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The modular group algebra of a central-elementary-by-abelian 
p-group 

By 

ROBERT SANDLING 

In this paper  two issues in the study of group rings are addressed for the modular  group 
algebras of certain finite p-groups:  the isomorphism problem, the extent to which a group 
is determined by its group ring; the problem of the existence of a normal  complement for 
a group in the unit group. In the case of an integral group ring 2gG, there are satisfactory 
results when G is metabelian. It is a theorem of Jackson and of Whi tcomb [cf. 22] that 
the isomorphism type of a finite metabelian group G is determined by ZG. Metabelian 
groups figure prominently among the groups for which it has been established that G has 
a normal  complement  in U(7ZG) [14; 3; 17, Prop. 1] but there are metabelian groups 
known for which G is not so complemented [17]. For  the modular  group algebra, the 
appropriate  analogue to the class of metabelian finite groups may be that of elementary- 
abelian-by-abelian p-groups. Here we obtain the following two positive results for the 
subclass of central-elementary-by-abelian p-groups, p-groups G which have an elementary 
abelian central subgroup Z whose quotient G/Z is abelian. 

1.1 Theorem. Let G be a finite p-group. Suppose that 7z (G) p 73 (G) = 1. Then there is a 
normal complement to G in V(FG). 

1.2 Theorem. Let  G be a finite p-group. Then the section G/72 (G) p ~23 (G) is determined 
by FG. 

In these statements and in the paper, the notat ion is as follows: G will generally denote 
a finite p-group, F is the field of p elements, FG the modular  group algebra, I = I (FG) 
its augmentat ion ideal, U = U(FG) its group of units, V=  V(G) = V(FG) = 1 + I its 
group of normalised units. The commuta to r  subgroup [G, G] is denoted variously as G' 
and 72 (G) while y, + 1 (G) : = [7, (G), G]. The subgroup generated by the p-th powers of 
elements of a group G is denoted G p. The Frattini subgroup ~ (G) is G p 72 (G). A feature 
of G is said to be determined by FG if a group G* also has this feature whenever FG is 
isomorphic to FG* as algebra. A subset S(G) of FG is said to be canonical if, under an 
augmented isomorphism ~0 from FG to FG*, ~o(S(G)) = S(G*). 

Results on the modular  isomorphism problem are surveyed in [22, w 6]. Theorem 1.2 is 
reported there. It is a generalisation of two important  cases for which positive results had 
been obtained: G/y2 (G) done by S. Takahashi and by Ward [24]; G/M3 (G) done by Passi 
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and Sehgal [13; new generalisation in 19] (here M3(G ) denotes the third dimension 
subgroup modulo p and is GP73 (G) for p odd and G 4 73 (G) for p = 2). A variety of 
methods have shown that many individual groups G, which happen to satisfy 
72 (G) p 73 (G) = 1, are determined by FG as can be seen in [22]. Certain classes of such 
groups have also yielded positive results: p-groups G for which p = 2, [G: ~ (G)[ = 4 and 

(G)/s (~ (G)) is cyclic or elementary [11; 12] over any field of characteristic 2 (V. Drensky 
informs me that he has generalised this to I G: ~(G)[ = p2 ,  any p, with the final condition 
removed); metacyclic p-groups with 17z (G)[ = p, p odd [1]. 

Concerning normal complements fewer results are known. The question of whether G 
has a normal complement in U (RG) seems to have originated in [24] and, in fact, in the 
setting of R = F and G a finite p-group. It reappeared in [4], [8] and, to an extent, [20]. 
Ward showed that a finite abelian p-group G has a normal complement in U (FG), a result 
in [8; 10] as well. For various other G, many of them central-elementary-by-abelian, 
normal complements to G in V(FG) were exhibited in [8; 10; 6; 7; 18]. In [10; 6], examples 
of p-groups G were given for which there is no normal complement to G in V(FG); none 
are elementary-abelian-by-abelian. 

The examples in [18] are of p-groups, p = 3, which are elementary-abelian-by-C 3 and 
so of nilpotency class < 3 (here C 3 denotes the cyclic group of order 3). They are only 
instances of a broader theory for elementary-abelian-by-abelian p-groups, p odd, in 
which Roggenkamp and Scott describe a large subgroup of V(FG) which contains G and 
in which G has a normal complement. A more detailed exposition is given in [16]. It is 
possible to simplify their proof and some of the techniques developed here arose in 
doing so. 

Further motivation for the results here came from computer-aided empirical work 
(computers played a role in [10; 6] as well). Using Fortran programs for group ring 
calculations and the packages Sogos [9] and Cayley [2] I obtained presentations for V(G) 
for small G [23]. This facilitated the determination of such structural features as normal 
complements. In specific cases such as those done by Ivory and by Roggenkamp and 
Scott, I was able to produce a normal complement in a systematic manner. It sometimes 
differed from the known complement. For example, for the non-abelian group G of order 
27 and exponent 9, the normal complement here and that from [16] are different but 
isomorphic. 

L. G. Kovacs has proven theorems like those here for the subgroup ~b (G) p [q~ (G), G] 
instead of Y2 (G) v 73 (G). Using them, he and M. F. Newman have shown that any group 
of order p5 is determined by its modular group algebra. 

A c k n o w 1 e d g e m e n t s. I wish to thank the originators of Sogos and Cayley 
for making their packages available. I also wish to thank for its hospitality the 
Mathematische Forschungsinstitut Oberwolfach where these results were first 
presented. 

Section 2: Proofs of Theorems 1.1 and 1.2. We begin the proofs with some general 
points about modular group algebras and with a review of the main technique of 
[21]. 
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2.1 Lemma. Let  ~ and fl be elements of  I and L a left ideal of  I. Then ~ and fl are in the 
same coset o f  L if and only if 1 + ~ and 1 + fl are in the same left coset of  the subgroup 
l+LofV .  

P r o o f .  I f c ~ = f l + 2 f o r s o m e 2 i n L ,  then 

1 + c~= l + / ~ +  2 =(1 +/~)(1 +(1 +/~)-~,~) 

as required. Conversely, if 1 + c~ = (1 + fl)(1 + 2), ~ = fl + (1 + fl)2. 

The next lemma has a long history (see the references for 3.13 and 6.13 of [22]). The first 
part is true for the arbitrary group G. 

2.2 Lemma. Let  N be a normal subgroup of  G. Then I (N) FG/I  (G) I (N) and N / N '  N p are 
isomorphic as right FG-modules. Consequently, I (N) FG/I  (G) I (N) + I (N) I (G) is isomor- 
phic to N/[N, G] N p and G c~ 1 + I (G) I (N) + I (N) I (G) = [N, G] N p. 

In addition, N / N '  N p is isomorphic to the multiplicative group 

1 + I (N)FG/1  + I (G) I (N) ,  1 + I ( N ) F G  = N(1 + I (G)I (N))  and 

1 + I(G)I(N) + I(N)I(G) = (1 + I(G)I(N))(I + I(N)I(G)) 
= [N, G]NP(1 + I (G)I (N)) .  

2.3 N o t a t i o n .  Let d = J ( G )  denote the ideal I ( G ) I ( G ' ) + I ( G ' ) I ( G )  of 
FG. It follows from the previous lemma that J = I ( G 3 ) F G + I ( G ' ) I ( G ) ,  that 
G c~ 1 + J = 72 (G) p 73 (G) and that 1 + I (G')FG = G' (1 + J). As the ideal I (G')FG is 
canonical, it is clear that J (G) is also canonical. 

2.4 Lemma. The ideal I2 / j  is central in FG/J  and the group 1 + 12/1 q- J is central in 
1//1 + J. Consequently, if ~ and fl are in I and n is a positive integer, (ct fl)n__ ~nfln 
modulo J. 

P r o o f. For  the first point, it suffices to show that 12 is centralised by G modulo J. 
This follows from the fact that, for all x, y, y in G, ( ( x -  1 ) ( y -  1)) g 
= (x  [x, 9] - 1) (y [y, 9] - 1) which is equivalent to (x - 1) (y - 1) modulo J by standard 
identities. The second point is implied by Lemma 2.1. The final point is proved by 
induction. 

The last concepts to be developed for the proofs of the theorems derive from those of 
[21] which we shall now recall. Assume that G is abelian with basis { x l , . . . ,  Xd}. With 
6 = (oil . . . .  ,6a) a d-tuple of non-negative integers, not  all zero, and with the convention 
that (x - 1) ~ = 1 for x + 1, let P(6) = l-I(xi - 1) ~J. The main result of[21] stated that the 
elements 1 + P (~), fi ~ D (G), form a basis of V where D (G) is the set of those ~ for which, 
for all j, 0 < 6j < o(xj), the order ofx~ in G, and, for some j, p does not divide ~j. Its proof  
indicates how the order of 1 + P (~) is calculated for ~ ~ D (G). The next lemma gives the 
order of any 1 + P (fi). 

2.5 Lemma. Let  G be abelian with basis { X 1 ,  . . .  , Xd}. Let  ~ = (~1 . . . .  , ~ )  be a d-tuple of  
non-negative integers, not all zero. Suppose that, for all j, ~j < o (xj). I f  ~j ~ O, let s~ be the 
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highest power of p less than or equal to 3j. Then the order of the element 
1 + P(3) = 1 + 1-I (xj -- 1) ~J is the minimum of the numbers o(xj)/sj, taken over thosej for 
which 3j 4: O. 

P r o o f. Let qj = o (x3). We may assume that 0 < 6j < qj for all j so that P (3) 4: 0. As 
the lemma is immediate if G is elementary abelian, a proof by induction is convenient. If 
5, > qi/P for some i, (1 + P(3)) p = 1 + 1--[ (x~ - 1) a~ = 1. On the other hand, i f3j  < qflp 
for all j, (1 + P (6)) p = 1 + p1 (3) where p1 (fi) = 1-I (x~ - 1) *~ is the analogue of P (3) for 
the group G p with a subset of x p, . . . ,x~ taken as basis. By induction, o(1 + Pl(3)) 
= min {o (xP)/sj} = rain {q/sj}/p so that o (1 + P (3)) = min {qflsj} as required. 

2.6 D e f i n  i t i o n. Let {x l , . . . ,  x~} be a minimal generating set for G. For  a d-tuple 
3 of non-negative integers, not  all zero, write P(6) = (x 1 - 1) ~ (x 2 - 1) ~ . . . .  (x d - 1) ~. 
Using - to denote the projection from G to G = G/G' and its induced map on FG, write 
P(3) = P(3)= I~(Xj- 1) ~s. As {xl . . . . .  Xd} forms a basis of G, the subgroup of V(G) 
generated by all 1 + P(3), 3 ~ O(G) and Z 3 j  > 1, is a direct complement to G in V(G). 
Define W =  W(G) as the subgroup of V(G) generated by 1 + J and by all 1 + P(3), 
3 ~ D (G) and ~ Jj > 1. Thus W (G) = W(G) and V(G) is the direct product  of G and W(G). 
Note also that W <  1 + I z so that W is a normal subgroup of V by Lemma 2.4. 

2.7 Lemma. W(G) n 1 + I(G')FG = I + J. 

P r o o f. It suffices to show that any product  I~ (1 + P (3)) m" over 3 ~ D (G), Z 3j > 1, 
which is in 1 + I(G')FG, already is in 1 + J. As I-I(1 + p(j))m~ = 1 in V(G), it follows 
from the independence of the 1 +/-~(6) that o(1 + P(6)) divides m~ for all 6. 

For  a fixed 3, the previous lemma shows that there is an index i and a power q of p 
such that q = o (~i)/s i divides m~, 0 < sl < 3~. By Lemma 2.4 P (3) q = P (q 3) modulo J, 
where (q3)j = q3j, and so (1 + P(6)) q =- I + P(q3) modulo 1 + J. As (2~ - 1) q~' = 0 in 
FG, (x~-  1) q~' is in I(G')FG. If  there is j 4: i  with 3j 4: 0, P(q3) is in I(G)I(G') or 
I(G')I(G) so that (1 + P(3)) q is in 1 + J. I f3 j  = 0 for a l l j  4: i, then 3~ is not a power of 
p by the definition of D (G) so that ( x i -  1) q~' is in I(G') 2 FG and again (1 + P(3)) q is in 
1 + J. It is now clear that the product  11 (1 + P (6)) m' is in 1 + J. 

Only a little more remains for the proof of the main theorem of this section of which 
Theorems 1.1 and 1.2 are corollaries. For  a central-elementary-by-abelian p-group it 
states that W(G) is a normal complement to G in V(FG). 

2.8 Theorem. Let G be a finite p-group. Then V= G. W(G) and G n W(G) 
= 72 (G)P 73 (G). The quotient group 1//1 + J is isomorphic to the direct product 
G/~,~ (G)P ~3 (G) x w ( c/~2 (G)). 

P r o o f .  As before, we use - to denote projection onto G - - G / G ' .  As noted, 
V(G) = G- W(G) so that V(G) = G. W(G) . ( I  + I(G')FG) = G. W(G). G'(1 + J) 
= ~ .  w ( ~ ) .  

Since G n 14"= 1, G n W <  G' and so G n W =  G' n W which is a subgroup of I + J 
by Lemma 2.7. Thus G n W =  G n 1 + J = 72 (G)P 73 (G) by Lemma 2.2. 

Lastly, W is central in V modulo 1 + 3 and V =  GW so that G(1 + J) is normal in V. 
Also G (1 + 3) n W =  (G n 14,) (1 + J) = 1 + J. It follows that V/I+ d is the direct prod- 
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uct of its subgroups G(I  + J)/l + J and W/I + J. But G(1 + J)/l + J is isomorphic  to 
G/G m 1 + J = G/72 (G) p 73 (G) while 

W/I + J = W / W ~  1 + I(G')FG 
w .  (l + I(G')FG)/1 + I(G')FG = W(G) 

Our main results, Theorems 1.1 and 1.2, are readily deduced. The first is immediate.  
F o r  the second recall that  GIG' is determined by FG and so W(G/G') is determined by 
the fundamental  theorem of finite abelian groups. As J (G) is canonical,  V(G)/1 + J (G) 
is determined and Theorem 1.2 follows by the Krul l -Schmidt  theorem. 

In conclusion we note some favourable behaviour  for the broader  class of elementary- 
abel ian-by-abel ian p-groups.  The above results have been obtained in what Roggenkamp 
and Scott call a small group ring FG/I(G)I(G'). Let G be elementary-abel ian-by-  
abelian so that  72(G)Vy2(G)' = 1 and G is embedded in this ring. The project ion 
V(G) ---> V(G) gives an exact sequence 

I ~ G ~  V(G)/1 + I (G)I(G')  ~ W ( # )  ~ 1 

in which the last two terms are determined by FG. If 73 (G) = 1, the extension is a direct 
product  by Theorem 2.8. If 7, (G) = 1, the sequence splits. Other  considerations lead to 
a number  of conclusions concerning the isomorphism problem. By Lemma 2.2 G' is 
determined as an FG-module  and so as an F G  module;  any group basis for FG is then 
an extension of this module  by the group G whose isomorphism type is also determined. 
Ward  [24] showed that  the centre ~(X) of a p-group X is determined by FX; it follows 
from [22, 6.11] that, in this case, G' ~(G) is determined along with its quotients by G' and 
by ~ (G). If p => 3 and 74 (G) = 1, 6b (G) is in G' ~ (G) and can also be shown to be determined 
by FG, a slight improvement  upon [5; 15]. 
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