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I. Introduction 

We continue in this paper a program initiated in [-1], henceforth referred to as 
Paper I. One of the objectives set forth in that paper was a mathematically 
complete construction of a super-renormalisable continuum gauge theory. This 
paper contains results in this line of work. 

The study of gauge theories on a lattice was originally suggested [2] as a 
suitable starting point for learning more about gauge theories generally, because 
lattice gauge theories provide a setting in which one can utilise methods of 
statistical mechanics: - l o w  and high temperature expansions and correlation 
inequalities, etc. In addition these theories possess the two important properties of 
Osterwalder-Schrader positivity and gauge invariance. No other method, yet 
proposed, of regularizing continuum gauge theories so that they become ma- 
thematically well-defined objects possesses all these attractive features. It is 
therefore an important problem to verify that these theories converge in a suitable 
sense to continuum theories when the lattice spacing is taken to zero. The limit 
would then share these properties and in addition one would hope to verify that it 
is Euclidean invariant (unlike the lattice theories). Various consequences of the 
correlation inequalities which will be of interest to physicists as well as mathema- 
ticians have been outlined in [3]. 

Unfortunately, it is unlikely that our method of proving convergence is 
optimal. We have adopted a method of embedding lattice gauge theories in 
continuum theories which is not natural in the context of geometry. It might be 
rewarding to search for methods that treat the geometrical side with less than the 
insensitivity that we have been able to muster. In the meantime we have in this 
paper a number of functional analytic techniques that will extend to more singular 
theories, abelian and non abelian and some of them will very likely be useful in 
future improvements. 
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We are here mostly concerned with two dimensional abelian gauge theories 
interacting with Bose matter. An analogous program for fermion matter has been 
started in [4]. Some of our results are valid for nonabelian gauge fields also. The 
major simplification in the abelian case is that the measure describing a pure gauge 
field is Gaussian in the continuum limit. We exploit this by noting that we may 
obtain a Gaussian lattice gauge field by conditioning the continuum measure. 
Thus given a continuum gauge field one may formally obtain a lattice gauge field, 
which is a function from bonds of the lattice to group elements, by integrating the 
gauge field along a given bond and applying the exponential map to the Lie 
algebra element so obtained to get an element of the group. (If the group is 
nonabelian, one should use an ordered exponential.) 

One can then couple this lattice field to a matter field on the lattice and the 
resulting lattice theory is gauge invariant. The procedure may be considered as 
amounting to a special choice of lattice measure for the gauge field which differs 
from Wilson's [21 and others so far proposed, but which is also gauge invariant 
and has the correct continuum limit, at least formally. 

This procedure is not possible in more than two dimensions because with 
probability one the gauge field is a distribution with insufficient regularity to be 
integrated along a bond. However, as pointed out in Paper I, it is possible to put in 
an ultraviolet cutoff, i.e., change the Gaussian measure describing the continuum 
gauge field to another one whose sample functions are more regular (almost 
surely) and still retain a type of gauge invariance. Furthermore if the ultraviolet 
cutoff is suitably designed (a cutoff in all but one direction in IR ~) we obtain a 
lattice theory with Osterwalder-Schrader positivity in one direction. This is of 
course not a new observation. Lastly, as discussed in Paper I, we have correlation 
inequalities even in the presence of an ultraviolet cutoff. They are in fact valid for 
any lattice Gaussian measure for the gauge field. 

Even in our case of two dimensions we find it convenient to use an ultraviolet 
cutoff on the gauge field. This is in order to separate off the complexities of 
renormalisation from proving the convergence of a lattice approximation. In other 
words, if we did not impose an ultraviolet cutoff, we would have to insert 
counterterms and cancel quantities that diverge as the lattice spacing is taken to 
zero. We prefer to put in a cutoff and its subsequent removal (after the lattice 
spacing is taken to zero) will be discussed in Paper III. Finally, we also give the 
gauge field a mass (an infrared cutoff). This does not affect the Ward identities 
which express the gauge invariance of the coupling between matter and gauge 
fields. Correlation inequalities allow then to take this mass to zero. Full gauge 
invariance is impossible in the continuum limit and gauge fixing is always 
necessary. We really prove "gauge covariance". The zero mass limit will also be 
given in Paper III, and in fact we first take the infinite volume limit which is easier 
whilst the gauge field has an infi'ared cutoff and then the zero mass limit. 

We now give a rough formulation of our principal results. We will supply more 
details and precise definitions later. It applies to a theory in a rectangle in IR 2 with 
a continuum gauge field with a mass and an ultraviolet cutoff interacting with a 
Bose field on a lattice with spacing e > 0. The Bose field is allowed self interactions. 
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Theorem A. Given a sequence o f  simple cubic lattices whose spacings tend to zero, 
the lattice measures which correspond to the theory described above converge in the 
sense of' characteristic functions. 

The main results required for the proof of Theorem A can be found in Sects. III 
and IV. Some of the more significant ones can be summarized as follows. Let 
C~ (CA), denote the lattice (continuum) Green's function for the covariant finite 
difference (continuum) Laplacian, A~ (AA), in a lattice (continuum) gauge field, h (A). 
The gauge field may be non abelian. We impose either free of periodic boundary 
conditions at the boundary of a rectangle A. 

Theorem B. Let  (h ~) be a sequence of  lattice gauge fields converging to a locally 
bounded measurable gauge f ield A as ~ tends to zero. Then the kernel o f  C ~ 

h ~ 

converges locally in Lp, for  all p with 1 <= p < ~ ,  to C A. 

Theorem C. Let  (h ~) be convergent to a HSlder continuous gauge f ield A, then the 
determinant, z~, defined to be 

det(( - A ~ + m 2)- 1/2( _ A~ + m z) ( - A ~ + m 2)- 1/2) 

with mZ>O, converges to its formal continuum limit as e tends to zero. The limit is 
f inite and strictly positive. 

Our methods would also be useful in proving the appropriate analogues of 
Theorems B and C in three space-time dimensions. 

The limiting theory obtained in Theorem A is Euclidean covariant. It is not 
invariant because of the boundary and also the cutoff on the gauge field. In two 
dimensions it is possible to identify it with a theory constructed directly in the 
continuum and then Euclidean covariance is obvious. However it is also possible 
to obtain it directly from our theorems because they are valid when limits are 
taken through lattices of varying orientation. We have slightly emphasized this 
point because it may be a superior strategy in more singular theories. Obviously 
Euclidean covariance is necessary if the final theory obtained by taking the infinite 
volume limit and removing the ultraviolet cutoff is to be Euclidean invariant. Note 
that Euclidean invariance and Osterwalder-Schrader positivity in one direction 
combine to yield positivity in all directions. 

Let us now briefly outline the steps in our proof. We begin in Sect. II by 
collecting our notation and conventions and summarizing some useful facts about 
trace class ideals (Jp) of operators 1-5]. In Sect. ItI we prove Theorem B. One 
reason why this part of our work is more difficult than the corresponding parts of 
the lattice convergence proof in [6] for Bose fields without gauge fields is that we 
can no longer use the Fourier transform to diagonalize all our Euclidean 
propagators C~,~ simultaneously. Instead we rely heavily on the theory of trace 
class ideals and analyticity. We have prefaced Sect. III by a short verbal 
description of these methods since they may find other applications. 

In Sect. IV we prove convergence for lattice fields of bosons in an external 
Yang Mills field as ~'~0. The Yang Mills field can be non abelian. Although we do 
not prove it in this paper, the limiting partition function is closely related to that 
investigated by Schrader [7]. The differences are as follows: (1) we include the 
factor ~(A) (see IV and Theorem C) which Schrader et al. [7] refer to as the 
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"renormalized determinant" ; (2) our normal ordering of the bose self interaction is 
with respect to C~ instead of C]. Both these features are forced on us since we are 
going to integrate over the gauge field (in the next section). The renormalized 
determinant is a considerable nuisance because it contains contributions which 
diverge as ~',~ 0, and one must use gauge invariance in the form of a Ward identity 
to prove that the divergent parts cancel each other up to a remainder which is 
finite in the limit. (This type of phenomenon is well known to physicists.) The 
change in normal ordering (2) is not a simplification either. The point of 
Theorem 3.5 and its quite lengthy proof is to control this change of normal 
ordering as e ~ 0. 

Our proof of convergence owes much to [6]. We also proceed by embedding all 
our lattice theories in one continuum theory (white noise instead of the free 
Euclidean field used in [6]). We find that we need to prove that the square roots 

1 / ~  converge in J 4  and since we cannot use the Fourier transform we prove a 
little lemma that provides a sufficient condition that the (non linear) map A ~-+f(A) 
be continuous from Jp  to Jq. 

In Sect. V we complete the proof of Theorem A, in the form of Corollary 5.2 by 
showing that the integral over the abelian gauge field, A, of the lattice external 
gauge field partition functions of Sect. IV converges as ~'~ 0. This then is merely a 
matter of justifying the interchange of the e N 0 limit with the A integral so that we 
can apply the results of IV. To do this we use dominated convergence, appealing to 
the diamagnetic bound of Paper I, Corollary 2.4, and Theorem 4.1, to show a 
uniform bound on the external gauge field partition functions. We also have to 
show that the class of gauge fields allowed in Sects. III and IV are a set of measure 
one. This is a slightly fine point since the ultraviolet cutoff on the A field does not 
regularize the sample functions much because we wish to have Osterwalder- 
Schrader positivity in one direction. We appeal to a beautiful paper [8] by Garsia 
on the continuity properties of sample functions of Gaussian measures to settle 
this point. 

We also discuss Osterwalder-Schrader positivity in this section (Theorem 5.5). 
We explain what types of cutoff on the covariance of the Gaussian measure 
describing the gauge field yield a continuum limit with positivity in one direction. 

In our final section, VI, we provide some technical preparations for our next 
paper in which we will remove the ultraviolet cutoff. We discuss counterterms and 
define renormalized partition functions and measures for abetian gauge theories. 
We give the Feynman rules and in Theorem 6.1 prove an identity, the change of 
covariance formula, inspired by similar formulas in [-9]. This formula will be used 
in Paper III to generate (by iteration) an expansion of the Glimm-Jaffe type [10] 
which will prove that the partition function, when correctly renormalized, is 
bounded above and below uniformly in the ultraviolet cutoff. This is the most 
difficult step involved in removing the ultraviolet cutoff. The formula is of the 
following type 

i 

<P>~ - (P>o = ~ (KP>~dt 
0 

in which P is a polynomial in the fields, (>1, (>o, (>t are unnormalized (but 
renormalized!) expectations. The subscripts 1,0 refer to different ultraviolet 
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cutoffs; t parametrises a family of cutoffs that interpolate between 0 and 1 ; K is a 
partial differential operator in ~/~4~. The important point about K is that it 
depends only on renormalized quantities and so does not diverge in the ultraviolet 
limit. For  this reason this formula can be made the basis of a method of removing 
the ultraviolet cutoff. 

In an appendix we briefly sketch how to extend our results to the case where 
Dirichlet boundary conditions are imposed on the Bose field. 

H. Preliminaries: Notation, Trace Ideals 

In this section we fix notation, give some definitions and quote some theorems on 
trace ideals. 

First we present a list of symbols followed by an explanation of their meaning 

A C1R 2, a bounded open set, 

L CIR 2, a simple cubic lattice, unit spacing, 

L (~)( A ) -~ eL c~ A, L (~) =_ eL, 

~ -  {(x,~e~) :xeL(=~, ~ =0, 1}. 

N~ is the set of bonds considered as closed subsets of IR2; eu, # =0,  1 are the unit 
vectors which generate L, i.e., 

L = {n0e o + nle 1 :no, n 1 e~} .  

Let ~ ( A )  be the subset of bonds contained in A. We denote by ~ the finite 
difference gradient 

O;f(x) = ~- 1 [ f ( x  + ee,) - f ( x ) ]  

associated with L~; 3 ~ is defined both on functions on L (~ and on continuum 
functions. The continuum gradient is denoted by 0. 

We now wish to introduce covariant derivatives, Let G be a compact Lie group 
unitarily represented on a finite dimensional Hilbert space V. Let A, be a gauge 
field. For # = 0 ,  1, A~ is a map from IR 2 into the Lie algebra Y(G) of G. The 
covariant derivative is defined on V-valued functions on IR 2 by 

D A,u~ -~ ~ )  --ieAu~), (2.1) 

e is a constant, the electric charge. The finite difference covariant derivative is 
defined only on lattice functions with values in V, 

D~,,~)(x) - e -  1 [h",*(x)~)(x + ee,) - qS(x)], (2.2) 

where h ~', a lattice gauge field is a map from bonds (x, eel)  into G. 
The covariant Laplacians are defined by 

A A ~  --  DA'uDA'" (2.3) 

Ah : -- Dh, ~Dh,., 

where we use the Einstein summation convention on ~=0 ,  1. 
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Let 

L ~ = L ~ (~,~,  S ( V ) )  

be the space of two component measurable 
operators 5e(V) on V, given the norm 

IISll =ess. sup (NBo(x)H2(v) + IIBl(x)[12(v))  1/2 , 

functions with values in linear 

(2.4) 

where the subscripts refer to the lattice directions and I1 Jl~(v) is the operator norm 
on V We introduce this norm because it appears to be appropriate for the 
discussion of convergence of gauge fields in Theorem B. The derivatives in the 
definition of the covariant Laplacian are applied in the distribution sense. We take 
the gauge field A to be in L~. 

We now introduce some notation whose purpose is to make the lattice objects 
resemble their continuum limits in order to facilitate the discussion of con- 
vergence. Let B=B~ be a two-component map from L ~) into 5¢(V). Set 

D~B, ~, - O~ - ie B~ 
_ ~, ~, (2.5) 

As= - DB, I~DB,u . 

These are operators on V valued functions on L (~). 
We will be particularly concerned with the following two choices for B, 

B u - Au, B u -- ~4~, 

where 

A ~ -~ ( iee)- 1 (hi(x) -1[) (2.6) 

eie~d~(x) =hi(x  )" 

The second equation defines ag ~ in terms of h ', provided h is sufficiently close to the 
identity that the exponential map may be inverted, d "  belongs to SO(G), the Lie 
algebra. A ~ does not. Note that if we choose B~= A g, 

Dh,, -- (h~) ~,~ (2.7) 
A~= A~A . 

The Q Identification. Let f be a function on IR 2. We can obtain a function on a 
lattice L ~), Q~f, defined by averaging, i.e., 

Q~f (x ) -  ~- 2 ~ f ( y )dy ,  
~::Ax 

where A~ is a unit square centred at the lattice point x. Conversely, given a 
function f defined on a lattice, we can obtain a continuum function Q~*f which is 
the piecewise constant (constant inside each lattice square) function which 
coincides with f at lattice points. With the aid of Q, Q*, we can obtain continuum 
operators from lattice operators, e.g., 

DA--+ Q DAQ.  
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The main reason why we like these operators is that 0 ~ and all functions of 0 ~ 
commute with Q~*Q~. (Recall that 0 ~ can be considered to be an operator on 
continuum functions.) Another way of stating the same thing is that if A is a 
function of 9~, we can consider it either as a lattice operator or a continuum 
operator  A. Then if f is a continuum function 

AQf f --Q~J f . 

Thus Q gives us an embedding of lattice into continuum. We will simplify our 
formulas by omitting these Q operators. Therefore if the context requires it lattice 
functions and operators are to be identified with their continuum counterparts 
derived via Q. 

Euclidean Propagators, Boundary Conditions. Let f~)(A)=f 2(A) be the space of 
square summable V-valued functions on L(~)(A) with norm (first example of Q 
identification) 

{Ifll~2=S Z d2x I l f z A t I v  , 

where Za is the lattice characteristic function of A and ]] ]Iv is the norm on V. A~ is 
an operator  on fz(lR2). By a form method [11] we can extend A A to a selfadjoint 
unbounded operator, also denoted A A, on L2(IR2). The inverses 

Ca-(m2-AA)  -1 , C~-(m2-A~) -1 , 

where m 2 > 0  are bounded operators;  their norm is less than or equal to m -2. 
Their kernels, the covariant Green's functions are henceforth called "covariances" 
in view of their later r61e as covariances of Gaussian measures. 

If the gauge field vanishes outside A which by definition means that it is zero on 
all bonds not contained in A, in the lattice case, we say that the covariance has free 
boundary conditions. We introduce an operator Ch r, on fz(A) by 

F 
C h - -  Z A C h Z A  . 

The covariant Laplacian with free boundary conditions, A t, is defined by 

m 2 _ Ah _ v  _ (C~)-1. (2.9) 

A Convention for the Internal Degrees of Freedom. In order to clean up our 
language we are going to suppress V, 2~(V) in some of our norms and spaces, e.g., 
our use of f2 for V-valued functions is an instance of this. 

The Interaction. The operator on f2 given by 

= - leA~, O. + zea~ A ~ -  e Au A. 

will be referred to as the interaction with the gauge field. In the case where h ~ is 
derived from s~ ~ (see 2.6), it may be written 

Wh ~ = -}-~-2 T~*(h" -- 1)u + e -  2(he*- 1)uT~ 

= + lee-1TFdj_ iee- ld~T~ 

e 2 
~* e 2  e 2  e 2 (T~ (dj) +(~1;) T~)+O(ee3), (2.11) 
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where 2r~ is the operator of translation by e in the # direction. The term O(~e 3) is of 
order 8e 3 in operator norm if AEL~o. 

The kernel of the Fourier transform of this operator is 

Wh~(p, q) =- + iee- l(e-i~p~ _ e i e q , ) ~ ( p  _ q) 

e 2 
2 (e - i,p~ + ei~q~) (d~)2"(p_ q) _ O(ee3). (2.1 2) 

The Fourier transform is defined by 

]'(p) = Z E e2f(x)e- ip~. 
27r x~L<.) 

The variable p = (Po, P~) lies in the square -.~)Z, , because the dual space for 

the lattice is a torus. 
Trace Norms [12]. We will have frequent occasions to use the following spaces of 
operators. Let H be a Hilbert space. A compact operator T : H ~ H  belongs to the 
class @, t < p __< o% iff 

II TIIp-(tr(r*T)V/z) lip < oo 
(2.13) 

I[ rll ~ - o p e r a t o r  norm - [1 r l l .  

It can be shown that Jp  is complete, and furthermore the H/51der inequality 

i=~I1Tip ~I ~ 1  1 -<_ II T~II~,~, - = - (2.14) 
i=1 i = l P i  P 

is valid. In this inequality we can drop the condition that 7~ be compact if p~ = Go. 

Proposition. a) For 1 <= p < o% finite rank operators are dense in J;p. b) @ is closed 
with respect to taking adjoints. 

Theorem (Grtimm [13]). Let A,  be a sequence of operators in Jp, 1 <-_p< co. I f  
A, (A*) converges to A (A*) strongly and IIA,IIp converges to IIA lip, then A,  converges 
to A in Jp. 

Remark. Simon [14] shows that strong convergence can be replaced by weak 
convergence in the hypothesis, if p > 1. 

III. Bounds, Analyticity, and Convergence 
of Covariant Lattice Green's Functions 

In this section we establish some properties of our covariant Green's functions 
(covariances) which will be needed for the proof of convergence of the lattice 
approximation. 

In Definition 3.2 we define a notion of convergence for a sequence of gauge 
fields h (~) associated to lattices L ~)  with arbitrary orientations, ~1, ez,-., being a 
sequence of lattice spacings tending to zero. Given that a sequence of lattice gauge 
fields converges to a continuum gauge field in this sense, we show in Theorem 3.2 
that the associated covariances, considered as operators on L 2 via the Q 
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identification of the last section, converge in a '°local" Hilbert Schmidt norm. We 
also show that the functions obtained by restricting to the diagonal the kernels of 
the differences between the covariant covariances and the free covariances 

m L p  f o r l  <oo. converge " ~oc < p  This is done in Theorem 3.3. Actually all operators 
we consider are finite matrices (for e > 0), or finite rank operators after using the Q 
identification to put them on L2, but it is useful to state results and think of them 
in continuum language since we are taking a continuum limit. 

To prove these results we use the diamagnetic bound [-15], stated here as 
Theorem 3.1, to obtain uniform bounds. The other main technical device is to first 
prove convergence when the gauge field is small and then use analyticity, as 
proven in Lemma 3.4, to extend the convergence to arbitrary gauge fields. We give 
a proof of Lemma 3.4 for the sake of being self contained, but the result is a special 
case of well known general theorems [16]. 

The notion of convergence in Definition 3.2 is sufficient for the results of this 
section but has to be strengthened to prove convergence of the lattice partition 
function in an external gauge field. The reader is referred to the next section for 
this. 

We begin by stating the results. 

Theorem 3.1 [15] (the diamagnetic bound) 

II(CZ)~(x, y)ll < ll(C~)=(x,y)ll 0__<~<oo. 
(C~) ~ (x, y) denotes the kernel of the operator C~ raised to the power ~ in the operator 
s e n s e .  

This is an easy generalisation of the Nelson-Simon inequality [15]. A simple 
proof has been reproduced in Paper I. 

Remark. The same inequality is valid for periodic, Dirichlet and Neumann 
boundary conditions on both sides. 

Before stating the next theorem, which is the main result of this section, we 
need 

Definition 3.2. A family of lattice gauge fields h" is convergent to a gauge field A as 
e ~ 0  iff A ~, defined by 

- -  " - - 1  g A~,(x)=(tee) (h,(x)-ll) 

converges to A in L~, i.e., I]A~--,A]I~0. 

Theorem 3.3. I f  a family (h ~) of lattice gauge fieIds converges to A as ~ 0 ,  then the 
kernel Cf,(,)(x, y) of C~(~) converges in Lp(A x A), t <p < go. 

Remark. The limit is CA(X, y). 

The proof of this theorem will use Lemma 3.4 given below. 

Lemma 3.4. Let B - B , ,  E = E ,  be bounded ~ (V)  valued functions on L (~). Then 
C~+ ;.E(x,y ) is a real analytic fz(A x A) valued function in 2, which extends to a 
function analytic in the strip 

(mlm2)  lIE H2=~ <1. 2eimRLlEii + e 2 
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The extension C~ + hE is bounded by 

I] CeB + ~E II da(A x A) <2~ 11CB + R e ) L E  11 d2(a x A)( 1 - -  ~ ) -  1 .  

Remarks. 1) C~+;~ is real analytic but not analytic as defined in (2.5), (2.8) because 
of the adjoints in (2.5). 

2) The same lemma holds for the continuum covariance. 
3) Periodic, Dirichlet, Neumann boundary conditions could be aceomodated. 
The final result of this section will be used to control Wick ordering terms. 

Define the operator 

6 c i - c i - c i  . 

The kernel will be denoted 6C~,(x, y). 

Theorem 3.5. Let (h ~) be a family of gauge fields converging as ~ tends to zero to a 
continuum gauge field A, then for 1 < p < co, 

S Itr6C~,°(x, x ) -  trSC~,(x, x)l~-~0, ~, ~'--,0, 
A 

where the tr denotes a sum (trace) over internal indices. 

Remark. The theorem asserts that 6C ~ is a Cauchy sequence. In fact the limit is the 
continuum expression 

6CA(x, x) = (CA-  Co) (x, x). 

It can be shown that 6C has a kernel which is continuous in x and y so that the 
restriction to the diagonal is well defined. 

Proof of Lemma 3.4. We will compress the notation by suppressing e, #. Let F, G be 
bounded ~ ( I 0  valued function on L t~). Then 

D v + o = D r - i e G .  

Therefore 

A~,+ a = A F-- ie(G*Dv- D ' G ) -  e2G *G 

--AF+g~,G. 

Let ZA be the characteristic function of A. We show that the Neumann series for 
the resolvent 

ZACF+GZA=ZA C1/2 ~ (F~I/2I/U t~l/2hnF'll2~' (3.1) k~JF rVF, G"JF ] ~'~F A,A 
n = 0  

is convergent in Hilbert-Schmidt norm (--,./2 norm = norm of kernel considered as 
a function in :2(IR2×IR2)) provided tIGt] is sufficiently small. By H61der's 
inequality for Jp  spaces 

Z f-,i/2f~i/21/~y [",1/2]n['~1/2~ I, ~ IIZACI/21[ 2 
A ~ F  \ ~ F  YrF, G ~ F  } ~ F  A, Al l2  

< ]l ZaCvZa 112 (e]l C~/2 G*DvC~/2 II + e II C~/2D*GC~/z ]l + e2 II C~/2G*GC~/2 [[)" 

<llCrlle 2 JIG[l+ ~-llGli 2 - (3.2) 
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The last bound is obtained by applying the easy bounds 

1 bt C~/2 II < - -  
m 

I ~"Ft'~l/2t'~*irl'° --r~Ft'~t/2 = < ~ ,-l/2bf II G* 1[ ~tel/zn*n--v=v~vc*/:ll < }lC~-/z{I IIGII (3.3) 
1/2 * 1/2 lie F DpaC~ tl < l tC~/2 t t  t la l t .  

The bound (3.2) shows that (3.1) is convergent if 

(2etlGki+~__~liGi[Z)=-~,<l. (3.4) 

By taking norms under the sum in (3.1) 

1 
tlCF+dl2 =< TICrll2-1_ ~,. 

To prove the lemma, take F=B +(Re2)E, G =  im2E. This completes the proof of 
Lemma 3.4. 

Remark. In the proof of Theorem 3.5 we wilt use the fact that the argument above 
C ~ U* is J4  real analytic and bounded in a is trivially adapted to show that za B + ~ 

strip. 

Proof of Theorem 3.3. We begin by assembling some simple lemmas which will be 
used in the proof. 

Lemma 3.6. Let A, be a sequence of operators in Jp, 1 <=p < o% which converge in Jp 
to A. Let B, be a sequence of operators which are uniformly bounded in operator 
norm and B,-~ B, B*--, B* as n ~  co in the stron 9 operator topology. Then A ,B ,~  AB 
in Jp as n--~ oo. 

Remark. A related result was an important ingredient in the lattice convergence 
proof of [6]. 

Proof 

t]AB- A.B.tIp<= It(A- A.)B]Ip + ILA.(B- Bn)]tp<= ]IA- A.]tp IIBII + ]iA(B- Bn)]Ip 

+ II(A- A.)I/,(IIBII + sup II B.II). 

The first and final terms tend to zero. Let C. = B . -  B. We are reduced to showing 
AC. tends to zero in ocp. Approximate A by a finite rank operator A so that 

[IA-+t][,<6 

for a given 5 >0. It is enough to show that +tC. tends to zero in Jp. Equivalently, 
one can show that * * C.A tends to zero, i,e., 

tr(ftC, C* ft*) p/2 > O. 
n ~  o9 

Since this is a finite rank operator, it is sufficient that C,, C* tend to zero strongly 
because the uniform operator norm bound then implies C,C* tends to zero 
strongly. 
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Lemma 3.7. Let C~=C~, x, y~L  (~). 

C~(x ' y)= 1 ['~ ~ dgkd(e)(k)e,~(:~_y), 
T,T]  2 

Ce(k)~2~(28-2 ~]u=o, l(1-cOsek~)+m2) -1@1[v" 

Proof Easy consequence of definitions and Fourier series (see [6]). 

[ emma 3.8. Let UcIR 2 be bounded and measurable. 

}t xvC~zv {t L, ~ const 

uniformly in e, h e. 1 < p < oo. 

Proof Theorem 3.1 reduces these statements to the special case he=ll for which 
they are well known. A simple proof can be based on Lemma 3.7 and the 
Hausdorff-Young inequality. 

Lemma 3.9. Let U C IR 2 be bounded and measurable, then 

1) zv(C) ~-,o ZuC~ in J4  ~>1/4 .  

2) 8e(Ce) ~12 ~ o  ) 8C1/2 I in stron 9 operator topology. 

3) (Ce)1/28 ~* e-~o ' C1/28" ! 
Proof 1) To begin with it is sufficient to take U to be a rectangle in IR;. To see this 
let De(x, y) be the kernel of 

((c~)y_ c~)~ 
then 

tlzv((cey - c')r4 = ~ ~ [De(x, y)i ~ 
u u  

so that the norm is increasing in U. Next, by Gfiimm's theorem (Sect. II), it is 
enough to prove that 

a) ttXv(C")~[I,~ tIzvC~ll4. 
b) ( C e ) ~ C  ~ in strong operator topology. 

For a), by Lemma 3.7 

tlzv(C~)~lit = Efd2kfd2k't~2~(k+k')l 2 ld(k)d(k')l 2~, 

where the range of integration is - ~, 8j for k and k'. The dominated convergence 

theorem completes Part a). 
Part b), 2) and 3) are all similar. We discuss 2). An easy argument with Q~ shows 

that it is enough to show that the Fourier transform 

e- ~(e ie'"- 1) (~(k)) ~/2 ~ ~@~ k,(k 2 + m2) - ' /2 @ Iv  

in strong operator topology as an operator on L2(]R2). This is easy. 
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The proof of Theorem 3.3 is a series of reductions. 
1) We claim that it is enough to show convergence in L2(A x A). We know that 

C ~ , E L p ( A x A )  uniformly in E by Lemma 3.8. Combining this with H61der's 
inequality and L 2 convergence proves Lp convergence by an easy argument. 

2) It is enough to prove L2-convergence in the special case that 

IIAII~I. 

P r o o f  If e' is sufficiently small, the definition of convergence of h ~ implies h ~' is in a 
small neighborhood of ~, uniformly in the bonds in ~ and e < d .  Therefore we 
may define d e, a Lie algebra valued function on bonds (with two components) by 

e, ie~¢ ~ h = e  

and then, given 2elR, set 

h'( 2 ) =_ e ie.~d~ " 

It is then easy to verify that h~(2) converges in the sense of Definition 3.2 to 2A. 
Furthermore, by Lemma 3.1 the covariance C~,(x) is real analytic in 2. It extends to 

< , a function which is analytic in a strip of width independent of e=  e. Lemma 3.4 
combined with Theorem 3.1 shows the extensions C~,~;~) are bounded uniformly in 
e < d, 2s  IlL Therefore a form of Vitali's theorem (see the remark below) tells us that 
convergence for all A is guaranteed by convergence for 2 in a neighboorhood of 
zero. This completes the proof of Part 2) because we may replace A by 2A with 
I,~1~1, 

3) We will now assume IIAII, z' are sufficiently small so that the resotvent 
expansion 

~ F'e . . . .  ee l /2  ~.~ ( C e l / 2 W e C ~ I / 2 ) n c e l / Z Z A  
A ~ h ~ A . A  - -  [~A ~ 

n = O  

is convergent in Lz(]R 2 × ]R 2) uniformly in e < d. To see this we refer to the proof of 
Lemma 3.4. Recall 

W ~) =_ _ ie(A**O ~ _ O~*A ~ ) _ e2A~*A ~" 

By virtue of the uniformity, we can prove ZAC~ZA is convergent as e tends to zero 
by proving 

) ~ A C e l / 2 ( ( C ~ ) l / 2 w e c e l / 2 ) n ( c e ) l / 2 ) ~ A ,  n - - z -O,  1 . . . .  

is convergent in L2(IR z x 1tt 2) as e tends to zero. The operator in brackets raised to 
the power of n is strongly convergent by virtue of Lemma 3.9, Parts 2) and 3) and 
the fact that (C~)g "* and its adjoint are bounded uniformly in operator norm. The 
factors ZA Cell2 a r e  convergent in J4  by Lemma 3.9, Part 1). The proof is completed 
by Lemma 3.6 with p=4 ,  together with: A n n A ,  B , ~ B  in , ¢ 4 ~ A , B , ~ A B  in J2, 
which is a simple consequence of H61der's inequality. 

A Remark  on l/itaIi's Theorem. Vitali's theorem [17] does not in its usual 
formulation hold for operator valued normal families. However if a normal family 
~- of operator valued functions, analytic in a region f2, is known to contain a 
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subsequence convergent in some open set U in f2, then that subsequence converges 
throughout 12. A simple proof may be constructed by exhausting f2 by a set of 
overlapping open discs. The power series expansions associated with each disc are 
convergent uniformly in ~-, so it is enough to prove termwise convergence, i.e., 
convergence of all derivatives at the centre points of the open discs. This is already 
given for any disc whose centre is in U. Any point in f2 may be reached by passing 
along a suitable chain of discs. 

Remark 3.10. In the proof of Theorem 3.5 we will use the fact that the argument 
given above can easily be adapted to show that )GC~h~U * is Cauchy in J4- 

Proof of  Theorem 3.5. We begin by proving a lemma based on Corollary 4.8 of 
[14]. 

Define the following norm on functions on IR 2, 

11 f 112.a = ~ If(x) (1 + x2)612 dx. 

Lemma 3.11. For p, 6, ~ satisfying 
2 

l < p < 2 ,  c5>0, c~>1/2+6,  p > - -  
1 +26 

I[(C;Yf I[~, < C~, p,~ Ilflr 2, 

uniformly in e, h. 

Proof Define ze [0, 1] by 

p = [z + 1/2(I - z) ] -* .  

Define ?,/9 > 1/2 by 

6=z7,  ~"--fl+z7 

and let K~ be the operator with kernel 

Kz(x ' y) =_ (C~)e + z, f(y) (1 + y2)- z ,  

The lemma is equivalent to proving 

Ilg~[[j <-_C~,~T]fll2. 

By interpolation, [18], it is sufficient to prove this tbr z = 0, z = 1. When z = 0, p = 2; 
z = 1, p =  1. By the diamagnetic bound, Theorem 3.t, 

IlK0115= =< ~ [f(x)12(C])2a( x - x ) d x d y .  

We have omitted internal indices which are to be summed over. By the Fourier 
transform Lemma 3.7, the right hand side is bounded by a constant times 11ftl22 
which completes the z = 0 case. For  the z = 1 case we write 

K I = A B ,  tlK~rlj~<I[AIIj~tlBIIs~: 

and choose A, B to have kernels 

~4(x, y) = C~(x, y)(A + y:) - ,  

B(x, y) = (1 + x2) ' C~(x, y) f(y) (i + y2)- , .  
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We have omitted and will omit e's to simplify the formulas. 
The techniques used in the z = 0  case can be applied to show that ltAll.~2 is 

bounded by a constant depending on 7, fl, because (1 + 22) -?; belongs to L z. The J2  
norm of B is equal to 

~ If(x)(1 + x 2)- ~12 I C ] (X -- 2) 2 (1 q- 22) 2?; dxdy .  

We show this is less than a constant times flfri2 by using 

(1 -~ 22) 2?; ~ (] @ X2) 2y -~- (1 -t- (X -- y)2)27; 

together with 

IC~(x - 2)1 < ce -"tix- 'II 

which follows from the analyticity of the Fourier transform of C~. 
We now return to the proof of Theorem 3.5. We wish to show that 6C;~ is 

Cauchy in Lp when restricted to the diagonal. We first show that ¢5C~,~(x, x) is in L p 
uniformly in e. Thus 

( !  Itrvc}C;~(x,x)Pdx)l/P< sup ! t rv( f (x) fC~,~(x ,x) )dx ,  (3.5) 

where f is a function whose values are scalar multiples of the identity in 5~(V). 
Internal indices have been omitted, they are summed to form the trace (trv) on V. 
The supremum is taken over f such that 

1 1 (!ltrvflV'dx)lip'=l, p+f=l. 
The right hand side of the inequality (3.5) can be written as a trace, i.e. 

sup tr(6C~f). (3.6) 
f 

We are omitting e's to simplify the notation. Define h(2) as in the proof of Theorem 
3.3, 

h = e i e s J  , h(2) ~- e ie'~d . 

(3.6) can be written 

1 d 
sup ~ d2 77 t r ( 6 C J ) ,  (3.7) 

where 6C~ = 6Ch(~). Expand using 

d~ 6C~ = - C~ W Cx,  

W = ie[O*A;. - A*~?] - e2A*A~,  

A z = (lee)- 1 (h(2) - ]l). 

We are as usual suppressing/~'s. Therefore 

d 
tr( 6C J )  = ie tr( C a O* A'z C a f  ) 

- ie t r ( C a A * ' O C z f ) -  e 2 t r ( C ~ ( A * A ) ' C J ) .  (3.8) 
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The prime indicates differentiation with respect to 2. The integral over 2 of this is 
less than the supremum over 2e [0,1]. We now will show how to bound the first 
term in (3.8) by a constant times the Lp, norm, IIfIFp,, of f which is one. Similar 
steps yield the same bound for the second term and the third term is easier so we 
will not dicuss these further. Thus this bound will show that the Lp norm of 6C~,~ is 
bounded uniformly in e. From this point we will drop the trv. A sum over internal 
indices is to be understood. 

We bound the first term in (3.8) using H61der's inequality, 

ttr(C~*A'C f)[ < [t C~O*A'C~ I[ 2 tl Ca f C//[[ 2, (3.9) 

where ~ + fi = 1. We are now suppressing 2 also. The cyclicity of the trace was used 
to move a factor C a. The second J2  norm equals 

(! ~ f(x) [chZ(~)(X, y)l 2 f(y)dxdy) '12 . (3.10) 

By HSlder's inequality and Theorem 3.1, the diamagnetic bound, this is less than a 
constant times 

~,,,se(v)) 11fllp,. (3.11) 

The first factor is bounded uniformly in g provided 

2p(1 - 2//) < 1 (3.12) 

because homogeneity considerations applied to the Fourier transform of C 2//show 
that 

lCZn( x, Y)I < clx - y[- 2(1 - 2/t) (3.13) 

uniformly in e. Our choice of/7 is constrained by (3.12). Our proof that 6C is 
uniformly in Lp will be complete if we can show that ~ = 1- /7  can be picked 
consistent with (3.12) so that the first J2  norm in (3.9) is bounded uniformly in e. 
We have 

NC~a*A'C=II2 < IIC~a*l[ IIA'C"II2. (3.14) 

The second norm is bounded uniformly in e if e > 1/2 by an argument like that 
used to bound (3.10). One has to use the fact that A~ is bounded in L~ norm 
uniformly in 2, e. We claim that i£ ~ > 1/2, the first norm is also bounded uniformly 
in e. Thus by the triangle inequality and the definition of Dh(~), 

II c3~*  It -< II C3D~(x)ti + e II C~A~ II. (3.15) 

The second norm is bounded uniformly in e because IIAx N is bounded and II c =ll is 
tess than (mZ) -~. We bound the first norm by 

llC~-Xl2 N 1/2 , ~ l / 2 n *  t3 r~1/2 l i2< (3.16) 

a s  was used in the proof of Lemma 3.4. We have now proved that the Lp norm of 
~5C is bounded uniformly in ~. 
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We now combine this result with Lemma 3.11 to complete the proof of 
Theorem 3.5. By H/51der's inequality, it is enough to prove 6C is L1-Cauchy. If 
A(x,y)  is the kernel of an operator A ~ J  1 

[A(x, x)] dx < sup t r ( f  ZAAZA) < I[)~AAzA II J1, 
A f 

where the supremum is over f with Hf[I ~ = 1 and )~v is the characteristic function 
of A; To make then the left hand side unambiguous one should of course think of 
A being factorized into two Hilbert-Schmidt operators. By this inequality it 
follows that we may prove our theorem by showing that 6C is convergent in J v  

Since 

(3C = ChWhC ~ = ieChO*AC ~ - ieChA*(?C ~ + e2Ch A*AC~ 

(where subscripts #, e have been suppressed) it is enough to show that 
a) )~ACh~?* Cauchy in J4, 
b) ACh)(, a Cauchy in J4/3, 

e.g. the first term in the expansion for ZAOC)~A is J l  Cauchy because we may take 
h = 1 in b) and combine a) and b) by H61der's inequality. A similar argument 
involving the adjoints of the operators in a) and b) (which converge because taking 
the adjoint is a continuous map from J ,  to J r )  suffices for the second term. The 
third term is Cauchy in J l  because b) implies )~AChA * and AC1)~A are each Cauchy 
in J2- 

As has already been remarked, the proof of a) can be accomplished along the 
same lines as the proof of Theorem 3.2. To prove b) observe that by Lemma 3.11 it 
follows that C~Xa is in Jv  for 2 > p > 1  uniformly in e. By Theorem 3.3 it is 
convergent in J2. HNder's inequality implies b). The proof of Theorem 3.5 is 
complete. 

IV. Convergence of the Lattice Approximation 
in an External Yang Mills Field 

In this section we prove that the partition function and its associated finite volume 
expectation, for the case in which the Yang Mills field is external, converge as the 
lattice spacing tends to zero. We allow the orientation of the lattice to vary as the 
limit is taken, in order to be able to conclude Euclidean covariance of the limit. 
For simplicity we consider a lattice theory with just one boson field. Extra boson 
fields would not be a serious complication. 

We begin by some changes in notation and normalisation of the partition 
function described in Sect. 2.3 in Paper I. These are necessary for a convenient 
description of the continuum limit. We factor the partition function into a 
renormalised determinant ~ ( h  ~) and a partition function Z~A(h ~) of the type 
considered by Schrader [71, but on a lattice; it differs also in that the boson self 
interaction V~ is normal ordered with respect to (m2-A~) -1. We show con- 
vergence for these two factors separately in Theorems 4.2 and 4.1 respectively. The 
convergence proof for Z~(h ~) is based in spirit if not in body on [6]. One difference 
which appears to help in this case is that we embed our lattice Gaussian processes 
in white noise. The diamagnetic bound, Corollary 2.4 of Paper I, is an important 
ingredient. 
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The convergence proof for ~h(h ~) involves a study of some divergent (as s+0) 
contributions to the vacuum polarisation, I1~, which cancel up to a finite 
transverse part by a Ward identity, or gauge invariance. This work is rather 
grubby and is postponed to Appendix A. 

In Paper I we defined partition functions for matter in external Yang Mills 
fields (see for example Sect. 2.3 in Paper I). We now specialise to Bose matter in IR 2 
with free boundary conditions. We will also be making some normalisation 
changes to obtain partition functions which will converge as e-,0. 

Let 4) be a function from L (~) to V represented in components by (4~x,~), x ~ L  (~), 
i = 1 ..... dim K Define 

D e -  l i d  Re Cx, fl Im Cx,~, 
x , i  

25(h) - j" DCe-  A2°(*'h) , (4.1) 

A~(q~, h ) -  - 1/2(q5, (m 2 - Aff')qS)A + V~](~b), 
P 

G(4)-= : 
x i = 1  

The tilde on the Z is there because we wish to reserve Z for another partition 
function. Sums and products over x run over L(~)(A). A~J is the matter action, hence 
the M superscript. V a is the Bose self interaction. :P~:~ is a monomial normal 
ordered with respect to C~. gis C~(tR2). We assume that V is bounded below as a 
polynomial in q5 when the'normal ordering is dropped. At this stage V does not 
have to be gauge invariant. 

Since Z~(h) diverges as e decreases to zero, we renormalise by dividing by (3(~) 
where 

~(h)  =- ~ DOe- 1/2 (¢.(,.~ - af)¢) (4.2) 

Thus let 

Z~(h) =- 2~(h)/(~(~l) 

_ 2~(h)  (~(h) 

G(h) 

dvhe ~)ZA(h), (4.3) 

where dye(O) is the normalised Gaussian measure with mean zero and covariance 
C~. (The F on the covariance can be dropped because V depends on fields 
supported inside A.) (](h) is different from zero by explicit Gaussian integration 

~ ( h )  = ~A(h)/ff A(~) . (4.4) 

We can now state our first theorem for this section. 

Theorem 43.  I f  (h ~) is a family of lattice 9auge fields convergin 9 in the sense of 

Definition 3.2 to a continuum field A and A cIR 2 is bounded, then 

is convergent to a non zero limit dependent only on A for all 2 > 0. 
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Remark. In particular the limit does not depend on the orientations of the lattices 
c~ 

The convergence of ~ (h )  requires a stronger topology. We will now define a 
norm which seems to be as convenient as any. Given e > 0 ,  set [cf. (2.4)] 

HAi, oo, _HAi l+(A!AdXdy (A(x)_A(y) ) (A(x)_A(y) ) ,  ]1/2 
Ix - yl 2 + ~ se(v)/ " (4.5) 

This norm is chosen so that H,~, the Second order vacuum polarisation graphs, 
converges as e tends to zero (see Theorem 4.3 and the Appendix). 

Definition. 4.2. A family (h ~) of lattice gauge fields is convergent to A in the (oo, c 0 
sense if 

A~u(x) =- (iee)- l(h~(x)- gv) 

converges to A n in the sense liA~-Altoo,~-,0 as e~0 .  

For  our next theorems we assume A is a bounded rectangle. We also require 
that our gauge fields h be supported inside A, 

Theorem 4.3. I f  a family (h ~) of gauge fields is convergent to a continuum gauge 
field A in the (o% a) sense, then ~c~(h ~) is convergent to a non zero limit. 

Define the unnormalised measure 

dco h = ~n(h)dvh e . (4.6) 

In Paper I we showed that Z~A(h) is non zero. Therefore we can divide through and 
thus define the corresponding normalised measure doJ~'. 

We now wish to examine the limit as ~ tends to zero of these measures. The 
limiting continuum measures will be defined on 5~'(IR2), the Schwartz distribution 
space. 

Corollary 4.4. Let (h ~) be convergent as in Theorem 4.2. dCO~h[ converges as ~ tends to 
zero to a limit dofa. The convergence is in the sense of convergence of characteristic 
functions. All moments converge also, i.e., 

[. cto);;ei~(Q~Y)~ j dC#A e¢¢'(y) , 

q q 

j de@ H (3(Q~f~)~ I do£A H ~(fi) ,  
i = 1  / = 1  

where f, f ie C~(A). 

We now begin the proof  of Theorem 4.1. We will need the following lemma. 

Lemma 4.5. Let f :  IR + ~IR be a continuous function on the positive real line. Let 
4r~ - denote the cone of positive self adjoint operators in ~¢v" We assume that f 
satisfies 

ljf(A)IIv<=F(jiAjiq) VAe .J  +, 

where F(t) is a positive continuous function on IR + decreasing to zero as thO. Then 
the map A ~ f ( A )  is continuous from J q  to i T "  
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Proof of Lemma 4.5. We will use the following standard facts : if A, is a sequence 
of positive compact operators converging in operator norm to an operator A so 
that the spectra are discrete and of finite multiplicity° then the eigenvalues of A,, 
converge, the spectral projections -t~,b],P(") a <b < co, a, bCa(A ) converge in operator 
norm (see for example [5], Vol. I, Theorem VIII. 23). 

From this we conclude that f(Pl'~ ), oo)A,) converges in Jv  for all p provided a > 0 
is not an eigenvalue of A. Choose a so small that for a given e > 0, 

Hf(P[_~,~lA) lrp< F(IrPt_~,~]A[Iq)<e/2 . (4.7) 

By the triangle inequality 

[If(A.)-  f (A)  Hp < IIf(P[")-.,a;A.)][p + I[f(Pt_a, alA)[[ p 

+ I[ f(Pl'~ ), ~)A.) - f(P(., oo)A)t1 p. 

The third term converges to zero by the remarks above. The second term is less 
than s/2 by (4.7). To bound the first term note that 

because A~--*A in J~ and the projections converge in operator norm. 
Thus 

lira sup I[f(P[~.,.]A.)llp ~ lim sup f(][el~a,~jA.I]a ) 
n~oo n~o9 

= F( II Pt-  ~ ,M II ~) < ~/2.  

Proof of Theorem 4.1 (assuming Theorem 4.3). It suffices to consider 2 =  1. To 
begin with, we embed all the lattice path spaces in the space for white noise. Let 
dw(~) be the white noise measure, i.e., the Gaussian process of mean zero and 
covariance equal to the identity operator. Define 

E~=[,qe,~, re . ,  / ' )e ' l l /2 
- -  ',.."~ I . , A  V " h a A A ~  J , 

~=_ E~q~ . 

E ~ is an operator on L z. Then 

S dv~ ~e-w= ~ dw(lP) e-w(l~) 

(-Sdwe-V°). 

Therefore as in [6], (II.24), we can show convergence by 

l j" dwe-V~- ~ dwe-W'l <= ~ awl V~-  V~'I 
. (e-W +e -w') 

<=(j dwlV ~- V~'[~)~/~ 
• {(y dwe- 2vo)1/2 + (dwe- zw')l/2} . 

The second inequality is simply Cauchy-Schwarz together with ]/(x+Yi 
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The integrals in curly brackets may be bounded uniformly in e, e' by the 
diamagnetic bound, Theorem 4.1 of Paper I, 

~dwe-ZW=(x~)  1 ~Aj Cd~ e 2w 

<=(~A) -1 ~ dvle - 2 w  

By Theorem 4.3 the first term converges as e tends to zero to a finite number. The 
second factor is bounded uniformly in e by Nelson's boundedness below proof for 
P(q52) (see [19]). 

To complete the proof it now remains to show that 

~dwlV~-V~']2~O as ~ ,e '~0 .  (4.8) 

We may without losing any generality assume that for some positive integer N 

V" = S :(~)N(x):fl x 
A 

because in general V is a sum of such monomials. By virtue of the change of 
normal ordering formula [29], p. 11 (internal indices suppressed) 

[N/21 
:¢N :Co = ~ clj(~,C~,o(x, x))J:~ N- 2J(x) :c~o, 

j=0  

where d~ ... .  are universal constants and [N/2] is the largest integer less than or 
equal to N/2, we may without loss take 

w = ~ (ac~(x,  x) / : (4 ,9  ~- 2 i ( x ) y J x .  
A 

With V ~ of this form we prove (4.8) by showing that 

S dwV~( v ~ -  w ' ) ~ O  e,~'- .o . 

By the standard methods [20] for evaluating Gaussian integrals, this is equivalent 
to 

~ 6C(x ,  x) (~5C N- Z~(y, y)CJ(x, y) _ 6C,~(y, y) (EE,yV- 2j (x, y) )~ 0 (4.9) 
A A 

as e,e'~O. We have suppressed h~,e,e ' in favour of primes. EE' is the operator 
product i.e., 

E(x, z)E'(z, y)dz . 

We know by Theorem 3.5 that 6C converges in Lp for all 1 < p <  oo. Theorem 3.3 

and Lemma 4.5 [with f (x )=  ] /~]  imply that E 2 converges in J4, therefore U E  ~' 
converges in J2  which is the same as convergence in L2(A x A). Recall that C~ is in 
Lp(A x A) uniformly in e for 1 =< p < oo by the diamagnetic inequality, Theorem 3.1. 
A judicious assortment of triangle inequalities and H61der inequalities yields (4.9). 
This proves that 

~ dv ~ _-v~ 
h ~  

is a Cauchy sequence. 
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The proof of Theorem 4.1 is complete once we show the limit is not zero. 
Therefore, by Jensen's inequality 

dv~e -v~  >= e x p ( -  ~ dv~l/j) . 

The integral in the exponent is not infinite in the limit e tends to zero. If one does 
the integral by explicit Gaussian integration, the result is a sum of Lp norms of 6C 
which by Theorem 3.5 converge as ~ tends to zero. 

Proo f  o f  Corollary 4.4. Since ~ and Z~ converge (we are assuming Theorems 4.1 
and 4.3) as e tends to zero, it suffices to prove that 

dv~oF(Q~)e-  vo = ~ d w e -  W F ( Q ~ )  

converges. F is a polynomial or exponential. This follows from L 2 convergence of 
e - v  (see the proof of Theorem 4.1) and of F [see (4.8)]. These are standard 
arguments (see [6]). 

Before beginning the proof of Theorem 4.3, we rewrite ~t in a more convenient 
form, namely 

,~(h ~) = det- l/z(1 - C~W ~) , (4.10) 

where as usual 

W~= " ~* ~ ie , ~ * ~  e 2a~*~l~ (4.11) - -  ZeAh~ ~ + . . . .  h o - -  "~h~ •~h~ " 

To simplify notation subscripts/~ have been omitted. We will also suppress e in the 
equations betow. To obtain (4.t0), first explicitly integrate the Gaussian integrals 
i n  X, A 

x A ( h  ) = det-  I/2(n'~2 - -  Z~h F) det 1/2(m 2 - A ~) 

= det-  ~/2(1 + C e ( J -  AF)). 

This coincides with (4.10) once we argue that the F denoting free boundary 
conditions can be dropped. Since C F and C coincide when their kernels are 
restricted to A x A we need to show that 

) ~ A ( A ~ - -  A F ) X A  = d h - z] . 

This in turn follows from the following facts 

(1) A h - - A = Z A ( A h - - A ) Z  A . 

This is easily verified using the definitions. Recall that h is supported inside A. 
(2) The kernels ofA~, v and A~ coincide when restricted to A x A except at the lattice 
points on the boundary. At these points the difference is independent of h. This 
second fact may easily be proved by going through the proof of Theorem IV. 7 in 
[6] with A replaced by A h. 

We now introduce the following standard notation [21]. Given K e J x ,  define 
renormalised determinants, n = 2, 3 .... 

d e t , ( l + K ) = d e t ( l + K ) e x p  [.~I (_l)j.  trK~l.  
I_j= 1 J 
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Then 

3 11 ~ ~j] 
det-1/2(1-C~W~)=detgl/2(1-C~W ~) .exp ~ l ) - s t r (C W ) ] .  

d 
(4.12) 

Proof  o f  Theorem 4.3 (using Appendix A). We see by (4.12) that it is enough to 
show that 

1) det,(1 + K  ~) is convergent as ~'~0. 
2) tr(K~) 3 is convergent as e'~0. 
3) - ½tr (K ~) + ¼tr (K~) 2 is convergent as E ~0. 
4) [,~(h~)l < 1, 

where 

K ~ -  - C ~ W  ~ . (4.13} 

First note that 4) is the diamagnetic bound of R. Schrader, R. Seiler. A proof is 
also given in Paper I, Sect. 3.3. 

Proof  o f  1). We suppress ds. Set 

H = - - C1/zWC1/2 

and note that since W is finite rank, 

det4(1 + K)=  det~(1 + H) .  

We now appeal to the well known fact [2t a, e, f] that det, is Lipschitz continuous 
on J , .  Then 1) follows if we show that H is Cauchy in J4. To prove this, expand W 
using (4.11) and factor each term in the sum into products of 

C1/2~, Ah, ~A C1]2 (4.14) 

and their adjoints. The factor )~A can be skipped by using the condition on the 
support of h. The first operator converges strongly, the second in operator norm, 
the third in J4  by Lemmas 3.7 and 3.11. Each term in the sum contains at least one 
of the third kind, thus using Lemma 3.6 one obtains 1). 

Proof  of  2). This is essentially the same as 1). Expand K 3. Write each term as a 
product of operators as in (4.14) and their adjoints. Each term contains at least two 
factors converging in J4. This is sufficient to prove 2). 

The proof of 3) is more subtle and is the only place where we need the stronger 
notion of (oe,c~) convergence. The problem is that the individual traces in 3) 
diverge as e tends to zero. There is a cancellation between them due to a Ward 
identity (gauge invariance). For the proof of 3), see Appendix A. [] 

Remark. We conclude this section by sketching some constructive, uniform upper 
and lower bounds for ~(h), valid for all A ~ with ]Im W] < const, uniformly in e. 
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Suppose that A ~ A ,  as ~ 0 ,  in the (oo, 0t) sense [see (4.5) and Sect. V]. We 
require that 

A = A I  +iA2 ' (4.15) 
HAl[Io~,~< oo, [IAzlr~o,~<~, 

where Ap A 2 a r e  real and ~ will be chosen below. The norm ]l II oo,~ is defined in 
(4.5). 

Choose a positive integer N so that 

g - * l l A ~ t I ~ , ~ < {  . (4 .16)  

Recall the definition of d ~ given in Eq. (2.6). We decompose d ~ into its real and 
imaginary parts : 

sd ~ = d~  + sd~. (4.17) 

For each e we define a sequence of gauge fields by 
in 

e i~eed~  
hm=e . (4.18) 

Our bounds are based on the trivial identity 

~(h)= { I~ ~(hm)--~ z(h) (4.19) 
m=~ ~ ( h . , _ l ) J  ~(hN) " 

We have suppressed ds. The idea is to obtain a uniform (in e, e small) upper and 
lower bound on each factor using direct methods, in particular the loop expansion. 

Let W m be defined by 

Am = Am- 1 + Win, (4.20) 

where Am=Ah, ". Set h=hu+ 1 and C,,=Ch . Then 

;~(hm) = d e c  2/2(1 + C 1/2 W. ~1/2 
m-- 1 m ~ m -  1) ~(hm- 2) 

- -  det4 1/2( 1 q- CZm/2-1 WmClm/2 1)gm" (4,21) 

(This defines gm') Since A ~ converges to A and ag ~, A ~ only differ by terms of order 
e, it is easy to show that d ~ converges to A in the (o'o, c 0 norm. We in fact show this 
in the next section. Next, by choosing ~ small we show that the loop expansion for 
det 4 in (4.21) converges absolutely and uniformly in m and e, for e<e  o for some 
%>0.  This is done by using the diamagnetic bound, Theorem 3.1, and d 2 
estimates of the type established in the proof of Lemma 3.4 [see (3.1)-(3.4)] and is 
not difficult. From this we obtain 

ci < [det 21/2(1 ~_ C1/2 1/2 (4.22) - - - -m-  l W~Cm-:t)[<C2 

for some constants c,, c 2 independent of e and m. 
The factor gm is the exponential of all terms of order 1, 2, and 3 in Wm arising in 

the loop expansion of det- */z(1 -*- C 1/2 W. C */2 "~ These more singular terms are m--1 m m--I]" 
estimated by expanding C m_ 1 in a partial Neumann series. The leading terms give 
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the contribution H,v analysed in Appendix A. The remainders are estimated by 
methods resembling those in the proof of Theorem 3.5. The details are tedious but 
straightforward and are omitted. 

The conclusion is 

c'~ < ]g,,I < c l ,  (4.23) 

where c' 1, c' 2 are constants depending only on ~ and [IAqk~,~. We collect (4.19), 
(4.22), and (4.23) to obtain 

(clc,1)N+ 1 < ]~(h)l <(%c'2) N+ I . (4.24) 

Note that if A is real valued along with d ~ for all e, then x ~ is real and positive 
because by (4.4) it is the ratio of two positive integrals, therefore (4.24) is 
strenghthened to 

(clc'1) N < x~(h) < 1 , (4.25) 

where the right hand bound is the diamagnetic bound, Theorems 2.3, 4.1, and Sect. 
3, Paper I. N is determined by ]IAtI~,~<N~. 

V. Convergence of the Partition Function for Yang Miffs and Matter Fields 
(Yang Miffs Fields with a Cutoff) 

V. 1. In this section we speciatise to abelian Yang-Mills fields. This is implicit in 
our use of a Gaussian measure for the pure Yang-Mills field, which is incompatible 
with gauge invariance if the gauge group is not abelian. 

Given a real measurable abelian gauge field A and a lattice/~), let A~ be the 
components of A relative to the unit vectors generating U ). Given a bond b in the 
#th direction let 

h~(b)-e~e~ A"(~)dx if b e A  

- 0  if bggA. (5.1) 

This defines a lattice gauge field h ~ on L(")(A). Throughout  this section, all lattice 
gauge fields will be derived from a continuum gauge field in this way. We will 
therefore regard the partition function Z~A(h ~) of the last section as a function Z~(A) 
of A. The q5 field is complex. 

The full Yang Mills and matter partition function, denoted Z~ has the form 

Z ~ -  I dlzD(A)Z~(A), (5.2) 

where dCzD(A) is a Gaussian measure, mean zero, covafiance D = Du,,(x, y). 
In this section, we will assume that the covariance D is such that with 

probability one, the sample functions Au(x ) are essentially uniformly H61der 
continuous with modulus e<½, (E.U.H.C.), which means that there exists a 
constant ca, finite for almost all A, such that 

]Au(x ) -AF, (y ) t  <=CA]X--yr ¢ , x, y e A ~ E ~ ,  #=0 ,  1, (5.3) 

where E A is a set of Lebesgue measure zero, dependent on A. A sufficient condition 
on the covariance D for (5.3) to hold for almost all sample functions A~, is given in 
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Sect. 5.2. The condition (5.3) excludes the covariances we are ultimately interested 
in and this is why we refer to such covariances as "cutoff'. The cutoff has to be 
removed by taking a limit outside the A integral. This limit is more difficult 
because it involves renormalisation. It will be discussed in Paper III. 

Theorem 5.1. I f  A is a bounded rectangle and L (~) is a family of lattices, ~ > O, then 

lim Z~ exists, is non zero and is unique. 
~--*0 

Define 

Z A - lim Z~, 
e-+O 

( F )  - Z -~ ~ d~D(A)~A(A) • ~ dv~Ae-V~F, 

where F~Lp(d#D x dVA) for 1 _--<p < co. 

Corollary 5.2. The measures ()~l converge as ~--,0 in the sense of convergence of 
generating functions. All moments converge. 

Proof Essentially identical to the proof of Corollary 4.4. 

Define 

( )A -- ti~m o ( )~. (5.5) 

Proof of Theorem 5.1. We begin by showing that if A, satisfies (5.3), then h ~ as 
defined by (5.1) converges as e ~ 0  in the (co, a') sense for c( <a.  By (5.3) A~(x) is in 
L~o. By expanding the exponential in A~(x). 

A ' ' lIAr, - Auza Ir < ess. SUPb,~lle- 1 ! ~(x )dx~ - Au(~) + 0(~), 

where the essential supremum is taken over all ~ ~ A within distance e/2 of a given 
bond b, and then over all bonds b in A. The first term tends to zero by (5.3). Next 
define 

B;(x) = A ; ( x ) -  An(x ) X A(X) . (5.6) 

The proof of (co, a') convergence is complete once we show that the seminorm 

(!  tB~gx' Be(v)[2\ 1/2 
dx f d .  ~2 ~ ~7~"tY .I ~ ,~  rx_yl2+~, / =ITBuI[~,~O (5.7) 

for #=0 ,  1. 
The following easy inequality, valid for 0 < 3~ =< 1, 

e a 1 - - y  ~ _.., IIB~,Lt=,<211B~,II itBvH2+a _2]A 1 y~l (5.8) 
2 

2+c( 
follows from H61der's inequality. Choose ~ so t h a t - - 2 = £ ' < a .  Since we 

7 
have just shown that I] B~ II tends to zero, it is enough to obtain a uniform bound on 
,tB~II~,,. This is easy to obtain by expanding the exponential in B e and applying 
(5.3). This completes the proof of (co, a') convergence. 
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Now we will establish that the limit, assuming it exists, is not zero. By its 
definition as the ratio of two positive integrals and the diamagnetic bound of 
Schrader and Seiler [7], also see Paper I, Sect. 3.3, 

0=<x(A)=<l. 

Furthermore by the convergence of h ~ just proven and Theorem 4.3 the limit of 
x~(A) exists and is non zero almost surely in A see (4.25). Denote the limit by ~(A). 
Jensen's inequality implies 

Z]  >= S dtJD(A)~A(A) [exp - S dv] V~]. 

The exponent is a real valued polynomial in 6C] which we know by convergence 
of h ~ and Theorem 3.5 is convergent as e'~0. Let P(3CA) denote the limit. Fatou's 
lemma implies 

Z A >= ~ d#D(A ) z(A) e- Pt~Ca) > O. 

End of proof that Z a 4= 0. 
By Theorems 4.1 and 4.3 and the (~ ,  ~') convergence just established, we now 

have obtained convergence of Z~(A) almost surely, as e tends to zero. The proof of 
Theorem 5.1 is completed by combining this with the Lebesgue dominated 
convergence theorem and the diamagnetic bound, Theorem 4.1, Paper I: 

IZ~(A)t < Z~(0). 

The right-hand side is bounded uniformly in e by Nelson's boundedness below 
proof [19]. 

V2. Continuity of Gaussian Processes 

Theorem 5.3 (A. M. Garsia). Let g)(x) be a Gaussian process on a bounded region A. 
A sufficient condition for ~b to satisfy (5.3), (E.U.H.C.) with modulus c~, is that at u = 0  

p(u)-  sup [E((~b(x) - ~b(y))Z)] 1/2 (5.9) 
Ix- yf =< IulfV'2 

be Hblder continuous with modulus fl > ~. 

For a proof of this theorem, see the beautiful article by Garsia [8]. The 
condition in Theorem 5.3 follows from the condition in his Theorem2 by 
integration by parts. To help the reader we indicate the basic idea in [8]. The 
assumption (5.9) on p(u) implies that the expectation 

E(exp [~c(_~(x)-~(Y)~2~l 
• [ \ Ix -y t  p / J /  

is bounded uniformly in x, y e A  for a suitable c > 0. This implies 

{ {~(x)-C'(y)~2).. 

with probability one. This condition is evidently tantamount to some form of 
continuity for ~. Garsia has proved a very clever real variable lemma (Lemma t of 
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[8]), which shows that this condition implies 4~(x) is E.U.H.C. with index e for all 

In the case at hand, we infer from Theorem 5.3 that A, is (E.U.H.C.) for p =0,  1 
if at u = 0 

pu(u) =- sup (D,,(x, x) + Du,(y, y ) -  2Duu(x , y))a/2 (5.10) 
I~- yl ~ tul/t/7 

is fl H51der continuous, fl > ~. If we specialise to the case of A u real and translation 
invariant then (5.10) is implied by: for some constant c, 

(D..O, 0)-  D~,u(O , x))1/2 < clxlp, fl > 0. (5.11) 

We can transform this into a simple condition on the Fourier transform of 
D.u(x-y), denoted/)uu(k), by noting that the supremum norm of 

Ixl- 2P(Duu(0) - D~,~,(x)) 

is less than the L~ norm of its Fourier transform. The Fourier transform of Ix[ -zt~ 
is, for fl < 1, ca[k [- 2 ~ 2p by homogeneity, therefore the L~ norm of the Fourier 
transform is less than a constant times 

1 t /5 
 dkldk  _k t _ . jk t _- z 

which is finite provided fl < 1/2 and 

dkD~,(k) [kl 2~ < ~ .  (5.12) 

Therefore we have proved. 

Corollary 5.4. A Gaussian process Au(x) with covariance Du~(x-y ) has sample 
functions which are (E.U.H.C.) with modulus ~ provided condition (5.12) holds for 
some fi > :¢ 

V.3. Osterwalder-Schrader Positivity 

We assume that A is symmetric with respect to reflection about some hyperplane 
7L 

Let A + , A  denote the open subsets of A on either side of zc. We now define 
Z~+, Z G, which intuitively are the algebras of gauge invariant functions of fields 
supported in A +, A_ respectively. SG+ is the algebra of functions measurable with 
respect to the ~ field generated by all functions of the form 

B(f) =- j curl A(x)f(x)dx, f e  C~(A +), 

:q~¢(f): ~ j :~(x):f(x)dx, f~  C~(A+), 
~ ~(x)eie~A¢(y)g(x,y)dxdy, geC~(A+ ×A+). 

In the last expression A is integrated along a contour inside A+Z_ is defined by 
replacing A + by A_. Reflection about ~ induces a map O 

0 :S+~S .  

in an obvious way (see Sect. 2.1 of Paper I). 
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In this section we wish to show that if the boson self interaction V is gauge 
invariant, i.e., 

v(4)-- v(14,1) 

and the covariance D is suitably chosen, then we have Osterwalder-Schrader 
positivity in one direction, i.e., 

(FO(F)}  A > 0 (O.S) 

for all F in Llc~Z +. 
We choose covariances D of the following type 

5,v(k) = a,~ - k,k~F(k 2) 1 
k2-t-m 2 g(kl) 2-~ (5.13) 

where k 2 =k,k~, k=(k o, kl), 

c 
[F(k2)l _< k ~ 

and g is positive, continuous with 

Ig(k~)l Ik~lBdkx < oe (5.14) 

for some fl >0. Note that Corollary 5.4 implies that the Gaussian process with 
covariance D has (E.U.H.C.) sample functions. 

Theorem 5.5. The expectation ( )A is Osterwalder-Schrader positive for rc parallel to 
the 1-direction if V is gauge invariant and D is of the form (5.13). 

Proof Approximate F in (O.S) by a polynomial in the gauge invariant fields 

B(f), :c~qS(f):, ~ ~e'elA¢g. 

By Corollary 4.4 the expectation ( ) i  of such a polynomial converges as e'~ 0. 
Therefore it is enough to prove (O.S) for ()A replaced by ( ) i .  We now put the A 
field on a lattice also: consider the lattice Gaussian process with covariance D,~' v 
given by the kernel of the operator 

8'* 8' 8/* g '  ~ , , -  #~ ~, F(~ ~ ) 
m a + 08'*~ ~' 

_ 8'* ~' =~/N where where 0 ~ is the finite difference gradient and ~'*~8,_ ~, 0~. Choose e' 
N is an integer and arrange the a' lattice so that it is a "refinement" of the e lattice. 
By diagonalising the covariances D ~' using the Fourier transform it is easy to show 
that as e"~ 0 the Gaussian measures converge, i.e., 

d#D~,--~d#D (5.1.5) 

in the sense of convergence of moments and characteristic functions. We claim that 
this implies that the expectations ()]~ '  associated with this double lattice 
approximation converge to ( ) i  as e' "~0 in the sense of convergence of moments. 
This is so because the partition function Z~A(A) for bosons in an external gauge 
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field can be expanded in a convergent Fourier series in exponentials of the finite 
number of Gaussian variables 

{ ! A!x~  " be~(A)} , 

where b is a bond in the e lattice and the contour integral along b is really a 
"contour sum" on the bonds of the e' lattice. Approximate Z~(A) by truncating the 
Fourier series and use (5.15). Thus it suffices to prove (O.S) for ( ) a  replaced by 

)A • This is a lattice theory and we may prove (O.S) for it in complete analogy 
with Theorem 5.3 and Corollary 5.4 in Paper I. The presence of two lattices, one 
for the A field and another for 4' causes no additional problems. 

VI. Feynman Rules, Counterterms, and the Change of A Covariance Formula 

VI. 1 
This section is a technical preparation for the ultraviolet limit, i.e., the removal of 
the condition (5.12) on the A covariance. This wilt be done by taking a limit outside 
the integrals over A and ¢. To control this limit we will need a formula which we 
call the change of covariance formula in honour of (22). This identity expresses the 
difference between two partition functions with different A covariances in a form 
which is amenable to estimates. 

The ultraviolet limit will only exist (conventional wisdom based on per- 
turbation theory) and be non trivial if one alters the interaction V by adding in 
some terms known as counterterms which will be infinite in the limit. Since one of 
the most convenient ways of discussing the rather complex formulas which arise is 
the Feynman graph notation we will also spend some time explaining this. We 
have introduced some graphical notations which are not standard. 

In this section we continue to assume that lattice gauge fields are abelian and 
derived from continuum gauge fields as in (5.1). We also assume that the photon 
propagators are translation invariant and satisfy (5.12). The ¢ field is complex. 

We begin with some notation including the Feynman graph formalism. We 
present formulas first and explanations afterwards. 

F(x) = P(p) e  'Xdp, 

(6. 1 ) 
~'(p) = ~ ~ F(x) e- ,p.x dx, 

where p, x are in ]R 2. The Fourier transibrm of ~ is 

ie~(P) ~ a- 1 (ei"--- 1). (6.2) 

The lattice photon propagator is defined in terms of the continuum propagator by 

d e D;~(x- y) =_ S #D(A)~;(x)d;(Y), (6.3) 

where x, yeL  (~) and 

M~(x) =- 1 ~ A,(x) dx, if b,(x) C A,=0  otherwise (6.4) 
F, bu(x ) 

with b,(x) denoting the bond at x pointing in the direction %. 
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The quantities sY~ are Gaussian random variables, but 
Formally 

Au(x) = ~e~,~l n~ ( iee~¢~) . 

Feynman Rules (Momentum Space) 

g*  A~, A, are 

(la) , 2C(p), 2C~(p). 
P 

(lb) ---+-, (]/-2)~ 1/Z(p), ( l /2)~:"(p).  

(2a) k Ouv(k)'  % D,~(k), b(k). 

(2b) ~ (]fD)u~(k), (]~D~)u~(k). 

e 2 
(3) k,# k:v -- ~-~2A(P,-Pz+kl-k2)buv.  

e: 
Pl P2 2~ 2 3 ( p l - p 2 q - k l - k 2 ) 5 u v "  

(4) kl e 
( i / ~ )  )(A(PI -- P2 + kl)(Pl. + P2~) 

e ~, 
P, P2 7 - - ~ A ( p l - - P 2 + k a ) ( O a u + O z u ) .  

(]/2TC) 

(s) 

(6) 

A A 

Pl P2 

A 

Pl P2 

1 2 2 * -- ~e ((ZAAu) ) (Pl - -P2)-  

1 2 ~ e 2  ~ " ' - ~ e  ((Z~dj))(pl-p2)~(e-'~"'+e'~P~)+O(~) 

le(AuZA)~(P1 -- P2) (Pig + P2.) 

2e(N~)~A) (Pl -- P2) (01u + 02.) + 0(~) 

(7) ~* f~2-~f~(p). 

( 8 )  - -  ~,,"" = 
Pl P2 

~mg2A(Pl--P2), 2 ~ g  
(3roD) Za(Pl - -P2)-  

189 

not. 

(6.s) 

= 

A A 

Pl P2 Px P2 

A A 
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Feynman Rules (Configuration space) 

(la) 2C(x - y), 2C~(x -  y). 

( l b )  (2C) j/2 (x - y), (2C~) 1/2 ( x -  y). 

(2a) D , ~ ( x  - y), D ~ . ( x  - y ) .  

(2b) (]//D).~(x- y), ( ] / -~ ) .~ ( x -  y). 

(5) --1/2e2A2(X)ZA(X), 2 ~* -- 1/2e (Au Au) (x). 

1/2w(Au (x) 0. ~* (6) - 1/2ie(AuXA~ + ~uZAA~) (x), -- ' ~* ~ -- ~.91(x)). 

(7) f ( x ) .  

(8) 6m z (x). 

Associated with each graphical symbol is a continuum kernel, written first, and a 
lattice kernel written second. By the Fourier transform, the kernels listed under the 
heading configuration space are unitarily equivalent (as operators) to the kernels 
listed opposite the same numbers under momentum space. The various factors of 
XA occur because we are using free boundary conditions. Similar formulas hold for 
periodic boundary conditions. Note that a factor 2A is included in the definition of 
A (~) associated with (5.1). 

Since we are now specialising to the case of ~b complex 

1 1 
d ( p ) -  p 2 + m  . 

To each graph that can be constructed by joining the vertices (3)-(7) by lines 
(1) and (2) is associated a polynomial in (b and A obtained by integrating over all 
the p's and k's. This is a standard notation in field theory so we will not explain it 
in detail but simply give an example which has been cropping up continuously in 
this paper. Let AA~ = zAA~, 

A ~ A ~- (ie) 2 j dxdY(AAuO ~ + 0.AAu) (x) 

• C ( x -  y) (AAuO~ + ~ A  A) (y) C ( y -  x) ,  

Pl 

m ~ n ~ e 2 ~ dpldP2A~tu(pl - P2) (Plu + P2~,) 

p2 "C(p2)Afll~(P2 -- Pl)(P2~ + Pi.) C(P1) • 

(6.6) 

Both these integrals happen to diverge. If they were interpreted according to the 
lattice kernels they would not diverge and they would be equal by the Plancherel 
identity• 
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VI.2. Counterterms, Renormalised Partition Functions, Measures 

Let 
k k 

Pl =0 P2=O Pl =0 P2 Pz =0 

ED =--lime~0 Ee -=lime-~0 ( - @  - @ )(e) (6.7) 

(=  - 2 ~ dkb ,v(k)H~,(k)), 

where// ,v is the limit of the quantity H~, defined in Eq. (A.1), Appendix A. ~m 2 is 
a continuum quantity. We will have occasion to use the corresponding lattice 
quantity (gm~) 2. The existence of the limit in the definition of E D is established in 
Appendix A. It requires that D,v satisfy (5.12). Both 6rng and E D are infinite if (5.12) 
does not hold, i.e., these counterterms are inserted to cancel divergences in the 
ultraviolet limit. 

We now define the counterterms 

U A,D = 1/2~m~ ~ dx :~bZ(x): + ED, (6.8) 
A 

where the normal ordering is with respect to C. Define U~D by substituting the 
corresponding lattice definitions. 

The renormalised partition functions are, by definition, 

Z~(A) =- x~(A) S dv~e- w -  v5 

Z 5 =- ~ d#D(A)ZS(A) 
(6.9) 

cf. (4.3) and (5.2). We are dropping the A subscripts everywhere from this section 
because A will be fixed. Instead we make D dependences explicit because the 
dependence on D will be of interest. 

Since for a fixed ultraviolet cutoff on the gauge field the renormalisation 
constants (~Sm~) 2, E~ converge as e tends to zero, our previous convergence proof 
for Theorem 4.1 is easily adapted to prove that the limit as ~ tends to zero of Z~(A) 
exists almost everywhere. We denote the continuum limits ZD(A ) and Z D. We can 
take the limit past the d#D(A ) integral because Lebesgue dominated convergence 
can still be justified by the diamagnetic bound, cf. the proof of Theorem 5.1. 

We will use the subscript D to indicate that Vis replaced by V+ U~ in previous 
definitions. For example the renormalised Bose matter action is 

A~ ~ -= - 1/2(0, [m 2 - A•] ~b) + V ~ + U; 

cf. (5.4). We apologise for the confusing use of A for both the Yang-Mills field and 
the action. 
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VI.3. Change of A-Covariance Formula 

Let Do, D 1 be two covariances for the gauge field. The associated independent 
Gaussian processes are denoted A o, A 1. For  t~ [0, t ] ,  set 

At=- ] / ~ - t ) A °  + ] / tA l '  (6.11) 

D t =- (1 - t)D o + tD 1 . 

Note that A t is a Gaussian process with covariance D t. Let P be a polynomial in 
~b, q~ =- ~) of the form 

(=) ( ) 
P =- ~ dxx...dxq 9(xl , . . ,  x~) ~ (x a)... ~ (xq), (6.12) 

where g~ Coo. We are interested in studying 

Za ( P)I - Zo( P)o" (6.13) 

The subscripts 1, 0 and later t replace the subscripts D~, D o, D t in order to simplify 
our formulas. 

We study (6.13) by using the fundamental theorem of calculus to write it as the 
integral of a t derivative. The t derivative and the d#(A) integrals can be 
interchanged because the second derivative of the integrand may be controlled by 
the methods we are about to apply to the first derivative. Thus (6.13) becomes 

1 

!dt  ~ d#o(Ao)d#1(Ao d ( ~  dcot(~)P ) . (6.14) 

The measure de0 t is given by 

doo,(~) =- !ira ° x~(At)dv~A e-  w -  vf 

= lira D4e-AV~/~(1I). (6.15) 
eN0 

The limit is as usual in the sense of characteristic functions, or convergence of 
moments. Existence follows from the results of Sect. IV. We now show that 

d . f  D~e = .[ Dd?e A~"(K~P), (6. 6) AM~p 1 

where K~ is a linear operator defined on the space of polynomials in ~b. It will be 
defined below. By dividing through by ~(11) and taking the limit ~ ~ 0 we will obtain 
an identity for the t derivative in (6.14). By doing the t derivative: 

~ D ~ e  ~D¢(--A~) '  e-AM~P. (6.17) AU~p = 

We use primes here and hereafter to denote t derivatives. The factor ~b(x) in 
(-AM~) ' is integrated by parts. This simply amounts to replacing it in (6.17) by 

2 ~ dyC~(x - y) (5/5@y)- (5/5~Gt)), (6.18) 

where the integral is really ~ e 2 and 
y 

G , -  A M~- 1/2(~b, [m 2 - A ~r] q~). (6.19) 
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These formulas are easy to derive since we are working on a finite lattice. The 
easiest way to manipulate integration by parts is via the graphical representation 

8V ¢ (x) ~ ~ (8/8~ - ~ - )  + 8x / ¢ 

) 

A, (6.20) 

/ k 
At At 

The conclusion obtained from integration by parts applied to (6.17) is of the 
form (6,16) with K~ equal to 

~ '  8V 

At At 

At At At At 

At At At At At At 

J 
_ 8 V )  

/ 
At 

1 

At At At At 

(6.21) 

We now exhibit a cancellation between the third term and the last in (6.21), by 
writing 

At At At 
so that K ~ can be put in the form 

K e = ~ ~ '  

f ~ 
At At 

At At At At 

+ 0 ¢ + f: AquIltwAtv : dk 

At At At At 

¢: + A t @ At \ 
At 

/ 

8V 
(5 /8~  - - ~ -  ) + ¢ / 

At 

6V (~/~ --~-) 

! 

A t At At At 

(6.22) 
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The E~" in (6.21) cancelled when the last term in (6.22) was normal ordered. H ~ was 
defined in (6.7). We define K as in (6.22) but with diagrams interpreted by 
continuum Feynman rules and H ~ replaced by II. 

The true merits of (6.22) will be more readily appreciated in the context of the 
stability expansion in Paper III. The main point is that the diagrams in K remain 
finite in the ultraviolet limit provided A is in a gauge which is approximately 
transverse. 

Having identified the operator K~ appearing in (6.16), we divide both sides by 
~(/1) and take the limit e goes to zero. The result, after some work which is 
discussed below, will be 

d 
~ ~ dco~(O)P = ~ dco,(O)(KtP). (6.23) 

The Limit ~'~0. The main difficulty is to show that the right hand side of (6.16) 
converges as e N0. There is no difficulty in interchanging the limit and the t 
derivative because the left hand side can easily be shown to be bounded uniformly 
in e by the diamagnetic bound of Paper I and the Cauchy-Schwarz inequality. Our 
previous results, Theorems4.1 and 4.3 imply that the quantity under the t 
derivative on the left hand side converges as e ~ 0. 

We use the notation introduced in the proof of Theorem 4.1. We will only 
sketch a proof that the right hand side of (6.16) converges because the method is 
similar to techniques we have already explained in proving Theorems 4.1 and 4.3. 
Recall that we are still working with a cutoff gauge field, A, that is (E.U.H.C.) with 
modulus ~ < 1/2. 

By an argument as in the proof of Theorem 4.1, it is enough to show that 

dwl(K~P) ( ~ ) -  (K~' P)(~b~')12 ~ 0  (6.24) 

pointwise in t as e, e'-~0. We first show this in the case that Kt, K~ are replaced by 
Kt, K r which are obtained from Kt, K t by replacing all factors )(AAt occuring in 
their definition except those in the last term in (6.22) by a C ~° gauge field A t 
compactly supported in A. We then gain the freedom to move all the derivatives 
occuring on external lines in 

i, 

type vertices past the ~]t by Leibniz rule onto the internal lines. It is now not 
difficult to prove (6.24) in this case using the methods of the proof of Theorems 4.3 
and 3.3. It is now necessary to show that for any 6 >0  we can approximate )~A A by 
~] so that 

S dw I(f; ~-  K~') P(~,~)I2 = ~ d~A~ I(K ~-  K~')P[ ~ _-<,~ 

uniformly in e. This follows easily from the fact that Jl, can be chosen so that 
A;C ~1/2 and its adjoint approximate A,C 1/2 and its adjoint arbitrarity closely in 
J4  uniformly in e. This concludes our discussion of e "~ 0. 
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We now combine (6.23) and (6.14) to obtain 

Theorem 6.1. I f  P is of  the form (6.12), D O and D 1 are two covariances for the 9auge 
field 

1 

ZD,(P)D ' -- ZDo(P)D ° = ~ dt ~ dPDo(Ao)d#D~(A1) 
o 

• ~ &ot(dp) (K ,P) ,  

K, was defined below (6.22). 

Appendix A 

In this appendix we study the vacuum polarisation 

1/2 tr Cq41~ + 1/4 tr(C~W~) 2 (A.t) 

which was encountered in the proof of Theorem 4.2 and also in Sect. 6. We will 
specialise to the case in which ~b is a complex scalar field and A is real. The 
calculations given below are not significantly changed if one combs them through 
with A nonabelian. 

We begin by rewriting (A.1) in the form 

d2kf]  ~ (k)H;~(k)~:(k) + O(e3e log 2 z), 

where by a calculation using (2.12) 

_1 (m 2 + (m2 

• (e-'~t'- _ ei~p+)~,(ie)-1 (e-i~p+ _ ei,p-), (ie)- 1 dZp 

4 \ 2r~ ] ., 

A subscript # (or v) on a bracket indicates that all p's, O's inside are p~'s, O.'s. 

O~ = O;(P) =- (ie)- 1 (e,~p_ 1).. 

Subscripts + , -  indicate that p is to be replaced by p+,p_ in the appropriate 
definitions. 

p+ =p~+½ku,  p _ ~ = p ~ - ½ k , .  

02 stands for 0,~,. All integrals are over I -  ~, ~J 2 . 

By using the Feynman rules in Sect. 6 it may be verified that 

P+ p 

lI~u(k) = rr { k ~ ~ ~ k  + ~ }  (1.2) 

P- k 

There are no D propagators on the external lines. This observation will become 
relevant when we prove that E~ converges as promised in Sect. 6. 
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Transversality 

We first show tha t / /~  is transverse, which by definition means 

Fl;~(k) 0~(k) = 0. (1.3) 

We set e = t and omit e superscripts th roughout  the proof  of  transversatity. 
Transversali ty can be shown directly by shifting the variable of integration in the 
left hand  side of (A.3) as is done in physics text books. See [23] to get the general 
idea. However  it is really a consequence of  gauge invariance. Let  

h~=e i¢~e ; s~ = su¢o +c~0h. 

By gauge invariance, see for example Paper  I, Theorem 2.6, ~A(h~), defined in 
Sect. 4, is independent  of e. Therefore 

d 2 d 2 _ 
de 2 log~A(h~)I¢ = o = 2 ~ -  I d 2 k ~ u I I ~ J ~  

is independent  of e. Differentiation with respect to ~ and setting c~=0 yields 
(A.3). [ ]  

S i n c e / / i s  transverse it must  satisfy* 

I I ~  = flx~[bu~ - 0~,o~/9 2] (A.4) 

because the quanti ty in brackets is the projection onto the transverse component  
of a gauge field as can be checked by verifying that  it vanishes on longtitudinal 
functions o~f(k). The projection is rank  one. (A.4) follows by taking traces. 

g The (Pointwise) Limit as ~ ~ 0 of  Hu~ 

We will now show that  the limit e ~ 0 o f /7~ ,  exists pointwise in k and give an 
expression for it. We have 

Z - p ~ - 2 \ 2 z c  ] ~ - 2 [ ( m 2 + ~ o 2 ) - l ( m 2 + e 2 - ) - i  [e-i~p ei~,2d 2 
# 

- 2 \2~] ~(m2 +02) -  1 2 (e~" + e-'~v)"' (1.5) 
¢t 

Substitute in (A.5) using the identity 

i e  - ip - -  e i p  t142 
(~2 + m 2) (02 + m 2) = 2([Q2+ + m23-1 + [,qz + m z ] -1) 

+ (le-~v_ e~V Iz _ 2}e~V_ _ i 1~ -- 2 le ~v+ -- 11~ -- 4m 2) 

• ( m ~ + e ~ + )  X(m~+Q~_)-i 

and note that the numera tor  in the second term may be written in the form: 
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All tgs are to be summed over. We have set e = 1 to simplify the formulas. The 
result after shifting integration variables p+--+p and p_--+p is 

2~2rt] f(m2+02)-1(2 - - e  ),d p 

± {e~21 (m 2 + 02)- 1(m2 + ~2)-~(_  16e sin4(epJ2)d2p) 2 

2 \2r~) 

[ g k u - 1 ) - 4 m 2 } d 2 p .  "~- * ( e ~(m~:\2=/+ ~+)- ~ (m~ +02_)-1 {8 cos~p.- ~ -2 i c o s T  

(A.6) 

As usual all #'s are to be summed over. The range of integration is ....... e--, for 

each component of p. 
We prove that the limit of the first two integrals exists and evaluate it by 

scaling ep~p. The result is 

± ( e ~  2 
2~2rc J ~(02)-~(2-e¢P-eiP)d2p 

~= (02) - 2 sin4 2 d2P--P~ - ao, (A.7) - 1 6 1 / 2  

where o)(,, ~o.=Q~ u-)- 
Since 

(m 2 + 02)- 1 (m 2 + p2) (A. 8) 

f 2 is bounded both above and below uniformly in p and e for pe -~-, , we may 

take the limit e~ 0 under the integral sign in the final integral in (A.6) by the 
dominated convergence theorem. The result is 

_1 {_e...~ 2 (m2+p 2) l(m2+p2_)-1(-k2-4mZ)dZp. (A.9) 
z\2rc} -oo 

Let us call this integral J(k), then we have shown that pointwise in k 

Iff. ( k ) ~  ( -  d~ + d(k))(buy - kuk,/k 2) (A.10) 

Furthermore we can show that J0 =J(0) by the following argument: 1-Puv(k ) is 
analytic in k near k=0,  the transverse projection is not, therefore /7~v(0)=0. 
Pointwise convergence then implies that Jo =J(0). 

Remark. J(O) is independent of tn by a scaling argument. Thus setting m = 1 gives 

[ e ~2 e d2p e 2 
J (0 )= -z l~ -~ )  J ( ~ ) 2  = 2u'  
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Pauli-Villars regularisation of the continuum expressions gives the same result as 
(A.10). 

By combining the upper and lower bounds on (A.8) with the arguments given 
above it is not difficult to prove first that for all c~>0 

[rtL(k)[ _-< G(1 + k2) ~ 

and then obtain: 

Lemma A.1. For all ~ > 0  

(1 + kZ)- ~ n~(k)  

converges in Loo(d2k) as aN O. 

Proof of Statement 3) in the Proof of Theorem 4.3. aft(k) is the Fourier transform 
of a function on a lattice [see below Eq. (2,12)]. Let 

• k 1 . k 2 slne-~- sine ~ -  
H ~ ( k )  = 

gk~ k 2 
g T  

By an easy computation H%~-ae/~  is the Fourier transform of d~(x) considered 
as a piecewise constant function on IR 2 via the Q identification. Therefore, omitting 
g'S 

- t r K +  1 /2 t rK2= 5 ad~,FI~H-2~ d2k. (A.12) 
- -  r ~ / g  

H is bounded both above and below on the range of integration. As e'~0 it 
converges uniformly on compact subsets of 1I( 2. Hence by Lemma A.1 

(1 + kz)-~H~,H - 2 )~[_~, ~] X 2 

converges in L~o(IR z, d2k) as e ~ 0 for all c~ > 0. Therefore it is sufficient to show that 
the L2(IR z, dZk) norm 

tlk =/2rill 22 = 5,~'(x)(k~)*(x- y) sC(y)d2xd2y (A. 13) 

converges as e N 0. The right hand side of this equality comes from the Plancherel 

identity, k = ~ + k22 . 

Lemma A.2. Let f be in Schwartz space. The Fourier transform of' Uf(k) is a 
constant, C~, times 

d2y(f(y)- fix)) I x -  Yl- 2 - - a  

For a detailed proof see [24]. It is not difficult and proceeds by exploiting the 
homogeneity of k. An easy argument shows that we can also use this form i f f  is ~/. 
Thus the right hand side of (A.13) may be written as 

~ lag(x) - ag(y)[ 2 Ix - y[- 2 -=d2xd2y. (A. 14) 
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Since sg vanishes outside A, a bounded rectangle, (0% ct) convergence of d~  implies 
convergence of (A.14). This in turn is implied by (oo, e) convergence of A~ by 
expanding the exponent and making some simple estimates relying on the fact that 
sg~ and A~ are piecewise constant. A~ is (oo, e) convergent by hypothesis. [] 

Proof" of Convergence of Counterterms (VI.2). The propagator defined in (6.3), 
E D,~(x) is a function on the lattice L (è ) and 

Du~(k)- ~ z ~ -ik~ 1 Dm,(x)e 
2n x 

As above/} =/}H is the Fourier transform of D considered as a piecewise constant 
function on IR 2 via the (2 identification. Since 

n/e. 

Hu~D .~d k 
-- 1zig 

we may argue as above that convergence of E~ is implied by convergence of 

k~'D,~d k = c~ ~ (D~..(x) - D~.,(O))Ixl- u -~dex 

for some ~ > 0. The right hand side is derived by noting that the integral on the left 
is equal to the Fourier transform of the intcgrand evaluated at zero and using 
Lemma A.2. D~,~,(x) is now to be understood as a piecewise constant function on 
IR 2. Convergence of the right hand side may be easily shown using the H61der 
continuity (5.11) of D~ and arguments analogous to those in the proof of 
Theorem 5.1. This concludes the proof of convergence of E~. 

A very similar argument which we omit proves the convergence of 3m~ 2. 

Appendix B 

Convergence of the Lattice Approximation for Periodic 
and (Half-)Dirichlet Boundary Conditions 

We want to sketch how the proofs for convergence of the lattice approximation 
given in this paper can be adapted to periodic, P and Dirichlet, D (or Half- 
Dirichlet, HD) boundary conditions, for a rectangle A. In the case of D or HD 
boundary conditions, the orientation of A with respect to the lattice may be 
arbitrary. This will be needed in Paper III for proving Euclidean invariance. Half- 
Dirichlet means here that we use Wick ordering with respect to the free covariance 
in the selfinteraction of the matter field; we use Dirichlet boundary conditions for 
the covariance of the matter field and free boundary conditions for the gauge field. 

In the main body of this paper we reduced existence of the continuum limit for 
X boundary conditions to the following three convergence statements: 

A) ~ A C ~ - - > X A C x  in J~, tbr ~>  1. 
B) ~t(C~x)l/2-.->~C1x/2, in the strong operator topology, and likewise for the 

adjoints. 
C) ~ è ,x è x è (A~, H~ A~)~(A~, II~A~), whenever A~ converges to A n in the (o% ~) sense 
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Although we only considered free boundary conditions, X = F, our arguments 
show that A)-C) suffice for more general boundary conditions, in particular 
X = P , D .  

If A={(x,y)E]R 2 Ixl<[~, ly[<12 b~l} with a,b multiples of e, the periodic 

covariance is 

C(p~)(x, y) = ~ C(~)(x+ma, y+nb).  (B.1) 
~ m ~  --03 

This representation shows that statements A)-C) remain true if C ~, C are replaced 
by C~, Cp, since the series in (B.1) converges absolutely and uniformly, because of 
the exponential decay of C ~, C. 

So we only have to prove A)-C) for Dirichlet boundary conditions, X = D. We 
will make use of the work of Guerra et al. [6]. 

Let p~ be the projection, orthogonal with respect to the scalar product (., C ~ -), 
onto functions on L (~) supported in L(~)(~A); similarly p, for the continuum. 
Define 

p~ = (C,)~/~p,(C ~) - 1/2, (B.2) 

p= C1/2pC- 1/2 (B.3) 

Using the imbedding Q~*:f2(L(~))oL2(]R2) (see Sect. II), we obtain the orthogonal 
projections in L2(IR 2) 

P~-Q"*P~Q~. (B.4) 

The crucial fact is 

Lemma B.1. s- l im/5,=P.  
e ~ 0  

Remark. This is very similar to Lemma (VIII.9) in [26] and Lemma IV.11 in [6]. It 
is not identical, however, because these references use a different imbedding of 
t~2 (L (~)) into L2(IR2). This necessitates some modification in the proof. 

Proof I) We claim that for 

gE RanP c~ Ran C 1/2 , 

ll~g-gll-~0. 
Proof By Bessel's inequality we have inf 11/3~h-gll = 11/5~g-g]l. Thus 

II/~g-gll < Ii~Q~*(c~)i/2O~C-1/2g_g][ ; 

~Q~,(C~)I /ZQ~C - ~/zg 

= (Q~*(C~)l/Zp~) (Q~C- 1/2g) 

= Q,*(C~)I/2Q~C- 1/2g~g 

by statement A), for X = F  (free); we used the fact that Q~C-1/2g is supported 
outside A. 
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II) If 9~ Ran P we still have II/3~9- g![ ~ 0  because RanPc~ Ran C1/2 is dense in 
RanP (i.e., A is "regular" in the terminology of [6]). 

III) Let geL2(IRZ), f a weak limit point of the bounded set {/3910 <e < 1}. We 
claim: 

f =Pg.  (B.5) 

a) Let C1/2h~C~(A)" 

(h, P ,~ - a(Cq 1/2r)~-/)~C1/2"~h ~ - ,-,L~--,,, , ~ ~ , ,p~(C) ~/2Q~O)L2 (B.6) 

(the second term is zero because of support properties). (B.6) converges to 0, 
(see note added in proof), which shows that f E  Ran P. 

b) Let 

h e L 2(IR2) : (h,f) = (Ph, f )  = liln (Ph, P~,g) 

= lirn (ff'~Ph, g) = (Ph, g) 

by Part II) of the proof; this establishes (B.5). 
IV) (B.5) shows that P,9 converges weakly to Pg; because/3 are projections 

this implies strong convergence. (End of proof of Lemma B.1.) 
As discussed in [6], we can define the Dirichlet covariances by 

C 5 =- C~(1 - p~) = (C~) ~/z (t - P~)(C~) t/z , (B.7) 

C D = C(1 - p) = C 1/2 (1 - P) C 1/2 . (B.8) 

Statements A) and B) with C ~, C replaced by CD, CD are now consequences of (B.7) 
and (B.8), using Lemmas 3.6, 4.5 and B.1 (see note added in proof). 

Statement C) is a little more subtle. 
Obviously it suffices to consider the difference 

e e ,  D 2 e 1 e e* . . . .  O~)(CD+C)}]A~)+e 2 
e 2 8 e . (A,) (x)(C D -  C )(x, x)dx (B.9) 

a 

(We assume A to be transverse; non-transverse components drop out.) 
Because of the HSlder continuity of A, we can bound IA~- Nit uniformly in A, 

and using the Q-imbedding also [ ,J~-A,] ;  therefore we only have to show 
L 1-convergence of (Qf (C~-  C~))(0ff (C~ + C~)), and convergence of the second term 
in (B.9). 

Here Off is either ~ or ~*. What we need is contained in 

Lemma B.2. 

1) 8~*(C ~-  C~D) ~:o ~ f ( c -  CD) in L2(A x A). 

2) (8~ ~ (C ~ - C~)) (~* C~) ~-~ o (Of ( C -  Co)) (8: C) in Lt(A x A). 

3) (C~-CS)(x ,x )  ~-~o (C_Co) (x , x )  in LP(A), l < p <  oo. 

Proof The proof proceeds by the dominated convergence theorem. For the 
uniform upper bound we need 
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Proposition B.3. For x, y~A 
I I 

1) IC:(x-y)l <eonst  l o g ~ .  

1 
2) 10~, xC~(x - Y)I < const Ix - YI" 

3) [(C ~ - C~) (x, Y)I _ -< const log dist (x, ~A)4(a ++distb) (y' 3A) 

const 
4) I~..~(C ~-  C~) (x, Y)t < dist(x, ~A) + dist (y, ~A)" 

Proof 1) follows from 2) by integration. 
2) Follows by some work with the explicit Fourier representation of C~: 

l(ei~k,_ 1)e ikx 
c~C~(x) = S 2e - 2(2- cos zk 1 - cos ekE) + m a d2k" 

e k l  < r e  
~ k 2  ~ 

We cut the integration into a part where [k I < d  and a rest. The "inner" part is 

~- t(eik._ 1)e ikx~-I 

2 ( 2 -  cosk I -cosk2)d-~2m 2d2k 

which is bounded by 

e- llsin(k./2)l d2k < const 
2 - c o s k  I - c o s k  2 - • Ipl =< A~ 

const 
The outer part is bounded by - ~ -  as can be seen by doing an integration by parts 

with respect to the variable Ix[. 
3) Can be seen as follows: 

( - ~ + m 2) ( c  ~ - c ~ )  (x, y) = ~;(x) ,  (xE A) (B.10) 

where a;(x) has support on aA * which is the set of points in L (° which are 
endpoints of a lattice bond that intersects QA or are in aA themselves. It is not hard 
to see that 

~r~,(x) > 0 ,  (B.11) 

2 e:2 ~r~(x) --< 1, (B. 12) 
x 

(B.11) tbllows from the fact that C~v >0  and C~ = 0 if one of its arguments is outside 
A; (B.12) follows by Gauss's theorem for the lattice: 

x x x 

From (B.10) it can be seen that 

( c '  - % )  (x, y) = y~ ~ c~(x - x') ~,(~'). (B. 13) 
x '  
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Using 2) and (BAD, (B.12), it follows that 

const 
[~, x(C - CD) (x, y)] ~ dist(x, 0A)" 

Since the left side of this equation is symmetric in x and y, (4) follows. 3) is 
similar. [] 

Returning to the proof of Lemma B.2 we notice that 

O~(C ~-  C;) = U(C~) 1/2 P (C")t/2 l l \  ~ • 

L 2 convergence of this then follows from statement B), Lemma 3.6 and J2  
convergence of P~(Ca) 1/2 which we now prove. By the Griimm-Simon theorem (see 
Sect. II), we only need to show convergence of the ~ff2 n o r m s  of PE(Ca) I/2, which 
means we have to show that 

Tr(C~) a/2 P,(C~) t/2 = ~ e2(C " -  C;)(x, x) (B.14) 
x ~ A  

converges. Since Proposition B.3, 3) gives an L p upper bound, we are reduced to 
showing pointwise convergence of (C ~-  C~0) (x, x) to establish Lemma B.2, 1). 

From Proposition B.3 we also get the following bound on the expression 
appearing in Lemma B.2, 2): 

1 1 
]0~(C ~-  C~)U~C ~1 < const x dist (x, aA)+ dist (y, ~A) I x -  y[' (B. 15) 

This bound is in L~(A x A) as can be seen by cutting up the region of integration 
into a suitable sequence of bonds parallel to the boundary. 

So all that remains to be shown to complete the proof of Lemma B.2 is 

Proposition B.4. (C ~-  C~) (x, y) and O~(C ~-  C~) (x, y) converge pointwise in A x A. 

Proof Since C ~-  C~ converges in L 2, 

1 L,~(x, y)- ~ y z~(x- x')z~(y- y') (c ~- c~) (x', y')dx'dy' 

converges pointwise as e~0,  where Za is the characteristic function of a ball of 
radius 6. On the other hand we can for each (x ,y )sA x A choose 6 so small that 
tF,,~(x, y ) - ( C  ~-  C~)(x, y)[ < t/(uniformly in ~) because we have a uniform bound 
on the "derivatives" of C ~-  C~. By a 2t/ argument pointwise convergence of 
C ~-  C~ follows. 

For 0~(C ~-  C~) we use the same trick: We just established LZ-convergence; a 
uniform (in e) bound on the second "derivatives" in a neighborhood of any point in 
the interior of A can easily be obtained from (B.13) and we just have to repeat the 
argument given before. 

This completes the proof of Lemma B.2 and this appendix. 
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Note Added in Proof 

To obtain B) note that  3~C~ I/2 is bounded uniformly in ~ in operator no rm so that it suffices to prove 
that  

converges strongly on the dense set Cg(A), 
To obtain (B.6) we prove that 

Q~*C ~ 1/2Q~C1/2 =(Q~*Q~) (C ~- I/2C1/2 ) 

(see Sect. II) converges strongly because both factors on the left hand  side do. 


