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Abstract. In order to provide a mathematical framework for discussing the 
statistical correlations between the outcomes, when an arbitrary sequence of 
observables are measured, it is necessary to generalize the conventional von 
Neumann-Ltiders collapse postulate to observables with a continuous 
spectrum. It is shown that the standard prescription in conventional quantum 
theory for the joint probabilities of compatible observables is sufficient to 
characterize, more or less completely, the appropriate "generalized collapse 
postulate" which associates with each observable a unique "finitely additive 
expectation valued measure". An interesting feature of the collapse associated 
with observables with continuous spectra, which again follows from the basic 
principles of conventional quantum theory, is that it must be formulated in 
terms of the so-called non-normal conditional expectations, which implies 
that the joint probabilities associated with successive observations of such 
observables are not in general cr-additive. The implications of this non-a- 
additivity on the determination of expectation values, correlation functions 
etc., are also investigated. It is demonstrated that the basic prescriptions 
introduced in this paper constitute a natural completion of the framework of 
conventional quantum theory for discussing the statistics of an arbitrary 
sequence of observations. 

I. Introduction 

One of the major problems of the quantum theory of measurement, which has 
eluded a satisfactory solution so far, has been that of extending the collapse 
postulate to observables with a continuous spectrum. It is well known that the 
collapse postulate plays a very crucial role in quantum theory in any discussion of 
the statistics of the outcomes of a sequence of observations performed on a system. 
However, the collapse postulate as introduced by von Neumann [1] and later 
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modified by Liiders [2-7] is appropriate only for observables with a purely 
discrete spectrum. The main difficulty with observables with continuous spectra 
appears to be the fact that there does not exist any (atomic) spectral projector 
corresponding to a single spectral value in the continuum. It is in fact this feature 
which forces us to modify or generalize the yon Neumann-Liiders (or the con- 
ventional) collapse postulate so that it can be applied for any arbitrary observable. 
Stated this way, the basic problem is of course of a purely technical nature. How- 
ever, it is hardly possible to exaggerate the physical significance of generalizing 
the collapse postulate for observables with continuous spectra. Most of the obser- 
vables one deals with ordinarily in either non-relativistic quantum mechanics or 
in quantum field theory are those with a continuous spectrum and the absence of 
an appropriate generalization of the collapse postulate has left the theory in a very 
incomplete state. For example, one cannot employ the conventional collapse 
postulate to discuss, say, the joint probability distribution associated with two 
(successive) position measurements carried out on a particle at different times. 
Another important example is provided by the fact that it has not been possible to 
systematically discuss from basic principles much of the traditional wisdom that 
is associated with the Heisenberg uncertainty principle (see for example [6, 81), 
for that would necessarily involve a discussion of the measurement of the mo- 
mentum of a particle (immediately) following the measurement of its position and 
vice versa. In fact it may be said that the absence of a general collapse postulate 
constitutes a very serious limitation of the conventional formulation of quantum 
theory, particularly in connection with the description of successive observations. 

In the present investigation we shall arrive at an appropriate generalization 
of the collapse postulate which of course reduces to the conventional (von 
Neumann-Li~ders) collapse postulate in the case of observables with a purely 
discrete spectrum. In Sect. II we discuss the reasons why some of the attempts to 
obtain a direct or immediate generalization of the conventional collapse postulate 
have not succeeded. It is thus seen that one must attempt at a rather non-trivial 
generalization after carefully studying the essential mathematical features of the 
conventional postulate. In fact, it was on the basis of such a study that Davies and 
Lewis [9, 10] suggested that the collapse associated with each observable may be 
formulated in terms of the so-called operation-valued measures. However, in their 
investigation the problem of fixing a particular rule of association between the 
observables and the operation-valued measures (which is the essential content of 
a collapse postulate) has been left very much open. 

In Sect. III we outline a generalization of the conventional framework of 
quantum theory wherein it is assumed that the collapse associated with each 
observable may be formulated in terms of a certain "finitely additive expectation- 
valued measure". This framework includes the proposal of Davies and Lewis as a 
a particular case. It is shown in Sect. IV that the basic prescription of conventional 
quantum theory for the joint probabilities of compatible observables [1, 11] 
(a prescription which shall be referred to as the "generalized Born statistical 
formula (GBSF)'), precludes the possibility of formulating the collapse postulate 
in terms of operation-valued measures. However, it is seen that the GBSF also 
serves to characterize, more or less completely, an appropriate generalization of 
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the collapse postulate (in terms of the so-called non-normal conditional expecta- 
tions) which is introduced in Sect. V. Another important consequence of the 
GBSF is that the joint probabilities of (a successive observation of) observables 
with continuous spectra, do not in general satisfy the property of ~-additivity. 
Sect. VI contains a brief discussion of some of the important consequences of this 
non-cr-additivity of probabilities for the statistics of successive observations in 
quantum theory. 

It should be noted that there have also been alternative attempts at generalizing 
the yon Neumann-Lfiders collapse postulate by introducing certain "generalized 
eigenvectors" corresponding to spectral values in the continuum. It has often 
been suggested [12-18] that one may employ a rigged Hilbert space model (or 
a related framework) for quantum theory, wherein it can be shown that there does 
exist an entire set of such generalized eigenvectors, provided we choose an appro- 
priate class of self-adjoint operators as the observables of the theory. Apart from 
the fact that one must arbitrarily restrict the class of observables, our main objec- 
tion to the above approach is that it has not led to any version of the collapse 
postulate which would enable us to predict the joint probabilities of successive 
observations. This, however, is not the case with a recent proposal due to Farrukh 
[19], wherein a non-standard extension of the Hilbert space has been employed 
for generalizing the collapse postulate. Though Farrukh has employed his generali- 
zed collapse postulate to calculate the joint probabilities for some interesting 
particular cases, no general prescription emerges from his work for either the joint 
probabilities or the expectation values and correlation functions when an arbitrary 
sequence of observables is being measured. We hope to show that our approach, 
on the contrary, leads to a more or less natural extension of the von Neumann- 
Liiders collapse postulate, from which there also emerges a completely general 
prescription for the joint probabilities as well as the entire statistics of successive 
observations in quantum theory. 

II. The Conventional Collapse Postulate and the 
Difficulties with Continuous Spectrum 

In the conventional formulation of quantum theory [1] the states of a system are 
characterized by density operators (positive trace class operators of unit trace) 
on a separable Hilbert space ~ ,  and the observables are characterized by self- 
adjoint operators on ~ .  Then the basic empirical prescription of the theory is 
given by the following "Born statistical formula (BSF)" for the probability Pr~ (A) 
that the outcome of an experiment to observe A on an ensemble of systems in state 
p lies in the Borel set A~B(R): 

Pr~(A) = Tr(ppA(A)), (2.1) 

where A -~ pA(A) is the unique spectral measure associated with the self-adjoint 
operator A. It should be borne in mind that in non-relativistic quantum mechanics 
each observable (in the Heisenberg picture) is associated with an instantaneous 
observation. Thus the BSF (2.1) gives a prescription for the probabilities associated 
with a single instantaneous observation only. 
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In order to discuss the statistical correlations between the outcomes of a 
sequence of observations, it is essential to introduce the collapse postulate which 
(in the conventional framework) "fixes" the state of an ensemble after an obser- 
vation has been carried out. The generally accepted version of the von Neumann-  
Liiders collapse postulate may be stated as follows. 

If p is the state of an ensemble immediately prior to a measurement of an 
observable A, with the spectral resolution 

A = ~ 2 i P  ~, (2.2) 
i 

then the state, immediately after measurement, of the (sub) ensemble of all those 
systems fbr which the outcome of the measurement was found to lie in the Bord  
set A eB(R), is given by the density operator .~a(A)p/Tr [~a(A)p], where 

~A(A)P = ~ P~PPi. (2.3) 
.~i~A 

The BSF can now be used in conjunction with the above collapse postulate 
to yield the joint probabilities Pr~l(~l),a2tt~ ) ..... nr(t~)(A,,A2 ..... A) that the values 
of the observables {Ai(ti) } are observed to lie in the Borel sets {Ai} when an en- 
semble of systems originally prepared in state p is subjected to the sequence of 
observations {A a (t I), Az(t2) . . . . .  Ar(t ) } provided each of the observables {Ai(t~) } 
has a purely discrete spectrum. If each of the observables {Ai(t~)} has the spectral 
resolution 

Ai(ti) = E )@PSi)(ti) (2.4) 
J 

and tl < t 2 < ... < t~, then we have the following formula due to Wigner [20-22] : 

Pr~,(t,),A;(,~ ) ..... a.(,,.)(A 1, A2 ....  , A,.) = Tr [~A'(t")(A,.) ... ~A=('2)(Az)~A'(t~)(A 1)P], 

(2.5) 

where 

~A~('O(Ai)= E P}i)(ti)pe~O(ti), (2.6) 

for each ie{1,2, ... ,r}. 
It has also been noted by Wigner [22, 23] that Eq. (2.5) (to be referred to as the 

Wioner formula) combines in itself all the observational content of both the BSF 
and the collapse postulate as long as we restrict ourselves to observables with 
purely discrete spectra. In fact, for such observables, the Wigner formula (2.5) 
may itself be adopted as the fundamental statistical prescription of the theory- -so  
that there is no longer any need for considering the collapse postulate or the BSF 
separately. It may also be noted that the joint probabilities (2.5) exhibit a certain 
"auantum interference of probabilities" [24-26],  which also demonstrates that 
they cannot be brought under the purview of classical probability theory. 

The major difficulty .in formulating a completely general (quantum) theory of 
successive observations is that the collapse postulate as stated above does not 
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make any sense for an observable with a continuous spectrum. Since there are no 
eigenvectors (in the Hilbert space) associated with spectral values in the continuum, 
Eq. (2.3) does not make any sense for observables with continuous spectra as the 
projectors Pi do not exist. Therefore the major problem appears to be a purely 
technical one of extending the sum in Eq. (2.3) to some sort of an integral which 
would make sense for any arbitrary spectral measure on the real line. We have 
already emphasised the physical significance of the above problem, which also 
suggests that an appropriate solution should be based on the fundamental prin- 
ciples that underlie quantum theory. 

Before going into a general analysis of the problem, we would like to note that 
there have been some misconceptions concerning this problem in the literature, 
which have not been subjected to a proper critical examination. For example, one 
suggestion which is implicit even in some textbooks is to replace the transforma- 
tions {~A(A)} of Eq. (2.3) by the transformations {~A(A)} as given below 

~A(A) = pA(A)ppA(A), (2.7) 

where A ~ PA(A) is the spectral measure associated with the observable A.1 Unlike 
(2.3), Eq. (2.7) is of course meaningful for all observables, and it is also consistent 
with the BSF, as we have 

Pr~(A) = Tr [~A(A)p] = Tr [pA(A)ppA(A)] = Tr(ppA(A)), 

in agreement with (2.1). However, the unphysical character of the above proposal 
shows up very clearly once we employ it to evaluate the joint probabilities of 
successive observations. We are led in the same way as before to formula (2.5) 
with the only difference that ~.A~(t')(A~) are now to be replaced by ~A*~)(A~). How- 
ever, as the ~a'ml(A~) are not finitely additive in As, it can easily be shown that the 
joint probabilities turn out to be not even finitely additive. For example, if A, B 
are two incompatible observables (i.e. the associated spectral projectors do not 
commute with each other) and A, A1, A2~B(R ) are such that A1 ~ A  2 = ~ ,  then 
Eq. (2.7) leads to 

Pr~,B(A ~ u A z, A) = Tr [~B(A )~A(A 1 U A 2 )P] 

= Tr (PB(A)pA(A 1 *,A A 2)ppA(A 1 • A 2)), 

which is in general different from 

Pr~,B(A ~, A) + Pr],B(A2, A) = Tr [~B(A)~A(A 1)p] + Tr [~"(A)~A(A 2)P] 
= Tr [pB(A)pA(A 1)ppA(A 1)] 

+ Tr [PB(A)pA(A2)pPA(A 2)]. 

This lack of finite additivity of the joint probabilities makes the above proposal 
of replacing Eq. (2.3) by Eq. (2.7) completely untenable. 

In his classic treatise [1] on quantum mechanics, yon Neumann considered 

1 Such a version of the collapse postulate is implicit for example in all those treatments of localization 
(or position measurement), where the wave function ¢(x) of a particle is assumed to be transformed into 
;G(x)cp(x) modulo the normalization factor (where Z~(x) is the characteristic function of A 6B(R)), the 
moment the particle is found to be localized in d. 
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another way of generalizing the collapse postulate to observables with continuous 
spectra. He suggested that we may consider functions of these observables which 
have a purely discrete spectrum and employ Eq. (2.3) for the collapse associated 
with such functions as some sort of an approximation to the collapse associated 
with the original observable. It must be stated that this programme has not been 
actually carried out even for particular cases, and therefore we do not have any 
mathematically precise characterization of the nature of the approximation or its 
consistency. However, apart from the fact that von Neumann himself considered 
this as just a tentative solution (cf. the footnote on p. 223 of [1]), there are very 
strong reasons to suspect that such a programme may not be viable. The procedure 
advocated by yon Neumann involves partitioning the spectrum of an observable 
into a countable collection of disjoint intervals. For example, if A is an observable 
with a continuous spectrum we may consider the observablefjA), where for each 
~ > 0  

L(x) = ~ (n + 2) z~.~.(., l~)(x), ! ~ (2.8) 
n = - 9 ( 3  

where ZE )(x) denotes the characteristic function of the interval [ ). The observable 
f j A )  has a purely discrete spectrum and a precise measurement o f f j A )  is supposed 
to be equivalent to an approximate measurement of A with an apparatus which 
has a limit of resolution given by e. 

However, the crucial point is that there is hardly any justification for the claim 
that the collapse associated wi thf jA)  is in some sense related to that associated 
with A, however small the resolution e might be. Of course, the spectral projectors 
of A and its func t ion f (A) ,  where f  :R -~ R is a Borel function, are related by the 
equation 

p f~A)(A) = p A ( f  - 1 (A)), (2.9) 

for all A eB(R). However, Eq. (2.9) also shows that in general the spectral projec- 
tors off(A) do not determine all the spectral projectors of A. As regards the collapse 
associated with A andf(A) the situation is very similar, at least as regards obser- 
vables with purely discrete spectra. In fact, we have the following lemma which is 
a direct consequence of Eqs. (2.2) and (2.3). 

Lemma 2.1. I f  A is an observable with a purely discrete spectrum, then {~f~A)(A)} 
and {~A(f -I(A) ) } are totally unrelated, unless f : R ~ R is a Borel function which 
is injective on the spectrum of  A, in which case we have 

~f(A)(A ) = ~ A ( f  - I(A)) (2.10) 

for all A ~B(R). 
The requirement t h a t f  :R -~ R be injective on the spectrum of A is essentially 

that we have 

f ( x )  =f(y)  ~ x = y 

for x, y lying in the spectrum of A. 
From the above lemma we can easily see that the collapse associated with 
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f~(A) is very different from even that associated with, say, f2,(A). In other words, 
even a change in the so-called resolution of the apparatus gives rise to a completely 
unrelated collapse expression. Also, as Davies and Lewis [9] have noted, any 
approach based on a partitioning of the spectrum into disjoint intervals is rather 
suspect, as it often destroys the group covariance properties possessed by the 
observable. Finally, the result of Lemma 2.1 suggests that in the general case also 
we have every reason to suspect that the collapse associated with A and f (A)  are 
unrelated, unless the function f is injective on the spectrum of A. Therefore we 
cannot hope to get any idea about the collapse associated with an observable A 
with a continuous spectrum by studying the collapse associated with functions of 
the form£(A), forf~ takes constant values on each of the intervals [nc~, (n + 1)~). 

From the preceding discussion it becomes clear that the appropriate generali- 
zation of the conventional collapse postulate to observables with continuous 
spectra should involve a completely non-trivial generalization of Eq. (2.3). Several 
other arguments in favour of this point have also been provided by Davies [27]. 
It would be appropriate here to recall his conclusion ([27], p. 58) that "... in 
measurement theory discrete and continuous projection-valued measures have 
very different properties. This runs completely counter to the frequent suggestion 
that for foundational purposes one need only consider discrete observables, the 
continuous ones being approximated by discrete ones in some manner". 

III. The Basic Framework for Generalizing the Collapse Postulate 

In order to gain an insight into the problem of generalizing the conventional 
collapse postulate, it is very necessary to first analyse its essential mathematical 
features as contained in Eqs. (2.2) and (2.3). It was noted by Schwinger [28] that 
the collapse or measurement transformation p --* ~a(A)p as given by (2.3) can be 
viewed as a positive linear transformation on the space of trace class operators. 
Later, Haag and Kastler [29] introduced the notion of an "operation" which 
incorporates all the essential mathematical characteristics of such collapse trans- 
formations. In order to define the notion of an operation, let us consider the 
Banach space g-(~vf) (under the trace norm) of all trace class operators on ~f. 
The set g -+(~)  of all non-negative trace class operators is a norm-closed cone 
in ~-(Jf). An operation ~ is a linear self-adjoint positive map ~ : J ( J : )  ~ :-(fit:), 
which is also norm-non-increasing, in that 

Tr (~(v)) =< Tr(v) (3,1) 

for all v a Y + ( ~ ) .  It is easy to see that the transformations p ~ ~A(A)p as defined 
in Eq. (2.3) can be uniquely extended into operations. We shall denote the set of all 
operations associated with J f  as ~(Jf). 

It was noted by Davies and Lewis [9] that the statement of the conventional 
collapse postulate essentially associates an operation-valued measure with each 
observable. An operation-valued measure (on the real line) is an association 
A ~ ~(A) of B(R) into ~(9¢') such that the following properties are satisfied: 

i) Tr(~(R)v) = Tr(v), 
for all v~3-+(oa(f); (3.2) 
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ii) If { Ai} is a sequence of mutually disjoint elements of B(R), then 

( U A,) = ~ ( A ~ ) ,  (3.3) 
i i 

where the sum on the right-hand side converges in the strong operator 
topology on ~(~) .  

It is rather straightforward to verify that for an observable A with a purely 
discrete spectrum (as given by (2.2)), the association A --, ~A(A) (as given by (2.3)) 
defines an operation-valued measure. Thus the conventional collapse postulate 
may now be viewed as a statement associating an operation-valued measure 
_~A :B(R)~ ~(~,~), with each observable A with a purely discrete spectrum. The 
first important step in general.i~ing the above postulate to arbitrary observables 
appears to be the suggestion of Davies and Lewis [9] that the collapse associated 
with every observable could be formulated in terms of operation-valued measures. 
They also pointed out that associated with each self-adjoint operator A, there are 
in fact several operation-valued m e a s u r e s  ~a : B(R) ~ ~(~), each of which satisfies 
the requirement imposed by BSF that 

Tr(3.a(A)p) = Pr~(A)= Tr(ppA(A)) (3.4) 

for each density operator p. Also, once a particular association A --, ~ a  between 
the observables and the operation-valued measures is specified, then the Wigner 
formula (2.5) can be employed to obtain the joint probabilities of successive 
observations. 

However, we are still left with the problem of fixing the association A ~ ~,~a 

between the observables and the operation-valued measures. As we noted already, 
the BSF does not by itself characterize the above association uniquely. We are 
therefore led back to a careful examination of the basic principles of conventional 
quantum theory in the hope that further light may be thrown on the problem of 
obtaining the appropriate generalization of the collapse postulate. Since the 
generalized collapse postulate is essential only insofar as it makes possible a 
discussion of the statistical correlations between the outcomes of successive 
observations, our goal shall be to obtain an appropriate generalization of the 
Wigner formula (2.5). We shall first recast the Wigner formula in an alternative 
form, which will enable us to consider a more general class of mathematical 
objects (for the generalization of the collapse postulate) than is provided by the 
class of operation-valued measures. As we shall see later, this constitutes a very 
essential step in the generalization of the collapse postulate. 

We employ the well-known duality between the Banach space 3 - (~ )  and its 
dual B(H) (the Banach space under operator norm ofaU bounded operators on ~f), 
which can be expressed in terms of the bilinear form 

( v ,A)  = Tr(vA), (3.5) 

for vs~-'(24 ~) and AeB(J/f). The cone of non-negative operators in B(Zgg) will 
be denoted as B+(~g). We define an "expectation" to be a map g :B(J¢ ~) ~ B(Jt ~) 
which is linear, self-adjoint positive and satisfies 

0 < g( I )  < I, (3.6) 
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where I is the identity operator on ._Xf. We should note that the term "expectation" 
is also used for several different notions in the literature. The set of all expectations 
associated with ~ will be denoted as g(~gt~). 

An expectation g is said to be normal if it is also continuous under the ultraweak 
topology on B(~) .  Let g~()f)  denote the set of all normal expectations. It is 
well known [27] that with each operation ~e~(oug), there is associated a unique 
adjoint ~ * ~ g ~ ( ~ )  (and vice versa) such that 

Tr (~(v)A) = Tr (v~*(A)) (3.7) 

for all v e Y ( H )  and A~B(~). We can now recast the Wigner formula (2.5) as 
follows: 

P A PrA~(tl) ..... A,(tr)(A1 ' 2 ....  ,A)  = T r  [p{gA~(t~)(A 1)#Az(tz)(A 2) '"  deA"(t~)(Ar) }I], (3.8) 

where 

gA~(t')(A i) = ~ A'(t')(A *)' (3.9) 

is the normal expectation which is the adjoint of the operation 2U'(~')(Az) given 
by Eqs. (2.4) and (2.6). In other words, if the observable A has the spectral resolution 

A = 22iPi ,  (3.10) 
i 

then the expectations {EA(A) are given by 

gA(A)B = y" piBPi (3.11) 
,tieA 

for each A ~B(R), B~B(J~f). It is again straightforward to verify that the association 
A -~ gA(A) as given by Eqs. (3.10) and (3.11) defines a "normal expectation-valued 
measure" (a notion which was introduced by Davies [10] under the name "expec- 
tation"), in that it satisfies the following: 

i) For each A eB(R), gA(A)~g~(~). 
ii) #A(R)I = I. (3.12) 

iii) If {A~} is a sequence of mutually disjoint elements of B(R), then 

~ (0  Ai)B = ~ gA(AI)B (3.13) 
i i 

for all B~B(~f), where the sum on the right-hand side converges in the ultra- 
weak topology on B(oUg). 
It is quite obvious that the normal expectation-valued measures are the duals 

of the operation-valued measures considered earlier. We shall later find that the 
basic principles of conventional quantum theory are inconsistent with any formu- 
lation of the generalized collapse postulate in terms of the operation-valued 
measures or, equivalently, in terms of the normal expectation-valued lneasures. 
Hence, in our search for the appropriate generalization of the collapse postulate, 
we shall allow for a more general class of mappings A ~ #A(A), where the expec- 
tations {gA(A)} (i) are not restricted to be normal, and (ii) are required to be only 
finitely additive in A. The basic framework in which an appropriate generalization 
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of the collapse postulated is being sought, can now be stated precisely in terms of 
the following assumptions (A)-(C): 

A. The states of a system are represented by density operators, and the obser- 
vables (corresponding to instantaneous measurements) by self-adjoint operators 
on a separable Hilbert space ~ .  

B. For each observable A, there is associated a finitely additive expectation- 
valued measure gA : B(R) ~ g(~), i.e. 

1) #A(A)eg(af), 
for each A EB(R). 

2) #a(R)I = I .  

3) 

(3.14) 

(3.15) 

IfA 1, A2~B(R) are such that A 1 ~ A 2 --- ~ ,  then 

gA(d i k3 d 2) = gA(d 1) q- ~A( d 2)" (3.16) 

C. The joint probability that the outcomes of experiments to measure {A~(tz)} 
are found to lie in Borel sets (A~), when an ensemble of systems prepared in state 
p is subjected to the sequence of experiments {Al(tl), Az(t2) , ...,A~(t)}, where 
t I < t 2 < ... < t~, is given by the generalized Wigner formula 

Pr~wl),a2(ti),...,Ar(tr) (A 1' A2'  "" ' A r) = Tr [p{ ga,(,~)(A ,)ga2(t=)(A 2)'" ~Ar(tr)(A ) } I]" 
(3.17) 

A few remarks may be made on the physical motivation behind these assump- 
tions. The assumption (A) needs no comment. In assumption (C) we have adopted 
as the basic statistical prescription of the theory a generalization of the Wigner 
formula (2.5), which of course includes as particular cases all those situations 
which can be dealt with in the framework of conventional quantum theory. The 
statement of the collapse postulate, in our framework, will be a rule of association 
A-+ gA between self-adjoint operators and finitely additive expectation-valued 
measures. The requirement that for each A, gA(A) be a linear map is to ensure 
that the probabilities (3.17) are additive in the density operator p under the forma- 
tion of mixtures. The self-adjointness and positivity of ga(A) ensure that Eq. (3.17) 
yields non-negative probabilities. Condition (B2) ensures that the probabilities 
are normalized to unity and, finally, (B3) ensures that the probabilities are finitely 
additive. In fact, once the fundamental statistical prescription of the theory is 
assumed to be in the form given by (3.17), then all the properties of {gA(A)} which 
are postulated in assumption (B) can be deduced as necessary consequences of 
the basic physical requirements on probabilities. 

IV. The Generalized Born Statistical Formula and its 
Incompatibility with a-Additive Probabilities 

Having fixed the basic framework of our discussion, we are now in a position 
to analyse the various constraints imposed on the collapse postulate or the asso- 
ciation A-~ {gA(A)} by the fundamental principles of conventional quantum 
theory. The first and the foremost requirement is that the generalized Wigner 
formula (3.17) should yield the same probabilities as the BSF (2.1) for the outcomes 
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of a single observation. In other words, we should have 

Pr~(A) - Tr [pgA(A)I] = Tr (ppA(A)) (4.1) 

for all AeB(R), for all observables A and states p. It is easy to see that (4.1) is 
equivalent to the requirement that for each observable A, 

#A(A)I = pA(A) (4.2) 

for all A eB(R). In the literature, the above requirement is usually referred to as 
the requirement that the observable "determined" by the expectation-valued 
mapping A ~ #A(A) should be the projection-valued measure A--* pA(A). We 
shall now see that Eq. (4.2) itself imposes rather severe restrictions on the asso- 
ciation A -* {gA(A) }. 

For each observable A, let us denote by ~//A the yon Neumann algebra gene- 
rated by the set {pA(A)[A eB(R)} of the spectral projectors of A. It is well known 
that 

°ll A = {pA(A)[A EB(R) }". (4.3) 

The commutant q/~ of ~//A is also given by 

Yl' A = {pA(A)I A eB(R)}'. (4.4) 

We now have the following result essentially due to Davies [10], Twareque Ali 
and Emch [30]. 

Lemma 4.1. I f  the BSF (4.2) is also satisfied in addition to the assumptions (A)-(C), 
then for each observable A 

gA(A)BEO#' A (4.5) 

for all A 6B(R), B6B(gf~). 

Proof. Let BsB+(~f).  Since we have 

N B l l I - B > O ,  (4.6) 

it follows from (4.2) and (B1) that 

0 < #A(A)B < I[ B ]1 ga(A)I = 11B H pA(A), (4.7) 

for all A ~B(R). From the fact that gA(A)B/11B tl is a positive operator majorized 
by the projector pA(A), it follows that gA(A)B commutes with pA(A), and we have 

gA(A)B = pA(A)gA(A)(B) = #A(A)(B)pA(A). 

Now, if A , , A z ~ B ( R  ) and A' z is the complement of A 2 in R, then Eq. (4.8) 
implies the following: 

gA(A 1 ~ A 2)(B)pA(A2) = pA(A2)8A(A 1 ~ A2)(B) ; 

~A(A 1 ~ A'2)(B)pA(A2) = O, 

Adding the above two equations and using the finite additivity (B3) we get 

gA(A 1)(B)pA(A2) = pA(A 2)gA(A t)(B) (4.9) 
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for all At,  A 2 eB(R) and B e B  + (24 0, from which the lemma follows immediately. 
The other important constraint on the collapse postulate A ~  {ga(A)} is 

that for compatible observables, the joint probabilities as predicted by the genera- 
lized Wigner formula (3.17) should coincide with those obtained on the basis 
of the standard prescription for such joint probabilities in conventional quantum 
theory. It is well known that two bounded observables are said to be compatible 
if they commute. In the general case (which includes also unbounded observables) 
two observables A, B are said to be compatible [I  1] iff 

pA(A 1)PB(A2) ---- P'(A 2)Pa(A ~) (4.10) 

for all A 1, A 2 EB(R). A set of observables {A 1 , A 2 . . . . .  A,} is said to be a compatible 
set if every pair of elements of the set is compatible. It is well known that apart 
from the BSF (2.1) and the collapse postulate (2.3), the conventional formulation 
of quantum theory includes the following generalization (D) of the BSF as one 
of its basic assumptions [1, 11]: 

D. Generalized Born statistical formula (GBSF): I f  {A1,A 2 .... ,A,} is a 
compatible set of observables then 

Pr°a,,Az ..... re(A1, z~ 2 . . . .  , A,) = Tr (flPAI(A 1)Pa2(A 2)-" PA"( A ,)) (4.11) 

for all Ai~B(R), i = 1, 2 , . . . ,  r. 
It is obvious that the GBSF (4.11) includes the BSF (2.1) as a particular case. 

In fact GBSF constitutes a non-trivial generalization of the BSF as it happens 
to be the only available prescription in conventional quantum theory for joint 
probabifities for observables with a continuous spectrum, and as such plays a 
very important role in several applications of quantum theory. However, it 
should be emphasised that Eq. (4.11) holds for compatible observables only, and 
in any case it cannot be applied otherwise as the right-hand side will then take 
on complex values. In the following lemma we shall show that the GBSF (4.11) 
imposes a further constraint on the collapse postulate. 

Lemma 4.2. Under the assumptions (A)-(C), the GBSF (D) is equivalent to the 
requirement that for each observable A, 

EA(A)p = pA(A)p (4.12) 

for each A ~B(R) and every projector P ~ ~['A. 

Proof Let P e ~ A  be a projector. Now if )o, # are real numbers, then B = 2P + 
# ( I -  P) is an observable which is compatible with A. Then we have from the 
GBSF (4.1 t) 

Pr~,B(A, {2} ) = Tr(ppA(A)P). 

However, from the generalized Wigner formula (3,17) we also have 

Pr~,B(A, {2} ) = Tr(p{gA(A)gB({2})}I) 

we have already seen that the BSF, which is a particular case of GBSF, is equivalent 
to the relation (cf. Eq. (4.2)) 

gB({2})I = P.  
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We therefore have 

Tr(pPa(A)P) = Tr(pEA(A)P) 

for all density operators p, which implies that 

#A(A)p = pA(A)p, 

thereby establishing the lemma. 
We are now in a position to obtain a more or less complete characterization 

of the collapse postulate A -  {#A(A) } which follows from the assumptions (A)-(D). 

Theorem 4.3. The assumptions (A)-(D) imply that for each observable A, we have 

#A(A) (B) = pA(A)gyA(R)(B) (4.13) 

jbr each A 6B(R) and BsB(oCf), where gA(R) is a projection mapping of norm one 
of B(Jf) onto the yon Neumann algebra ~ A" 

Proof From the finite additivity property (B3), it follows that 

pA(A)gA(R) (B) = pA(A)~A(A)(B) + pA(A)#A(A')(B), 

for each A eB(R), where A' is the complement of A in R. All we must do now is 
to employ Eq. (4.8) for A and A' in order to conclude that 

pA(A)~A(R)B = d°A(A)B, 

for all B~B(Jf). 
In order to establish that #A(R) is a norm one projection mapping onto q/A, 

let us consider an arbitrary self-adjoint element C E q/~. Since ~#A is a yon Neumann 
algebra, we have pC(A)~//A for each A~B(R). Now it follows from Lemma 4.2 
that 

EA(R)pC(A) = Pa(R)pC(A)= pC(A), (4.14) 

for each A EB(R). Also, gA(R) is continuous in the norm topology on B(~f), as 
it is a positive linear map. If we now recall the well-known fact that every bounded 
self-adjoint operator can be expressed as a limit under the norm topology of 
linear combinations of its spectral projectors, we can then conclude from Eq. (4.14) 
that 

gA(R)C = C (4d 5) 

for all self-adjoint elements CEa?f A. It therefore follows that aYa(R) acts as the 
identity map on q/~. Since we have already shown in Lemma 4.1 that the range of 
~A(R) is contained in ~¢A' we have the following 

Range gA(R) = aY' a (4,16) 
[#A(R ) ]2 = #A(R). (4.17) 

In other words, #A(R) is a projection map onto o//A . Since we also have from (B2) 
that 

gA(R)I = I, 
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it follows that Ca(R) is a projection of norm one of B(~cf) onto q / i ,  thereby establish- 
ing the theorem. 

Theorem 4.3 provides a more or less complete characterization of the expecta- 
tions {Ca(A)} specifying the "collapse" associated with an observable A, modulo 
the choice of the norm one projection mapping 6°a(R) : B(~(t ~) ~ ~ ,  which will 
have to be chosen such that for observables with a purely discrete spectrum we 
recover the conventional yon Neumann-Liiders  collapse postulate (3.11). Before 
going into an explicit construction of such norm one projection maps, we shall first 
establish two very important conclusions which follow directly from the above 
theorem. The first one concerns the impossibility of formulating the collapse 
postulate in terms of operation-valued measures and may be stated as follows. 

Theorem 4.4. I f  the assumptions (A)-(D) are satisfied, then the expectations 
{gA(A)} associated with an observable A cannot be normal unless A has a purely 
discrete spectrum. 

Proof As we have shown in Theorem 4.3 

Ca(A) = pA(A)CA(R), 

where CA(R) is a projection map of norm one of B(dtf) onto qJ A . It is a classic result 
due to Tomiyama [31, 32] that a projection map of norm one of a yon Neumann 
algebra onto a subalgebra satisfies all the properties characteristic of a so-called 
conditional expectation 2 introduced earlier by Dixmier [33], Umegaki [34] and 
Nakamura  and Turumuru [35]. If we now assume that ~A(R) is normal, then it 
follows that it is a normal conditional expectation of B(W) onto the yon Neumann 
algebra ~ .  However, it is well-known (see Davies [27]) ti~at a normal condition 
expectation of B(H)  onto a~'~ = {pA(A)I A~B(R)}' exists only if A has a purely 
discrete spectrum. Hence CA(A)= pA(A)gA(R) cannot be normal unless A has a 
purely discrete spectrum, thus establishing the above theorem. 

The above theorem clearly demonstrates that we shall have to consider non- 
normal expectations, in order to obtain a generalization of the conventional 
collapse postulate which is also consistent with the GBSF (D). This of course rules 
out the possibility of employing operation-valued measures as they are the duals 
of normal expectation-valued measures as was noted earlier. In fact as non-normal 
expectations do not have a dual object (or adjoint) which is a transformation on 
3-(W), we have arrived at a rather surprising result that the "collapse" associated 
with an observable with a continuous spectrum cannot be formulated as a trans- 
formation on the space of density operators. We shall return to this question later 
in Sect. V. 

From a physical point of view, a somewhat more startling conclusion which 
follows from Theorem 4.3 (and hence from the GBSF) is that the joint probabilities 
involving observables with continuous spectra are not in general a-additive. First 
of all it should be noted that the BSF implies that the probabilities 
Pr~(A)= Tr(pPa(A)) associated with a single (instantaneous) observation are 
always o-addit ive--whatever the observable A might be. This of course is a 

2 Some of these properties will be discussed in the next section. 
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consequence of the fact that each pe3-(xC) defines a "normal" or ultraweakly 
continuous linear functional on B(OF). However, the situation is very different 
when we consider joint probabilities, say Pr~,B(R, A) for A EB(R). Let {Ai} be a 
countably infinite sequence of disjoint elements of B(R) such that ~ Ai = A. We 

then have 

P~(A) = ~PB(A ~), (4,18) 
i 

where the right-hand side converges in the strong and ultraweak topologies, but 
not in the norm topology on B(~). Now, the a-additivity of the above joint 
probabilities is expressed by the equation 

Pr~,.(R, A) = ~, Pr~,.(R, A i)- (4.19) 

From Eqs. (3A7) and (4.2) we see that the above equation is equivalent to 

Tr [-p {gA(R) } P"(A) ] = • Tr [p{gA(R) } P"(A~) ], (4.20) 
i 

for all states p, which implies that 

EA(R)P"(A) = ~gA(R)P"(A,),  (4.21) 
i 

where the right-hand side is required to converge in the ultraweak topology on 
B(Y~). From Eqs. (4.18) and (4.21) it follows that the a-additivity property (4.19) 
is satisfied for all observables B only if gA(R) is normal. This, as we have shown in 
Theorem 4.4, is possible only when A has a purely discrete spectrum. In other 
words, we have established the following result. 

Theorem 4.5. I f  assumptions (A)-(D) are satisfied, then given any observable A 
with a continuous spectrum, there exists a density operator p and an observable B 
such that the probabilities Pr~,B(R, A) are not a-additive in A. 

We admit that the conclusion that we must deal with non-a-additive proba- 
bilities is somewhat disturbing, for most of the traditional machinery of probability 
theory is built up on the basis of the assumption that the probabilities are 
a-additive. However, as several probabilists have noted [--36-38], a-additivity 
is a purely technical requirement (but a very useful one at that) which has no basic 
empirical justification unlike the other assumptions such as the non-negativity 
and finite additivity of probabilities. Before going into a discussion of some of the 
intriguing features of a probability theory with only finitely additive probabilities 
(which shall be undertaken in Sect. VI), we shall first present an appropriate 
generalization of the conventional collapse postulate which is consistent with the 
assumptions (A )-(D). 

V. The General Collapse Postulate 
In this section we shall introduce a generalization of the conventional collapse 
postulate which is more or less implied by the assumptions (A)-(D) and the require- 
ment that we should recover the conventional collapse postulate for observables 
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with a purely discrete spectrum. As we saw in the previous section (cf. Theorem 4.3), 
the collapse associated with each observable A is completely characterized by its 
spectral projectors {Pa(A)} and a norm one projection map 8 a ( R ) : B ( ~ ) ~  q/]. 
We shall define a conditional expectation of B(W) onto avon  Neumann subalgebra 
0g to be a linear self-adjoint map e : B(Jf)  ~ o-#, which is also a norm one projection 
of B(Jf)  onto q/. It may be noted that the term conditional expectation is often 
used for several related (and sometimes even very different) notions in the literature 
[9 ,10,27,30-35,39-50] .  Tomiyama [31,32] has shown that a conditional 
expectation ~ : B(~¢ ~) ~ o# has also the following properties 

(i) e is positive, 

(ii) ~(AXB) = Ae(X)B, (5.1) 

for all A, B e q / a n d  X~B(~f )  (module property). 

(iii) e(X*)e(X) < ~(X* X), (5.2) 

for all X~B(Yf) .  

It is also well known [47, 50] that a conditional expectation is a completely 
positive map. There have been several investigations [27, 32, 40-43] as to when 
there exists a normal conditional expectation onto a given subalgebra. As we 
stated in the previous section, it is well-known (see Davies [27]) that there exists 
a normal conditional expectation of B(Jf)  onto the von Neumann algebra a#~ 
iff A has a purely discrete spectrum. 

In order to generalize the collapse postulate to arbitrary observables we need 
to consider the following questions: 

(i) Does there always exist a conditional expectation eA of B(~Vf) onto ~//A 
for each observable A ? 
(ii) If there exist several such conditional expectations, can we fix a rule of 
association A ~ e A, such that for an observable with a purely discrete spectrum 
e A will be identical to the gA(R) given by Eq. (3.11) (so that we can recover the 
conventional collapse postulate)? 
We shall now see that the answers to both these questions are in the affirmative. 

In fact we shall explicitly construct a class of conditional expectations onto q/A 
following a procedure essentially due to Arvenson [41]. For this purpose we shall 
employ the other canonical object (apart from the spectral projectors) that is 
associated with each observable via Stone's theorem-- the  strongly continuous 
one-parameter group of unitary operators {e~tAItsR } generated by A. First of all 
let us note the following important result which is a consequence of Stone's theorem 

~'a =- {pA(A)tA ~ B(R)}' = {eitAIt 6R}'. (5.3) 

Eq. (5.3) implies that ~¢~ is also the fixed point algebra for the group of auto- 
morphisms B ~ eitABe -~ta defined on B(JF). Since our construction of the condi- 
tional expectation depends on the notion of an invariant mean on the additive 
group R of real numbers, we shall briefly summarize the main properties of 
invariant means on R (see for example [51, 52]). 

Let Ct~(R ) denote the Banach space of all bounded continuous complex- 
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valued functions on R with the norm 

II f It = sup I f(x)l (5.4) 
x~R 

An invariant mean q on the additive group R is a positive linear functional on 
CB(R ) such that the following properties are satisfied: 

(i) IfeeCB(R ) is the function e(x) = 1 for all xeR,  then 

t/(e) = 1. (5.5) 

(ii) For each aeR, 

t/(f~) = r/(f), (5.6) 

wherefa is the function 

f~(x) = f (x  + a). (5.7) 

We shall employ the notation ~f(x) to indicate the number ~7(f) whenever 

the functionf(x) is explicitly given. From the above definition, it is obvious that 

I ,  (s)l _-__ Ilsll (5.8) 

for allf~CB(R ). It may also be noted that there are several invariant means on R. 
However, it is well known [52] that i f f e  CB(R) is also a weakly almost periodic 
function, we then have 

1 r 
7 f ( x ) =  lim - ~  ! f(x)dx,  (5.9) 

T~c~ 

for every invariant mean q on R. 
The basic result concerning the existence of conditional expectations onto 

t ug a may now be stated as follows. 

Theorem 5.1. Let q be an invariant mean on the additive group R. Then, for each 
a of B(.gg) onto q[ A such observable A there exists a unique conditional expectation % 

that 

Tr [ v ~ ( B ) ]  = r# Tr [veiaxBe iAx] (5.10) 
X 

for all v~--(2/g) and Bs B(2,ff). 

Proof. The function 

x ~ Tr [velaxBe-iax] 

defined on the real line is continuous and bounded by 11 v I11 II B II (where ti tll 
denotes the trace norm on ,Y'(~)). Hence, the map 

v -+ t# Tr [vda~Be- IAx] 
X 

defines a bounded linear functional on 9-(2/g) so that there exists a unique operator 
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~(B)s  B(•)  such that 

Tr (v~(B)) = 11 Tr (vdAXBe - iAx) 
x 

for all B E B(5¢) and v e J(Jff) .  
The linearity and positivity of the map ~ : B ( ~ ) ~  B(24f), follow from the 

corresponding properties of the invariant mean t/. The property 

~(I) = I 

follows from Eq. (5.5). In order to show that ~B~q/A, we consider the following 
relation, which follows from (5.10) and (5.6) 

Tr(veiX,A~(B)e- ix'A) = ~ Tr(vei(~ +~,)ABe-i(x +~,)A 
x 

= tt Tr(ve~ABe - ~xA) = Tr(v~(B)), 
x 

which holds for all v e J - ( ~ )  so that 

ei~'A~(B)e-ix'a = ~(B) 

for all x 'eR.  We can therefore conclude, on the basis of Eq. (5.3), that ~ ( B ) e ~  A for 
all B e B ( ~ ) .  Finally, if Beql~,  it is obvious from the relations (5.10) and (5.5) 
that ~(B) = B. Thus we have verified that ~ satisfies all the properties charac- 
teristic of a conditional expectation of B ( ~ )  onto q/i ,  thus establishing the above 
theorem. 

As regards the second question that was posed above, we have the following 
rather interesting result. 

Theorem 5.2. I f  A is an observable with a purely discrete spectrum, and its spectral 
resolution is given by 

A = ~)~iei (5.11) 
i 

then for each B~B(2/f) we have 

~(B) = Z P~BP, (5.12) 

for all invariant means rt on the real line. 

Proof If the observable A is given by (5.11), we then have for each BeB(~f)  and 
veY- (~ )  

Tr (vd~ABe- ~A) = ~ e~(Z,- ~)~ Tr (vPf lP) ,  (5.13) 
i , j  

which can easily be verified to be an almost periodic function on the real line (see 
for example [53] and references cited therein). We can now employ Eq. (5.9) and 
the fact that the right-hand side converges uniformly, to obtain 

1 r 
r/Tr (vei~ABe- ixA) = ~ Tr (vPiBP) lim - -  ~ e i()''- ~")~dx 
x i.j T-~o~ 2 T - r  

= ~ Tr(vPiBP). 
i 
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Equation (5.10) and the ultraweak continuity of ve3--(Jug) when regarded as a 
functional on B(~),  yield the relation 

4(B) = Z PIBPi, 
i 

which establishes the above theorem. 
From Theorems (5.1) and (5.2) it is clear that we can now set gA(R) = ~ for 

each observable A. In other words, we can now employ for the "collapse" associated 
with each observable A, the expectations 

gA(A) = PA(A)~ (5.14) 

If we now emply Eq. (5.12) we then obtain, as a particular case of Eq. (5.14), the 
conventional collapse postulate (cf. Eq. (3.11)) 

gA(A)B = PA(A) ~.PiBP i = ~ PiBPi, (5.15) 
i 2~ieA 

for every observable A with a purely discrete spectrum as given by (5.11). It is also 
clear from our discussion that the collapse postulate as given by Eq. (5.14) is more 
or less an inevitable consequence of the assumptions (A)-(D). 

However, we are still left with the arbitrariness in the choice of the invariant 
mean ~/employed in Eq. (5.14), and as we have noted, there do exist infinitely many 
invariant means on the additive group R. As we shall later see in a concrete example, 
different choices of the invariant mean do lead to different predictions for the joint 
probabilities. For the purposes of the present investigation, we shall leave the 
choice of the particular invariant mean employed in the collapse postulate to be 
rather arbitrary. We do however hope that further investigations will throw some 
light on (i) either the physical motivation behind making a particular choice, or on 
(ii) the physical significance of employing different invariant means to characterize 
possibly the various different ways of measuring the same observable. If we now 
tentatively assume that a particular invariant mean t/has been chosen, then we are 
led to the following generalization of the collapse postulate as a natural con- 
sequence of our assumptions (A)-(D). 

E. The general collapse postulate: For each observable A, the associated finiteIy 
additive expectation-valued measure A -+ •A(A) is given by 

#A(A) = pA(A)ea (5.16) 

Jbr each A eB(R), where the conditional expectation ga : B(a/f) -+ oR A is given by 

Tr Irma(B) ] = tl Tr [vei~aBe- ixA] (5.17) 
x 

for all v¢J-(Jt') and BEB(~) .  
Having arrived at the general collapse postulate we can now adopt (A), (C) 

and (E) as the basic postulates of quantum theory. Of course the assumptions 
(B) and (D) are now automatically satisfied and we also have a non-trivial generali- 
zation of the conventional framework, wherein we can discuss the joint proba- 
bilities of any sequence of observations. For example, we can employ (E) and write 
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down explicit ly the generalization (3.17) of the conventional Wigner formula (2.5), 
as follows: 

PrPAwl),A2(tz) ..... Ar(t,.)(A1 ' A2  . . . .  ZJr) = t 1 rl ... r I [Tr  p{pAI(t~)(A1) 
x t  X 2  X r  - I. 

. eiX,al(t,)pA2(t2)(A 2)eiX:Az(tz). . .  eiX. ,a~- l(t,-- , )paW.)(A)  

• e - i  . . . .  a~- l(t.- 2)... e-ix2a2(t2)e-ixla1(t~)] (5.18) 

The generalized Wigner formula (5.18) is a non-trivial generalization of (2.5) 
and (2.6) as it is valid for arbitrary observables {Ai(Q} and reduces to (2.5) and 
(2.6) for observables with a purely discrete spectrum. As an explicit application of 
(5.18), we can consider a one-dimensional non-relativistic particle which is subject- 
ed to a measurement of momentum P immediately followed by a measurement of 
position Q - a situation that cannot be discussed in the conventional framework. 
This example also serves to illustrate the fact that the joint probabilities (5.18) do 
in fact depend on the choice of the invariant mean employed• For this purpose let 
us consider the closed and invariant subspace L c Cn(R), which consists of 
those functions f for which the limits f (  _+ ~ )  = lira f ( x )  exist. 

From the Hahn-Banach and the Markov-Kakutani  theorems (see for example 
[54]) it can be established that for each 0 _< 2 _ 1, there exists an invariant mean 
t/~ on CB(R ) such that 

t /af = 2 f ( -  ~ )  + (1 - 2) f (~)  (5.19) 

for a l l f~L .  If we now consider the function 

f ( x )  = Tr [ve~n~Pe([ - 0% a])e- ie~] 

for some finite a. It then follows from the canonical commutation relations that 
f E L ,  as in fact f ( - -  os) = 1 , f ( +  oo) = 0. If we now employ the invariant mean 
in the Wigner formula (5.18), it then follows that 

Pr~,,Q (R, ( - ~ ,  a]) = 2 (5.20) 

for all finite a. Similarly we can show that 

Pr~,.Q(R, [a, + oo)) = 1 - 2 (5.21) 

and 

Pr~.Q(R, [a, b]) = 0 (5.22) 

for all finite a, b. 
The most important feature of the above equations (5.20)-(5.22) is that they 

very clearly show that immediately after a measurement of the momentum, the 
position distribution is entirely concentrated at 4- oo. This fact does seem to throw 
some new light on the meaning of the uncertainly relations from the point of view 
of measurement theory. It may also be noted that results very similar to Eqs. (5.20)- 
(5.22) can be derived for the probabilities Pr~2.e(R,.). 

Equations (5.20)-(5.22) also demonstrate the fact that the joint probabilities 
(5.18) do depend on the particular invariant mean ~/z employed. In this context it 
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might be interesting to note that results some what similar to Eqs. (5.20)-(5.22) 
(particularly with 2 = 1/2) were obtained by Farrukh [19] on the basis of his 
approach through non-standard analysis. Farrukh was also led to a consideration 
of non-a-additive joint probabilities for observables with continuous spectra. 
Though our results are obtained by entirely standard methods, we suspect that 
there is perhaps some deep connection between the approach of Farrukh and the 
one outlined here, a study of which might also clarify the question of the choice of 
the invariant mean in Eq. (5.18). Another possibility for resolving this question 
could be via a study of the limiting process envisaged by von Neumann (see the 
discussion in Sect. II), either directly or perhaps in terms of the approximate 
position and momentum measurements introduced by Davies [10, 27]. 

We shall now collect, in the following theorem, some of the important proper- 
ties of the collapse associated with an observable as given by the general collapse 
postulate (E). 

Theorem 5.3. I f  A, B are any two observables, then we have the following: 

i) ~¢A(~ 1)CA(A2) = •A(A 1 t'~ A2) (5.23) 

for all A 1 , AzeB(R). 
ii) I f  A and B are compatible, then 

ga( A 1)ge( A 2) = ge( A 2)gA( A 1) (5.24) 

for all A 1 ,AzeB(R ). 
t ! iii) eA = ~<~, J//A = ~//B (5.25) 

iv) I f  f "R ~ R is a Borel function which also induces a Borel isomorphism of the 
spectrum of  A onto some Borel set in R, then 

~f(A)  = eA (5.26) 

and 

gS(A)(A ) = g A ( f -  I(A)) (5.27) 

for all A ~B(R). 

Proof. The property i) follows directly from the relation 

ga(A) = pA(A)~A 
once we employ the module property (5.1) of the conditional expectation e A. In 
order to prove ii), we shall first show that if A,B are compatible, we then have 

~A~B = ~B~A (5.28) 

For this let us consider an arbitrary element C~B(Jg). Since A, B are compatible, 
we have that for each v~y-(oug) 

Tr [veAee(C) ] 

= q ~/Tr [veiXAeix'Bce-ix'Be-ixA] 
x X" 

= q t /Tr [ve~'BeixACe-fXAe-ix'B] 
x x I 

= r/Tr [v~(e ~A Ce-'~A) ] (5.29) 
x 
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But s ince  eiXA~lB,  we have from the module property (5.1) the relation 

~(eixAce-ixA) = eixAen(c)e - ixA (5.30) 

From (5.29) and (5.30) we can conclude that 

Tr [veAeBc] = Tr [ w % A c ]  

for all vEJ-(W), from which it follows that 

~A~B C ~_ ~,B~.Ac, 

for all C ~ B ( J f ) ,  which implies Eq. (5.28). The property ii) can now easily be derived 
from (5.28) by apply Eq. (5.26) and the module property (5.1). 

As regards iii), the implication c a =  eB=> ~//A = 0//~ is trivial as the algebras 
U//a, 5//~ are the ranges of cA, ~ respectively. To prove the converse, we may 
first note that if ~A = ~//~, then A, B are compatible, so that we have ~A~B = 8B~,A 

as shown above. Also, since our hypothesis d//A = ~/~ implies that e A c ~ '  B, 
~BC~lia  for all C~B(J f ) ,  we get 

s A c  = F,B,~A C = ~AF, B C = ~B C 

for all C s B ( ~ ) ,  so that we have e A = e B. Finally, in order to prove iv), we note 
that if the function f satisfies the above conditions, then every spectral projector 
of A is also a spectral projector off(A) and vice versa. Hence we have ~//] = ~//S(A), 
SO that we can conclude from iii) that cA= eI(A). Equation (5.27) follows right 
away from (5.26) once we make use of the relation (2.9) between the spectral 
projectors of A andf(A).  This completes the proof of the above theorem. 

We shall comment briefly on the physical significance of the various properties 
established in the above theorem. The property (i) is sometimes referred to as the 
repeatability property of the collapse transformation. It may be noted in this 
connection that Davies and Lewis [9] had suggested that it might perhaps be 
necessary to give up this property in order to obtain an appropriate generalization 
of the collapse postulate. Property (ii) shows that for compatible observables, 
the associated collapse transformations also commute. (iii) shows that the condi- 
tional expectation e A is completely determined by just the algebra v//a associated 
with A. Finally, (iv) is just a generalization to an arbitrary observable of the 
result stated in Lemma 2.1 for an observable with a purely discrete spectrum. 
We may note that it essentially demonstrates that the collapse associated with 
an observable A and that associated with its functionf(A) are related only when 

t ! 

d//A = ~/f(a~" 
Finally, a few remarks may be made on the novel feature of the collapse 

postulate (E) that it cannot be formulated in terms of collapse transformations 
(or operations) which are defined on the space of density operators. As was noted 
in Sect. IV, this is due to the fact that the expectations {gA(A)} as given by (5.16), 
(5.17) are in general non-normal. In our opinion, this novel feature of the collapse 
postulate (E) clarifies to some extent the essential role played by the collapse 
postulate--for  it has often been thought of as a postulate which introduces some 
strange transformation in the state of a system "caused" by the act of observation. 
The necessary delinking of the collapse postulate from transformations defined on 
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the set of states (which is implied in our postulate (E)), would perhaps serve to 
illustrate more clearly the fact that the main function of this postulate is to provide a 
prescription for the joint probabilities associated with the outcomes of successive 
observations. 

It should however be noted that it is still possible to consider the postulate (E) 
as introducing a transformation on the "states", provided we are willing to include 
as states all the normalized positive linear functionals on B(;gF). It is well known 
that there exists an isometric isomorphism of Y-(~4 ~) into a subspace of the dual 
B(2/f)* of B(~).  Also, every expectation gA(A) (normal or otherwise) has an 
adjoint which is a positive linear map on B(Cgf)*. Hence, if we accept all the norma- 
lized positive elements of B(W)* as possible states of a system, then the collapse 
postulate (E) can also be viewed as introducing certain collapse transformations 
on such states. This formulation would also vindicate the often expressed conjec- 
ture that a generalization of the collapse transformation (2.3) would, in the case of 
observables with continuous spectra, take every density operator into a more 
general object--which in our case would be an element of B(Yt~) * which is not 
a normal linear functional on B(Jcf). The fact that the joint probabilities for 
observables turn out to be non-a-additive will now also be closely related to 
the inclusion of non-normal linear functionals on B(34¢ ~) as possible states of a 
system. Finally, we may note that all our results can be easily extended to the 
algebraic formulations of quantum theory, wherein the significance of some of 
the above remarks would be more transparent. 

VI. The Statistics of Successive Observations in Quantum Theory 

In this section we shall consider some of the important features of the framework 
developed so far, from the standpoint of probabifity theory. We have seen that 
the general collapse postulate (E) provides an unambiguous and complete pres- 
cription for realizing various outcomes in any arbitrary sequence of observations, 
in terms of the generalized Wigner formula (5.18). It was also noted that these 
joint probabilities are not in general a-additive. Before going into a discussion 
of the implications of non-a-additivity on the statistics of successive observations, 
we shall first consider some of the other non-classical features of the joint pro- 
babilities themselves. 

To start with, it may be noted that the basic joint probability prescription 
of the classical probability theory can also be formulated in a manner analogous 
to the generalized Wigner formula ((3.17) and (5.18)). For this purpose consider 
a classical probability space (Y2,B([2)), where ~2 is a complete separable metric 
space and B(f2) is the associated a algebra of Borel sets. Each observable is a real 
valued random variable A • O ~ R and the characteristic functions {ZA-~(~)} are 
the classical analogues of spectral projectors. Again if M(O) is the Banach space 
of all bounded complex measures on B(Q) and ~e(O) is the Banach space of all 
bounded complex measurable functions on ((2, B((2)), then we have the bilinear 
form 

<#, X )  : ~Xd# (6.1) 
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for all p ~ M ( f 2 )  and XeL~c~a(f2). The important feature of classical probability 
theory is that 5¢(O) is an abelian algebra, and therefore the algebra of all those 
bounded observables compatible with any given observable will be the whole 
of 5f(O) itself. Thus each of the conditional expectations eA will reduce to the 
identity map on 5¢(O). 3 Hence we have for each observable A, the associated 
expectations {EA(A)} given by 

~A(A)  X = )(,A I(A) "F'AX = •A- I(A)X (6.2) 

for each X~L,q(f2). The generalized Wigner formula (3.17) will now reduce to the 
following: 

Pr~I,A~ ..... At(A1,  Z~2, . , .  , Ar ) = < ]~, ~AI(/] 1)gaz(A2) ... gAr(Ar) I > 

= ~ZA[ I(AI)ZA 2 ~'(A2) " ' '  ZA r 1(At)d# 

= tz(A;~(A1)c~A~X(A2)c~ ... ~ A ~ - I ( A ) ) ,  (6.3) 

which is the well-known prescription for joint probabilities in classical probability 
theory. 

It is thus clear that the non-classical features of quantum-theoretic joint 
probabilities arise from the fact that B(~Ct ~) is a non-abelian algebra so that the 
conditional expectations e a : B(g/g) --, q/~ turn out to be nontrivial. It is precisely 
this fact that ea is not the identity map (whatever the observable A might be) 
which gives rise to the "quantum interference of probabilities" [24-26]--which 
essentially is the feature of quantum-theoretic joint (and conditional) probabilities 
that they crucially depend also on the entire sequence of observations performed 
on a system. 

Apart from the quantum interference of probabilities which was also well 
known earlier in connection with observables with a purely discrete spectrum, 
the important non-classical feature of the quantum-theoretic joint probabilities 
(which arises only when we include in our considerations observables with conti- 
nuous spectra) is that they are not a-additive in general. For example, as we 
already noted, the joint probability Pr],n(A 1, Az) is not a-additive in A2 whenever 
A has a continuous spectrum, because the conditional expectation e a turns out 
to be non-normal. If in addition the observable A happens to have a purely 
continuous and simple spectrum, then we can show that the associated condi- 
tional expectation will be "singular" [32, 43] and has the property 

~AC = 0 (6.4) 

for each compact operator C. We therefore have the following rather curious 

3 It should of course be emphasised that non-trivial conditional expectations do arise in classical 
probability theory when we consider, say, the algebra ¢/a of all bounded complex-valued Borel func- 
tions of A [55]. In fact the study of conditional expectations in operator algebras was inspired mainly 
by the work on conditional expectations in classical probability theory. However, unlike in quantum 
theory, the conditional expectations play no role in the formulation of the basic prescriptions of classical 
probability theory 
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result: 

Pr~,R(A , {)..}) = 0, (6.5) 

for all A eB(R), whenever A has a purely continuous simple spectrum and 2 is 
an eigenvalue of B with a finite multiplicity. 

The most important limitation of a probability theory with only finitely additive 
probabilities seems to be that we no longer have the very well developed machinery 
of integration with respect to a a-additive probability measure which plays a 
very crucial role in the classical probability theory in providing a natural definition 
of expectation values, correlation functions etc. In fact the joint probabilities 
PrA,(,,),a2(ta),...,Ar(tr)(A1,A2,. AT) given by the generalized Wigner formula (5.18) 
are just finitely additive set functions, which are in addition defined only on 
finite Unions of sets of the form A 1 x A 2 x ... x AT, where AieB(R) for each 
i s { l , 2  . . . . .  r}. Hence, there does not seem to be any immediate prescription 4 
for the evaluation of the expectation value of an arbitrary Borel func t ionf  • R' -+ R, 
based solely on the generalized Wigner formula (5.18). From a physical point of 
view, this is indeed a very serious limitation, as one usually employs the proba- 
bilities only insofar as they determine the entire statistics of successive observations 
- -which  essentially involves a determination of the mean or expectation values of 
all suitable functions of the set of outcomes when an arbitrary sequence of obser- 
vations are performed. For  the purposes of the present investigation, we shall take 
the viewpoint that in order to have a complete theory, the expectation values of 
the various observations and their Borel functions are to be prescribed separately,  
but in a manner consistent with the basic prescription for probabilities. We shall 
now introduce such a prescription for expectation values, which (together with 
our assumptions (A). (C) and (E)) serves to characterize completely the statistics 
of any sequence of observations. 

First of all it may be noted that for each state p and arbitrary observables 
{A 1, A 2 . . . .  ,AT} the map 

A 1 × A 2 > ... × A T -+ T r [ p P a ' ( A 1 ) e  ix'a~ ...eiX'-*Ar-~pA~(Zlr)e -ix~-lA~ ' 

•.. e -  ix2A2e- ixtA1] 

can be extended into a unique (bounded and a-additive) complex measure on 
R ~. The associated distribution function is given by 

FPA,,A2,...,A~()q ') '2' ""'J[, ;X1 ' X 2 '  "'" ' X r - 1 )  = Tr [.PPA'(( -- oo, 2~])e~,a, ... 

... e - i~a=e-~ 'm] .  (6.6) 

I f f : R ' ~  R is a measurable function and t I < t 2 < ... < t~, then we denote by 
Exp~,(t,),...,a~(t~) [ f ( A l ( t l ) , . . . ,  A (t,))], the expectation value of the function f of the 
outcomes which are obtained when an ensemble of systems prepared in state p 

P 4 Since the joint probability PrA,(,~),...,A,.(t,)(AI,A z . . . . .  A) are not defined on the entire a-algebra 
B ( R ~ ) ,  we cannot, for example, employ the integration theory for finitely additive measures outlined 
in [56, p.354]. 
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are subjected to a sequence of experiments to observe {Al ( t l ) ,A2( t2 )  , . . . .  At(t) }. 
We now introduce the following prescription for such expectation values. 

(F) Expec ta t ion  value postulate: Le t  J" i R~ ~ R be a measurable . funct ion and 
t 1 < t 2 < ... < t r. Then  Exp~,(t~ ) ..... A~(t~)[f(Al(tl) . . . .  ,A~(t~)] exists and is given by 

Exp~,(,,),A2(,=) ..... a ~ ( t ~ ) [ f ( A l ( t l )  . . . . .  A (t~))] 

X1 X2 x r -  1 

"dF°A(,,) ..... A~(tr) (~'1,22,'",/~r ; Xl, X2 . . . . .  X~_ 1)], 
(6.7) 

whenever  the right-hand side o f  the above equation exists. 
The condition that the right-hand side of Eq. (6.7) exist is essentially the 

condition that the Lebesgue-Stieltjes integral enclosed by brackets [ ] which 
function (in all the variables x 1 , x2 , . . . ,  x r- 1) should be such that the operation 
of taking invariant means makes sense. 

The expectation values defined by postulate (F) satisfy the following properties, 
which also show its consistency with the collapse postulate (E) and the predictions 
of conventional quantum theory (wherever available). 

i) If f l ,  f2 are  Borel functions on R r, and %,  0~ 2 are arbitrary real numbers, then 

Exp,,(,)  ..... A~(,~)(%fl q- 0~2f2)= 0~1 gxP.~,(,,),...,a~(,~)(fl) 

-}- 0{ 2 gxp~a(tl),...,A,(tr)(f2), (6.8) 

which shows the linearity of expectations. 
ii) Expectation value of a constant function is constant. 
iii) I f f  : R ~ -+ R is given by 

f(21,22 ....  ,2r) -- ZAa(21)ZA2(,~2)... Zzl~(2r), (6.9) 

w h e r e A i e B ( R ) ,  i = 1, 2 . . . . .  r, then 

o , (6.10) Exp~l(t,),...,A,.(,,)(f) = PrA,(t,) ..... At(t,)( A1 A2 . . . . .  A), 

which shows the consistency of (F) with (E). 
iv) If {A l, A z . . . . .  A}  is a compatible set of observables and f : R ~ ~ R is a 

Borel function, then 

Exp~ ~,A2,...,a~(/) = Tr , (p f (A1 ,  A2 . . . . .  A,.)) (6.11) 

whenever the right-hand side exists, which shows the consistency of (F) with the 
predictions of conventional quantum theory. In particular, we recover the standard 
result 

Exp](A) = Tr (pA) (6.12) 

whenever the right-hand side exists. 
We shall not go into a further discussion of the statistics of successive obser- 

vations, as would follow from the postulate (F) except to note that the postulate 
(F) reduces to the usual prescription for the expectation values in classical pro- 
bability theory, if we assume that the algebra of observables is abelian. It may 
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be of  some  in te res t  also to wr i te  d o w n  the  fo l lowing  fo rmula ,  wh ich  we bel ieve 
w o u l d  be of  i m p o r t a n c e  in  app l i ca t ions ,  

a m~ ~ . . .  Am.) = T r  .,, AI m2 A2 Ar-~(Am~) EXPAI,A ...... ar(Al A2 [PAl ~ (A2 8 ( ' ' "  ~ . . . ) ]  (6.13) 

for all  in tegers  m l ,  m 2 . . . . .  r n .  
I n  c o n c l u s i o n  we w o u l d  like to  emphas i se  tha t  the  pos tu la t e s  (A), (C), (E) a n d  

(F) p rov ide  a comple t e  f r a m e w o r k  for the  d i scuss ion  of  successive o b s e r v a t i o n s  
i n v o l v i n g  a n y  a r b i t r a r y  s equence  of  obse rvab l e s  in  q u a n t u m  theory.  T h e  m a i n  
o b s e r v a t i o n a l  p resc r ip t ions  of the  t h e o r y  are  c o n t a i n e d  in  Eqs.  (5.18) a n d  (6.7), 

the  fo rmer  be ing  a pa r t i cu l a r  case of  the  la t te r  if we take  i n to  a c c o u n t  Eqs.  (6.9) 
a n d  (6.10). These  of  course  i nc lude  as pa r t i cu l a r  cases all  the  bas ic  o b s e r v a t i o n a l  

p resc r ip t ions  of  c o n v e n t i o n a l  q u a n t u m  theory .  In  add i t i on ,  as we have  shown ,  
the  gene ra l  f r a m e w o r k  tha t  has  been  i n t r o d u c e d  enab les  us  to  d iscuss  s i t u a t i o n s  
( invo lv ing  successive obse rvab le s  wi th  a c o n t i n u o u s  spec t rum)  wh ich  c a n n o t  
be  h a n d l e d  in  the  c o n v e n t i o n a l  f r a m e w o r k  of  q u a n t u m  theory.  I t  is h o p e d  tha t  
this  gene ra l i z a t i on  w o u l d  a lso  p e r h a p s  give rise to n e w  ways  of  c o n f r o n t i n g  the 

elusive co l lapse  pos tu l a t e  to  a p p r o p r i a t e  e x p e r i m e n t a l  tests. 
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