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Compactly Supported Bidimensional Wavelet Bases 
with Hexagonal Symmetry 

A. Cohen and J.-M. Schlenker 

Abstract. We study a class of subband coding schemes allowing perfect re- 
construction for a bidimensional signal sampled on the hexagonal grid. From 
these schemes we construct biorthogonal wavelet bases of L2(R 2) which are 
compactly supported and such that the sets of generating functions $1, $2, $3 
for the synthesis and ~1,' t~2, ~3 for the analysis, as well as the scaling functions 

and @, are globally invariant by a rotation of 2n/3. We focus on the particular 
case of linear splines and we discuss how to obtain a higher regularity. We finally 
present the possibilities of sharp angular frequency resolution provided by these 
new bases. 

1. Introduction 

1.1. Wavelet Bases of  L2(R) 

Wavelet bases are families of functions of the type 

(1) 0~(x) = 2-J/=O(2-Jx -- k), 

where 0 is a mother function in L2(R) well localized both in time and frequency. 
They are usually defined with the help of a multiscale analysis, i.e., a sequence of 
approximation subspaces { V~}j~z of LZ(R) associated with a scaling function q~(x) 
such that 

(2) {0} ' " -+  V 2 ~ 171 c V 0 = V-x c V_2.. .-+ L2(R), 

(3) f (x )  ~ Vj ~ f(2x) ~ Vj_I r f(2ix) ~ Vo, 

(4) {rp(x - k)}k~Z is an orthonormal basis for Vo. 

In this framework, wavelets characterize, at each scale, the necessary details to get 
from one level of approximation to the next finer level since {O{}k~z forms a 
hilbertian basis for the orthogonal complement Wj of Vj into Vj_ 1 (see [Me], [D1], 
and [D2]). 
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In practice (see [D1]) the starting point to multiresolution analysis and wavelets 
is a pair of digital filters represented by their transfer functions too(CO ) and 
ml(co) = e-i~rno(CO + n) that satisfy 

(5) mo(0) = 1 

and 

(6) Irno(CO)l z + [too(CO + n)[ z = 1. 

The scaling function and the wavelet are then defined by 

(7) ~b(co) = l-[ too(2-kc~ and ~(co)= ml ~p �9 
k = l  

These filters, called "conjugate quadrature filters," are also used in the Fast 
Wavelet Transform Algorithm: A discrete signal is split into two sequences of 
approximation and detail coefficients at the next coarser scale, by convolution 
with the low-pass filter m o and the high-pass filter m 1, followed by the decimation 
of one sample out of two (the total amount of information is preserved). The 
reconstruction is operated by the same filters that are used to interpolate and 
refine the decimated sequences, followed by a normalization of a factor 2. This 
set of operations is known in electrical engineering as a Subband Coding Scheme. 

A multiscale representation of the original signal is obtained by iterating the 
decomposition on the coarse approximation, but the details can also be de- 
composed for more frequency resolution: this generalization leads to the "wavelet- 
packets analysis" [-CMQW] that we use in Section 5 of this paper. 

The class of compactly supported wavelets [D1] is particularly interesting for 
the applications since the conjugate quadrature filters corresponding to such bases 
have finite impulse responses and the subband coding scheme which constitutes 
each step of the algorithm can thus be implemented very easily. 

1.2. Bior thogonal  Wavelet  Bases 

Biorthogonal wavelets were designed to obtain wider possibilities in the choice of 
the functions used in a wavelet basis. 

In this more general setting, introduced in [CDF], one starts from a two-channel 
subband coding scheme with perfect reconstruction, where the analysis and 
synthesis filters need not be identical as in the particular case of the CQF. 

In one dimension this leads to a pair of dual low-pass filters represented by 
their transfer functions rho(CO ) (for the analysis) and mo(CO ) (or the synthesis) which 
have to satisfy the following relations: 

(8) mo(0) = rho(0) = 1 and too(n) = rho(n) = 0, 

(9) mo(CO)rho(CO) + too(CO + n)~ho(CO + n) = 1. 

If mo is fixed, finding rh o can be done by solving a Bezout problem or inverting 
a finite matrix. The two high-pass filters that are used to compute detail informa- 
tion are simply expressed by 

(10) ml(~ ) = e-i~ + n) and rh1(og) = e- i '~  -I- it). 
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The associated scaling functions and wavelets are defined in the same way as for 
the orthonormal case but the synthesis functions {go, ~0} ~/nd the analyzing 
functions {~, ~) need not be identical. We have 

m g o  ^ g o  
(11) ~b(go) = I-I mo(2-kgO) and ~O(go) = 1 go , 

k = l  

(12) ~(go) = I-[ r~o(2-kgO) and ~(go)= mx go �9 
k = l  

Clearly, mo = rho gives the orthonormal-CQF case. Then, under additional condi- 
tions detailed in [CDF], [C], and [CD1] and briefly recalled in the appendix, we 
have, for any f in L2(R), 

(13) 

where these expansions 
sense). 

are 

j ,  k E Z  

unique and unconditional (i.e., stable in the L 2 

1.3. Tensorial Wavelet Bases of  L2(R 2) 

The usual method to generalize wavelet bases the multiscale analysis to n- 
dimensional functions is based on tensor products. This method is valid for 
biorthogonal as well as for orthonormal wavelets. For example, in two dimensions, 
the space V~ are generated by the families {2-Jgo(2-~x - k)go(2-Jy - E)}(k.s and 
three wavelets are necessary to characterize the details: ~(x)go(y), go(x)~(y), and 
~(x)gr(y) which represent in image processing respectively the horizontal, vertical 
and "corner" edges (see [Ma]). This allows the use of all the results established 
in the unidimensional case about the regularity and oscillation properties of 
compactly supported wavelets. However, the tensor product construction is 
clearly restrictive and, moreover, it leads to  a nonisotropic analysis for two 
reasons: 

(a) The horizontal and vertical directions have a particular importance and the 
three wavelets are not "equivalent," in the sense that only the first two can 
be exchanged by a transformation on the coordinates ((x, y) ~ (y, x)). 

(b) It is known that compactly supported scaling functions and wavelets in one 
dimension cannot be symmetrical (except for the Haar system which is 
composed of discontinuous functions, see [DI]), and that can be a problem 
for some applications such as image coding. 

1.4. The Hexagonal Lattice 

The hexagonal lattice F in R 2 can  be defined as the image of 2 2 by a linear trans- 

(10 formation corresponding to the matrix v ~/~/2 " 

One can also write 

(14) F = {nle 1 + n2e 2 + n3e31(nl, n2, n 3 ) ~ Z 3 } ,  
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(a) The hexagonal mesh F and (b) the dual lattice f" and its Voronoic cell X. 

the vectors el, e2, e3 being defined in Fig. l(a); they are not  independent,  but  
the coordinate  system (cox, 092, c02) given by 

(15) col = (colet}, coz = (cole2), and co3 -- (colea} 

is useful because it reflects the symmetries of the lattice. For  any point  co e R 2, we 
have 

(16) col + co2 + co3 = 0. 
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The hexagonal lattice has two related interesting properties: 

�9 It is "compact" in the sense that it allows the densest repartition of points 
in R z with given minimal distance between them. 

�9 It is "isotropic" since it has three equivalent main directions (against, for 
instance, only two for the "square" lattice). 

We define a filter on F as an element of 12(F, R). The ring of compactly supported 
filters is denoted by cr its multiplication being the usual convolution product. 
For each filter {hr}~r, the associated transfer function is defined on R 2 by the 
discrete Fourier transform 

(17) m(09) = ~ h're -i(~lr>. 
7eF 

The "dual lattice" F to F is the set of points co in R 2 such that, for all y ~ F, 
(o~ly) is an integer multiple of 2re. It is also an hexagonal lattice that can be 

obtained by rotating F of 1r/6 and dilating the result by 4zr/x/~. The "Voronoi 
cell" X of the dual lattice--that is, the set of points closer to 0 than to any other 
point of the dual lattice--is thus the minimal domain of R 2 on which the transfer 
function of a filter has to be known. In the one-dimensional case this domain is 
the interval [ - re ,  rc]. In the two-dimensional hexagonal case it is an hexagon. 

Some graphs related to F are shown in Fig. 1. 

1.5. Hexagonal Wavelets 

This paper deals with the two problems of tensoriat bidimensional wavelets 
mentioned above and presents an original construction which allow more isotropy. 
We use the hexagonal mesh F instead of Z z as the translation group associated 
with V o. We still need a priori three wavelets to characterize the details, but we 
shall see that it is possible to choose a scaling function r invariant by a rotation 
of 27t/3 and the three wavelets ~1, ~r and ~/3 such that {~k 1, qJ2, ~/3} is globally 
invariant by a rotation of 2rc/3. That is, we have only one wavelet, but we are 
adding a 2rc/3 rotation to the set of transformations generating the elements of 
the basis from this wavelet. 

In the biorthogonal setting, this leads to 

Definition 1.5.1. A hexagonal biorthogonal wavelet basis of LZ(R z) is a bi- 
orthogonal wavelet basis such that the sets {~1, ~k2, ~3} and (~L, ~2, ~3}, as well 
as the scaling functions ~0 and q3, are globally invariant by a 2rt/3 rotation. 

This idea, due to Y. Meyer and S. Jaffard, was introduced to construct a wavelet 
basis of L2(R 2) where all the generating functions are piecewise affine on the 
triangles of �89 (see [Me] and [J]). In this case V o is the space of square integrable 
piecewise affine functions on the triangles of F. A natural generator for V o is given 
by the Courant interpolating "hat function" ~0 represented in Fig. 3(a). However, 
the family { ~ ( x -  Y)}r~r is deafly nonorthonormal. Using the gramian matrix 
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G = ((q~(x - y)lq~(x - y')))tv.~,~r2, an orthonormal basis can be generated by 

(~Po(X - 7))r~r = G-1/2((o(x - 7))~r. 

The new scaling function q~o has hexagonal symmetry like (o, orthonormal 
translates by F, but no compact support. 

More generally, it seems difficult to build orthonormal bases of compactly 
supported bidimensional wavelets without the help of the tensor product method. 
It is necessary to design the nonseparable finite impulse response CQF and the 
Fejer-Riesz lemma which is crucial in one dimension to derive the transfer function 
from its square modulus (see [D1]) but does not generalize in the multidimensional 
framework. For this reason we leave the orthonormality constraint and consider 
biorthogonal bases of wavelets. 

Another interesting construction, made by C. K. Chui, J. St6ckler, and J. Ward, 
leads to compactly supported spline wavelets, but the dual functions (and the 
analysing filters) are not compactly supported (see [CSW]). Finally, an article by 
C. de Boor, K. H611ig, and S. Riemenschneider deals with the use of various box 
splines for bivariate cardinal interpolation but their approach and their results 
are quite different from ours (see [BHR]): a mapping is used to derive the high-pass 
filters from the low-pass via 

f ml((91, (D2' (93) ~-" ei'Olm((91 + 7c, (92 + 7Z, (93), 

(18) ]m2((91, (92, (ga) ei~ w 2 + z, (ga + ~z), 

t m3((9i, (92, (93) ei'~ + re, (gz, (93 + n). 

We have used here the representation (9 = ((91, (92, (93) that is defined in (1.4). This 
is also the mapping that was used by Y. Meyer and S. Jaffard in the orthonormal 
case. In our approach we are particularly concerned to have finite impulse response 
filters for both the decomposition and the reconstruction of our two-dimensional 
signals. We shall see that, with this requirement, the high-pass filters cannot be 
derived from the previous mapping. 

We, of course, have a similar definition for the filters: 

Definition 1.5.2. A family {mo . . . . .  m3, ff~o . . . . .  n~a} of filters has hexagonal 
symmetry if the sets {m~ . . . .  , m3} and {r~ , . . . ,  rh3}, as well as the filters m o and 
rho, are globally invariant by a 2n/3 rotation. 

This can be expressed by the following identities: 

f rn((gl, (92, (93) = m(m2, (93, (91) = m((93, (91, (92), 
(19) 

~m1((91, (92, (93) = m2(~3, (91, (92)= m3(~02, (93, (90 

(also valid for {rh o . . . . .  m3}). After imposing some specific conditions, described in 
the next section, on these filters, we define our scaling functions and wavelets in 
a similar way to the one-dimensional case by 

+ o ~  +c(~ 

(20) ~(co) = 1-[ mo(2-k(9) and ~(co)= 1-[ r~0(2-kco), 
k = l  k = l  

A 

(21) ~(2(9) = m~((9)r and ~(2(9) = rh~((9)~((9) for e = 1, 2, 3. 
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A trivial result links hexagonal filters to hexagonal wavelets: 

Proposition 1.5.3. Let {too,..., m 3, ~ho,..., rh3} be a family of filters associated 
with a biorthongonal wavelet basis; then the wavelet basis is hexagonal if and only 
if {mo,-.., m3, rno, . . . ,  ff~3} is hexagonal. 

Proof. If {mo . . . . .  m3, ff~o . . . .  , rh3} is hexagonal, then the associated scaling func- 
tions cp and ~ are invariant under a 2n/3 rotation by (20), since m o and ~h o have 
the same invariance. Then, by (21), {~k 1, ~b2, ~b3} and {~k 1, ~2, ~3} are globally 
invariant by a 2rc/3 rotation. 

Reciprocally, the invariance by 2n/3 rotation of ~p and ~ means the invariance 
of m o and rh o (remarking that ~(2o9) = mo(og)q3(og)~ ^ and  ~(2o9) = mo(o9)cp(o9)),~ ~ and 
then the invariance of {~'1, ~b2, ~k3} and {~b 1, ~P2, ~k3} implies the invariance of 
{ml, m2, m3} and of {/~1, if/2,/~3} by (21). �9 

2. Perfect Reconstruction Hexagonal Filters 

2.1. Subband Codin9 Scheme 

We now take a closer look at the transfer functions of the digital filters that will 
lead us to the construction of our hexagonal biorthogonal wavelet bases. Since 
we want to express in a simple way the hexagonal symmetry constraints that we 
impose on these filters, we again use the representation ('0 = (('01, ('02, (-03). 

Figure 2 shows a four-channel two-dimensional subband coding scheme where 
the analyzing filters are (ffZo, rhl, rh2, ff~3} and the reconstruction is performed by 
{too, ml, m2, m3} 

If the low-pass filters satisfy 

(22) mo(0 ) = ff~o(0) = 1, 

then we can define, as in the one-dimensional case, the dual scaling functions 
and wavelets by (20) and (21). If this subband coding scheme has the property of 
perfect reconstruction for any signal, then the same arguments as in [CDF] show 
that under some conditions on the convergence of the infinite products in 
(20), and provided that the high-pass filters vanish at the origin, the families 

J {(~E)r}j~z,r~r,~= 1,2,3 and {(tp~}j~z,r~r,E= 1,2,3 are biorthogonal bases of L2(R2). 

Fig. 2. A four-channel subband coding scheme: 4 .L stands for decimation, 4 T for up-sampling (the 
reconstructed signal has to be normalized by a factor of 4). 
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These arguments are recalled in the Appendix. We now describe the properties of 
exact reconstruction.  

2.2. Related Linear System 

Define 1r o = (0, 0, 0), rt 1 = (0, re, zr), rc 2 = (n, 0, n), and r~ 3 = (re, re, 0). The  following 
two results characterize families of filters with exact reconstruction:  

Lemma  2.2.1. The family m o . . . . .  m3, rh o . . . . .  rh 3 (hexagonal or not) has exact 
reconstruction if and only if it satisfies 

(23) 

3 
ffti(co)mi(cn ) = 1, 

i=0  

3 

rhi(w + 7hlmi(co ) = O, 
i = 0  

3 
Y~ ,~i(co + ~ g m : @  = O, 

i=0  

3 

2 rni(~ + ~z3)mi(cO) = O. 
i=0  

Proof.  The proof  is exactly the same as the one-dimensional  case (see [CDF]) :  
it suffices to remark that the action of the subband coding scheme of Fig. 2 on a 
two-dimensional  discrete signal {s~}~r can be expressed on the discrete Fourier  
transform s(co) by the formula 

3 3 
(24) Rs(@ = ~ s(to + zri) ~ fib(co + rrj)mi(co), 

j = O  i = 0  

where Rs(@ is the discrete Four ier  t ransform of the reconstructed signal. Perfect 
reconstruction for any discrete signal is thus equivalent to (23). �9 

Lemma 2.2.2. I f  the family mo . . . . .  m3, trio . . . . .  n~3 of hexagonal compactly sup- 
ported filters has exact reconstruction, then it satisfies 

1 
(25) mo = 

U 

fib(co + re1) r~2(c0 + zq) tn3(c~ + ~l) 

/~/I(U) "~ '/~2) /~2( (0 "{- ~2) m3((2) "~ 792) 
r ~ ( ~  + 23) r~2(~o + n3) rh3(o~ + 23) 

where D is a nonzero constant and 

(26) ffzomo(CO ) + r~omo(CO + rq) + rhomo(CO + re2) + n~omo(CO + rca) = 1. 

Proof; Consider  (23) as a system of equations in the unknown {mo . . . . .  m3} with 
coefficients depending on {~o , . . - ,  ~-~3}. Since (23) has a nonzero  solution in cr  
its determinant  has an inverse in cg~,  and therefore must be of the form 
Det(~o) = D e  i ( n ' ~  4- . . . . .  + .3~03) 
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Consequently, mo is given by 

(27) mo(og) - Mo(m) _ e_i<,,~, , +,2~2+,,o,3) Mo(og) 
Det(co) O ' 

where Mo(og) is the minor of system (23) associated with ff~o(og) in the first line. 
However, by (19), Mo obviously has invariance by 2rt/3, and mo must have this 
invariance too by the definition of an hexagonal family of filters. So that we must 
have 

(28) nl = n2 = n3, 

which proves (25) (because Det(og) = D). 
If we now develop the determinant of system (23), using the symmetries 

expressed in (19), we obtain 

3 
(29) ~ ~o Mo(o9 + re j) = D, 

j=0  

from which we deduce (26). I1 

For a given too, an rh o satisfying (26) is called a dual to mo. As in the 
one-dimensional case, this dual filter is not unique. It is easily checked that a filter 
b is a dual to a filter a if and only if ab becomes 1 (the unit in cg~) after decimation. 
So that, for instance, if a, b, c e ~ - ,  then ac is a dual to b if and only if a is a 
dual to bc. This elementary property is used later. 

Remark 2.2.3. "Duality relation" (26) can be viewed as a simple generalization of 
relation (9) obtained in the one-dimensional case. For the high-pass filters, we can 
see from (25) that no more do we have a simple relation as in (10): it seems that 
we first need to know the high-pass filters to derive the low-pass filters. Instead 
of (26), the mapping (18) could be attempted to be used to generalize (10). 
Unfortunately this is not enough to satisfy system (23) except in the orthonormal 
case (when mi(o9 ) : r~i(o9 ) for i = 0-'-3). 

Remark 2.2.4. When too(tO) has hexagonal symmetry, given a dual filter rh(~o), we 
can immediately derive a dual filter with hexagonal symmetry by the choice 

(30) rho(O~ ) = ~rh(co) + rh(o92, o93, o91) + rh(~~ o91, o92)) 

that still satisfies (26). 

The results that we have proved in this section provide us with a systematic 
resolution scheme for (23). 

2.3. Resolution 

Here is an indication about how to solve (23): 

Theorem2.3.1. Let ff~l be a compactly supported filter. Derive ff~ and ff~= 
by (19) and m o by (25) with an arbitrary D v~ O. Let rh o be a compactly supported 
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dual to mo (that is, rh o should satisfy (26)) with hexagonal symmetry. Derive ma 
by the usual formula for a solution of (23) and m2 and m 3 by (19). Then the family 
{mo . . . . .  m3, mo . . . .  , fit3} is hexagonal with exact reconstruction. 

Proof. {mo . . . . .  m3, ff~o . . . . .  rh3} is dearly hexagonal. Identities (25) and (26) imply 
that the determinant of the system is equal to D. We thus can derive ml as the 
second component of the solution of (23). The symmetries of this system imply 
that the last two components m 2 and m3 can indeed be derived from m 1 by (19). 
This shows that system (23) is satisfied by this choice of filters. �9 

Remark 2.3.2. We have mentioned that, to generate biorthogonal wavelet bases, 
m o and rh o should be equal to 1 at the origin. This requirement fixes the value of 
D. The general procedure to design a subband coding scheme with exact re- 
construction that may lead to wavelets is thus the following: 

i. Choose the analysis high-pass filters with hexagonal symmetry. 
2. Derive the synthesis low-pass filter by (25), imposing mo(0 ) --- 1. 
3. Find an analysis low-pass filter that satisfies (26) and ff~o(0) = 1. 
4. Derive the synthesis high-pass filters by solving system (23). 

Remark 2.3.3. It can be easily checked that if we exchange the families 
{m o . . . . .  ma} and {d~ o . . . . .  rha}, system (23) is still satisfied (replace 09 by 09 + r~ 
in the j th line of the system and use F-periodicity): perfect reconstruction is 
preserved by interchanging the analysis and synthesis filters (if these filters generate 
biorthogonal wavelets, this also mean that we interchange the analysis and 
synthesis wavelet). In particular, this means that rho(~ ) can be derived from ml(co) 
by formula (25). 

Remark 2.3.4. Three problems arise here: 

�9 Does (26) always have a solution in rh o for a given mo? Recall that such a 
solution is not unique in general. 

�9 Given a family of exact reconstruction, compactly supported filters, do the 
associated wavelets form a Riesz base of LZ(RZ), and, if so, what is their 
regularity? 

�9 What is the set of possible m0? That is, which are the mo associated by (25) 
to some rhx? Can we at least find a family of "good" mo'S and some rh 1 giving 
rise to them? 

The first two questions will be precisely answered. The third remains mainly 
opened; here are some elements to answer it. 

2.4. Possible Choices for m o 

To find an rh 1 giving rise to a given mo, a nonlinear (third-degree homogeneous) 
system in many unknowns has to be solved. 

An rh 1 with a given support gives rise to an mo with a much larger support (two 
successive convolutions happen in each term in (25)) although with more symmetry; 
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so that when the support of mo grows, it quickly becomes unlikely that a solution 
to (25) will be found. 

For mo with a small support, however, things are different. 

Propos i t i on  2.4.1. 
type: 

Let m o be an hexagonal filter with coefficients of the following 

(b c) 
c a b 

b c 

(a being positioned at the origin of F). There exist an rh 1 such that m o is given by 
formula (25). 

Proof. It can be easily checked that if the coefficients of m~ are (x, y, z) with the 
origin on the "x," then (25) leads to an hexagonal filter in which coefficients are 
given by 

4y 2 x --y z 

z x 

so that all mo'S of the above form are associated through (25) with an rh 1. �9 

3. Linear  Spline Wave l e t s  

3.1. Two Examples 

The filter which gives rise to the Courant interpolating function by repeated 
convolutions of scaled versions of itself as in (11) is given by 

Def in i t ion  3.1.1. c(~o) = k(1 + COS(r + COS((D2) + COS((_O3) ) is the affine box spline 
generator with coefficients (1 1) 

~ 1 2 1 
1 1 

(the origin of F being on the "2"). 

This low-pass filter can be generated from different high-pass filters as shown 
by 

Propos i t i on  3.1.2. r ~  = 4!(1 - -  ei~ - -  e -i~'3) and  r ~  = 14-(1 - e- i~")  2 give rise 
through (25) to mo= c. 

Proof. It is a consequence of Proposition 2.4.1 for rh~, and left to the reader for 
ff~ (it is only a computation and can be done directly). �9 
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Remark 3.1.3. The existence of some rh~ having the above property is known 
from Proposition 2.4.1 above, so that finding the coefficients ofrh~ and ~b is merely 
a question of solving an equation. There might actually be other filters giving rise 
through (25) to mo = e (for instance, the images of rh~ and of rh b under some 
symmetry of c). 

Since c(09) generates the Courant interpolating function, if we can now find a 
correct dual for c, we shall obtain a hexagonal wavelet base with one set of 
functions (say, the synthesis functions) piecewise linear. 

We now answer the first question of the existence of a dual filter. 

3.2. Existence of  a Dual 

The following result is a generalization of the one-dimensional result which ensures 
the existence of a dual filter for m(09) if and only if the z transform re(z) has no 
pair of zero {z, - z}  (recall that the z transform is simply the meromorphic function 
obtained by replacing e ~'~ by z in the transfer function). However, the one- 
dimensional result is essentially a consequence of the Bezout theorem which does 
not hold for dimensions higher than 1 and we had to find a different proof, which 
is rooted in a well-known theorem of commutative algebra, Hilbert's Null- 
stellensatz. 

To enounce and prove this result, we come back to the standard representation 
09 = (091,  09~). 

Lemma 3.2.1. Let m(09) = re(e9 1, 092) be a two-dimensional filter. There exist a filter 
p such that 

(31) mp(09) + mp(09 + (re, 0)) + mp(09 + (0, re)) + mp(09 + (re, re)) = 1 

(which is equivalent to the duality relation (26))/f and only if  there does not exist 
(zl, z2)a(C*) 2 such that (zl, z2), (zl, -z2),  ( - z l ,  z2), and ( - z l ,  - z2)  are all zeros 
of the z-transform of the Fourier coefficients of m. 

Proof. We can express (31) using the z transform as follows: 

(32) rap(z1, z2) + mp( - z l ,  z2) + rap(z1, -z2)  + mp( - z l ,  -z2)  = 1 

for all (zl, z2) in (C*) 2. Clearly, this implies that m cannot vanish on four points 
of the type (zl, z2), ( - z l ,  z2), (zi, -z2), and ( - z l ,  -z2). 

To prove the converse, we first transform m(zx, z2) into a polynomial of C[z~, z2]. 
Since m(091,092) is a finite impulse response filter, there exist two integers ~ and 
f2 such that if we define 

(33) m*(zl, z2) = Z~l'z~2m(zl, z2) , 

then m*(zl, z2) is in C[zl, z2]. According to the hypotheses, the set of common 
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zeros of the polynomials m*(z 1, Z2) , m * ( - - Z 1 ,  Z2) , m*(z  D - - z2 )  , and m * ( - z l ,  - z 2 )  
is included into the region R = (C x {0}) w ({0} x C). 

Hilbert's NullsteUensatz (see II, p. 164, of [ZS]) tells us that, for any poly- 
nomial f ( z l ,  z2) vanishing on R, there exists a positive integer n such that f ' ( z  1, zz) 
is in the ideal generated by these four polynomials. In particular, if we take 
f ( z l ,  zz) = zlz2, this means that there exist four polynomials * * * P~, P2, P3, and p~ in 
C[z~, z2] and an integer n > 0 that we can impose to be even, such that 

z]z"2 = m*p'~(Zl, z2) + m * p * ( - z  1, z2) + m*p~(z 1, - z2 )  + m * p * ( - z  1, -z2) .  

If we now define p* x . = ~-{pt + p* + p~ + p*), we clearly have 

m*p*(zl, z2) + m*p*( -  Zl, z2) + m*p*(zl, - z2 )  + m*p*( -  zl, - z2) = z]z'z. 

We conclude the proof of the lemma by choosing the filter p such that 

p(z1  ' Z2 ) = ~ d l - n ~ d 2 - n . * ( .  "~'1 z'2 V ~.~1, Z2)" �9 

Remark 3.2.2. This proof can be extended as it is to higher dimensions. 

3.3. Effective Choice o f  the Dual rh o 

We can use the lemma above to show that there exists a dual to m o --- c. In fact, 
it can be seen directly that, since ~ = o  c(co + ~j) = 1, a natural dual for c is given 
by the transfer function constantly equal to 1. However, this dual cannot be used 
since if would not lead to an L 2 scaling fu~nction ~o but to a Dirac measure 
centered in 0. 

We therefore need to find a "bet ter"  dual. 
Let m~ = moc = c2; from the previous lemma we know that m~ also has a dual 

rh~; the minimal degree dual is easily computed to be given by the coefficients (1 1) 
�88 - 1  10 --1 . 

- 1  - 1  

Since r~) is a dual to moc, rh o = dZ'oC is a dual to mo. We have 

(34) 

rho(~O ) -- ~1 + cos(~o 0 + cos(o~2) + cos(o93))(5 - cos(~ol) - cos(e92) - cos(o93) ). 

In the Appendix it is checked that rho gives rise to an L2(R 2) scaling function and 
to biorthogonal wavelet bases. 

Summing up the results above, we have 

Theorem 3.3.1. There exists a biorthogonal hexagonal wavelet base of L2(R 2) with 
~1 piecewise affine, ~o the "Courant interpolating function," and (9 and ~1 with 
compact support. 

Figures 3-6 show some graphs of the functions obtained. 
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. . . . . . .  - . . . . . . . . .  T " - . ,  

(a) 

o-~ " i 

~b) 

Fig. 3. Scaling functions associated with c(o9) and rho(~O ) given by (34). (a) The hat function q~(x) and 
(b) the graph of ~(x). 
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�9 ~  , - . . . . .  

0 

(b) 

Fig. 4. Spline wavelet and dual wavelet associated with m~(og) and the(co). The graphs of(a) ~,~(x) and 
(b) ~'] (x). 
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(a) 

..~176176 ........ 

0 ~ i 

(b) 

Fig. 5. Spline wavelet and dual wavelet associated with m](og) and thb(~o). The graphs of (a) O~(x) and 
~b) ~(x). 
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Fig. 6. Normalized filter coefficients in the spline case. The sign * indicates the position of the origin. 
(a) mo(~O ) ( x 8), (b) rho(CO ) ( x 32), (c) rh~(~o) ( x 4), (d) rh~(~o) ( x 4), (e) m](og) ( x 16), and (f) m~(eo) ( x 16). 

4. More Regularity 

4.1. Motivations 

I t  is neces sa ry  for  s o m e  a p p l i c a t i o n s  to  have  wave le t  bases  m a d e  of  m o r e  r egu l a r  
funct ions .  F o r  ins tance ,  in i m a g e  c o m p r e s s i o n ,  it  is neces sa ry  to  use at  leas t  C 1 
wavele ts .  A p p l i c a t i o n s  to  m a t h e m a t i c s  t yp i ca l l y  r equ i r e  h ighe r  r egu la r i ty .  

O u r  goa l  he re  is to  give h in t s  a n d  e x a m p l e s  c o n c e r n i n g  h e x a g o n a l  wave le t s  w i th  
s o m e  degree  of  s m o o t h n e s s .  
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This problem has been deeply studied in the unidimensional case I-CD1], [DII ,  
[D2]. In particular, it has been shown that multiplying the low-pass filter too(CO) 
by the factor (1 + e~'~ has the effect of increasing by one the Hrlder  and Sobolev 
exponent of the scaling function defined by (7). This "smoothing effect" can be 
explained simply: the function (o is convolved by the "box-function" Z[o.1] 
generated by the filter (1 + ei'~ Using this fact, I. Daubechies has proved that 
arbitrarily high regularity could be attained in the orthonormal case by choosing 
an appropriate family of filters given by 

(35) 
eitO N + ) 

moS(Co)=(!l } )PN(Co) �9 

The residual factor PN (which is necessary to have (6)) has a negative effect on the 
regularity of ~0 but this effect is dominated by the positive action of the smoothing 
factor and this phenomenon increases with N. 

In the hexagonal case we use the smoothing properties of c(co) mainly in the 
same way as those of (1 + ei'~ in the one-dimensional case. We still have to 
show that it is possible to factorize c(co) N in our low-pass filters. 

4.2. Theoretical Results 

We prove the following result by using a "boot-strapping method": 

Theorem 4.2.1. For any p, q postive integers, there exists a family o f  exact 
reconstruction, compactly supported hexagonal wavelets mo . . . . .  m3, ff/o . . . .  , ff/3 such 
that c p divides m o and c q divides ff~o (in c ~ ) .  

Proof. We start by construction a first hexagonal family of filters {m~ . . . . .  m~, 
r~  . . . . .  r~} by the following procedure: 

1. Choose ff~'~ = r~] or rh~ (Definition 3.1.2). 
2. Derive from Proposition 3.1.2 m~ = c. 
3. Use Lemma 3.2.1 to find the smallest degree dual f to cqm'o = c~+1; then 

~ t  t 

m o =  cqf is a dual to too. 
4. Find the m'l completing the family by solving the linear system (23) in 

f f ~ .  

We can then obtain the desired result in the following way: 

5. Define rh I = re'l, so that, according to Remark 2.3.3, m o = rh~. 
6. Use Lemma 3.2.1 to find the smallest degree dual g to cPmo = cP+qf; then 

rh o = gc p is a dual to m o. 
7. Find the m 1 completing the family by solving again the linear system (23) in 

cg~. 

The family of filters obtained obviously has all the desired properties. �9 
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Fig .  7. T h e  func t ion  ~ for  rh o = ~o cz dua l  o f m  o = c. 
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4.3. Regularity 

It is possible to compute explicitly the Sobolev regularity of the scaling function 
corresponding to a given filter; this comes from [CD1] and [CD2] and is briefly 
explained in the Appendix. 

For small values of p and q, the regularity of the scaling functions does show 
an increase with p and q. However, since we do not have a simple expression for 
the residual factors f and g, we have no general result concerning the possibility 
of arbitrarily high regularity and in particular the asymptotic behavior of the 
H61der exponent. 

As an illustration, we give the graphs of ~ fo r  m o =  Po c2 (Fig. 7) and q3 for 
rho = ~oc 3 (Fig. 8), both dual to the Courant interpolating function ~, obtained 
by the method in the proof of Theorem 42.1. 

4.4. How To Generalize this Procedure 

The whole procedure, explained above, used to obtain exact reconstruction 
hexagonal families of compactly supported filters with c p dividing m o and c q 
dividing rh o can be generalized by taking as mb any filter such that cm'o has a dual; 
that is, any r~'~ giving rise through (25) to an m~ with this property can be used 
as a start for a "boot-strapping" method. 

The only point is that, experimentally, most rh~ are not so; for instance, we did 
not find directly any such ~'~ giving rise to an m~ that can be divided by c more 
than once; so that the c actually is a rather practical rn~ to start with. 
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Fig. 8. The function 93 for r~ o = ~0 c3 dual ofm o = c. 

Boot-strapping can also be repeated more than once; the families of filters 
obtained that way are different from those obtained through the proof of 
Theorem 4.2.1. 

5. Angular Resolution in the Frequency Domain 

5.1. Introduction 

In this section we want to compare the tensor product decomposition and our 
hexagonal decomposition in terms of angular frequency resolution properties. 

In some applications it is indeed interesting that each wavelet or, from a signal 
processing point of view, each high-pass channel in the subband coding scheme 
corresponds to a specific direction in the frequency plane. A typical example is 
the numerical analysis of "wave-fronts" which is an important issue in PDEs. It 
is necessary both to localize a singularity and to analyze its orientation or 
equivalently the directions in the frequency plane for which this singularity cases a 
bad  decay at infinity. We already know that the wavelet analysis helps to 
characterize the singularities [Me]. We show here that wavelet-based techniques 
can be used to get informations about their orientation too. 

5.2. With "Tensorial" Wavelets 

In the tensor product decomposition if we assume that mo(O~) is close to an ideal 
low-pass filter, i.e., the transfer function ~r-~/2. ~/21(~~ and that, similarly, m1(o9) is 
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The tensor product frequency decomposition: (a) one iteration and (b) three iterations. 

close to an ideal high-pass filter, then the Nyquist domain [ - n ,  n] z of a sampled 
signal is at the first step divided into nine regions corresponding to the four 
channels A, B, C, and D as shown in Fig. 9(a). The low-pass channel A is then 
decomposed again as we iterate the process (Fig. 9(b)). We see here that the 
high-pass channel corresponds to four directions in the frequency plane, horizontal 
for B, vertical for C, and diagonal for D. This cannot lead to a sharp angular 
resolution and, furthermore, there is an ambiguity since two directions contribute 
to the coefficients in channel D. 

To increase the angular resolution, a possibility consists in iterating the 
decomposition not only on the low-pass channel A but also on the high-pass. This 
idea was developed in [CD3] and it is a particular case of the general construction 
of "wave-packets" introduced in [CMQW].  

The result is shown in Fig. 10(a) in the case where we have made one 
decomposition on the high-pass channels. More directions have been obtained 

~ 

N > 

i 
A 

/ t  
O' 

(a) 

% 

I 

- - / 9 '  

(b) 

Fig. 10. (a) Wave packet type of frequency subdivision. (b) "Ideal situation" for angular resolution. 
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but the ambiguity has increased since we see that every channel corresponds to a 
couple of directions which is symmetrical with respect to the horizontal and 
vertical axes. 

This ambiguity is a serious problem. Removing it by a second analysis where 
the data have been previously rotated by ~/4 may be considered. That is, if we 
want to analyze a direction of angle 0, the first decomposition will include a 
channel corresponding to ( 0 , - 0 )  and the second will include another channel 
corresponding to (0, re/2 - 0) = (0, 0'). Since (0', - 0') is also represented in the first 
decomposition and ( - 0 ,  7z/2 + 0) ~ ( - 0 ,  0') in the second, we can write formally 
the following system which relates the energy of a signal in each direction and in 
each channel: 

(36) 0 1 1 | |  E(O') | =  |E(--O,-0')~ 
o 10l W(-O)l e(o, .o) r 
1 o I/\E(-O')/  \ E(O',-03 / 

Unfortunately we see here that the matrix is singular so this method fails. 
More generally, it can be checked that it would fail for any rotation, the reason 

being that the rotation angle would have to be rational (otherwise directions 
would get really mixed up) and that the equivalent of the matrix in (36) would 
then still be a (bigger) matrix with only O's and a fixed number of l's in each line 
and each column, and that its determinant would again be 0. 

All these remarks show the disadvantages of the tensor product construction 
for the angular frequency resolution. We are far from the ideal situation illustrated 
in Fig. 10(b) where every direction is uniformly distributed on dyadic rings. This 
situation could of course be attained by taking the Fourier transform of the signal 
and dividing the coefficients as in Fig. 10(b) but by doing this, all the spatial 
localization is lost. 

5.3. With "Hexagonal" Wavelets 

Let us now examine the new possibilities offered by our hexagonal construction. 
In this case the Nyquist domain of a sampled signal is no longer [-Tr,  7r] 2 but 

is the hexagon X defined in the frequency plane by 

(37) X = {1o91 - o921 < 2rc} c~ {Io9z - o931 < 27r} c~ {1o93 - o91[ < 2re}. 

As shown in Fig. l(b), X is the Voronoi cell of the dual mesh r" of F. 
If we now assume that the high-pass filter r~l(o9 ), which is chosen at first in the 

process described in Section 1, is localized in the two half hexagons indicated as 
region 1 in Fig. 11(a), we find that the high-pass channels correspond to three 
directions and that there is no more ambiguity. The low-pass channel corresponds 
to the central hexagon. 

If we iterate the decomposition in the high-pass regions similarly to the 
wave-packet decomposition of Fig. 10(a), we see (Fig. 11(b)) that no ambiguity is 
ever created. We can group the channels corresponding to the same direction as 
shown in Fig. 1 l(b). The result is now much closer to the ideal situation of Fig. 
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Fig. 11. (a) The hexagonal frequency decomposition and (b) an example of the subdivision for a 
sharper angular resolution. 

10(b) than with the tensor product  construction. These new wavelets are thus quite 
appealing for their possibilities of angular resolution in the frequency plane. 
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Appendix: Biorthogonality and Regularity Results in the Spline Case 

A.1. Introduction 

We prove in this appendix that  in the case were the two dual low-pass filters are 
given by 

(A.1) mo(0) ) = c(0)) = ~(1 + cos 0)1 + cos 0) 2 "71- COS 0)3) '  

(A.2) r~o(0) ) = �89 -- cos 0)1 -- cos 0)2 - cos co3), 

as in Section 3, then the associated functions if, and ~ (e = 1, 2, 3) generate 
a pair of uncondit ional  dual bases. That  means that  we have not only the 
biorthogonali ty relation 

(A.3) (~b~ l ~',~,) = 6s, s, 6~, ~, fit,~, 

for all (j,j', 7, 7', e, ~')6 Z z x F z x {1, 2, 3} 2, but also the frame bounds ensuring 
the stability of the decomposit ion and reconstruction algorithm, i.e., for all f in 
LZ(R2), 

(A.4) All/ll 2 < ~ I ( f [~ ,~ ) l  2 _< Bllf[I 2, 
j , y , ~  

(A.4') AilfIp 2 < ~ l ( f l ~ , ) f  z _</3rrfll 2. 
j , y , t  
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We also prove that the functions ~ and ~ are in a Sobolev space H ~, for some 
s > 0 .  

Note that if the functions q~ and ~ are uniquely determined by the infinite 
products (26) and (35), there are several possibilities for ~b and ~ which depend 
on the choice of rhl(co ) leading to too(CO ) = c(o)); but this choice does not play any 
role in the arguments that we use here, provided that the Fourier transform of 
the wavelets vanish at the origin. 

A.2. Biorthogonality : General Case 

In [CDF] a criterion for biorthogonality and frame bounds is introduced for 
wavelet bases of L2(R) and it can be reformulated for the hexagonal case in two 
dimensions. 

For this, let us consider the hexagon defined in Section 1.4 by 

(A.5) X = { I o ) l - o ) 2 1 < Z n } ~ { L o o 2 - o o z L < Z n } ~ { t m 3 - c o l [ < - Z n } .  

X is the Voronoi cell of the dual mesh f" of F (Fig. 11). It plays the same role as 
the interval [-re,  re] in one-dimensional theory, We define the functions q~. and 
~. by 

(A.6) ~,(co) = IeI m0(2-%~)X2,,x(~O), 
k = l  

(A.6') ~,(o~) = IeI t~to(2-k~O)Z2,,x(O)), 
k = l  

where Za is the indicatrix function of a set A. 
We now present the conditions for biorthogonality and stability: 

Proposition A.2.1. Equation (A.3) is ensured if ~p, and (o, tend to ~o and (p in L2(R). 

Proof. The proof is similar to the one-dimensional case presented in [CDF] and 
we just sketch it here: 

�9 By using (23) and a recursion on n it is proved that 

(A.7) (qg.(x - -  V) l (On(X - -  g ' ) )  = ~ , y , ,  (V, g')  E F 2. 

�9 Since we have the L 2 convergence, this leads to 

(A.8) (~0(x - 7)10(x - 7')5 = 6,,,,, (Y, 7')eF2. 

�9 Equation (A.3) is a consequence of (A.8) and the relations (23) that relate the 
high-pass and low-pass filters. Indeed we can generalize (26) with, for all 
(e, g) E {0, 1, 2, 3} 2, 

3 
(A.9) • ~c  rn~(o~ + res) = 6~,c" 

j = O  

(For e = d, (A.9) is the normalized determinant of (23) which is equal to I. 
For 8 ~ g, using the expression of m~ as a minor of (23), (A.9) is a determinant 
which contains twice the same column and is thus equal to 0). 



Bidimensional Wavelet Bases with Hexagonal Symmetry 233 

Equations (A.9) and (15) combined with (A.8) lead to the following relations 
for (e,e',V, 7')~ {1, 2, 3} 2 x F2: 

(A.10) (O,(x - 7)l~,(x - 7')) = 6~,~,6,,~,, 

(A.11) (O~(x - 7)[~(x - y')) = <q~(x - 7)]~,(x - 7')) = 0, 

(A.3) is then obtained by scaling arguments similar to those in the proof of 
Lemma 3.7 in [CDF].  �9 

Using the relation (A.9) we obtain, for any f in L2(R), the "telescoping formula" 

J 

(A.12) Z (fl~~ s - l =  Z Z (/]~Js + Z (fl~?S)q)s, 
7~F J= - J  7~F 7~F 

e = 1 , 2 , 3  

which expresses the refinement of a coarse approximation by adding details at 
each scale. When J tend to + 0% the coarse approximation in the right member 
of (A.12) converges to zero in LE(R 2) (this is easy to check as soon as q) and ~ are 
in LE(R2)). The fine approximation in the left member tends to f in L2(R 2) because 
of the following identity which is satisfied by any scaling function: 

(A.13) ~, ~ 0 ( x - y ) =  ~ ~ ( x - j = f  q ~ = f  ~=1.  
?eF ~eF 0 R , J R 2  2 

We thus have, for any f in L2(R2), 

(A.14) l i m [ f  ~, Z ( f [ ~ J  J L2(R2) - ~ ) r  = 0 .  
J~+ov j=-J ~F 

e = 1 , 2 , 3  

Remark A.2.2. To prove the strong convergence of the series in (A.14) we need 
the frame bounds (A.4) and (A.4'). It is sufficient to check only the upper bounds 
since we then have 

J 

J--}+oo j=-J yeF 
e = 1 , 2 , 3  

and the lower bounds follow. 

Proposition A.2.3. A sufficient condition for the upper bounds is given by 

(A.15) I~(~o)1 < C(1 + ]col) -x-~, a > 0, for (A.4), 

(A.15') I~(~o)1 <-- (~(1 + [~o]) -1-a', # > 0, for (A.4'). 

Proof. The proof is the same as the first part of Lemma 3.4 in [CDF]  (pp. 21-22). 
Note that (A.15) and (A.15') are not strictly necessary to have q~ and ~ in L2(R2). �9 
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(A.16) 

and 

A.3. Biorthogonality : Application 
We now have to check these conditions in the case where mo and rfi o are given 
by (A.1) and (A.2). This is easy in the case of the function q~. Indeed we have 

~(~ - ~ s i n ( ~ )  s i n ( 2 )  s i n ( ~  ) 

8 sin(o~l/2 ) sin(o2/2 ) sin(o93/3) 
(A.17) 0,(c~ - 23,+ 3 sin(col/2, + 1) sin(o2/2, + 1) sin(og3/2,+ 1) Zz,x(~). 

It is clear that 0 has enough decay for (A.15) and, moreover, ~0, satisfies 

(A.18) [ 0 . ( o ) l _  C(I + Io1) -2 

independently of n >__ 1. Thus cp. tends to cp in L z by dominated convergence. 
In the case of 0, proving the L 2 convergence of 0 .  appears to be more difficult. 

In fact c~(c~) does not satisfy the decay condition (A,15'): indeed consider 
v o = (2~/3, - 2~/3, 0) and it successive dilations v. = (2"~z/3, - 2"g/3, 0). Clearly, 
we have 

I~(v.)l = 10(vo) l I~o(vo) l" 
= 10(Vo) l| 
= C l v n l ( l ~ 1 7 6 1 7 6  2 

but (log 5 -  log 8)/log 2 _> - 1  and thus (A.15') fails for q3. To derive the L 2 

convergence of 0.  to 0 and the upper frame bound in (A.4') we use a sharper 
criterion which can be found in [CD1] and [CD2]. It is based on the study of 
the "transition operator" associated with the function Jff~o(m)l. This operator acts 
on F* periodic functions and it is defined by 

3 

(A.19) Tf(2co) = ~ Ir~012f(o + r 0 .  
j = 0  

In [CD1], [CD2], and [C], the following properties were proved: 

�9 If rh o is a trigonometric polynomial, then the study of T can be reduced to a 
finite-dimensional subspace/~ generated by trigonometric polynomials. This 
is the case here. 

�9 The subspace F = {f  e/~] f(0) = 0} is invariant by ~(this can be seen directly 
from (A-19)). 

�9 For all 27t periodic function, we have (by recursion on n) 

(A.20) fx ( T ) " f ( o ) d o =  f,2 [~On(OO)12f(2-nco) &O. 

The criterion obtained in [CD2] is the following: 
Let ,~ be the largest eigenvalue of T restricted to/~. Ill21 < 1, then ~, tend to 
in L 2 and the upper frame bound in (A4') is satisfied. 
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The  p roof  of this result is based on a L i t t l ewood-Pa ley  estimation which can 
be made  by taking a positive function f(09) in /~ and applying the Schwarz 
inequality on the first member  in (A.20). This leads to 

(A.21) ~ 15.(09)12f(2-"co) d09 _< C2 -*" 0 < e < ~ / ,  

which ensures the L 2 convergence of On to ~ and if we set 

we have 

A. = E-2"+~rc, -2"rc]  u [2"n, 2"+ lrc], 

fA ( - - log 121" ~ 
(A.22) , 1@(09)12 d09 < C2 -~" 0 < e < l ~ g 2  - f  

Which is weaker than (A.15') but  is sufficient to ensure the upper  frame bound  in 
(A4'). 

Moreover ,  we prove  in [CD2]  that  this criterion is sharp, i.e., that  the condit ions 
[21 < 1 and 12[ < 1 (for ~a) are necessary and sufficient to c o n s t r u c t  bior thogonal  
bases. We thus only need to check the opera tor  T associated with InSo[ 2. Taking 
advantage of the symmetries, we consider the following tr igonometr ic  polynomials:  

e I = 1, 

e2 = 2(cos 091 + cos co 2 + cos c%), 

e 3 = 2(cos 2091 + cos 2092 + cos 2co3), 

e,, = 2(c0s(091 -- o92) + cos(co 2 - co3) + cos(co 3 - -  091)), 

e 5 = 2(cos 30) 1 + cos 3o92 + cos 3093), 

e 6 = 2(c0s(209i -- 092) + c0s(2092 -- 091) + c0s(2092 -- o93) + c0s(2093 -- 092) 

+ c0s(2093 -- o91) + c0s(2o91 -- 093) ). 

Simple computa t ions  show that  T preserves the subspace /~ generated by these 
six vectors and the matr ix of T has the following form: 

(A.23) t 
442 1128 - 2 2 8  0 - 2 4  - 3 8 4 \  

- 3 8  120 379 320 124 376 

s il 4 -26 -64 196 -64 
m(~) = 2 -  - 5 6  - 7 4  --8 0 - -320 

0 1 0 - 4  8 
0 7 4 - 2 8  - 3 2  

The spectrum contains 1 but  it is a simple eigenvalue and is not  included in the 
spectrum of T restricted to the subspace aft. The  largest eigenvalue in ff is 

(A.24) ~. = 0.54 < 1. 



236 A. Cohen and J.-M. Schlenker 

This allows us to conclude that the families 

J and "J z ,  , ,  2 ,3 z ,  1 ,2 ,3  

are biorthogonat Riesz bases of Le(R2). 
Finally, by (A.22), we see that ~ and ~, are in the Sobolev space H S for all 

log(~.) 
s < - 0.44. 

2 log 2 
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