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Summary. We derive uniform surface order large deviation estimates for the 
block magnetization in finite volume Ising (or Ports) models with plus or free 
(or a combination of both) boundary conditions in the phase coexistence regime 
for d >__ 3. The results are valid up to a limit of slab-thresholds, conjectured 
to agree with the critical temperature. Our arguments are based on the renor- 
realization of the random cluster model with q > 1 and d > 3, and on cor- 
responding large deviation estimates for the occurrence in a box of a largest 
cluster with density close to the percolation probability. The results are new 
even for the case of independent percolation (q = 1). As a byproduct of our 
methods, we obtain further results in the FK model concerning semicontinuity 
(in p and q) of the percolation probability, the second largest cluster in a box 
and the tail of  the finite cluster size distribution. 
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1 Introduction and statement of results 

In this article we study the large deviation behavior at surface order of 1sing, 
Potts and some percolation models. We derive large deviation estimates for 
finite volume (empirical) quantities, which converge to the order parameter of 
the underlying model as the volume goes to ;gd. Our main object is to develop 
methods which allow the study of the large deviation behavior in the ordered 
(resp. percolative) phase up to (or close to) the critical point, for dimensions 
larger or equal to three. Preliminary versions of these results and methods can 
be found in [36], and a number of applications appear in [34, 5, 27]. 

For studying Ising and Potts models, the utility of the Fortuin-Kasteleyn 
(FK) representation [19] is widely acknowledged. This approach leads to the 
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analysis of an associated dependent percolation process, called FK percolation 
(or random cluster model). Since this model has features in common with 
ordinary percolation, like the FKG property, some of the techniques of  perco- 
lation theory can be applied to it. The main point of this work is to transfer the 
'slab-technology' of  percolation theory to the Ising, Potts and random cluster 
models. 

We begin with the presentation and discussion of the results for the Ising 
model In the next subsection, we turn to FK and Bernoulli percolation. 

1.1 Large deviations for the Isin9 model 

Consider the d-dimensional Ising model for d > 2 in a large box B(n)= 
2UA (-n/2,n/2] a with ferromagnetic nearest neighbor interaction at inverse 
temperature /3. In this model each site x E B(n) is assigned a spin variable 
ax, which can take the values ax = -4-1. The energy of a spin configuration is 
given by 

(1.1) H(a )  = -  ~ (6~,a, - 1)J{~,y} , 
{x, y} c~(,) 

where J{x,y} = 1 if x and y are nearest neighbors, and J{x,y} = 0 other- 
wise. The corresponding (finite volume) Gibbs measures with free and plus 
boundary conditions are denoted by #f'~ and +'/3 B(~) #B(n), respectively. The mea- 

sures #+'~ converge weakly to the infinite volume probability measure # + f  /~(n) 
as n tends to infinity. The order parameter for this model is the sponta- 
neous magnetization m*(/3) = f ~o d # ~ .  The critical temperature, given by 
tic = inf {fl > 0]m*(/~) > 0}, satisfies 0 </3c < eo for d > 2. 

The classical large deviation theory for the Ising model (of. [ 10, 15, 17, 34]) 
describes the asymptotic behavior of the magnetization ms(,) = n -d ~xcB0~) ax 
inside the box: the sequence (roB(,)),=1,2 .... satisfies a volume order large 
deviation principle with a rate fimction I : [ - 1 ,  1] ~ IR, which is zero on 
[-m*,m*] and strictly positive outside this interval. Moreover, the fi.mction 
I is independent of botmdary conditions. 

In the subcritical regime (/3 < /3~), where m* vanishes, we therefore have 
complete information about the large deviations of the magnetization. On the 
contrary, in the phase coexistence region (/3 > /3~), the classical result does 
not allow the control of the large deviations in the interval (-m*,m*). In fact, 
it is easy to show (cf. [38, 18]) that for any a,b with -m* -<_ a < b < m*, 
we have the following surface order lower bound: 

(1.2) 
1 

- o o  < lim ~ log#~(,0(mB(~ ) E [a,b]) ,  
~-----~ OO 

where #B(~) denotes a finite volume Gibbs measure with arbitrary bound- 
ary conditions. Schonmann [38] gave a corresponding surface order upper 
bound for plus boundary conditions. He showed the existence of a threshold 
0 < ill(d) < oc such that for any/3 > [71 and for any a,b with - 1  = a < b < m*, 

(1.3) l i na  n~Si-_l log # (mB(n) E [a,b]) < O. 
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He could extend this result (with a, b c ( -m*,  m* )) to free boundary conditions 
only in two dimensions. Also, it turns out that /~l(d) is strictly larger than 
tic(d), whenever the dimension is large enough (cf. [3]), and the same is 
believed to be true for d > 3. The remaining questions were the following: 

(i) Does (1.3) hold for all /~ > /3c? 
(ii) Does (1.3) hold with free boundary conditions in dimensions d > 3 

for a,b C ( -m*,m*)? 
(iii) Is the behavior of the magnetization in ( - m * , m * )  governed by a 

surface order large deviation principle? If yes, what is the rate fimction? 

The remarkable progress in the following years has been restricted to the 
two-dimensional Ising model. Chayes et al. [9] have shown that in two dimen- 
sions /~1 is actually equal to the critical inverse temperature /3c. An important 
breakthrough occurred when Dobrushin et al. [13] succeeded in establishing a 
surface order large deviation principle at low temperatures for d = 2, see also 
Pfister [36]�9 They identified the rate function as a certain expression involving 
the 'Wulff functional'. Recently, Ioffe [27, 28] completed the two-dimensional 
analysis by extending the exact large deviation bounds of [13] and [36] to the 
whole phase coexistence region. 

Whereas these problems have been resolved in two dimension, basic ques- 
tions remained open for d > 3. One aim of this paper is to answer some of 
those questions, especially (i) and (ii). 

In order to present our results, we need some additional notation. We first 

introduce a critical value ~1 = ~l(d)  for d > 3, which can be regarded as a 
precise analogue of the 'slab-threshold' of percolation theory. The basic prop- 

erty of this threshold is the following: for 1~ > ~t, we can find a number L, 
such that for every n large, in the finite slab S(n ,L)  := [1,n] d-I • [1,L] long 

�9 f , / ~  ",,  range order occurs, meaning that the spin-correlation (with respect to ~s(n,L)) 

between any two points in S(n ,L)  'far' away from the boundary, is bounded 
A 

away from zero uniformly in n. The precise definition o f /~ ,  with a discussion 
of its properties, is given in Sect. 3. It is generally believed that thresholds 

such a s  ~1 coincide with ]3c for d > 3. 
Next, we would like to point out a difficulty, which arises due to the 

incomplete knowledge concerning the uniqueness of  translation invariant Gibbs 
states in three or more dimensions. Let us consider the left-hand limit 

(1.4) m*'f(]~):= lim m*(]~'), 

which we call 'free boundary spontaneous magnetization', since it turns out 
that m *,f is intimately related to free boundary conditions, as we will discuss 
below in the context of the random cluster model. Clearly, the limit in (1.4) 
exists, and m *,f is lower semi-continuous, since m* is monotone increasing. 
For the same reason, m *'f <= m* with equality in all but the (at most countably 
many) discontinuity points of m*. It is known that there are no such points 
for fl large enough, and the same behavior is expected for every temperature. 
However, we must pay attention to the (hypothetical) gap between m* and 
m *'f, and in our results we must occasionally replace m* by trt *'f. 
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Finally, we introduce the class of Gibbs measures with mixed plus and 
free boundary conditions. For A _c OB(n) (the boundary of B(n)), we define 
the conditional measure 

A(+),/7[ #f,  fl [ (1.5) /~n(,,) " ] =  n(,) " l a x = + l  for e v e r y x c A ] ,  

and denote by J+(/3,B(n)) the set of  alt such measures. The Gibbs measures 
with free and plus boundary conditions are contained in this class, since they 
correspond to the choice A = 0 and A = 0B(n), respectively. 

We are now ready to state our main result concerning the Ising model. It 

extends the upper bound (1.3) up to criticality (modulo the conjecture fil = tic) 
and for a reasonably large class of boundary conditions. 

Theorem 1.1 Let d > 3 and [I > Ft. For every a,b with - m  *'f < a < b < m *,f, 

(1.6) lira T l ~  sup #[me(n) E [a,b]] < 0.  
n---~oo #Ej+O3,B(n)) 

For plus boundary conditions, we have for 'every a,b with - 1  <= a < b < m *,f, 

1 
(1.7) J i m  ~ log#~if)[mn(, ) E [a,b]] < 0.  

Remarks. 1). In Sect. 5, Theorem 5.4, we give the analogous result for the 
q-state Potts model. 2). (1.7) holds for boundary conditions more general 

,A~z(+),/~ than 'plus'. Let ~8(n) be a sequence of measures. It can be shown that the 
following property is sufficient (and also necessary) for the analogue of (1.7): 
lirnn__.~ n -a+l IA.I > o. For reasons of space, we will not discuss this further. 

1.2 Results for the random cluster process and percolation 

The basic tool of our analysis is the Fortuin-Kasteleyn (FK) representation 
of the Ising model (cf. [20, 19] and the more recent works [4, 16,23,32,33]) 
(see also Sect. 2). First we recall the definition of random cluster (or FK) 
measures. Consider independent bond percolation with parameter p in the box 
B(n) and denote the corresponding probability measure by PP. Let c stand 
for the (random) number of clusters of the process. For given q > 1, the 

r with free boundary conditions is defined by its Radon- FK measure n@) 
Nykodim density 

dO f" p' q 
~(,0 _ q~/EP[q~] . 

dPP 

Note that for q = 1, this measure is just Bernoulli bond percolation. Suppose, 
we count the clusters in a slightly different way: for a given partition rc of 
OB(n), we identify sites in the same class, and regard their clusters to be 
connected. The (new) number of clusters in the box will be denoted by c ~, and 
the corresponding measure by (I J~'p'q We refer to such measures as FK mea- B(n) " 
sures with general boundary conditions, and denote their set by ~ ( p ,  q,B(n)). 
Note that the free b.c. corresponds to the partition f defined to have exactly 
I~B(n)[ classes, each of them containing exactly one element of ~B(n). Let 
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w be the partition of OB(n) with only one class (containing all elements of 
3B(n)); w is then called the wired boundary condition. 

It is well-known that the finite volume FK measures with free and wired 
b.c.s weakly converge to infinite volume limits, which we denote by q~fgP'q 
and ~woLp'q, respectively. The corresponding percolation probabilities are O f 
and 0 w. The critical parameter is defined by Pc = p~(q ,d) := inf{p > 0; 
OW(p,q,d) > 0}. It is a direct consequence of the FK representation that by 
setting 

(1.8) p = l - e  -p ,  

we have the equality m*(fi, d ) =  OW(p,q=2,d) ,  cf. (2.8) in [4], which 
implies at once that the critical values Pc and tic are related by (1.8). It is 
less obvious and was only recently proved (cf. [30, 23] and the end of subsec- 
tion 2.3) that m*'f(fl, d) = Of(p, q = 2, d), except possibly at the critical point. 
Finally, for d > 3, we introduce the critical value Pl = Pl(Q, d) as the limit 
of (slab-) thresholds for uniform long range order in slab-systems with free 
boundary conditions; see (3.5) for the precise definition. It follows from the 
FK representation that Pl(q = 2) and fiz satisfy the relation (1.8). 

Let us now present our result concerning the random cluster model. (We 
will see below that Theorem 1.1 is actually a simple consequence of this 
result.) A cluster is called crossing if it intersects all 2d faces of B(n). For 
! E N, we say that a cluster is l-small if its diameter does not exceed l; it 
is called l-intermediate if it is neither/-small nor has maximal size (among all 
clusters in B(n)). Let Sl and $~ stand for the set of/-small and l-inte~ediate 
clusters. Set 

K(n, a, l) = { 3! open cluster Cm of maximal volume, Cm is a crossing cluster, 

n-dlCml ~ (OY -- a'OW + ~)' c~, ~ tel < and}. 

(1.9) n ~-11 ( inf *[K(n,  a, L)C]) - o c  < lim -==-.log 
n--+oo \ q ~  ~(p,q,B(n ) ) 

(1.10) < lim 1 ( ) = ,,-*~ F log sup ~[K(n,e ,L)  c] < O. 
\~C~(p,q,B(n)) 

Remark. Note that the theorem includes Bernoulli bond percolation (q = 1). 
The proof can easily be adapted to site percolation. 

First, let us see how Theorem 1.2 can be used to prove Theorem 1.1. 
Suppose we want to study the magnetization in the Ising model with, e.g., 
free boundary conditions in B(n) at some inverse temperature fi > ill. We 
first generate a bond configuration according to the random cluster measure 

Theorem 1.2 Let d > 3, q > 1, p > Pl and e E (0, of~2)  be fixed. Then there 
exists" a constant L = L(p,q,  d, a) such that 
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i • f , p , q = 2  where is given by (1.8). Typically, we get a configuration con- B(n) ' P 
tained in K(n,e,L), since p > Pl. In the second step we choose a spin for 
each cluster at random with probability 1/2 independently from the others. 
By the FK representation, the resulting spin configuration has the same dis- 
tribution as in the Ising model. For e small and n large enough, the total 
magnetization of the L-small clusters will be around zero. Thus, the absolute 
value of the magnetization in the whole box is around n-diCta[, which is larger 
than m *'f - e .  Because the number of the small clusters grows in volume or- 
der, it is easy to see that the large deviations of their magnetization are also 
of volume order. Clearly, they have no effect in large deviations of surface 
order. The remaining possibilities of having a magnetization in the interval 
(--rn *,f +2e,  m *,f - 2 ~ )  are contained in the event K(n,e,L) c. As we have 
seen, however, the probability of this event decays exponentially in surface 
order. 

Next, we make some comments on the proof of Theorem 1.2. The basic 
technique is block renormalization, as used in percolation theory. The new fea- 
ture is that we are able to control the interaction between the block-variables, 
including the neighboring ones. The key result is Proposition 4.1, which says 
that for large block-size, the process of 'good' (or occupied) blocks stochas- 
tically dominates independent high-density site percolation. This allows us to 
apply a result of Deuschel and Pisztora [11], which implies that, up to surface 
order large deviations, there exists a cluster C of good blocks with exceedingly 
high density. The events defining 'goodness' are chosen in such a way that the 
following properties hold: 

(i) in each occupied block there is a unique 'big' cluster with an approx- 
imate density close to 0, and 

(ii) if two neighboring blocks are both occupied then their 'big' clusters 
must be connected in the union of those blocks. 

This implies that the (local) big clusters of the blocks lying in C build a big 
cluster C m with a density not much smaller than 0. A slightly more carefifl 
argument shows that C~ has not an essentially larger density than 0 and that 
every other cluster is either contained in exactly one block, which provides 
a bound on its diameter, or is contained in a region of negligible fractional 
volume. 

We would like to emphasize that at this level of accuracy, the large devi- 
ation behavior described in Theorem 1.2 (and in Theorem 1.1) is determined 
by the large deviation behavior of the process of good blocks. In other words, 
the surface order large deviations estimate in [11] for high-density Bernoulli 
percolation implies (via renormalization) analogous estimates for the Ising 
model and (FK) percolation in the whole phase transition regime (p  > Pl). 

Finally, we briefly review some related earlier results and compare them 
with Theorem 1.2. Consider Bernoulli percolation on the lattice ~d. The or- 
der parameter here is the percolation probability 0, which plays a role sim- 
ilar to that of the spontaneous magnetization in the Ising model. The block 
magnetization can be interpreted as an empirical quantity approaching m*. An 
analogous quantity in percolation is the density of sites in B(n) lying in an 
infinite cluster, i.e., X~(n) := n -d ~xcB(n) l l ( x ~ }  = n-d[co~ A B(n) I, since the 
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infinite cluster Coo is unique, whenever it exists. It is a consequence of the 
ergodic theorem that XB(n~ converges to 0 as n tends to infinity. As in the 
Ising model, the large deviations from this behavior are substantially differ- 
ent for the events D + := {X~(n) > 0 + ~} and D~- := {XB(n~ < 0 - ~}. By re- 
sults of Lebowitz and Schonmann [31] and Durrett and Schonmann [14] it 
is known that the probabilities of D + decay exponentially with n d in con- 
trast to the surface order large deviations of the events D2. This latter was 
proved for two dimensions in [14] and for higher dimensions by Gandolfi 
[21]. In the two-dimensional case, Alexander et al. [5] could identify the cor- 
responding rate fianction by establishing a percolation version of the 'Wulff- 
construction'. 

The basic difference between the restriction of Theorem 1.2 to Bernoulli 
percolation (q = 1), and the results in [14] and [21] is the following. The 
intersection of the infinite cluster with a box is not generally connected. How- 
ever, intuition suggests that Coo n B(n) has a unique big component and many 
small components that are concentrated around the boundary OB(n). Our result 
says that this picture is correct (up to large deviations of surface order) and 
that already the big part (the largest cluster in the box) has the 'right' vol- 
ume, ndO. Theorem 1.2 contains implicitly the following (uniqueness) statement 
which is not treated in [14] or [21]: any two clusters in a box with a positive 
fractional volume must be connected to each other, up to large deviations of 
surface order. 

1.3 Overview and organization of the paper 

In the following section we introduce notation and give a summary of the 
FK model and FK representation. In Sect. 3, after giving the precise definition 
of long-range order in slabs, we study connectivity properties of FK percola- 
tion in a large box B(n). We show in Theorem 3.1 the existence of a constant 
t~ > 0, such that for each function ~b(n) with ~clog(n) < ~(n) < n the follow- 
ing is tree: up to (large) deviations of order q~(n), there is a unique cluster in 
the box B(n) intersecting each sub-box with diameter larger than ~b(n), and the 
diameter of the second largest cluster does not exceed ~b(n). This result will be 
used to establish the basic properties of the renormalized process. However, it 
may be of independent interest, even in the case of Bernoulli percolation. The 
technique we develop (which is a refinement of methods used by Kesten and 
Zhang [29], and Chayes et al. [8]) allows us to prove a natural conjecture con- 
cerning the equality: limn-~oo a~f,P, qra +_+ ~B(n)] = O f. This result will play a ~B(n) L~ 

key role in controlling the volume of the largest cluster. As a byproduct, we 
obtain the joint lower semicontinuity of Of(p,q) in the region {(P,q) lq > 1, 
pl(q) < p < 1}. Let us remark that recently, by using completely different 
techniques, Grimmett [23] has proved the lower semicontinuity of the function 
Of(p) for fixed q with the possible exception of Pc(q). A further application is 
the extension of a result of Kesten and Zhang [29] to the FK model (q > 1), 
concerning the tail of  the finite cluster size distribution, see the remark after 
Theorem 3.1. 

The core of this work is Sect. 4, establishing a comparison inequality 
between the renormalized process and high-density Bernoulli percolation. 
Section 5 finally, contains the proofs of  the main theorems. 
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2 Preliminaries 

In this section we first introduce notation. In the second part, we recall some 
useful properties of  FK (or random cluster) measures. Finally, we give a 
short description of  the Ports model and a summary of  the FK represen- 
tation. 

2.1 Notation and terminology 

Throughout, we will deal with stochastic processes living on graphs with vertex 
set 2U, d > 2, or some subset o f  it. According to the 5~ ~-norm on IR a, defined 
by ]r] = ~i=l,...,d]ril, we may turn ~d into a graph with vertex set 7/d and edge 
set IE d = {{x,y};  Ix - Yt = 1}. This graph is called the d-dimensional cubic 
lattice. We often think of  this graph embedded in IRd the edges being straight 
lines between nearest neighbors. I f  x and y are nearest neighbors, we denote 
this relation by x ~ y. A path 7 is a finite or infinite sequence Xl,X2... of  
distinct nearest neighbors. Any two sites x, y in a path 7 are said to be joined 
by 7. A set A C 2U is called connected i f  any two elements can be joined by 
a path contained in A. 

The cardinality of  a set A is denoted by IAI. For i ~ {1 , . . . , d} ,  we set 
diami(A) = sup {Ix~ - Yi]; x ,y  E A}. The diameter of  A is given by diam (A) = 
max{diami(A);  i = 1 . . . .  ,d}.  For A,B C_ 7l a, the distance between them is 
given by dist(A,B) := inf{Ix - yf;x E A ,y  E B}. We denote by % the shift 
in IRa b y a E I R  a , i.e., Za " x H x + a  f o r x E I R  a . 

With A C_ 2~ d, we associate a set o f  edges (bonds) given by [A]e := 
{{x,y};  x, y c A } .  The graph (A,[A]e) will be often identified by its 
vertex set A. We define two kinds of  boundary for A. The (inner) vertex bound- 
ary is given by 0A = {x E A; 3y  E A c with x ~ y}, and the edge boundary 
is given by (~edgeA = {{x,y} E led; X EA, y EAC}. For V D_A we also de- 

,-3edge A fine OvA = {x C A; 3yE V\A with x ~ y }  and ~v ~ = {{x,y} EoeageA;x E A, 
y v\A}. 

A box A is a finite subset of  2U of  the form ~d M IIi=l,...,d[ai, bi]. For 
i = •  . . . .  ,=kd, we define the ith face O~A of  A by 8~A = {x G A;x~ is maximal} 
for i positive, and ~iA = {xcA; xIil is minimal} for i negative. For r E (0, ec)  a, 
we define a box centered at the origin by 

B(r)  = 2~ d M [ I  (-ri/2,ri/2]. 
i=l,...,d 

Note that for L~ c ( N + )  d, we have [B(n)[ = [Ii=l,...,dn i. We say that the box 
is symmetric, if  rl . . . . .  rd =:  r, and we denote it by B(r). For t C IR +, 
we define the set Y ' 2 ( t ) =  {r E lRd;ri E [t,2t] for i = 1 . . . .  ,d}.  The set o f  all 
boxes in 2U, which are congruent to a box B(r )  with r_ E W2(t), will be denoted 
by  ~ 2 ( t ) .  

A finite slab with thickness L is any box in 7Z d, which is congruent to a 
region 
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with _r E (0, oo) d. Similarly, we write S(r,L) for symmetric slabs (with respect 
to the first d -  1 coordinate directions) centered at the origin. 

Our setup for bond percolation is as follows. The basic sample space is 

given by ft = {0, 1 }~d; the elements are called configurations in gd. The nat- 
ural projections are given by pr b : co E f~ ~-~ co(b) C {0, 1}, where b C lE d. A 
bond b is called open in the configuration co if prb(co ) = 1, and closed other- 
wise. 

For E C_ lEd with E4=0, we write f~(E) for the set {0, 1}e; the elements 
are called configurations in E. Note that there is a one-to-one correspondence 
between cylinder sets and configurations, which is given by q ~ {q} := {co E f~; 
co(b) = q (b) fo r  every b c E}, where q C f~(E). We will use the following 
convention: the set f~ is regarded to be a cylinder (set) corresponding to 
the 'empty configuration' (with the choice E = ~.) We will sometimes iden- 
tify cylinders with the corresponding configuration. For A c ;gd, let f~A stand 
for the set of configurations in A: {0, 1} [A]e, and f~A for the set configu- 

rations outside A: {0, 1} Ed\[A]e. In general, for A C B C 2g d, we set f~A = 
{0, 1 )[B]e\[A]e Given co E f l  and E C IE d, we denote by co(E) the restriction 
of co to 9,(E). Analogously, o/B stands for the restriction of co to the set 
[B]e\[A]e. 

Given q E ~2(E), we denote by (9(q) the set of open bonds in E. The 
connected components of the graph (7Zd,0(q)) are called q-clusters. The 
t/-cluster of the site x is denoted by Cx(q). The path ? = (xl,x2,...) is said 
to be q-open if all the bonds {xi,xi+l} are contained in E and are open 
with respect to the configuration q. We write {A +-* B} for the event that 
there exists an open path joining some site of A with some site of B. 
Similarly, we denote by {A ~ oc} the event that there exists x C A with 
ICx[ 

For given E C_ led we write Y ( E )  for the e-field generated by the finite- 
dimensional cylinders associated with configurations in f~(E). Similarly, for 
A C B C_ 7/J, we use the notation ~A for the e-field generated by finite- 
dimensional cylinders associated with configurations in f2~. IfA = ~ or B = ~7 d, 
then (as before) we omit them from the notation ~A. 

There is a partial order < in f~ given by co % co' iff co(b) < cJ(b) 
for every b c led. A function f - ~2 --+ 1R is called increasing if f(co) < f ( d ) ,  
whenever co 6 coq An event is called increasing if its characteristic func- 
tion is increasing. Let ~ be a e-field of subsets of f~. For a pair of 
probability measures # and v on (f~,~7), we say that # (stochastically) 
dominates v if  for any ~-measurable increasing function g the expectations 
satisfy #(9) _-> v(g). We denote this relation with # ~ v. If, in addition, for 
each ~--measurable cylinder Z with #(Z)A v(Z)> 0, we have #(g!Z)> 
v(g[Z), then we say that # strongly dominates v, and denote this relation 

$ 

b y # ~ v .  

Occasionally, we will deal with site percolation on the lattice (Zd, lEd). We 
use analogous notation to bond percolation indicating the difference by a sub- 

script 'site'. For example, the sample space {0, 1} ed is denoted by ~site, and 
for V c_ 2g d, we denote by ~-V, site the e-field generated by finite-dimensional 
cylinders associated with configurations in V, etc. 
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2.2 FK measures and FK percolation 

Although the natural setting for FK percolation is a finite multi-graph, we 
restrict our attention to certain subgraphs of the lattice (7/d, IE ~) for d > 2 
for notational convenience. Let V _C 72. d be finite and set E = [V]e. We first 
introduce boundary conditions as follows. Consider a partition ~ of the set 
~V, say x = {B1,...,Bn}. (The sets Bi are disjoint non-empty subsets of  
~V with Ui=l,...,nBi = OV). We say that x, y E OV are x-wired, if  x, y E Bi 
for an i E { l , . . . , n} ,  and denote this relation by x ~ y .  Fix a configura- 
tion q E ~v.  We want to count the q-clusters in V in such a way that 
x-wired sites are considered to be connected. This can be done in the following 
formal way. We introduce an equivalence relation on V: x and y are said 
to be x .  q-wired if they are both joined by q-open paths to (or identical 
with) sites x~,y~c OV which are themselves ~z-wired. The new equivalence 
classes are called x .  q-clusters, or q-clusters in V with respect to the boundary 
condition x. 

For fixed p c [0, 1] and q > 1, the FK measure with parameters (p,q)  
and boundary conditions x is a probability measure on the a-field ~-v, defined 
by the formula 

where q E ~ v  and ZV 'p'q is an appropriate normalization factor. Since ~ v  is 
an atomic a-field with atoms {q}, q C ~2v, (2.1) determines a unique measure 
on ~ v .  Note that every cylinder has non-zero probability. Recall that the free 
boundary condition corresponds to the partition f defined to have exactly I~VI 
classes, and the wired b.c. corresponds to the partition w with only one class. 
The set of  all such measures corresponding to different b.c.s will be denoted 
by ~ ( p ,  q, V), and we write ~ ( p ,  q, V) for its convex hull. 

The stochastic process (Prb)bC~v : ~2 ---+ ~ v  given on the probability space 
(~,~-,(I)~ p'q) is called FK percolation with boundary conditions x. We will 
identify the law of this process with the measure  r p'q throughout this paper. 

We now will list some useful properties of FK measures. Although these 
properties are surely well-known and/or easy to derive, not all of  them are 
discussed in modem reviews in the form which we will use. Especially 
the somewhat awkward subject of  boundary conditions as well as conditioned 
versions of  comparison inequalities seem to be neglected. Since these issues 
will play an important role in our considerations, we include some background 
material on this topic in the appendix. References or proofs of the statements 
below can be found there. 

Perhaps the most important fact about FK measures is that every 
E ~ ( p ,  q, V) has the strong FKG property. (Note that q => 1). This means 

that for every ~v-measurable  cylinder Z, and for all ~v-measurable increasing 
functions f ,  9, we have 

(2.2) ~ [ f g l Z ]  >= ~ [ f i Z ] * [ o I X ] .  

In particular, i f Z  = ~, we have ~[ fg]  > ~ [ f ] ~ [ g ] ,  which is called the FKG 
property. 
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A direct consequence is the following, sometimes useful fact. Let 
Z = { p r  b = i  for b c E i ,  i = 0 , 1 }  and Z ' = { p r  b = i  for b C E '  i, i = 0 , 1 } .  If 
E0 _~ E~ and E1 g E~, then 

s 
(2.3) * ( .  I Z) ~ * ( .  ]Z ' ) .  

Another valuable property of FK measures is a pair of stochastic domination 
inequalities known as comparison principles o f  Fortuin. Let 72 be a boundary 
condition. Then 

_ qt 
either q~ < q and p < p~ or ql > q and p~/(1 p~) > _ 

p/(1 - p) = q 

implies 

s 7~,pl,qt 
( 2 . 4 )  f l ~  p'q ~, ~ v  

In some cases it is possible to compare FK measures with different b.c.s as 
well. There is a partial order on the set of partitions of 0V. We say that rc is 

7C / 
finer than 7r I, if for every x and y, x ~ y implies x ~ y. We then have 

(2.5) O~ p'q ~ * v  ''p'q . 

This implies immediately that for each Ov C ~ ( p ,  q, V), 

fv s s dl w'p'q (2.6) @ 'P'q ~ l~V ~ ~ V  " 

Next we discuss conditioning properties of FK measures. We begin with 
formula (2.7), which can be thought of as a kind of Markov property. 

For given U C_ V and co C f~, we define a partition WrY(co) of 0U by 
declaring x, y E 0U to be W~(co)-wired if they are joined by an co~-open 
path. Fix a partition rc of 0V. We define a new partition of ~?U, denoted by 
n .  WvU(co), by considering x, y r ~U to be 7z. Wy(co)-wired if they are both 
joined by covU-open paths to (or identical with) sites x t, y~, which are themselves 
n-wired. Then, for every 9 C ~-u, 

(2.7) (I~P'q[glJ"~vU](co) z~;'wU(e))'P'q[g], II1~] P' q-a .s .  

A direct consequence is thefinite-energy property. Fix a bond e C E and denote 
by ~ the a-field generated by the random variables {prb;b E E\{e}}. Then 

(2.8) O~P'q[e is open]g'7~](co) 

p on the set {the endpoints of e are n .  We-wired}, 
= P otherwise p+q(1--p) 

A nice feature of FK measures is the decouplin9 property. We describe here 
only the simplest (but most useful) application. Let B be a box contained in 
V. Consider the cylinders 
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edge D = { p r  b = 0  for b E @  B} and 

S = { p r  b =  1 for b = { x , y }  withx, y E O B } .  

Then for �9 E N(p,q, V), the a-fields 

(2.9) f B  and f v  ~ are independent with respect to 0 ( .  ]D) and 0 ( - I S ) .  

Note that by (2.7), we have an exact description of the conditional measures 
0 ( .  [D) and 0 ( .  IS). 

Let U _C V. The combination of (2.6) with (2.7) yields that for every in- 
creasing function g E f v  and Ov E ~(p,q,  V), 

(2.10) OfjP'q[g] < O v [ g l f v  U] < O~P'q[g] Ov-a.s., 

and 

(2.11) of~P'q[g] ~ o; 'P 'q[g]  ~ Ov'P'q[g] ~ o~P'q[g]  . 

The common interpretation of (2.11) is to say that 'free (wired) b.c. FK 
measures stochastically increase (decrease) with growing volume'. This guar- 

n'[~f,P,q 0 ~  p'q and antees the existence of weak limits of the measures Y~(n) -+ 
ow, p,q O~p, q B(n) ~ as n tends to infinity. We define ~(p,q,  TZd)={O~ p'q, 

r p'q} and denote by ~(p,q,  7l d) its convex hull. For technical reasons, we 
introduce a further class of probability measures defined on the a-field f v :  

S 

(2.12) .~ (~ ,p ,q ,V)  = {~  prob. measure on f v ; ~ P  ~ �9 f'p'q} 

By (2.6), ~(p,q,  V) C_ ~ ( ~ ,  p,q, V). Strong domination can be expressed in 
terms of conditional expectations. Let �9 E ~ ( ~ ,  p,q, V) and E t __ E be fixed. 
The a-field f '  := f ( U )  is atomic with atoms {t/},t/E f~(U). Thus 

(2.13) 0 ( .  I f')(co) = ~ ]1{.}(co)O(. I{q}) O-a.s. 
~E~(E t) 

Therefore, we have for each increasing fv-measurable function g 

(2.14) O ( g l f '  ) ~ o f ' P ' q ( g l f '  ) O-a.s. 

Note that �9 is absolutely continuous with respect to ~I )f'p'q, thus inequality 
(2.14) is meaningful. 

Lemma 2.1. Let U be finite and V D_ U finite or equal to 7Z d. Fix 0 C 
~(p,  q, V), an flU-measurable cylinder Z and an increasing event J E f v .  
Assume O(J N Z ) >  O, and let �9 Jnz stand for the conditional measure 
0 ( .  [J N Z). Denote by (O)u and (oJnZ)u the restriction of �9 and �9 vnz, 
respectively, to the a-field f u. Then 

(2.15) (O)u E ~(p,q,  U).  Moreover, if V is finite 

(2.16) (OJnz)u E ~ ( ~ ,  p,q, U). 
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The proof can be found in the appendix. 

2.3 Ports models and the FK representation 

We begin with a short description of the Ports model and refer to [4] for more 
details. 

Potts spin systems are generalizations of the Ising model. Whereas in Ising 
systems the spins take on two different values, in the q-state Potts model q 
distinct values are allowed (called colors), which we represent by the elements 
of the set {1,2, . . . ,q}.  For the finite box A c_ B(n), a color (or spin) configu- 
ration is a generic element of the set EA = {1,2,... ,q}A. The Hamiltonian has 
the same form as in (1.1), and the Gibbs measure with free b.c. is defined by 

f &q[a] = exp(-H(a)) /Z(f  , r, q) , 

where Z(f ,  ti, q) is an appropriate normalizing factor. Note that the case q = 2 
coincides with the Ising model, by interpreting color 1 as spin + !  and color 
2 as spin - 1 .  For a given color c and A _c 0A, we define the conditional 
measure 

(z17) [ l~(c) ' f l 'q[  �9 ] = # f ' f i ' q [ "  l (Tx = C for every x C A ] ,  

and denote the class of all such measures by ~(c)(ti, q,A). For the choice 
A = #A, we write #(c)&q for the measures #~(c),~,q. They correspond to 

#(c)&q converge weakly plus (minus) b.c.s in the Ising model. The measures B(n) 

(n -~ oo) to infinite volume limiting measures denoted by #~)'~'q. The order 
parameter of the Ports model is given by 

m * ( / 3 , q ) : - q - q l  ( '~'q[o'0~) = 1 ] - ~ ) .  

Note that for q = 2, this agrees with the spontaneous magnetization. The model 
exhibits a phase transition, more precisely, there exists tic(q) E (0, oc) such that 
m*(ti, q) = 0 for fl < tic(q) and m*(ti, q) > 0 for ti > tic(q). 

We now turn to the FK representation of the Potts model. In the late 1960s, 
Fortuin and Kasteleyn observed that the q-state Potts model can be viewed as 
the following doubly-stochastic system. Fix a finite box A, and for given ti set 
p = 1 - e -/~. In the first step we generate bond configurations according to the 
FK measure ~f'P'q. Given r/E ~q6, we equip each t/-cluster in A with a color 
c E {1,2 . . . .  ,q} at random with probability 1/q for each color, independently 
from the others. Then the obtained color configuration has the same distribution 
as in the q-state Potts model with free boundary conditions. 

Let us now discuss more general b.c.s in detail. Fix O~ (x)'~'q E .~(1)(fi, q, A). 
Denote by 7r(A) the partition of the set 0A characterized by the property that 
two distinct sites belong to the same class iff they are contained in A. For 
t /E f~A, we set 

sA(r/) = r c~(/x) _ 1 if A -+ 0,  
[. c ~(zx) if A = (~. 
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Recall that A = 0 corresponds to the free b.c. For o-C NA, set (9(o-)= 
{{x, y} E [A]e; O-x = ay}. We then define a probability measure on NA as fol- 
lows: 

P~'A[{a}] = q-#X(~)ll{(o(~)_c~(o)}ll{o=t on A}. 

This measure allows the following interpretation: for each 7c(A). t/-ctuster, 
except for that containing A, we choose a uniformly distributed color at ran- 
dom, independently from the others. We then define the spin ax at site x to be 
1 if  x belongs to the cluster containing A, and to be the chosen color of the 
~z(A). t/-cluster of x, otherwise. The joint distribution of the variables (cr~)x~A 
is then equal to p~A. 

The next formula describes in a precise way the FK representation of the 

measure #~(~)'~'q: 

(2.18) #AA(1),fi, q[. ] = f p~,A[. ] o A ( A ) , p , q [ d t l ]  . 
ft A 

As a direct consequence of this representation, we have the following identities. 

(2.19) q - 1  \ q / #  = - = O A  +-+ ' 

(2.20) q~ ( ~(l)'fl'q[o" x O'y]-- ; )  
q 1 # = 

= @X(A)'p'q[{x y}u ({x A} n {y A})], 

(2.21) m*(fi, q) = OW(p,q) , 

(2.22) Pc(q) = 1 - e -~c(q) . 

For proofs, extensions and background material, the reader is referred to the 
works [20,4,33, 16] or [32]. Note that for q = 2, the 1.h.s. of  Eqs. (2.19) and 
(2.20) can be replaced by the more familiar expressions f axd#(~ )'€ and 

f axayd#Z~ 0 )'8'q, respectively. 
It was recently proved in [23], that for fixed q, O f (p ,q )  is lower semi- 

continuous in p with the possible exception of pc(q), see also Theorem 
3.2. On the other hand, it is known (cf. [30,23]) that for each q, O f (p )  
coincides with O~'(p) up to at most countably many values of p. Since 
m*,f(fl, q) := l i m ~ , ~ -  rn*(fl~,q) is also lower semicontinuous and agrees with 
m* on a dense set, we have for all fl + tic(q), 

(2.23) of(1 - e -~ ,q )  = m*'f(fl,  q ) .  

3 Long-range order in slabs and connectivity in boxes 

In this section we study connectivity properties of FK percolation in a finite 
box. We begin with the precise definition of (uniform) long-range order in 
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finite slabs and the corresponding critical values. Let q > 1 and d > 3 be 
fixed. Using the terminology of  statistical mechanics, we say that in the slab- 
system (S(n,L))~>= 1, with thickness L E N +, at parameter p 'short long-range 
order'  (s.l.o.) exists if  we can find ~. > 1 such that 

(3.1) lim inf  
n---*oo xCS(n,L) 

I~ f'p'q [0 S(~n,L)L +-+ X] > O. 

We speak about ' long long-range order'  (1.1.o.), if  we can choose ~ = 1 above. 
Using the finite-energy property (2.8), we can replace (3.1) by 

(3.2) inf  inf d[If' p' q [" 
n>I x, yeS(n,L) ~S(~n'L)L:~ +-~ y] > 0 

It is a consequence of  the stochastic domination inequality (2.4) that the 
existence of  short (or long) long-range order at p ensures the same for any 
p '  > p. Therefore, it is reasonable to define the thresholds 

(3.3) ps(L) = inf  {p  > 0[3c~ > 1 with lira inf 
n---*oo xES(n,L) 

•f,p,q rn 0 } ,  S(~n,L)t" +-+ X] > 

~r~f,p,q [0 0} (3.4) pl(L)  = inf  {p  > 0 ] lim inf --S(n,L)Lv ~ X] > . 
= n---+oo xES(n,L) 

Using (2.11), it can be easily seen that ps(L) < pl(L). A further property of  
the critical values ps(L) and pl(L)  is that they decay with growing L. To see 
this, pick any p >= ps(L) and U > L. Then there exists c~ >__ 1 with (3.1). 
Set 7Zd(X) = (xl . . . .  ,Xd--I,0) and /3 = p i p  + q(1 - p) .  By the FKG inequality, 
(2.11) and (2.8), we have for any x c S (n ,L ' )  

~i j f 'p 'q  IX 0] > ~ f ' P ' q  r~ tX', 0] I~ f 'p 'q rX S(~n,L')L +-+ = S(~,,,L')t dt ) ~ " S(~n,L')L +-~ 7rd(X)] 

f,P,q > OS(~n,L)[~d(X ) ~ 0](t5) L' , 

which implies s.l.o, at p in the slab-system with thickness U.  Hence, 
p > ps(U) .  The same argument works also for pl(L). Next, we set 

(3.5) ?s = p s ( q , d ) =  lim ps(L) and ?1 = • l ( q , d ) =  lim p~(L).  
L--+oo L - ~  

It is easily seen that Pc < Ps < Pl. Finally, we show that Pl is strictly less 
than one. For q = 1, i.e., for Bernoulli percolation, this follows from the equal- 
ity Pc = Pl, see [25] and Lemma 3 in [29]. For q > 1, we first choose p 
with pc(1 ,d )  < p < 1. Let p '  < 1 be such that p' / (1 - p ' )  > q .  p/(1 - p) .  
Then by the (second) comparison inequality of  Fortuin (2.4), we have for ev- 

~f ,p ' , q  ~p,q=l which implies that p > ~l(q ,d) ,  and thus ery slab S(n ,L)  : ~S(n,L) ~ ~s(n,z), 
1 > ? l ( q , d ) .  

Remark.  As one of  the first consequences of  the renormalization procedure 
described in the next section, we will see that in fact the two critical values 
~ and PI coincide. Moreover,  we conjecture that for q > 1, in analogy to the 
case of  Bernoulli percolation, we have the equality p~ = ~ .  
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Before stating the main results of this section, Theorems 3.1 and 3.2, we 
first define the notion of crossing. Let B C_ B ~ be boxes contained in a region 
A C_ 77 a. Consider bond percolation in A. We say that for B an /-crossing 
occurs if there exists an open path ? C B which joins the left face to the right 
face of the box in the ith direction, i.e., if  7 " ~ - i ( B )  ~ ~i(B) in B. A cluster 
C in B ~ is called (il . . . . .  i~)-crossingfor B if  for j = il . . . .  , i~,C MB contains 
an open j-crossing path. A cluster C in B ~ is said to be a crossing cluster f o r  
B in B ~ if it is (1 . . . .  ,d)-crossing. Note that the occurrence of/-crossings in 
all directions does not imply the existence of a crossing cluster in general. 

A slab is a special kind of box, therefore, our definitions extend also to 
slabs. For our purpose, however, it is convenient to ignore crossings in the 
'short' direction. Assume S(n_,L) C_ B ~. We then say that C in B ~ is a crossing 
cluster f o r  S(n ,L)  if it is (1 . . . .  , d -  1)-crossing. 

Finally, we define the following events. For c~ > 1 fixed and n C W2(n), set 
U(n_) = {3! open crossing cluster C* for B(n_) in B(~n)}. Consider a (fixed) 
monotone increasing function g " N ~ [0, oo) with g(n) <= n. Denote by RO(n_) 
the event U(_n) A {every open path 7 C_ B(_n) with diam(7) > g(n) is co,rained 
in C*}. Finally, Og(n) stands for the event R~(n) M {C* crosses every sub-box 
Q E ~2(g(n) )  contained in B(n)}. 

Theorem 3.1 Let  d > 3, q > 1 and assume one o f  the following hypotheses 
(H) :p  > ~ and ~ > 1, (H~):p > ~1 and ~ = 1. Then 

(3.6) lim l log ( sup sup O[U(n)C]) < 0  
n~o~ n \_nEY'2(n) OC~(~,p,q,B(c~n)) 

Also, there exists a constant ~c = i r  > 0 such that l i m ~ g ( n ) /  
log(n) > tc implies 

(3.7) lim ~ 1  l o g (  sup sup O[(Rg(n))C]) < 0 .  
n ~  g(n) \ nS~2(n) OC~(~,p,q,B(c~n_)) 

Le t  p > t91. There exists a constant ~ / = ~ / ( p , q , d )  > 0 such that 
l i m , ~  g(n) / log(n)  > to' implies 

(3.8) lira g - ~  log sup sup O[(Og(n)) C] < O. 
n ~  \ nEXe(n ) O@~(~,p,q,B(n)) 

The proof of this theorem is based on Lemmas 3.3 and 3.4, and can be 
found after those. 

Remark.  Using (3.7), it is not difficult to adapt the proof of the upper bound 
on the sub-exponential decay of  the finite cluster size distribution in BernouIli 
percolation (cf. [29], Corollary 3), to prove the following extension: for d > 3, 
q >__ 1 and p > pl, 

1 
(3.9) lim l o g l l l ~ P ' q [ ]  Col = n]  < 0 

n--,oo n(d--1)/d 

where * stands for f or w. Since this result does not fit naturally into the 
subject of this paper, we plan to give a full proof elsewhere. 
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The next theorem, which is crucial in order to control the volume of 
the 'largest' cluster in a box, proves a natural conjecture: l im, ,_~ ~f,P, qrn ~/~(r t  ) L ~ 

3B(n)] = (~ f~P 'q [o  ,..o (ix)] = O f ,  whenever p > pl. The corresponding result is 
well-known for wired boundary conditions (see [4] Theorem 2.3), in which 
case it is a simple consequence of monotonicity properties of  the wired 
b.c. FK measures, and holds for each p E [0, 1]. The same method leading to 
this result yields also a large deviation estimate (in n) on the quantity 
(O~P'q[0 +-+ ~?B(n)]- O*(p)), where �9 stands for f or w. Remarkably, this 
botmd is uniform in the parameters p and q on any compact subset of  the 
supercritical region S, given by 

(3.10) S = { ( p , q ) ;  1 < q  < oe, _Pl(q) < P < 1}. 

This enables us to establish the joint lower semicontinuity of the percolation 
probability Of(p, q) in the region S. 

Theorem 3.2 Let d > 3, q > 1 and p > P1 be fixed. Then 

I'l~f'P'qrlq ~ aB(n)] = Of (p,q). (i) we have the equality l i m , ~  ~g(~) L~ 

(ii) The sequence of  functions O~(p, q) := ~ P ' q [ 0  ~ 3B(n)], converges 
to O*(p,q), as n tends to infinity. The convergence is exponential in n and 
uniform on compacta in the region S. 

(iii) The function Of(p, q) is jointly lower semicontinuous in S. 

The proof is deferred to the end of  this section. The next two Lemmas 
prepare the proof of  Theorem 3.1. 

Lemma 3.3 Let d > 3, q >= 1 and L >= 1. Under each of  the following hy- 
potheses (H) :  p > p~(L) and c~ > 1, (H ' ) :  p > pl(L) and 7 = 1, we have 

(3.11) lim inf inf it~f,p,q v 
n---+cxz n e a r 2 ( n )  x, yCS(n,L) S(ctn'L)[X +-+ y] > 0 

and 

(3.12) 
lim inf inf I~  f ' p ' q  [C 

n---+oo n_EW2(n) xES(n,L) S(c~n,L) 1_ x i s  
crossing for  S(n,L) in S(c~n,L)] > 0 .  

~ f , p , q  r ~ 1 t~  f ' p ' q  r , - ~ _ ~ m  Proof By the FKG inequality we have s(~_~,L)tX YJ > S(~,L)L~ vj 

~f'P'q r0~-+'1 Therefore, we can replace y by 0 in (3.11). Assuming hy- S(an_,L)L J J" 

pothesis (H), it is possible to find/co => 4, /~ >= 1 (which can be very large) 
and 6 > 0 such that for all k > k0 

(3.13) " f p q mf ~ s ) ~ ; , , [ 0  +-+ x] > 6.  
xES(k,L) ~ ' ' ~ J  

Set cg = (:~ - 1)/2 and no = Lk0/~/='J + 1. Fix n > no and n_ E W2(n). Set 
k = k ( n ) =  Ln~r/flJ and denote by E the dth coordinate hyper-plane, i.e. 
E = {x E 2UIxd = 0}. Note that k > /co, and for each y E S(n_,L)NE, the 
slab Sy([fk, L) := zyS(~k,L) is contained in S(en_,L). It is then possible to find 
a sequence {y0, y l , . . . , ym}  C S(n_,L) N E of nearest neighbors in the lattice 
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[k/217Z d such that y0 = 0, x C Sym(k,L) and m < 6dfi/od. Set ym+l = x. Using 
the FKG inequality and (2.11), we have 

(3.14) d~f,p,q ro x] > ~S(c~n~L)t <-+ I ~  d~f,P,q [a,J y j + X ]  = "~S(~n,L) t Y <---+ 
j=O...m 

~_~ l-f db, f,P,q F, J +-+ y j + l ]  ~ ~sm+l ~ 36dfl/~.'+1 
j=lol...m'a" Syj(fl k, L )l-f 

which implies (3.1 1). 
As for the proof of (3.12) (with hypothesis (H)), note first, that by (3.11) 

and the FKG inequality we can replace x by 0 in (3.12). Again, by (3.11), we 
can find k0 > 1 and 6 > 0 such that for k > k0 and y C S(k,L) 

(3.15) ~f'P'q ro S((~A2)k,L)L ~ Y] -->-- 6 ,  

where a A b  denotes the minimum of a and b. Set no = 16ko. Let n > no 
and n_ ~ 5~c2(n) be fixed. For i = 4 -1 , . . . , •  - 1), set Ai = {0 +-+ c3iS(n,L) in 
S(n,L)}. Then 

(3.16) 

f'P'q [ 1 OS(~n,L)[Co is crossing for S(n_,L)] > r 
- L i=• i )  J 

> ( m i n  ~I~S(~n,L) ])  [Ai �9 
~- i=-4-1,...,4-(d- 1) - 

We now give a lower bound for the r.h.s, of  Eq. (3.16). We may assume i = 1. 
For j E N, set zJ = (jLn/SJ,O,...,o) E 77 a, and denote by m the smallest nat- 
ural number with Sz,~(Ln/4I,L)NO~S(n_,L)~:O. Then 1 < m < n/Ln/8 j < 16. 
Set y i  :=zJ  f o r j  = 0,1 . . . . .  m, and ym+l := (Lnl /2 j ,0 , . . . , 0 )  C OlS(n_,L). We 
observe that for j = 0 . . . . .  m,y j+l E SyJ(Ln/4A,L) and 

Syj((o~A2)Ln/4J,L)N ( [,J OiS(n,L)) = 0 .  
i=--  1,-+-2,...,-4-(d- 1 ) 

Therefore, any open path joining 0 with ym+l within L,Jj=o ...... S / ( ( 2 A  ~) 
[n/4J,L) contains an open path joining 0 with OlS(n_,L) within S(n_,L). Note 
that for j = O, 1,... ,m, SS((c~ A 2)[n/4J,L) C S(~zn_,L). Thus 

(3.17) "~f'P'q [A ] '~r'S(c~ _n,L) L lJ 

> d[If ,p,q 
= ~S(~n,L) n 

i=O,..., ra 
{yi +_+ yi+l in Syi((2 A ~)Ln/4J,L)}] >= a "~+1 , 

which, together with (3.1 6) finishes the proof. The proofs with hypothesis (H') 
are analogous, in fact, much easier. [] 
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Consider a (fixed) monotone increasing function g : N  ~ E0, oc) with 
g(n) < n for n E N. For given n, n E Y{'2(n) and i c {1, . . . ,d}  let us de- 
fine the event Ag(i,n_) = {~i-crossing cluster C for B(n) in B(~n_) and ~ open 
path 7 C_ B(n_) with diami(7) > g(n) such that C N 7 = 0}. Note that the event 
Ag(i,n) is neither increasing nor decreasing. 

Lemma 3.4 Let  d > 3, q > 1 and assume one o f  the following hypotheses 
(H):  p > Ps and ~ > 1, (H~): p > Pl and ~ = 1. Then 

-- ( f'P'q �9 ) (3.18) lim 1 log sup OB(~D[ ~ crossing fo r  B(n)] < 0.  

Moreover,  there exists a constant tc = K(p, q, d, c~) > 0 such that l i m n _ ~ g ( n ) /  
log(n) > K implies f o r  each i E {1, . . . ,d}  

1 / ) 
(3.19) lim g ~  log sup sup O[Ag(i,n)] < 0.  

n - - ~  \nCSF2(n) OC~(~,  p,q,B(ccn_)) 

P r o o f  We will simplify the notation throughout the proof by setting 
(~f  ~- ~B(an)'~l[~f'P'q Assume (H). As p > ~ ,  there exists L E N + with p > ps(L). 

By Lemma 3.3, we can find no C N + and 6 E (0, 1) such that for any n > no 
and n_ E f z ( n ) ,  we have 

(3.20) 

inf OS(~_,L)[X~-~y A inf �9 f'p'q r c  k~,y~s(~,L) \x~S(~,L) S(~,L)L ~ is crossing for S(n_,L) > ~ .  

In a first step we will show that in the box B(n), up to large deviations of order 
n, an/-crossing occurs. We may assume i = 1. Fix n > no and n E Y{)(n). We 
divide the box B(c~) into slabs as follows. Set t = min{xd Ix C B(n_)} - 1 and 
ko = ~ / L J .  We define for k = 1 . . . . .  k0 

= B( n) n {x  + (k - 1)L < xd <-_ t + kL}  

Note that for each k,S~ and Sk n B(n) are congruent to S(en_,L) and S(n ,L)  re- 
spectively. Consider the decreasing event D = ~k=l,..,~0 {each bond in 

OB(~D(Sk) is closed}. Note that conditioning on D decouples the slabs $1,. ,Sk 
in the sense of (2.9). Using (3.20), we have 

(3.21) 

o f [ ~  1-crossing for B(_n)] < O I 
? 

N {~ 1-crossing for B(n) (3 Sk in Sk} D i 
k=l,...,k 0 J 

H f'P'q = Osk [~ 1-crossing for B(n_) ~ Sk] 
k=l,...,k 0 

< (1 - 6) Ln/Lj . 

We now turn to the proof of (3.18). By (3.21), it will be sufficient to estimate 
the probability of the event F = {B d-crossing but no crossing for B(n) in 
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B(~n)}. For any site z ~ A c_ B(c~n), we denote by C~(A) the cluster o f  z in 
A. For z ~ O_dB(n), we set F~ = {~ open path 7 C_ B(n_) with 7 " z ~ OdB(n_) 
and C~(B(c~n)) is not (1 . . . .  , d -  1)-crossing for B(n)}. Then 

(3.22) o f  IF] <= (2n) d-1 sup Of[Fz] 
z~_dB(n_) 

To estimate the r.h.s, o f  (3.22), we fix z E O_dB(n_). For k = 1, . . . ,k0,  we 
define the regions T~ = $1 U $2 U . . .  U S~ and To = l?, and the events Go = 
[2 and Gk = {3 open path 7k C B(n) with 7~ : z ~ Od(Tk) and Cz(Tk) is not 
(1 . . . . .  d - 1)-crossing for B(n) n Tk}. It is easy to see that Gk E Yrk  and 
Go D Ga ~ ... Gko D_ Fz. We claim, that for k = 0, 1 , . . . ,  k0 - 1, 

(3.23) Of[Gk+llYrk] < 1 -- t35 O f - a . s . ,  

where 5 is defined by (3.20) and/3 = p/[p + q(1 - p)] .  Once (3.23) is proved, 
we proceed as follows: 

(3.24) O f  [Fz] < O f  [Gko] = f ll6ko_l(Co)Of [Gko l ~rko_l](OO)Of [dco] 

= < (1 - / 3 6 ) o f [ a k o _ l ]  = < ...  = < (1 -- /36)  k~ = < (1 -- /36)  L"/Lj 

by recursion. Now, the statement (3.18) follows easily by putting together the 
inequalities (3.22) and (3.24). We still have to prove (3.23). Note first that 
Of[Gk+I I ~-Tk](~) = 0 Of-a .s .  on G~. On the set Gk we can find zk = Zk(~) E 
cga(Tk ~B(n_)) such that z +--+ Zk in Tk NB(n) .  Let us denote by  z~ the nearest 
neighbor of  zk lying in Sk+l and by bk the bond joining them. Using (2.13) 
and (2.2), (3.20) and (2.8), we have @-a.s. on Gk, 

Of[Gk+l I~'Tk] 

<-- 1 --of[C~(Tk+I) is ( 1 , . . . , d -  1)-crossing for Tk+l nB(_n) I Yr~] 

< 1 - Of[bk is open I ~r~]of[c~,k(Sk+l) is 

(1 . . . . .  d - 1)-crossing for Sk+l nB(_n) f ~-rk] 

__< 1 - / 3 ~ ,  

which finishes the proof  of  (3.18). 
The proof  of  (3.19) is very similar to that of  (3.18), so we will merely 

sketch the argument. We may assume i = d. For fixed x O) E O_dB(n) and 

x (~) C B(n) with X (2) < ~nd/2 j --9(n), we define the event Fx(1),~(2 ) = {for 

i E {1,2}, 3 open paths 7 (0 C_ B(n) with 7 (0 " x (i) ~ {y E B(n_)lya = x(d 2) + 
~g(n)J} such that C~(~)(B(en))n 7 (2) = ~} Let s be the largest integer with 
x (2) ~ T~ and set jo = [g(n)/LJ. For j = 1 . . . . .  J0, consider the events G} = 

{for i C {1,2},3  open paths 7 (0 c_ B(n_) with 7 (0 .  x (0 +-+ ~d(T~+])N B(n_)}. It 
is easily seen that Gj C ~ r , + j  and Ag(d, n) c_ G~o C_ G'jo_l c_... C_ G~. Pick 
�9 C ~ (~,p,q,B(en_)). As before, *[G}+ 11 ~r~+j] = 0 o-~.s, on (G~) ~. On 
the set G}, we can find sites xJ i) = x~.i)(co) C 3d(T~+j)NB(n),i ~ {1,2}, with 
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x (i) ~-~ x~. i) in B(n_) N Ts+j. Let us denote by y}i) their nearest neighbors in S~.+j+i 
and by b~ i) the corresponding bonds. Then, by using (2.13), (2.2), (3.20) and 
(2.8), we have q~-a.s, on G}: 

1 - -  ( I ) [ x  (1) +-+ X (2) i n  T~+j+I ] Yr,+j] 

< 1 - ~f,p,  qr,.(1) +_+ x(2) in T~+j+~ ] f i re . j ]  = B(~rt ) L "~" 

< 1 - ( t 5 ) 2 6 .  

By successive conditioning, as in (3.24), we then have (~)[Fx(1),x(2)] ~ 
(1 - (/5)23) L00~)/Lj 1, which yields q)[A~(d,n)] < (2n)2~-1(I - (/5)23)lg(~VLJ -I .  
Taking logarithm and dividing by g(n), we see that by setting 
~c = L (2d - 1 )/log( 1/[ 1 - (/3)26]), (3.19) holds. The proof of the Lemma with 
hypothesis (H') is analogous. [] 

Proof of  Theorem 3.1. The existence of a crossing cluster, up to large devi- 
ations of order n, was proved in (3.18). The uniqueness is an application of 
(3.19) by setting 9(n) = n. The proof of (3.7) follows also immediately from 
Lemma 3.4. Simply observe that 

(RO(n))~ C- UC(n)U ( ~i=l,...,d U(n) NA~ 

The estimates (3.6) and (3.19) finish the proof of (3.7). We now turn to (3.8). 
Let _n E Y2(n) be fixed and pick �9 C .~(~ ,  p,q,B(n_)). First we observe 

(3.25) O[OO(_n) c] =< O[Rg(n_) c] 

+ ("7) 
QEN2(9(n)) 

QCB(n) 

(I)[ ~ crossing for Q in Q].  

~f'P'q and by (2.11) and (3.6), there exist strictly positive con- Since ~ ~ _~(_~) , 

stants cb c2 such that for each Q in the expression above, we have 

O[~ crossing for Q in Q] < @f'P'q[~ crossing for Q in Q] < ele -C2g(n) , 

tbr n large enough. Putting the estimates together, we find that for ~c' := tc V 
2d/c2, (3.8) holds. [] 

Proof of  Theorem 3.2. For given q > 1 and p > P1(q), we choose 
L = L(p, q, d) E N + and 6 = 6(p, q, d) > 0 such that 

(3.26) inf inf (I) y' p' q r n>l x, yES(n,L) S(n,L)[X +-~ .1}] ~ (~ . 
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By using the same kind of  slab argument as in the proof  of  Lemma 3.4 (cf. 
(3 .22)- (3 .24)) ,  we have 

(3.27) 
sup (l)[0 ~ ~B(N) and 0 +,~ ~B(n)] =< 2d(1 - [76) LN/LJ < Cl e-c2N , 

q~EN(~,p,q,B(n)) 

where ci = cl(p,q, cl) > 0 and c2 = c2(p,q,d) > 0 are appropriate constants 
and /3 = p/[p + q(1 - p)] .  Pick (1) c N ( ~ ,  p,q,B(n)). Since 

(I)[0 ~ ~B(N)] = (I)[0 +-+ 0B(n)] + (I)[0 +-+ OB(N) and 0 +,+ 0B(n)] ,  

we have 

(3.28) (I)[0 ~ 0B(N)] > (I)[0 ~-+ ~3B(n)] > (I)[0 ~ (3B(N)] - el e-c2N . 

[l)*.P,q and taking the limit n ~ cx~, we get Applying this to the measures YB(,) 

(3.29) 

= ~*'P'q~0 0B(n)] > lim ~B(n) t~ +-+ ~*~P'q[o ~ c~B(N)] > lim YB(,) t +-+ _ d~*'P'qm 0B(n)] 
t/----> O O  n - - - ~  O Q  

~ * ' P ' q M  = ~B(~) L~ ~ 3B(N)] - Cl e-e2N 

Finally, we take the limit N --+ oo, which yields O*(p,q) = t i m , ~  ~B(n)d['**'P'qFfIL ~ 

(~B(n)]. This proves part (i). To prove (ii), we need the following lemma. 

L e m m a  3.5 Let d >_ 3 befixed. The function ~ = ~i(q) : [1, co) ~ (0,1)  is 
monotone increasing and Lipsehitz-continuous. 

Proof The analogous result is known for p~(q), see Theorem 3.1 in [24]. 
The monotonicity is a simple consequence of  the comparison inequality (2.4). 
The proof  of  the continuity is based on an inequality comparing the criti- 
cal parameters for different values o f  q, cf. (4.8) in [4]. Let ql > q >__ 1 
and p , p ' E  (0,1)  be given such that q'/q < ( p ' / ( 1 -  p ' ) ) / ( p / (1 -  p)). We 
claim that 

(3.30) P '  < Pl(q ' )  inaplies p < P l (q ) .  

Once this is proved, the same arguments as in the proof  of  Theorem 3.1 in 
[24] yield the Lipschitz-continuity of  Pl(q). 

As pl(L, q~) is monotone decreasing in L, p~ < ~i(q ~) implies p < pt(L, q~) 
for each L. This means that there is no 1.1.o. at (p~, ql) in the slab-system with 

_ (I) f 'p ' 'q '  stochastically dominates thickness L. But for each n > 1, the measure s(~,L) 

I) f ' p 'q  by (2.4). Therefore, there is no 1.1.o. at (p,q), which implies p < S(n,L) = 
pl(L, q). This is valid for each L, thus p =< Pt(q).  [] 

We observe that the region S is open with respect to the induced 
(Euclidean) topology in T = {(p ,q) ;  1 < q  < co, 0 < p < 1}, since the fimc- 
tion Pl(q)  is monotone and continuous. Fix (p ,  q) E S. Then there exists p > 0 
such that (pp, qp) := (p - p,q + p ) c  S. For i =  1,2, set ci, p := ci(Pp, qp, d), 
where ci was defined in (3.27). Note that (3.29) is valid for every pl > pp and 
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: r *' pt, q/ ql < qp if we replace cbc2 by cl,p, c2,p, since ~B(n) E ~ ( ~ , p p ,  qp,B(n)). 
Therefore, by using the last inequality in (3.29), each point in S has a compact 
neighborhood (containing an open neighborhood), where we have uniformly 
in (pl, qt) 

O*(p',q') < aP*~P"q'[o ~ B(N)] < O*(p',q') + Qpexp(-c2,pN) . 

This proves (ii). We now turn to the proof of part (iii). Note that for each 
II'hf'P'qF(~ +--+ c~B(n)] is smooth in (p,q), since the n, the function Of(p ,q ) :=  ~,(~) t~ 

volume B(n) is finite. Fix (p,q) C S. Then there exists a neighborhood U of 
(p,q) such that U C S, and for every (p~,q~) E U, we have for certain positive 
constants c3, c4 and for N large enough, 

Of (pl, q ') >--_ @~P"q'[O ~-+ t~B(N)] - -  C3 C - c 4 N  ~ Of(p ' ,q  I) - C3 e -c '4N . 

The second inequality follows from (2.11). Therefore, by using part (i), we 
obtain 

li_m Of(p',q ') > lim lim (OfN(p',q ') -- c3e -~4'v) = Of(p,q) .  
( p t , q l ) ~ ( p , q )  N ~ o o  (pt,ql)__+(p,q) 

This proves lower semicontinuity in (p,q). [] 

4 R e n o r m a l i z a t i o n  

Renormalization techniques are of great value in percolation theot2r Our renor- 
malization method has its origin in the 'block-argument' of Ref. [29], where 
the tail of  the finite cluster size distribution was studied in supercritical 
independent site percolation. Our main result is a comparison inequality 
(Proposition 4.1 ) between the renormalized process (defined in (4.5)) and high- 
density independent site percolation. This inequality can be used to show that 
certain properties of  high-density Bernoulli percolation extend to the FK model 
in the supercritical phase p > Pl. A direct application is stated in Proposition 
4.2. It establishes the equality of  the critical values pl and Ps. 

4.1 The blocks 

We begin with some geometrical considerations. The first step in any 'static' 
renormalization procedure is to re-scale the lattice (or a part of it) by introduc- 
ing blocks of  fixed size. Let N > 24 be a natural number. We say that A C 2~ d 
is an N-large box, if  either A = Z d or A is a finite box containing a symmet- 
ric box of  side-length 3N, i.e., if  A = 2gdN l~i=l,...,d(ai, bi~ with b i -  ai > 3N 
for i = 1, . . . ,  d. Given an N-large box A, we divide it into small boxes of an 
approximate size N as follows. 

Assume first A is finite and d = 1, i.e., A is an interval I of the form 
l = ( a , b ] c 3 2 [  with b - a _ _ >  3N. For k~2~ ,  set / ' k = ( k N - N / 2 , k N + N / 2 ]  
and define the rescaled interval I (N) = {k E 2g [Ik c_ I}. For s = min i  (N) and 
I = max/(N), (note that s + l )  we define I~ = (a, sN+N/2]  and I1 = (IN - 
N/2, b]. For the remaining elements of  i (N), we just set I~ := ]'k, (s < k < l). 
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Clearly, the set {I~]k c/(N)} is a partition o f / ,  moreover N < ]Ikl < 2N for 
each k E I (2v). 

Now we turn to the d-dimensional case. Assume first ]A] < ec. Setting 
I(i) = (ai, bi] N 2g, we define the rescaled box A (N) = IIi=i,...,cl[I(i)] (u). The 
corresponding blocks are defined by Bk = IIi=l,...,d[I(i)]ki for k E A (N). In the 
case A = 7/~, we just divide A into the set of  disjoint boxes BI, = "CNkB(N) for 
k E ;gd, and set A (N) = 7/d. In both cases, the triple (A,A (N), {Bk ]k ~ A(N)}) is 
called the N-partition of  the box A. Note that for each k E A(N),Bk E N2(N). 

With this partition, we will associate a set of  further boxes {Did ]i,j E 
A(N),i ~ j} representing 'bonds'  between neighboring blocks. Let e (k) stand 
for the kth unit vector in 7ZJ. For i ~ j with ik - J k  = 1, we first set re(j, i) = 
rxj(LN/2Je(k)), which can be thought of  as the middle-point of  the 
kth face of  the block Bj. Then we define Di, i = rm(i,j)(B(LN/4J )) and Did := 

Dj, i. 

Let us fix a set of  bonds 6~(N) C_ [B(~NI/2j )]e with cardinality LNV2J. Set 
B~ = zNkB(N ~/2) and 6~ = ,uk6~(N). Note that for any j ~ k, the sets B~ and 
Dk, i are disjoint. 

For p E {0,0.1}, we denote by B~ the 'p-interior' o f  the block Bk, i.e. 
B~ = {x E aki dist(x, Oak) >--_ pN}. Similarly D~,j denotes the set of  sites in 

Dk, i with a distance from 0Dk, i at least pWN/4j. 

4.2 The renormalized process 

We now introduce events related to our renormalization procedure. For given 
N > 24 and N-large box A, we consider the N-partition of  A. Let p C (0, 0.1} 
be fixed and set g(N) = N1/2/10. For i,j E A (N) with i ,-~ j and [i~ - Jk[ = 1, 
we set Kid {3k-crossing in P A (N), define = Did }. Given i E we 

(4.1) 

Ri -- ((i)  3! crossing cluster Ci* for Bi p in Bi and 

(ii) any open path 7 C_ B~ with diam(7) > g(N) is contained in Ci*} 

(4.2) Ki = n Ki, k 
k~i, kEA (N) 

(4.3) Si = {3 closed bond in fi) 

We consider a family o f  arbitrary events ~/F = {Vr C f i r ;  P E U,>__l #92(n)}, 
with the property 

(4.4) sup sup O[(Vr)  c] =:  v(N) ---+ 0 (N ~ oo) . 
PEN'2(N) OEN(p,q,F) 

In the sequel Vi stands for VB i. Let us now define the 'block-variables' Xi for 

i E A (N), by setting 

1 if Ri NKiNSi  n Vi occurs,  
(4.5) X i =  0 otherwise. 
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We call the (dependent) site percolation process defined by the variables 
(Xi)icA(N~ as the renormalized process with block-size N. As usual, a block 
is said to be occupied if the corresponding block-variable is l, and vacant 
otherwise. 

An important geometrical property of this process is the following. Con- 
sider a cluster C of occupied blocks. Then there is a cluster C of the original 
(microscopic) process crossing all the blocks contained in C and it is unique 
with this property. To see this it is sufficient to observe that if two neighbor- 
ing blocks i and j are occupied, then the (unique) crossing clusters C 1 and 
Cj* are connected to each other, because of the occurrence of Ki,j and property 
(ii) in the definition of Ri. The uniqueness of C is also clear, because any 
two clusters crossing B E in the occupied block Bk must be connected by 
definition. 

By the results of Sect. 3 and (4.4), the blocks are occupied with high 
probability, whenever N is large enough. The basic result (Proposition 4.1 
below) says that they are occupied with high probability independently of 
the state of the other blocks, including the neighboring ones. This will al- 
low us to compare the renormalized process with high-density Bernoulli site 
percolation. 

The somewhat artificial event Si will play an important, though merely tech- 
nical, role in establishing the comparison result, (Proposition 4.1). The reason 
to include Si in the definition of Xi is roughly the following: we would like that 
the conditional probability of the event Ki (which has a strong influence on the 
state of any neighboring block) given {)6 = 0}, is still close to one, as soon 
as the block-size is large. This will follow from a Bayes-type argument, since 
the absolute probability of K( behaves like exp( -cN)  whereas the probability 
of Si ~ behaves like exp(-c~N1/2). Therefore, even if {Xi = 0} occurs, it does, 
with high probability, not because of  the occurrence of K{. For more details, 
see, for example, (4.18). This simple argument turns out to be powerful and 
convenient in order to establish comparison inequalities, moreover, it seems to 
be quite generally applicable. 

As an example for a possible choice of the family rU, we refer to (5.7). 
At the same time we emphasize that any "typical" family can be included in 
this renormalization procedure. 

4.3 A comparison inequality 

Before stating Proposition 4.1, we need some preparation. By (3.2) and 
Theorem 3.1, there exist constants No > 24, Cl > 0, c2 > 0 and 61C(0, 1], 
depending only on the parameters (p, q, d), with the following properties: 

(4.6) for p > Pl, inf inf ~i~J,p,q [~- 
n>=l x, yGS(n, LNo/4J) "~'S(n' LN0/4j)L~ +-+ y] => 61 , 

for p > ~ a n d p = 0 . 1 ,  or for p > Pl a n d p = 0 ,  N > N 0  implies 

(4.7) sup ~[(Ri) C] < exp(-cIN1/2),  
q~E~(~,  p,q,B i) 

(4.8) sup ~[(Ki) c] =< exp( -c2N) ,  
�9 C ~ ( ~ , p , q , B  i ) 
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for each i E A (N). The following estimates can be easily derived from (2.8). 
Setting c3(p,q)= log(1 + q ( 1 -  p)/p) and c 4 ( p ) =  log(1/p)/2, we have for 
p E @l, 1) and for each �9 E N(p ,q ,A) ,  

(4.9) exp(-c3 NV2) ~  [(s )clg 3 ~ exp(-c4N V2) ql-a.s. 

For p,  q fixed, we define the functions ql " N --+ [0, oc )  by 

(4.10) ~I(N) = 2dexp(-c2N + c3N V2) + exp(-ClN ]/2) + exp(-c4NV2), 

(4.11) ~2(N) = 2dc~] -2 exp( -c2N + c3N 1/2) 

+ exp(-elN 1/2) + 61(d+2)exp(-c4N ]/2) , 

(4.12) ~3(N) - - 2 d  e x p ( - c 2 N  + c3 N1/2) 

§ exp(-ClN 1/2) q- exp(-c4N 1/2) + ~5~dv(N), 

and set for i = 1,2,3, 

(4.13) ~i(N) = (1 - ~i(N) A 1)d[u0,~)(N). 

Note that the functions Pi : N -+ [0, 1) converge to 1 as N tends to infinity. 
Finally, for given A and finite subsets A1,A2 C A, we introduce the 

following three hypotheses. Each of them corresponds to a certain choice of  
p, p, of  the family ~U and of an increasing event J E ~-1. 

(H1)" p E @s, 1), p = 0.1, V = f2 for each V E ~ and J = f~, 

(H2)" p E (Pl, 1), p = 0, V = f~ for each V E ~U and J = {A1 +-+ A2}, 

(H3)" p E (Pl, 1 ), p = 0, ~ is an arbitrary family with property (4.4) 
and J = fL 

Proposition 4.1 Let d > 3 and q > 1. Then for every N > 24, every N-large 
box A and every qJ E N(p, q, A) we have; assuming one of  the hypotheses 
Hi-H3, say (Hi), the law of  the renormalized process (XI)icA(N~, (defined by 
(4.5)) with respect to the conditional measure ~J := ~( .  I J), stochastically 
dominates independent site percolation in the box A (N) with parameter -fii(N), 
meaning that for any measurable increasing event I C ~A(N),site 

(4.14) ~pi(N ), indpt . . . .  
~J[x. E I] ~ l'~A(N),sit e t l l  . 

Remark. Although not used in the present paper in this generality, we con- 
sider in (4.14) conditional measures ~ J ,  since it may be useful for furore 
applications. The other reason to do so is that it demonstrates-together with 
the freedom in choosing the events Vi-the possibility of adapting the basic 
renormalization procedure (H2) to different kinds of  problems. Note however 
that the increasing event J could be chosen more general than {A1 +-+ A2}. 
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Proof Let N > No and an N-large box A be fixed. Suppose first !A I < ~ .  
Obviously, it is enough to prove (4.14) for O E ~ ( p , q , A ) .  Pick ~ ( p , q , A ) .  
It is sufficient to show that for each i E A (N), 

(4.15) q):[X] = 016(Xj; ] E A(X),j+i)] -<_ ~i(N) @J-a.s. 

Using the definition of A], we can bound the 1.h.s. of (4.15) as follows. 

(4.16) ~ J [ ~  = 0] a(Xj;j E A(~),j :#i)] 

~ (I)J[Ki~j [ o'0@ j C A(N),j*i)]  
j~A(N),j~i 

+ (I)I[R~ M Ki [ a(Xi;j C A(N),j+i)] 

+ (l ; [s(  n K~ ] a(Xj;j ~ A(~v),j #:i)] 

+ ~J[v c N Ki ] o'(Xj;j E A(N),j~:i)]. 

We now derive estimates for each term, begimfing with the first one. Let 
j C A (N) with J ~ i be fixed. Denote by I ~ the smallest box containing Did and 
B; and define the a-field N = a()~)V f i r  A. Note that N D a(Xj;j E A(N),j~:i), 

since for {k,l}+{i,j},Dk,! D A\F. Set hi = h3 = 1 and h 2 = 0 2. (31 was de- 
fined in (4.6)). We claim that under the hypothesis (Hk) 

(4.17) ~S[K~d I .~ ] < h~lexp(-czN + c3N 1/2) II)d-a.s. 

Clearly, the same estimate is valid if N is replaced by a(Jq;j E A(N),j#i). 
To prove (4.17), we first observe that N is an atomic o--algebra, with atoms 
of the form {X] = 1} N {1I} or {A~ = 0} N {q}, where t/E f~r (As before, A" 
we will identify the cylinder {~7} with the configuration t/.) Note that on 

J c the set {X] = 1}, the conditional expectation �9 [K~,ilN ] vanishes (4;-a.s.), 
since Ki, i D_ {Xi = 1}. So we have to consider only atoms {Xj -- 0} N q with 
~J[{X i = 0} N 1~] > 0. By using the strong FKG property of ~,  (2.16), (4.8) 
and (4.9), we have 

(4.18) J ~ O[Ks {Xj 0} MJ] �9 [Kid I {X ] = O} N 1/] = I = N r/ 

q~[{A 5 ~ o} n J / ~] = ~[s~ I ~ ] ~ l J  I ~] 

< (~ [ J  I t/I) -~ exp(-c2N + c3N"/2). 

Under (HI) and (H3), J = f~, hence (4.17) is proved in these cases. We will 
now show that under (H~), one has 

(4.19) q~[dl t/] > 32 , 

which will complete the proof of (4.17). Recall J =  {zX~ +--, ~2}. As 
�9 [J N ~/] > 0, there either exists a path among the open bonds of r/joining 
A~ with A2 (in which case q~[J] q] = 1 > 3~), or for i ~ {1,2}, there exist 
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sites X (i) E ~in(ln) and paths 7i among the open edges of t/with •i : A i  ~ x(i)" 

In the latter case, by (2.16) 

I~)[J ] q] = (I)[x (1) ~ X (2) in F I t/] > I~f'P'q[x(1) ~ x (21] . 

In order to give a lower bound for (1)('P'q[x(1) ~ X(2)], we will find two non- 
disjoint finite slabs $1,$2 C_ I" with thickness L := LN0/4A, such that for i E 
{1,2},x (i) E Si. Then, (4.6) and the FKG inequality yield (4.19). Let F be of 
the form 7Zdn IIk=l,...,d(ak, bk], where ak, bk C ~. For i = 1,2, set di = (x} i) - 
L) V ai. The following slabs have all the required properties. 

S l = Z d N ( d b d l + L ]  • I~ (a~,bk], 
k--2,...,d 

$2 = 7zd N(al,bl]  • (d2,d2 +L]  x I~ (ak, bk] �9 
k=3,...,d 

We now turn to the second term in (4.16). Again, we introduce a new 

a-field: d = y ~ i  V a(Kid;j N i,j E A(N)). We claim that 

(4.20) ~J[R e n Ki I d ]  < exp ( -C lN  1/2) (I)J-a.s. 

Note that ~J[R c N Ki I d ]  vanishes on the set Ki ~, therefore, it is sufficient to 
Bi consider only atoms of the form Kin  q, r/ E f~A, with �9 J[Ki N t/] > 0. But 

�9 J[R c n Ki [Ki n I/] = @[Rf [Ki O ~/N J] and the measure ~[  �9 [Ki N t/O J] r 
~ ( ~ , p , q ,  Bi) by (2.16). Hence, (4.7) yields (4.20). 

To deal with the next term on the r.h.s, of (4.16), we first set hi = ha = 1 
and h2 = 6f +2. We claim that under hypothesis (Hk) 

(4.21) qJJ[S.~ N K i ] ~ ]  ~ hkxexp(-c4N 1/2) ~J-a .s .  

For the same reason as before, it is enough to consider atoms of the form Ki N 
Bi r/,r/E f~A, with q~J[Ki At/] > 0. Assuming (H1) or (H3), J = f~. Therefore, 

by (4.9) 

(4.22) ~[S .~NKi lKiNt l ]  = ~[S(IKi N ~/] < exp(--c4N1/2), 

since K i n  q E ~ i .  Assuming (H2), we proceed as follows. 

(4.23) 
r c It I] < exp(-c4 N1/2) 

gPJ[s c NKi [Kin 1'/] _< r N J It  l] = {I)[J[q]IIjcA(N),j~ie!P[Ki, j ltl] ' 

where we have used the strong FKG property of ~ .  Replacing F by Bi in the 
proof of (4.19), we have 62 __< @[J I r/]. Similar (in fact simpler) arguments 
lead to 51 =< ~[Ki, j Iq]. (Note that r/ has the property O[Ki N r/] > 0.) This 
gives 

(4.24) ~[Ki I ~/] > 5~, 
which finishes the proof of (4.21). 
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Assuming (H1) and (Ha), the last term in (4.16) does not appear at all, 
since Vi = [2 for all i E A (N). So assume (H3), in which case J = f2. Again, 
we estimate the conditional expectation with respect to the a-field ~r and we 

consider only atoms of the form Ki M r/, with r/E f2~ i and ~[Ki N r/] > 0. By 
(4.4) and (4.24) 

a, EZ~"ln] < v(N)~-/ 
~[V( NKilK~ntl] < ( i i [ K i l t / ]  = 

Therefore, 

(4.25) q~[Vi ~ n K i l d ]  < v(N)g)? d @-a.s. 

Comparing the estimates (4.17), (4.20), (4.21), (4.25) with the definitions 
(4.10)-(4.12), we can easily verify (4.15). 

We now turn to the case A = ga. Instead of proving (4.15), we verify 
(4.14) directly by finite volume approximations. Although the steps are straight- 
forward, some care is required, since by changing the volume, the measure @, 
the event J and even the renormalized process will be changed (but only at 
the boundary of A). 

For J = {A1 ~ A2}, we consider the following finite volume approxima- 
tion. Since A1, A2 c_ 2g d are finite, we can find n~ E N such that B(n~o) contains 

1 those sets. For n => no, we set Z, = {A1 ~ A2 in B(n)}. Clearly, ["ln>__n;Jn = J.  

In order to prove (4.14), we fix a local increasing event I C ~ r ,  site for 
P C 2g d, IF l < oc. Let no have the following properties: 

(i) B(no) contains A1 and A~, 
(ii) B(no) (N) _D P U dour(p). 

Given n > no, we denote by ~n the restriction of q) to the a-field J~(,). By 
(2.15), @nCN(p,q,B(n)) .  Thanks to property (ii) above, the event 
G := {X. E 1} does not depend on the actual value of n (although the en- 
tire process (Xi)i EB(n)(N> does). Applying (4.14) to the box A = B(n), we have 
under the hypothesis (Hk) 

= P P k ( N ) ' i n d p t ' l -  " "  
(4.26) ~ " [ G ]  >-r,~ite d ] .  

On the other hand, since G is a local event and N,=>~0 G A J ,  = G~J ,  

lim @~[G ]=  lim ~ n [ G ~ J , ] _  lira ~ [ G A J n ] _ ~ j [ G ] = q ~ j [ X ~ I ] .  

Thus (4.26) implies (4.14). By standard arguments (cf. the proof of the 
FKG inequality in [22]), (4.14) extends to all non-local measurable increasing 
events. [] 

Proposition 4.2 Let d > 3 and q > 1. Then Ps = pl. 

Proof We will show that for p > fi~ there exists L = L(p) with p > pz(L). 
Thus p => Pl, which implies Ps = .P~ (since Ps < _Pl)- 

Suppose p > Ps. Choose N so large that fi t(N) (defined in (4.13)) is 
larger than the critical parameter of d-dimensional Bernoulli site percolation. 
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It is well-known (cf. [29 Lemma 3]) that there exists L' E N and 3 > 0 such 
that for all n -> 1 

r ,  P l  (N), indpt, r 
(4.27) i n f  rS(n,U),sit e IX ~ y] >= 3 ,  

x, y CS(n,L I ) 

We may assume that U is odd. Set L = NL' and consider the slab S(n,L), 
where n > 3N. We will now prove 

clef, P,q r. : ) 2d(2N)d (4.28) inf --s(n,L),a +-+ y] > 6 �9 (~ , 
x, yES(n,L ) 

where ~ = p/[p + q(1 - p)]. This will imply p > pl(L) and finish the proof. 
Consider the N-partition of the slab S(n,L). As L' is odd, the correspond- 

ing box of blocks S := S(n,L) (N) is a slab with thickness L'. Let us fix 
x ,y  E S(n,L). Then there exist i,j E S with x E Bi and y E Bj. Assume i4=j, 

otherwise I'hf'P'q [-" =_ ~s(n,L)t~ +-4 Y] > (})d(2N/. (Note that (~) d(aN)e is a lower bound 

for the probability that all bonds in [Bi]e are open, since ]Bil _-< (2N)d). De- 
fine the event A = {~ open path 7 c S(n,L) with 7 : Bi ~ Bj}. By the FKG 
inequality and (2.8), 

(4.29) --S(,,L)Lac]hf'P'q r- +-+ Y] => ~S(n,L)n'hf'P'q era* N {all bonds in [Bi]e N [Bi]e are open}] 

> ([))  2d(2N)d r P,q 
= " --s(,,L) [A]. 

f ,P,q We will now show that *s(~,L)[A] > 3. Consider the renormalized process 
with hypothesis (H1) on S and denote by Ci the cluster of occupied blocks 
of i (Ci is empty, if i is vacant). By the discussion after (4.5), the existence 
of occupied blocks joining i with j implies the occurrence of an open path in 
the microscopic process joining the blocks Bi with B i. Therefore {J E Ci} c_ A. 
On the other hand, by Proposition 4.1, the renormatized process dominates 
Bernoulli percolation with parameter ~I(N).  Therefore, by (4.27), we have 

fl )7"p'q [i C Cj] > 3, which yields the desired lower bound. [] S(n,L) = 

5 Proofs 

In order to prove Theorem 1.2, we need two preparatory results. For given 
n C Y)(n), we denote by lB(n) the set of 'boundary-clusters' of  B(n_), i.e., the 
clusters intersecting 0B(n_). 

Lemma 5.1 Let d > 2, q > 1 and p E [0, 1]. For 6 > O, we have 

(5.1) 

1 c ]) lim ~-  log sup sup * ~ IC[ > (0 w + a)lB(n)l < 0.  
n - - - +  o o  \ nC~72(n ) ~C~(p,q,B(n)) CEB(n) 

Proof The event occurring in the expression above is increasing. Consequently, 
it is sufficient to show (5.1) for wired boundary conditions. The correspond- 
ing FK measure will be denoted by OBw(e). For n E iN +, set Q(n)= {x E 
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B(n); dist(x, OB(n)) > nl/2}, and let B(x ,r )  stand for the box rx(B(r)). We 
have the following estimate on the expected fractional volume of the boundary 
clusters in B(n). 

F 1 
lira 

< lim n -d ~ w ~B(x, nl/2)[X ~B(x,  rll/2)] = 0 w , 
n-+oo xEQ(n) 

where we have used the equality 0 w = limn~oo @~(n)[0 +-+ 0B(n)]. Now fix 

6 > 0 and choose N so large that the expected value w -d C~-~B(N)[N ~CEB(N)[CI] 
0 ~ + 6/2. For a given N-large box B(n) consider its N-partition, and denote 
by B the re-scaled box B(n) (N). For i C B, set Yi = [{x E Bi; x +-+ aBi}l and 
denote by Si the increasing event that every bond joining two sites in aBi is 

open. Setting }~ = B\0B, we have for any n_ E ~) (n )  

JB(n)1-1 ~ Icl < [B(n_)[ -1 ~ Yi +4Nd/n .  
CEB(n_) o 

iEB 

Thus, by using the FKG inequality, 

IcI > (o" + 6)lg(n_)l] 
CEB(n) J 

By (2.9), the (bounded) variables (I~) o are i.i.d, with respect to the condi- 
icB 

tional measure q)~(~[ �9 i ["li~ Si]. By the choice of N, their expected value is 

not larger than (0 ~" + ~/2)N d. Therefore, the Theorem of Cramer applies and 
(5.1) follows immediately. [] 

In Sect. 3 we have introduced the event U ( n ) =  {3! crossing cluster C* 
in B(_n)} and have seen that it is a typical event up to large deviations of 
order n, cf. (3.6). For d > 0 let us define the event V(n ,~ )=  U(n )~  {IC*I E 
(0s _ 0 + 

Lemma 5.2 Let  d > 3, q > 1 and p > ~Pl. Then for  each 6 > O, 

(5.2) lim l log ( sup sup @[V(n_,3)~]) < 0. 
~-~o~ n \~ r2 (n )  @C~(p,q,B(n_)) ) 

Proof  Because C* E B(B(n_)), in view of Lemma 5.1 we can replace V(n,~) ~ 
in the above expression by the event U(n_) N {1C*[ < (0 f - 6)]B(n_)l }. As be- 
fore, we use an appropriate block-argument, which allows us to apply the The- 
orem of Cramer. Using the notation of Lemma 5.1, we start with the following 
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estimate. 

(5.3) s[ c] lim OB(n) n -a 
n---+ oo C; diam(C) >=n 1/2 

> lim n-a y-~, of(n)[diam(Cu) > n 1/2] 
n--~oo xEQ(n) 

f OB(x,//1/2 )] of > lim n -a ~ OB(x, ni/2)[x +-+ = 6 

n---+oo xEQ(n) 

In the last line we have used part (i) of Theorem 3.2. Let us now fix 6 > 0. 
Theorem 1.1 of [11] ensures that we can choose P0 E (0,1) such that for 
all p > P0, 

1 
lira log l~P, indpt. [ ~  sup --B(m),sitet �9 crossing cluster C with 

rnC,~'2(m) 

> ( 1 -  a/U+*)lB(m_)@ < Idl 0. 

Set v(N) = 1 for every N in the definition of~3 in (4.12), and denote by if(N) 
the corresponding values of i3(N).  Choose N so large that if(N) > P0 and 

f I ~ ]C't >= of--(~/4" ~)B(N) N-de; diam(C)>= NI/2 

For a given N-large box B(n), consider its N-partition and the correspond- 
ing renormalized process defined in (4.5) with hypothesis (H3), where we set 
V = f~ for every V E ~/F. The re-scaled box will be denoted by B. Set 

Z(n_) = U(n) N {3! crossing cluster (of blocks) C in B with 

ILl _-> (1 - 6 / 2 d + ' ) l B I } .  

By (3.6) and Proposition 4.1, we have 

(5.4) lira -1 log ( sup sup 
n---+oo // \n_EY'2(n) ~E~'(p,q,B(n_)) 

r < 0. 

Therefore, we have only to give an upper bound on the probability of the event 
W(n_) := Z(n) n {IC*I < (0 f - 6)[B(n_)l }. On the set Z(n_), as explained after 
(4.5), there exists a (microscopic) cluster C containing all 'small' crossing 
clusters C*(BI), i E (~. Since C is a crossing cluster for B(n_), C and C* must 
be the same. Setting Iq = ~C;diam(C)>N1/2lcl, we have the following lower 
bound for IC*I 

}c*l ~ ~Y~ ~ ~Y~- (a/2)lB(n__)l ~ ~ Y~- (a/2)lBCn)l. 
o i~(~ IEB IcB 
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Hence, 

W(n_) C_ Z(n_) M ~ Y~ - (6/2) < 01 - 6 
o 

iEB 

c_ ~ <  - 
o 

iEB 

Denote by E(n_) the event, that for each i E 1~ and for every bond in 0~ 
is closed. Observing that 2i~Bo lq is an increasing function, we have for each 

~ ~ (p ,  q, B(n)), 

(5.5) 
icB 

By (2.9), the variables (lq) o are i.i.d, with respect to the conditional mea- 
iEB 

sure *f(n/[ " ] E(n)], with an expected value larger than (O f - 6/4)IB(N)I.  The 
Theorem of Cramer completes the proof. [] 

Proof of  Theorem 1.2. First we prove the upper bound. Replace the condi- 
tion n-dlCml E (OJ - e ,  OW+ ~) in the definition of K(n,e,l)  by the condition 
n-dlCml > (O f - e ) ,  and denote the new but otherwise unchanged event by 
K'(n,e,l). By Lemma 5.1, we can replace K(n,e,L) by K~(n,e,L) in (1.10). 
Theorem 1.1 in [11] allows us to choose P0 C (0, 1), such that for all p > P0, 
we have 

(5.6) lim 1 1D p,indpt, l-.f ~ I k~o~ k -g2T-1 log ~B(k),sitekt~. crossing cluster C in B(k) with 

ICI > (1 - e /4 )k a}  c] < O. 

We want to apply Proposition 4.1 with hypothesis (H3). First we choose the 
family ~U by setting 

(5.7) V r =  3! cluster C* in r and ~ I C  I E (0  f - e / 4 , 0 w + e / 4 )  . 

Note that by Lemma 5.2, (4.4) is satisfied. Choose N so large that ~3(N) _> 
P0 (P3(N) was defined in (4.12)) and 

(5.8) N 1/2 <__ 16d/e. 

Set L = 2N. Clearly, L depends only on p, q, d, e. Consider the N-partition 
of the box B(n), where n > 16(2N)d/e, and the corresponding renormalized 
process on B := B(n) (N). Set 

Z(n,e,N) = {3! crossing cluster C of occupied blocks in B with 

ILl > (1 - e/4)lBI} 



460 A. Pisztora 

By Proposition 4.1 and (5.6), we have 

(5.9) lim n~25-ilog sup ~[Z(n,e,N) ~] < O. 
n - - + o o  \~@.~(p,q,B(n) ) 

We claim Z(n,e,N)C_K'(n,e,L). This fact, together with (5.9), will imply 
(1.10). In order to prove this inclusion, we first define the following regions: 

Gi = {x EBildist(x, OBi) <= N1/2}; G = U Gi 
iCB 

Qi = Bi \ Gi 

By (5.8), the volume of G is less than (e/4)n d. Note that n > 16d(2N)d/e 
implies that n-dZ~oB]Bi[ < e/4. 

Consider the cluster Cm in B(n) containing all the 'small '  crossing clusters 
C*(Bi) for i E (~. As 1~ is a crossing cluster, Cm is also crossing. By elementary 
calculations, we have I Cml > (0 f - e )n  d. Any other cluster C 4= Cm lies either 
in just one block (in this case diam(C) < 2N = L, thus the cluster is L-small) 
or in at least two different blocks. However, in the latter case C may not touch 
the set Uicd Qi; otherwise we would have that diam(C M Bi) > N 1/2 for an 

i E (~, and therefore, C = Cm. Consequently, any cluster C + Cm, which is not 
L-small, lies in the set G U {UicccBi}. The volume of this set is smaller than 
(3e/4)n d. Since nd(3e/4) V L d < (0 f - e )n  d, Cm must be a unique cluster of  
maximal size, and the intermediate class Sr has a smaller total volume than 
(e/2)n d. This proves that Z(n, ~, N) C_ K'(n, e, L) and implies finally (1.10). 

The lower bound is much easier to prove. First, we think of the lattice 5~ d 
embedded in IR d. The bonds can be identified with line segments between two 
nearest neighbors. For given n, we consider the following hyper-planes: 

= {,. c I r ,  = k , , o s / 3 } ;  k 

Denote by F(n) the set of bonds in [B(n)]e intersecting the union of these 
planes Ukc~E(n,k). Then IF(n)] =< cn d-1 for a positive constant c. Consider 
the event that all bonds in F(n) are closed. If  this event occurs, so does 
K(n, e,L) ~, since there cannot exist any cluster with a size larger than (Of~3)n d. 
But the probability of  this event with respect to any measure ~ C N(p, q, B(n)) 
has the lower bound (p/p + q(1 - p))lF(n)l, which implies (1.9). [] 

Proof of Theorem 1.1. Recall that for fl4=flc, m* = 0 ~ and m * ' f  = O f ,  of. 
(2.21) and (2.23). To prove (1.16), it is enough to consider intervals (a,b) 
of the form a = - 0  f+(5 and b = 0  f - 6  for 6 > 0. Let 6E(O,O f )  be fixed 
and denote by G(6,n) the event {[mB(n)] < O f - 6}. Set e = (6/4) A (of~z) A 
(1 -- OW)/4(> 0) and p = 1 - e-ft. Choose L = L(p,d,e) according to The- 

, A(+),fi 
orem 1.2. For given n > 2dL/e pick # ----- ~e(n) C J+(fi, B(n)). Denote by 

fl~(A),  p, 2 the corresponding random cluster measure --e(n) in the FK representation 
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(2.18). Then �9 E ~ ( p ,  2, B(n)) and we have 

(5.10) #[G(6,n)] = fP~'A[G(6,n)]q~[d~l] 

=< ~,[K(n,e,L) c] + f P'7'A[G(a,n)]*[d~] . 
K(n,e,L) 

We show below that there exists a constant e = c(p,d, 6) > 0 such that for 
each n > 2dL/e, r 1EK(n,g,L) and 2x C 6B(n) 

(5.11) , , a  P~(~)[G(6,n)] < 2 e x p ( - c n d ) .  

This and Theorem 1.2 then immediately imply (1.6). We call an L-small cluster 
internal if it does not touch OB(n), and denote by N~ the set of  such clusters. 
The total magnetization of sites lying in an internal L-small cluster will be 
denoted by M~2. 

In order to prove (5.11), fix a configuration r/C QB(~) with t /E K(n,e,L). 
Then we know that there exists a largest cluster C~ with n-~lCml ~ ( o f  - -  e ,  

0 "~ + e), and the total volume of the L-intermediate class is smaller than en d. 
By choice of  n, we have ISL\N2I < end as well. Since 4e < 3, after the 2x- 
coloring, the absolute value of the total magnetization of sites lying either in 
Cm or in a cluster of  the intermediate class or in an L-small cluster touching 
0B(n) must be in (nd(O f -3e) ,  nd(OW+ 3e)). Consequently, the occurrence 
of G(6,n) implies IM~i I > ~n d. Let (X/)i=>l be a sequence of i.i.d, variables 

with P[X1 = 1] = P[X1 = - 1 ]  = i/2 w.r.t, a certain probability measure P. 
Enumerate the internal L-small clusters in B(n): C1, C2,..., Cko and set ci = [C/[ 
for i =  1 . . . . .  k0. Since ko < n d, we have 

1 ciXi > el (5.13) < 2P /~0 i=~~k o~,, 
J 

By Lemma 5.3 below, we can bound this by 

(5.14) 2 exp(-koA#.& (e)), 

where A~d.& denotes the Legendre-transform of the logarithmic moment- 

generating function of the random variable L d �9 X~. Note that A~d -x~ (e) is 

strictly positive, since e > 0. We now claim that /co grows in volume order 
with the block size tl uniformly in ~7 ~ K(n,e,L). Note first that ~c~,L]C ] > 
( 1 - - 0  ~ - 3 e ) n  d. By choice of  e, ( 1 - 0  ' ~ - 3 e )  > e. Since the volume of a 
small cluster is bounded by L d, the number of  small clusters k0 must satisfy 
ko > e(n/L) d. Substituting this into (5.14), we arrive at (5.11 ) with c(p, d, 6) := 
eA*Ld .x~(e)/Ld. (Recall that e depends only on (p,d, 3).) Finally, we give 
Lemma 5.3. 
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Lemma 5.3 Consider a sequence (Xi )i>=l of  bounded i. i. d varh2bles with mean 
zero on a probability space (~2,~-,P). For given K > 0 and (deterministic) 
sequence (ci)i>>l with ci E [0,K], set Yi =ciXi  and Y, = ~Ei=I,...,,Y~-- 
E[1Ei=I,...,,Yi]. Then, we have for any e > O, 

(5.15) 
m 

P[rn > e] < exp(-nA~-.x~(e)),  

where A*x.x~ denotes the Legendre-transform of the logarithmic moment- 
generating function of the random variable K �9 X1. 

Proof By a standard estimate (cf. [12, Lemma 1.2.3]), we have P[Yn > e] < 
e x p ( - A r  (e)). Therefore, we need a lower bound for A-)n(e ). Using Jensen's 

inequality, we first have 

[exp ...... = ~ logE[{exp((2K/n)XD} cdx] 
i=l,...,n 

< nAL. xl (2/n) 

This yields Ayn(e ) > nA~.x~(e). [] 

The proof of (1.7) is based on the observation that the sign of the spin 
given to Cm determines the sign of m~(,). Since Cm is a crossing cluster, 
it intersects 8B(n). By the 'coloring rules' of  the FK representation (2.18) 
for + boundary conditions, Cm has (deterministically) spin +1. This in turn 
implies (1.7). [] 

The final part of this section is devoted to the generalization of Theorem 1.1 
to the q-state Ports model. The only difficulty is that, at least from the math- 
ematical point of view, there is no natural analogue of the empirical magne- 
tization m~(~)= n-d~xcB(n)ax in the Potts model. Nevertheless, we have the 
following empirical quantity, which, in the case q = 2, bears the same infor- 

y(C) --d mation as m~(~). Fix a color c E {1, . . . ,q},  and set ~B(~) = n ExcB(~)ll{o(x)=~} 

.fy(1) X(2) Y(q) l (For 2, have mB(n) ~g(n) and XB(~) = t.~B(~), B(~), '", '~(.)J" q = we = oY(1) -- 1). 
For * = f or w, we set z* = z* (p ,q )=  ( 1 -  O*)/q. Given a color r, we 

define the event 

A(n, (r), 6) = ry(r) z f  zw t~(n)  E (O s +  - ~,0 w+ + 6 ) )  

f ~?-(c) Tf  N N c (zw _ + 
cE{1,2,...,q}\{r) 

Recall, that by (2.21) and (2.23), for every fl+flc, m*(fi, q ) =  OW(p,q) and 
m*'f(fl, q) = Of(p,  q), where p = 1 - e  -~. The (surface order) large deviation 
behavior of X is described in the following theorem. Its proof is omitted, since 
it would only be a repetition of the arguments in the proof of  Theorem 1.1. 
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Theorem 5.4 Let d > 3, q > 1 and p > ill(q). For every (~ > O, 

1 ( 
(5.16) lim ~ log sup # 

n-+c~ \ yE~(1)(fl, q,B(n)) 

For (1) boundary conditions, we have 

1 lo (1),/~,q~_ (5.17) ~li~mo~ ~ g#B(~) thin,(1),5) ~] < 0 .  
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< 0 .  

Appendix A 

Here we provide some supplementary material, references and proofs to 
Subsect. 2.2. We first recall some general facts about FKG-Holley inequali- 
ties. We will use the notation of  Sect. 2 and write t I for the cylinder {t/}. Let 
V E 7Z d be finite and set E = [V]e. A probability measure # on -Yv satisfies 
the (FKG) lattice condition i f  for every co, 1/E f~v 

(A.1) #(co V r/)#(co A r/) __> #(co)#(r/), 

where (co V t/)(b) = co(b) V t/(b) and (co A t/)(b) = co(b) A t/(b). Then ,u is 
strong FKG (see e.g. Theorem 1 in [26]). For two probability measures # 
and v on ~-v, we say that # convexly dominates v if  for all co,~/6 f~v 

(A.2) #(co V ~/)v(co A r/) >__ #(co)v(r/). 

Then # ~ v (see e.g. Theorem 2 in [26]). It can be directly verified that (A.2) 
implies for each cylinder Z, that the conditional measure #( �9 [Z) convexly 

s 

dominates v( �9 l Z). Therefore, # ~ v. 
Let f E Y v  be an increasing fimction. For given #, we define #t by its 

Radon-Nykodim derivative df f /d# := f / p ( f ) .  If  # satisfies the lattice condi- 
tion then it can be immediately seen that the measure gl convexly dominates 

g 

#, and, therefore, #i ~ #. 
We now turn to the discussion of  the individual statements of  Sect. 2.2. We 

begin with inequality (2.2), which was proved for free and wired boundary 
conditions in e.g. [4], Theorem 2.1. In fact, the arguments there are valid 
for every q~ = q~v p'q C ~(p ,q ,  V), since c f shares the relevant monotonicity 
properties with c ~. 

The proof  of  (2.3) is as follows. Set $I = {pr ~_ 0 on E L and pr _~ 1 on El},  
S 2 = {pr - 0 on Eo\E~} and $3 = {pr - 1 o n  El\E1}. Note that 5:2 is de- 
creasing and $3 is increasing. Occasionally, we denote by ~ z  the condi- 

tional measure ~ ( .  I Z). Then, q)z(.  ) = q~sl(. 15:2) and AZ'( �9 ) = ~s~(. [S3). 
Since @sl satisfies the lattice condition, we have for any increasing event 
J ~ -Yv, 

o z ( J )  = (l~sl(J ] $2) <= os ' ( J )  <-_ os l ( J  I S 3 ) =  OU (J) , 
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s 
which shows Oz % o z ' .  This proves @z ~ o z '  as well, since two-fold condi- 
tioning on (compatible) cylinders is just a one-fold conditioning on a 'smaller' 
cylinder. 

We now turn to (2.4). It was shown in [4], Theorem 4.1 that under both 

assumptions, the measure @f'/'q' has an increasing density function with re- 

spect to r This implies convex domination, and therefore strong domina- 
tion for free b.c.s. Again, the same arguments are valid for general b.c.s, since 
the relevant monotonicity properties of c ~ are the same as those of c f. 

Statement (2.5) seems not to appear in modem accounts, so we give a 
short proof. We will directly verify inequality (A.2). Denoting by PP the law 
of Bernoulli bond percolation with parameter p, we rewrite inequality (A.2) 
as follows 

q~ (,oV,)q~ (o)/\,)pp[co V ~l]PP[co A ~] >= q~ (~O)q~ (~)pp[co]pp[tl] . 

Since PP[co V tl]PP[co/k 11] = PP[co]PP[rl] (by direct computation), we have to 
show 

(A.3) 
! ! 

c ~ ( co )  - c ~ (co v n )  __< c~(co  A ~ )  - c ~ ( n )  

for every co, t /E f~v. As a byproduct of the proof of (2.2), one knows that for 

fixed rl, c~'(co) - S(co V r/) is a decreasing function of co. Since co ~ co A t/, 
the r.h.s, of  (A.3) is not larger than c~'(co A t/) -- c~'(q). So it is sufficient to 
prove 

(A.4) c~'(co A t/) - c~'(t/) < c~(co A t/) - c~(t/). 

Using an analogous telescoping decomposition of (A.4) as in the proof of (2.2), 
it is easily seen that it is sufficient to show (A.4) for the case in which co has 
exactly one closed bond, say b = {x, y) .  Then both sides have value 0 or 1, 
and are equal, except in the following case: 

(i) x and y are ~'-wired but not n-wired 
(ii) t/(b) = 1 but x and y are not connected in E\{b} by arl t/-open path. 

In this case, the 1.h.s. is equal to 0, and the r.h.s, is equal to 1. This completes 
the proof. 

The proof of the statements (2.7)-(2.9) needs nothing more than straight- 
forward calculation, and is omitted. Finally_we prove Lemma 2.1. Denote by 
Ext ~ ( U )  the set of extremal elements of ~(p,q,  U). Obviously,_ Ext N(U)  C_ 
~(p,q,U),  and therefore, finite. Note that each element �9 ~ ~(p ,q ,U)  has 
a unique representation of the form �9 = ~p~• ~(u)ap(O)p, with ap(O) ~ 0 
and ~ ;ap(O)  = 1. 

We now turn to the proof of (2.15). Assume first that V is finite, and fix 
@~ E ~(p,q, V). By (2.7), we have for every g E o~u 

~- w~( �9 ) 
= ~ Ov[O U = q~]~b(g) = ~ ap(O~)p(g), 

$C,~(p,q, U) pcExt ~ ( U )  
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for certain coefficients a p ( ~ )  depending only on the measure ~ ,  which 

proves the claim for finite V. Assume now V = 27 ~. Let �9 stand for f or w. 
Then 

�9 ~ [ g ]  = l im q)~(n)[g] = l im ~ ap(**8(n))p(g ) . 
n---+~o n--+oo pCExt ~(U) 

Since a p ( ~ ( ~ ) )  does not depend on 9, and by compactness, it follows that for 

each p the sequence ap(q)~(,)) converges to a value in [0,1]. This completes the 
proof  o f  (2.15). To prove (2.16), we fix a cylinder S E ~c~, and an increasing 
event A E ~ -v .  By using the strong F K G  property and (2.3), we have 

>= ~ �9 vIA I S C~ {pr _= 0 on [VI~\[U]~}] = * f [ A  IS] 

where the last equality can be verified by direct calculation. 
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