~/~ eC(n)/~ el+C(n)/~ 
> limsup 

r~oo finr+l/e fin ' 

where the last step holds since ( n / ~ )  ~/~ = n ~. Thus rl/~ < e~. On the other 
hand, by (2.7), we have, for 0 = 1/fi, 

IE(W k~ )l/k < limsup (IE( W [k~ ))0/([k0]+l) ( limsup ~ \ ~ / - ~__,~ k!~/~ 

< limsup B~ + 1)!~176 = B~ 1-~ < + o c .  
~ k!l/k([kO] + 1)~ 

This shows that rl/~ > O. 

Theorem 2.3 I f  ]LZ1 [1~ = + ~ ,  then 

l~ > 1 and ro = 0 for all 0 > 1" (i) l i m i n f k ~  klogk = 

(ii) I f  lE(e tzl ) < ec f o r  some t > 0, then limk-~+~ l~ -- 1 and  rl = k log k 

r ( W )  > O. 

P r o o f  (i) The result concerning the limit inferior was already shown in part 
(i) of  the proof  of  Theorem 2.2. To see that r0 = 0 for all 0 > 1, let us fix 
0 > 1 and choose n E N sufficiently large such that P(Z1 = n) > 0 and Ofin > 1, 
where fin = 1 - l o g m / l o g n .  By (2.5), we have, for all e > 0 and sufficiently 
large r ~ N,  

r 
loglE[W n ] > (fin - e)n r logn r - 

Choose e > 0 such that O(fin - 5) > 1. For k E N sufficiently large, choose 
r E N such that n ~ < kO < n ~+a. Thus by Stirling's formula, 

l i m s u p / W k \ I [ I E (  ~  > limsup 
~[w , r ]o / ,  r 

k/e 

(nr)O(&-~) 
> limsupr~ n"+l/(eO) - -4 -oo .  

So ro = 0, as desired. 
(ii) If  IE(etZl) < ec for some t > 0 ,  then r ( Z 1 ) > 0  and, by Lemma 3.1, 

r ( W )  > O. Thus 

oo > limsup ( IE(Wk)  ~/k  = limsup lE[(Wk)]l/k 
k - - ~  \ k! J k - ~  k/e 

"" l~  E ( W  k) = l .  [ ]  
Therefore, llmSUPk__.o ~ ~ =< 1 and so, by (i), limk_.~o l~ 
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Remark.  The limit result in part (ii) of  Lemma 3.3 does not hold in general. 
For example, i f  IE(W k) = oc for some k > 0, then it is evident that 

lim l~  -- c~ .  
k-+~ k l o g k  

3 P r o o f  o f  T h e o r e m s  

3.1 A random measure #~ on I and the Q-measure on t2 • I 

I f  a E ~ ,  let 
Z~,p= E Z~ 

~C ~-p,'c > tr 

denote the number of  descendents of  a in the generation p and define 

W~= lira Z~,p . 
p---~oo r - n  

i f  a E N n - Yn, we choose W~ as an independent copy of  W such that { W~: 
a E IN n - ~ } is a family of  independent random variables which are also 
independent o f  the family {W~ : z c J,,,}. Then {W~: a ~ T} is a family of  
random variables, each distributed as ~ = W = l i m n ~  Zn/~4 n, and W~ and 
W~ are independent if  neither a < z nor z < a. It is easily verified that almost 
surely 

O< i < Z  a 

if  a E J ,  where the sum is interpreted as 0 if  Za = 0. For a C T, let 

B(~)={~I: G<~} 
be a ball in I of  radius IB(a)[ : 2 -I~l and define 

#L(B(a) )  = l { ~ c j } ( a ) ~ - I ~ l  W~, (3.2a) 

where l {~cy  } is the indicator function of  the set {a E J - }  = {co: a C J-(co)} 
(for any set A, 1A will represent the indicator function of  A);  if A C I ,  we 
let 

# ; ( A ) = i n f { # ~ o ( B ( ~ ) )  A C ? B ( Q }  . _ (3 .2b)  

By (2.1) it is easily verified that #5 is a.s. a metric outer measure on I and 
so the Borel sets are measurable. Let #c~ be the corresponding measure. This 
measure is concentrated on the branching set J ' (co) ,  and #~o(I) = #o~(3-(co)) = 
w(~). 

It will prove very useful to consider the product space t2 • I with the 
product a-field and with probability law Q defined by 

Q(A) = IE f 1A(CO, i) d#o~(i). (3.3) 

To obtain some density theorems about the measures #~o, we will need 
the distributions of  the random variables ~ ( r  := Wil, (n > 0) defined on 
f ~ x I .  
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Lemma 3.1 For all n >= 0 and all Borel measurable functions f :IR ~ [0, oo), 

IEQf(I~,)  = IE W f ( W )  , 

where IEQ represents the integration with respect to Q, 

Proof  From the definition of Q, we have, for all n >_ O, 

]Eof(Wn) = lEof(Wik,) = IE ~ f ( W ~ ) ~ - ' W ~ .  

If  n = 0, the result follows immediately; if n > 0, it follows that 

I E o f ( W i l , ) = I E  y~ ~ - ~  y~. f(W~)W~ 
aC3-n_ 1 O<=i<Z ~ 

= E ~ v f ( w ) .  [ ]  

The following result concerns with the density of  the measure #o,. 

3.1 Let  0 E (O, oo). (i) I f  1E (e rw~ < oc for  some r E (O, oo), Proposition 
X / 

then 

limsup ~"#~ < r -1/0 for  P-a.e. oa and #oa-a.e. i~ (3.4a) 
n--+oo (log n) 1/0 -- 

or equivalently, 

limsup /&o[B(iln)] < r_l/o 
~ ~le(lB(iln)l)= 

for  P-,a.e. m and Ixo~-a.e. i .  (3Ah) 

(ii) l f  !E(W ~ < 0% then 

lira ~n#o,[B(i]n)] 
n---+ oo n l / 0  

-- 0 for  P-oi.e. f ound  I&o a.e. i , (3.5a) 

or equivalently, 

lira #~o[B(i[n)] 
n - , ~  O l / o ( I B ( i l n ) l )  

- 0 for  P-a.e. co and t~-a,e ,  i .  (3.5b) 

Proof  (i) It is easily seen that both (3.4a) and (3.4b) are equivalent to 

limsup Wilf / l ogn  < r -1 Q-a.e. (3.6) 

By Lemma 3.1, for all ~ > 0, 

= IE[W l{~w0 => ~1+,}]. 
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and consequently 

n = l  

where the last step holds since IE(e rvc~ oo. So by the Borel-Cantel l i  lemma, 

limsup~__+oo ~ < (1 + e) Q-a.e. 

This gives (3,6). 
(ii) In the same way as shown above, both (3.5a) and (3.5b) are equivalent 

to 
W. 0 

lim il~ = 0 Q-a.e. (3.7) 
n --+ r F/ 

and (3.7) also follows from the Borel-Cantel l i  lemma since for all e > 0, 

Q(W~I ~ >= ne) = ~ ]E(Wl{w0__>,~} ) = O ~E[W I+0 < OO. []  
r t = [  n = [  

3.2 The lower bound 

Propos i t ion  3.2 Let 0 E (0, oQ). (i) I f IE(e rw~ < oo for  some r E (0, oo), then 

j/~r > rl/O W a.s. 

(ii) I f  lE(W ~ < oo then 

~tar176 ( J -) = oo a.s. on W > O . 

Proof  (i) We recall that #o~(J-(co))= W a.s. By Proposition 3.1(i), for each 
e > 0 and almost all co E ~,  we can choose a compact subset K = K(co) of  J -  
and an integer No = N0(co) such that /~o,(K) >= W - e and that for all i c K 
and all n > No, 

~oAg(iln)] < (1 + e)r-1/~ 
This means that for almost all co C ~2 and all n > No, 

po~(B(i]n) N K )  =< (1 + e)r-1/o61/o(IB(iln)l ) . 

Let (Sj) be any cover of  K by balls with diameter ]Sj] < 2 -No. Then 

#~(sj NK)  < (l + e)r-V~ 
Hence 

W-g_~#~o(K)<=IZ~, IU(SjNK)]<~#e~(~5~NK)_<(1  +g)r  1/~ ) .  
L: A J J 

This implies that, for all e > 0 and almost all co, 

~ / o ( j - )  > ffg~4~l/O(K ) > 1 r i / O ( W - e ) .  
= = l q - ~  

Letting e --+ 0 gives the result desired. 
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(ii) The same idea as above: by Proposition 3.1(ii), for each 11 > 0 and 
almost all co C f~, we can choose a compact subset K ~ = K~(co) of  3-  and an 
integer No = N0(co) such that po~(K ~) > W - tl and, for all i E K ~ and n > No, 

#o~[B(iln) n K'] < tt~,vo(lB(iln)t). 

Thus for any cover {Sj} of  balls o f  K ~ with ISjl _-< 2 - ~ 0  

W - t l  <= P~ < P~ [ ? ( S j ~ K ' ) ]  < ~ # ~  < J 

So 27FO~/~ -) > Jt~ > ~(W - tl). Letting t / ~ 0 ,  we see that 27t~O~/~ 

e~ a.s. on W >  0. [] 

3.3 The upper bound 

Lemma 3.2 Suppose that g: IR-+[0 ,1]  is a non-increasing function with 
f~g ( t )  dt = +oo and that j : N  ~ IR is a function satisfying l i m s u P x ~ J ( @  < 1, 
then for all e > 0 and all g c (0, ~), 

} limsup g(t)t ~ dt - k ~-/0+~) = + c o .  (3.8) 
k~ec [,j(k)Yo+~) 

Proof Since 

o o  o o  k + l  o c  

oo= f g ( t ) d t =  E f g(t)dt  < E g(k) ,  
1 k=l k k = l  

for all d > 0, we can choose an increasing sequence (kv)~cN of  integers such 
that, for all v = 1,2 . . . .  

g(kv) >= k~ -O+J) . 

For each k,, choose K, E N such that (k, - 1) 1+~ < K, < k TM This is possible - . y  , 

since k~ +~ - (kv - 1)1+~ => 1. Therefore, choosing d E (0, e - g), we obtain that 

I kl +~) } 
limsup ~ g(t)t ~ dt - k g/O+~) 
k-+oo [,[j(k)]l/(l+c) 

> limsup / K1/(j +~) 
v---+oo ~ [j(Kv)]l/(l+~) 

g(t)t ~ dt K~ -/(1+~)} 
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> limsup 1 - 1)1+~[1 - j(K~)/K,,] - k 
v---+ o o  

1___ } = limsup,,~ ~ [ 1 + e k; (1 - 1/k~)~+~[1 -j(Kv)/K~] - 1 = + o c .  [] 

Lemma 3.3 For x C IR, let [x] be the integral part of  x; for c~ E T and co C g~, 
let 

fo = W~(co) = 2 - M ~ l { ~ } ( c o ) .  

(i) Fix 0 E (0, oc). For t > O, k E N+ and co c f~, write 

* * { ( ~  1 )  ~ 
Bk = B k ( O , t ) =  o - E N k :  W(ol~).(co ) < loglog2-2 T 

for all v = [logk], [logk] + 1 , . . . , k }  

[recall that z* = ('cl . . . .  , z~-l, v~ + 1) /f  z = (z l , . . . ,  z~)] and 

I ;  = I;(O, t) = f ~ EG(co) log log dP ~ B ;  ~ - k  . 

I f  for some r C (0, oc),lE(e ~v/1/~ = ec, then Jor all t > r, 

liminf Ik* = 0.  
k - ~ c x z  

(ii) For all 0 C (0, oc), put 

{ Bk* =/}k*(0) = a C Nk: W(~l~).(co ) < log 

for all v = [logk], [logk] + ! , . . . , k }  

and 

fp(O) = f E g~(co) log dP 

if  

l i m s u p { L P [ W ~ / ~ 1 7 6  > - ~  ~ v=[Iog k] (3.9) 

then 
liminf f~(0)  < + o c .  

k - - - + ~  

In particular, i f  IE(W V~ = oo, then for all e C (0, 0), 

liminf/'k*(0 - -  e )  = 0 .  
k---*oc 
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Proof (i) We first remark that 

I/ Ik*= ~ ]E :o l o g l o g ~  1Akv=[logk]{W(alv).<(~loglog2@v)O } 
aENk 

Recall that W(alv).([logk ] <__ v < k) are independent and identically distributed 
as W, which are also independent of {Z(~Ii): 0 < i _< ]a]}, so writing the in- 
dicator function of the intersection set as product of indicator functions of 
sets and first taking conditional expectations given {Z(~Ii): 0 _< i < ]a[}, we 
see that 

[ ( 1 ) ~ k { (~  1 ) ~  I;  = E IE Eo log l o g ~  [I P W< log log~-? 
aENk v = [log k] { 1/~ 
( loglog~_k) ~ [ ~ :~q I~I P w < ( ~ l o g l o g ~  = IE 

L crcNk J v = [logk] 

= ( l o g l o g 2 ~ ) ~  ~I P W < ( 1  loglog ~ 
v = [log k] 

/ 1/~ 
__< log l o g ~  exp - ~ P W => log log~_~ 

v = [log k] 

( k 
__< (logk)~ ~ P 
- -  - -  v = [ l o g  k ]  

Therefore, 

} 1~ =< exp - ~ P > v +01oglogk . (3.10) 
v = [log k] 

Let e E IR be determined by t/(1 + e) = r. Then e > 0 (since t > r) and 
k k--1 v + l  ] 

v = [log k] v = [log k] v 

k 
: f P[e tw'/O >= x] dx 

[log k] 

kl/(l+~) 

= (1 § e) f f (y)y~dy,  (3.11) 
[log k] i/(1+8) 

where 
f ( Y ) =  P [ erw'/~ >= Yl 

and the last step holds by changing variables x = yl+~. Since 

f f ( y )dy  f f (y )dy  + 0(1) IE e ~W1/~ = = + O(1) = -+-cxD, 
1 0 
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we obtain by Lemma 3.2 that, for g = e/2, 

limsup (1 + e) f ( y ) y~  dy - k ~/'(1+~ = + o c .  
k---~ cc  1. [log k] l / ( i+e)  

As 0 l o g l o g k  < (1 + e)k e/(l+~) for suff• large k, it follows from (3.11) 
that 

i } limsup ~ P e twl/~ ~ v - 0 1 o g l o g k  = + o c .  
k---+oc v = [log k] 

Therefore, by (3.10), l iminfk~oo I~ = 0. This ends the proof  of  part (i). 

(ii) For part (ii), the same argument as above shows that 

= 2 P [ W1/~ > v] + 0 l ogk  . I k (0) < exp - v  = [logk] 

So the first conclusion follows immediately; to show the second, using the 
above inequality for 0 - e, we need only to prove that for all e > 0 

limsup 2 P [ W1/(~ > v] - ( 0 -  e ) l o g k  = + o c .  (3.12) 
k---+ oc v = [ I o g  k] 

As 
k 

P[W V(~ > v] 
v = [log k] 

it--1 v + l  

> ~ f P[W U(~ > x]dx 
v = [log k] v 

k k 

= f P[W v(~ > x] dx = f P[W 1/~ > x 1-~/~ dx ,  
[log k] [log k] 

by changing variables t = x ~-~/~ we see that 

k k 1/(1+el) 

P[W I/(~ > v] => (1 + e') f g(t)t d dt , (3.13) 
v = [log k] [log k] 1/(1 +et) 

where e' = e/(0 - e) and g(t) = P ( W  1/~ > t). Since 

O<3 O<3 

f g ( y ) d y  = f g ( y ) d y  + O(1) = IE[W V~ + O(1) = + o c ,  
1 0 

we obtain by Lemma 3.2 (with j (x )  = [logx]) that for g = e~/2, 

limsup g(t)t ~' d t -  k ~/(1+"') = + o c .  (3.14) 
k---~ oo ~ [log k] l / ( l+e/ )  

As ( 0 -  e ) l o g k  < k e/O+J) for all sufficiently large k, (3.12) follows from 
(3.13) and (3.14). This ends the proof  of  the lemma. [] 
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P r o p o s i t i o n  3.3 Fix 0 E (0, oo). (i) I f  for some r E (0, o<~), ]E[e rwl/O ] = +0<3, 
then 

E [ ~ ~  __< r ~ . (3.15) 
(ii) I f  lE(W 1/~ = +oe, then for all e >0,  

.~O0-~(~-) = 0 a.s. (3.16) 

Moreover, if (3.9) holds, then IE[-~O~ < oo [and so ~0~ < eo a.s.]. 

Proof (i) Fix t > r. For co E f~, ko E N and 5 = 2 -[l~ define { ,)o 
B* = B*(co) = a E NN+: W(~lk)*(co) < loglog ~-k 

= [logko], [logko] + 1,...,ko} �9 (3.17a) for all k 

If a E N N - B*, let k(a) be the smaltest k > [log/co] such that 

( ~  1 )  ~ 
W(~lk),(co ) > loglog ~ (3.17b) 

and set 
I~(ko) = {alk(o-): ~r E g m - B * } .  (3.17c) 

Then [logko] _-< k(a) < ko5 F(ko) is an antichain and so there exists a maximal 
antichain I?(ko) such that r(ko) c_ r(ko). If a C B*, then alko E B~o with Bko = 
B~o(co ) defined in Lemma 3.3(i). Thus 

where 
DoCco) = {~ ~ ~4-(co): ~ > ~} = B(~) n J (co)  

denotes the closed descendants of (*. Notice that Do(co)= 0 if a ~3-" and 
IDol < IB(a)l = 2-1ol if ~ E 3-', we obtain by (3.18a) that 

.~~  < ~ 4~0(In~(co)l) + ~ 4~0(IDo(co)l) 
a E I ~ ( k o ) ,  a C f  ffEB~O, ~ aJ 

( 1 ) ~ ( 1 ) ~ 
< _~ g'o loglog ~ + ~cB~ * G log log ~ . 

~er(ko) 

(3.18b) 

By Lemma 3.3(i), we can choose a sequence (ki) of integers increasing to + ~  
such that 

lim IE CG 1 o g l o g ~  = 0 .  (3.19) 
i---* OO O" 
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Using (3.18b) for /co = ki and 6 = 6i = 2 -[l~ and taking into account of 
(3.19), we see that 

] 1 ooflE[ ~ ] i m i n  24~7~ __< liminf IE ~G 
l --'+ O0  O- i )  

, 
where the last step holds by the definition of I~(ki) [cf. (3.17b) and (3.17c)]. 
First calculating conditional expectations given {Z~ let < ki}, we obtain that 

~6((ki) 

(3.21) 

W =  where the penultimate equality holds because, with probability 1, 
}-~o~r EoWo for any maximal antichain 1 ~ [cf. (3.1)]. Therefore, by (3.20) and 
(3.21), 

l!m~fIE[Yf~(J-(co))] < t o . (3.22) 

Since ~ ~  increases as 6i decreases, this implies that 

~[~~ __< t ~ . 

As t > r is arbitrary, we obtain lE[d47~6~ < r ~ the desired conclusion 
in part (i) of the proposition. 

(ii) The proof of part (ii) is similar. Assume (3.9) and let [~(0) be defined 
as in Lemma 3.3(ii). Then by that lemma, 

I =_ I ( 0 )  := liminf/~(0) < +cx~. 
k - - + o c  

Instead of B*, we define, for/co c N and co c f~, 

{ ( l )  ~ 
/~* =/~*(CO)= a E N N :  W(~lk).(~o)< log~-2-#_ k 

for all k = [logko], [logko] § 1 . . . . .  ko I I 

For a E N N - /~*,  let/~(a) be the smallest k => [logko] such that 

W(olk)* (o0) _--> (log ~_k)  ~ 

and set 
( " ( k o )  = {crl/~(a): a E N N - /~*} . 
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Then I~'(k0) is an antichain and there exists a maximal antichain r~(k0) such 
-* where -* -* that I"(ko) C_ F'(k0); if a E/~*, then alk0 E Bk0, Bk0 = Bko(O9 ) is defined 

in Lemma 3.3(ii). Let {ki: i > 1 } be a sequence of positive integers increasing 
to +oc, such that 

I = lira 7~i(0 ) . 
i---+r 

The rest of the proof is exactly the same as in the proof of part (i) : instead 
of (3.18a),(3.20) and (3.22) we have respectively 

liminf lE[;g/~:~ ( f i - ( c ~  - --< liminf IE~_,o~ I ocI7 ~(k~) 1,~ W~. + I  

and 

Therefore, 

liminf lE[2@:~ < 1 + I 
i - -+OO z 

] E [ ~ ~  = 1 + I  

and so ~ r176  a.s. This establishes the second assertion of 
part (ii). To see the first assertion, we note that if ]E(W 1/~ = oe, then by 
Lemma 3.3(ii), 

I ( O - e ) = O  for a l l e > 0 .  

Thus by the preceding argmnent, 

~0~ < +ec  a.s. 

Since the result also holds for e/2, we see that J4~0~ = 0 a.s. So the 
proof is completed. [] 

3.4 Some proofs 

Our theorems in Sect. 1 can be easily deduced from Propositions 3.2 and 3.3 
and the theorems in Sect. 2. We recall that the event " Y  :# 0" coincides with 
"W > 0" a.s. under the condition (ZlogZ) ,  and ~r �9 ) = ~ f ( .  ) on I for any 
dimension function f .  

Proof  o f  Theorem 1 If O<r<rl/o, then ]g[erW1/~ and, by Proposition 

3.2(i), ~ r 1 7 6  > rOW a.s. Hence, 

~ ~  _>_ (rl/0)~ a.s. (3.23) 

If rl/o < r < oc, then lE[e rwl/~ = oc and, by Proposition 3.3(i), 1E[~4~ =< 
r ~ So 

IE[2@r176 __< (r~/o ) ~ . (3.24) 
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-r ~, Therefore, i f 0  <rl/o < oc, then by  (3.23) and ( 3 . 2 4 ) , ~  (-Y) - (rl/o)~ > 0 

a.s. and l E [ ~ r 1 7 6  -)  - ( r l / o ) ~  < O, so 

~r = (rl/o)OW a.s ; (3.25) 

i f  rl/o = 0, then by (3.24), j ~ 0 ( ~ - )  = 0 a.s.; i f  rl/o = o% then by  (3.23), 

.2~4)~ -) = oc a.s. on W > 0. Therefore, (3.25) holds on W > 0 in all cases. 
[] 

Proof of Theorem 2 I f  0 < fl < 1, then Z1 is not a.s. a constant and, by The- 
orem 2.2, 0 < rl/~ < oe; so the result follows from Theorem 1. I f  fl = 0, then 
with probabil i ty  1, Z1 = / ~  and, for all a E ~-,  W~ = 1 and 

# ~ [ B ( o - ) ]  = #.~-I,I  = 2-ia4c, = IB( )I ' 

So it is easily seen that 2 / ~ ( ~  ") = #~o(3-) = 1 a.s. [] 

Theorem 3 follows immediate ly  from Theorem 1 since, by  Theorem 3.3, 
rl/o = 0 for all 0 < 1 and, by  Theorem 3.3, r l  = r(W) is positive, finite, or 
positive and finite i f  and only i f  the same is true for r(Z). 

Proof of Theorem 4 I f  0 > 1/(7 - 1 ), then 1 + 1/0 < 7, IE[ W~+I/~ < oc and 

so, by  Proposition 3.2(ii), ~ 0 ( ~ - )  = oc a.s. on W > 0. This gives the second 
conclusion o f  part (i). I f  7 = ee, then the first conclusion of  that part is in- 

terpreted as ~(~0(~- )  = 0 i f  0 < 0, which holds evidently since ~ ( ~ - - )  < e~ 
[cf. Theorem 0(i)] and limt-~0 tPo(t)/t ~ = 0 i f  0 < 0. I f  7 < ec and 0 < 0 < 1/7, 

then we can choose 0 ~ E IR such that 0 < 0' < 1/7. So IE[W 1/~ < oc and, by  

Proposit ion 3.3(ii),  ~ 0 ( ~ - )  = 0 a.s. This ends the proof  o f  part (i). Parts (i i)  
and (i i i)  follow immediate ly  from propositions 3.2(ii) and 3.3(ii) respectively. 

[] 

Remark 6 is easily seen by the proofs. 
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