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Abstract. Chemical kinetics of a system of reacting polymers is modelled by an 
equation which shares certain properties with Boltzmann's equation. Being 
more tractable, however, this evolution may be of an illustrative value for the 
latter. The existence and uniqueness of solutions are analysed. We derive an 
entropy production inequality which is used to prove global exponential decay 
of the free energy. With its aid a uniform rate for strong convergence to equi- 
librium is proven. The generators of the linearized flow at the vicinity of the 
equilibria are diagonalized. 

I. Introduction 

Many substances form long-chain polymers of varying length. The distribution of 
the length of the polymers is determined by the dynamical equilibrium between 
competing reactions; that of degradation, caused by the breaking of bonds, and 
recombination in which two linear polymers join at their ends. 

In a simple model of such a system the density function (whose argument is the 
length of a polymer) obeys a dynamical equation which shares certain properties 
with Boltzmann's equation. However, as it turns out, this equation is more 
amenable to analysis and as such it may be of illustrative value. In particular, it 
offers an example in which an analog of the H-theorem can be used directly, with 
the aid of a new inequality, to prove a global convergence to equilibrium. 

The following notation is being used: 
b(t, n) is the number of polymers of n units ; A is a quantity of the order of 

magnitude of the total number of polymers (e.g. Avogadro number): ~ is the 
length of a building unit of the polymers; x = n . 6  is the length of a polymer; 
c(x) = ~(x /6)~-IA-1,  i.e. c(x)dx is the number, in the units of A, of polymers whose 
length is in Ix, x + dx). 

Assuming that all the bonds (of which there are n - 1 in a polymer of length n) 
break independently and with the same rate and that the probability for two 
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molecules to combine is independent of their lengths we have : 

(3 
~5 6(t, n)=/¢~2 y, & ,  m ) - / ~ l ( n -  t)e(t, n) 

n +  1 

n oo 

+/£2 ~ ((t, n--m)d(t, m)--/~223(t, n) ~ d(t, m). (1.1) 
0 0 

/ ~  and/~2 are the reaction rates for degradation and recombination, respectively. 
In order for the reaction time of a long molecule to be finite, both/£1 and 

/£a should be small. We define the rescaled reaction constants K 1 and K 2 by 

R 1 =K,g;, R 2 =K2/A.  (1.2) 

In the Riemann approximation, a ~ ~ j' dx, Eq. (1.1) leads to: 
n 

co 

.otc(t,~ x)=K~2 y dyc(t,y)_Klxc(t,x ) 
x 

x co 

+ K 2 y dyc(t, x - y)c(t, y ) -  K22c(t , x) y dyc(t, y). (1.3) 
0 0 

Since the quantity F(x)=ac(bx) obeys a similar equation with K~ and K 2 
replaced by 

K~ =Klb , Kz =K2b/a (1.4) 

it is enough to study the case K~ = K 2 =  1" 

~t c(t, x) = 2 ! dyc(t, y ) -  xc(t, x)+ (c*c)(t, x) 

- 2c(t, x) ~ dyc(t, y). (1.5) 
0 

In the above convolution c is to be treated as a function which vanishes on 
( -  oo, 0). 

Equation (1.1) was formulated by Blatz and Tobolsky [11, whose rate constant 
K 2 differs from ours by a geometric factor of 2. Their discussion was restricted to a 
particular solution which corresponds to a solution of Eq. (1.5) of the form 

c(t, x) = ~(t) 2 exp [ -  cfft)x] . 

This is a solution provided 

d 
~(t) = 1 - c4t) 2 

that is [for c40) > 0] 

t anh  (t + to) 

~(t) = 1 

. coth (t + to) 

0 < cff0) < 1 

a(0) = 1 

c40) > 1 

(1.6) 

(1.7) 

(1.8) 

with some t o > 0. 
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The above is a particular solution, albeit a very interesting one since it shows 
that the simple form of (1.6) is preserved by the time evolution and it exhibits 
convergence to a stationary distribution: 

c( t , x )  , e x . (1.9) 
(t~ oe) 

In fact, all the exponential distributions, e-zx with 2 > 0, are stationary for Eq. (1.5) 
and form a class of what Flory [2] named the most probable distributions. Neither 
his paper nor the later work of Blatz and Tobolsky clarify this concept. 

Apart from the fundamental questions of the existence, uniqueness and 
positivity of solutions for general initial data, (1.9) suggests the question of global 

0o 

convergence to equilibrium. Formally, the quantity f d x  xc(t ,  x)  is a constant of the 
o 

motion, as the total number of units, to which it corresponds, should be. One could 
therefore ask whether any solution converges to the corresponding exponential 
distribution selected by this conservation law. 

Equation (1.1) has been studied before by one of us [3] in connection with the 
experimental determination of the rate of degradation of very large molecules. 
Reference to earlier work on that problem can be found in that paper. The 
linearized equation, and in particular its discrete version, which is also being 
studied by Kjser [4], is of interest in connection with the experimental study of the 
approach to equilibrium in systems containing hydrogen-bounded oligomers [5]. 

In the present paper we discuss the dynamics generated by Eqs. (1.1) and (1.5). 
The existence and uniqueness of solutions are discussed in Sect. II, where some 
spurious solutions are also exhibited. In Sect. III it is shown rigorously that, in 
analogy with Boltzmann's H-theorem, the free energy of the system is non- 
increasing. This result is strengthened in Sect. IV where, with the aid of a new 
inequality, the free energy is proven to decrease, exponentially fast, all the way to 
its equilibrium value. This provides a necessary step in Boltzmann's method of 
proof of convergence to equilibrium, which in general is not easily accomplished. 
In Sect. V the decay of the free energy is being used to prove uniform convergence to 
equilibrium for a general class of initial data. In Sect. VI the spectra of the 
linearized generator, at the equilibrium points, are given exactly. Finally, the exact 
solution for the time-dependent Laplace transform of c is given in the Appendix. 
The explicit solution is not easily invertible and does not seem to offer a direct way 
of proving the above results. 

In order to shorten expressions which involve functions of several variables, 
like c(t, x), we shall occasionally omit the explicit reference to some of the variables 
which are fixed in a given expression. 

II. A Reformulation Which Ensures Unique Solutions 

Equation (1.5) offers an incomplete specification of the dynamics. For a given 
initial data it has various solutions but only one of them describes systems which 
are essentially finite and this is the one we shall choose. As it turns out, the 
singularity lies entirely in the linear part of the generator which, therefore, shall be 
discussed first. 
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a) The Linear Part 

A natural norm, which corresponds to the total number of particles, and the space 
of functions in which Eq. (1.5) will be discussed are 

¢o 

I1cflx = S d~ xIc(x)l 
0 

and 

~ = { c :  [o, ~)--,IRI IIcll~ < o0}. 

The linear part of Eq. (1.2) is given by an operator A which acts as 

ao 

(Ac)(x) = 2 ~ dyc(y) - xc(x) . 
x 

(2.1) 

VL > O, A leaves 

2~L={fe~lf--=O on [L, oo} 

invariant and its restriction to ~z  is bounded: 

ffAfftx<2Llffrfx Vf  ~ L  . 

We shall use this fact to define the semigroup on 

(2.2) 

(._) ~L. A will then be defined as 
L > 0  

the generator of the extension of the semigroup to ~.  In this way the invariance of 
aM L is manifestly ensured, reflecting the fact that molecules longer than L cannot be 
produced by disintegration, if initially such molecules were absent. 

Lemma 2.1. i) For any L>O and f e ~ L  the equations 

t c(t)= Ac(t) (2.3) 

c (o )=f  

have a unique solution in ~L" 
ii) The corresponding semigroups ct~L) = exp (tA ~ ~L) are consistent: if L 1 > L  2 

then Vf  e ~t2 

o:~L~) f = O~IL~) f . 

iii) a t are positivity preserving contractions. 
iv) For any L > 0 and f e YJL 

o~  oo  

~dxx(c~L)f)(x) = ~ d x x f ( x ) .  
0 0 

Proof i) and ii) follow from the existence and uniqueness of semigroups for 
bounded generators, ctl L) is positivity preserving since A ~ z  is a sum of two 
bounded operators both of which generate positivity preserving semigroups. The 
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last property implies also that for f >0, f e  N' L, 

d d 
dt Itatfllx = ~ J0 dx x f  (t, x) 

= ~ dx x(Af)(t, x)=0  (2.4) 
0 

[for the second equality the ]j. II ,-differentiability off( t)  was used]. Thus for positive 
f~Nr Ila~L)llx= [tfl[~ and in general, using the decomposition into positive and 
negative parts, ][a}L)fllx<= 1lfllx Vf ~ L "  [] 

We may now extend the definition of the semigroup to N ~. Let PL be the 
projections on ~L defined by 

(PLf)(x)= { f(x) L<=xO<X<L. 

Proposition 2.1. 

i) a t = s- lim a(L)P L 
L ~ c ~  

exist and form a positivity preserving contraction semigroup on ~. 
ii) a, satisfies 

o9 

I dx xa, f(x)= ~ dxxf (x) .  
0 0 

iii) The generator of a t is the closure of A restricted to 

Do(A)= { f  E ~i i dxx2,f(x)l < oo } • 

iv) atis the unique strongly continuous semigroup whose generator satisfies Eq. 
(2.1) and such that VL>0, atNLCN L. 

Proof. i) Let f e N .  Since fo r /~>L  

II a}L)PEf -- af)PLfll ~ < II (Pc-  PL)fll ~ , 

a~L)pLf are Cauchy uniformly in t. Thus the limit exists uniformly in t and a t in- 
herits the above mentioned properties of a~ L). 

ii) The equality follows by continuity. 

iii) On MLat =~I L~. Thus a t leaves U ~L invariant. The generator of a t is 
L 

therefore the closure of At  U "~L [10]. Since D0(A) 3 U ~ L  and 
L L 

VfED0(A ) APLf~Af ,  Do(A ) too is a core for the generator. 
iv) The uniqueness follows from the above argument which applies to any 

semigroup which satisfies the assumption in iv). []  

As to the uniqueness of individual solutions; the following criterion follows 
from i) and iii). 
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Corollary 2.1. L e t  f ~ @0(A). There  is at most  one cont inuously  11-[]~-differentiable 
solution to 

{ ~ c(t)= Ac(t)  

c(0) = f  

such that c ( t ) E ~ o ( A  ) Vt>0. 

Our preoccupation with the uniqueness is not unfounded since Eq. (2.3) has 
additional solutions in ~,  e.g. 

ca(t, x) = eta/(x + a) 3 

with a>0. Thus, by adding linear combinations (in a) of 

~,co(O, x ) -  co(t, x) 
= [e -t~ + t(x + a)e -t~ + ½t2(x + a)2e - ~ -  eta]/(x + a) 3 (2.5) 

[see Eq. (2.8)], it is seen that solutions of Eq. (2.3) are non-unique for any initial 
data. This however is consistent with Corollary 2.1, in particular c~(t, • )q~@0(A). 

The same analysis, after the obvious modifications, applies in the discrete case 
(1.1), where the linear evolution is described by 

d 
d(t, n )=  2I( 1 ~ g(t, m ) - ( n -  1)/(l((t, n). (2.6) 

n + l  

The semigroup is explicitly given by the following expression which was found 
in [3], 

co 

d ( t , n ) = e - ( " - l ) t ' l t ~ { ( 1 - e  2 R l t ) + ( 1 - - 2 e - ~ l t + e - 2 ~ t ) ( m - n ) } ~ ( O , m ) .  (2.7) 
t i t  

In the continous case, with K~--1, this reduces to 

co co 

(atc)(x) = e -  t~c(x) + 2 t e -  tx ~ dy c(y) + tZe - t~ ~ dy  (y - x)c(y) . (2.8) 
x x 

b) The  Full  Equat ion  

Equation (1.5) inherits the non-uniqueness which is present in its linear part. 
Having seen how to resolve this we reformulate the equation of the dynamics, 
using the chosen solution for the linear term, as 

t 

c( t , .  )= c~tc(0 , • )+ ~ dsc~,_sK(c(s , • )) (2.9) 
0 

with 

K(c)  (x) = (c ,c ) (x )  - 2c(x) ~ c(y)dy. 
0 

Equation (1.2) is recovered from (2.9) by differentiation. 
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We shall discuss the solutions of Eq. (2.9) in the space ~ defined as follows. 

0 0 

IlIclll = Ilcll i + llc]lx 

~- = {f:  [0, oo) ~IR I tllflll < oo }, ~+  = {f~ ~ l f ( '  ) > 0}.  

Lemma 2.2. Let f a ~  then 3Te(0,  ~ ] ,  such that for te l0 ,  T) Eq. (2.9) has a 
unique solution with c(O, x)= f (x)  and c(t, x)e ~ Vt6 [0, T). The maximal T with 
that property, T,, is finite only if lim sup Illc(t, ")Ill = oo. 

t ~ T  

Proof Let C l , C 2 ~ ,  then 

[flK(c 0 - K(c2)ll I 
oo oo 

= (c~ - c2),(q + c2) - 2(c~ - c 2 ~ dyc~(y)- 2c 2 .[ dy[c~(y)- c=(y)] 
0 0 

<-_5(111c1111+1IIc2111)(1[1cl - c 2 l l l )  • (2 .10)  

Therefore the map c~K(c)  is locally Lipschitz in ~ .  
Further, Vf~ ~- 

I]atfIlx<Hf]lx, tTo:~fNl <T1fl]l +tl]fl]x 

and 

III~tf[I I __< (1 + t)llIfllt (2.11) 

[due to the linearity it is enough to verify it for non-negative f for which it follows 
by integrating Eq. (2.8)]. 

Let f ~  ~ .  It follows from (2.10) and (2.11) that for b > Illflll, and T > 0 such that 
(Y + y2/2)lOb 2 = (b -Ill fill) + 2/b the mapping 

c(t )~--e(t )  

"d(t) = ~tf + ~ dsc~_ ~K(c(s)) 
0 

(2.12) 

is a contraction in the space of continuous functions 

{c: [0, T ) ~  {ge o~-I IllgIIl = b}}, 

equipped with the sup I]lc(t)IIl norm. A standard argument implies now the local 
t 

existence and uniqueness of solutions of Eq. (2.9) [given by the fixed point of the 
mapping (2.12) with f--c(0)].  [] 

Some of the solutions of Eq. (2.9) blow up in a finite time [e.g. if N(0)<0, see 
(2,13)], this however does not happen if initially c is non-negative, which is the case 
of interest : 
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Proposition 2.2. Let f e~+. Then 
i) Equation (2.9) has a unique continuous solution, c(t, x), such that c(O, x)= f(x) 

and c(t, x)e ~ V t  > O. 
ii) V t>0  c(t,x)>O. 

Proof The quantities 

N(t) = ~ dx xc(t, x) 
0 

and 
oo 

M(t) = S cIx c(t, x) ,  
0 

obey the autonomous differential equations which are formally obtained by 
integrating Eq. (1.2): 

d 
N( t )=0  

d (2.13) 
~ M ( t l = N ( t l - M ( t )  2 . 

These equations can be derived by differentiating the autonomous integral 
equations for N and M which are obtained by integrating Eq. (2.9). It follows that 
if N(0), M(0)> 0 then both stay bounded uniformly in t >0. Since for positive c, 
][]clI]=N+M, in order to deduce the global existence of solutions which stay 
uniformly bounded it; suffices to prove that the positivity of c is preserved under 
the time evolution. The necessity, for physical reasons, of such a condition is 
obvious. Heuristically it seems to follow from Eq. (1.5), nevertheless it is not 
satisfied by some of the spurious solutions. 

One obtains an expansion for the solutions of Eq. (2.9) by iteratively 
substituting 

O0 oO 

c(t, .)=arc(0, -)+ ~ dsa,_s(e(s , . ),c(s, . ) ) -  ~ dsat_s(2M(s)c(s , .)) (2.14) 
0 0 

in its last term. This is just the norm convergent (in our case) expansion, in powers 
of ~ dsM(s), of the following expression 

c(t, .)=c~t(c(0 , . ))exp l -  2 i dsM(s)] 

+ ~ dse t_ ~(c(s, .),c(s, .)) exp - 2 duM(u) . (2.15) 
0 

By the same contraction mapping argument as in the proof of Lemma 2.2, the 
unique solution of (2.15) with c ( 0 , - ) = f ( - )  may be obtained by iterating the 
mapping which takes c(., • ) to the expression at the right hand side of (2.15). In 
this method, starting with c(t, . )=f ( . ) ,  the solution of (2.9) is constructed by 
manifestly positivity preserving iterations. []  
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Proving the existence of the time evolution we obtained the autonomous Eq. 
(2.t3) for N(t) and M(t). Solving them we learn an interesting property of the 
dynamics. 

Corollary 2.2. Let c(O, .)>=0, c(O, .)~,~. N and M of the solution of Eq. (2.9) are 
9iven by: 

N(t) = NO) 

IN(0) 1/2 tanh [N(O)t/2(t + to) ] M(0) < N(0) i/2 

M(t) = ~ g(0) 1/2 M(0) = g(o) u2 (2.16) 

[ g(0) 1/2 coth [N(O)l/2(t + to) ] M(0) > N(0)1/2, 

for some t o > 0 which may be determined from N(O) and M(O). 

Thus while N (which corresponds to the density of units) is constant, M (the 
density of polymers) tends to an equilibrium value which depends only on N. The 
convergence to equilibrium is studied in more detail in the next sections. 

III. An F-Theorem 

A class of stationary solutions of Eq. (1.2) is given by 

C a ( X  ) = e- a x  . (3.1) 

A solution in this class is uniquely characterized by N(ca)=a -2. In view of 
Corollary 2.2 one may suspect that these are the equilibrium states for the system 
and that the time evolution leads any state to the corresponding equilibrium, as 
determined by the conservation law for N(c). 

For Boltzmann's equation convergence to equilibrium is indicated by the 
celebrated H-theorem. A natural question is whether the time evolution conside- 
red here has an analogous property. 

a) A Formal Argument 

In order to clarify some of the concepts we shall first discuss a more general class 
of equations of which (1.5) is a particular case. 

An H-theorem is to be expected, formally at least, for all systems whose 
particles interact by a balanced scattering, e.g. a two particle reaction by which a 
pair of particles in the states (x, y) produces a pair in the states (x', y') at the rate 

c(x)c(y)K(x, y lx', y')dxdydx'dy' , (3.2) 

which is balanced in the sense that 

K(x, y lx', y') = K(x', y'lx, y) . (3.3) 

Under the generated dynamics S dxc(x) is invariant and the entropy 

S(c) = - S dx c(x) In c(x) (= - H(c)) (3.4) 

is monotone non-decreasing. 
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An equally tractable situation occurs if the system undergoes the reactions 
t ! ! t x (x ,y )  at the rate c(x)~K(xlx ' ,y ' )dxdx 'dy '  and the opposite reactions (x , y ) ~ x  

at the rate c(x')c(y')K(xlx', y')dxdx'dy'. The contribution of such reactions to the 
dynamical equation is 

0 
8~ c(t, x) = - c(t, x)e ~ dx'dy'K(x]x' ,  y') 

+ 2 ~ dx'dy'c(t, x')o~K(x']x, y') 

- 2c(t, x) ~ dx'dy'c(t, x')K(y'[x, x') 

+ S dx'dy'c(t, x')c(t, y ' )K(xlx ' ,  y ' ) .  (3.5) 

The number of particles is not conserved and for general e and K, H is not 
monotone decreasing. However, another quantity is. 

In order to see the relation of the above dynamics to those described by (3.2), it 
is convenient to add a fictitious state, x o, and look at the reactions x ~--,(x', y') as 
(x, Xo)~--~(x'y' ). From this point of view the only difference is that the reaction rates 
do not depend on the concentration of reactants in the state xo, and c(xo) is 
replaced in (3.2) by a constant e. Such dynamics may be viewed as a weak coupling 
limit of the reaction described by (3.2). In this limit the reaction rate of particles in 
the state x o is scaled by e and the degeneracy of that state [i.e. the discrete measure 
with respect to which the density C(Xo) is defined] is e- I. Equation (3.5) is obtained 
if, while e~0,  the total number of particles is 

c(xo)/e + S dxc(x )=~/e  . (3.6) 
(x * xo) 

Since the number of particles is invariant, 

c(t, Xo) =c~ - ~ ~ dxc(t, x) (3.7) 

and the total entropy may be computed from c(x), x 4= x o : 

S =  - e,- %(t, Xo) lnc(t, Xo)- ~ dx c(t, x) In c(t, x) 

= - e- lc~ In c~ + [ln c~ + 1] S dx c(t, x) + O(e) - ~ dx c(t, x) In c(t, x ) .  (3.8) 

Thus the monotonicity in time should be expected for the following quantity 

F~(c) =- ~ dxc(x)  In c(x)-  [ ln~+ 1] ~ dxc(x)  

= - S ( c ) -  [lne + 1] ~ dx  c(x).  (3.9) 

Indeed, by a formal calculation, if c(t, x) obeys (3.5), then 

d 
F~(c ( t .  . ) 

= - ~ dxdx'dy 'K(x]x ' ,  y') [0~c(x)- c(x')c(y')] 

• {ln [ac(x)] - in [c(x')c(y')] } < 0 .  (3.10) 

The last inequality follows from the monotonicity of in x. 
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Equation (1.3) is a particular case of (3.5) corresponding to 

K(xTx', y') = K2•(x '  + y '  - -  X) 

ct=K1/K 2 . (3.11) 

The calculation is straightforward as long as one remembers that the range of x, x' 
and y' is [0, oo). 

Hence we expect the following to be true, with 

c~ 

F(c) = S dxc(x) [ln e(x ) -  1] . (3.12) 
0 

Proposition 3.1. Let e(t,x) be a solution of Eq. (1.5) with c (0 , . )~ -+ ,  then 
V t 2 ~ t i ~ 0  

F(c(t2, . )) N F(c(tl, . )) . (3.13) 

Proposition 3.1 is proven in Part b) of this section. The previous discussion is, 
of course, not necessary in order to verify that if c obeys Eq. (1.5) then formally 

F(c) = - d x  ~ ely [c (x  + y)- c(x)e(y)]  
0 0 

• {ln e(x + y ) -  In [c(x)c(y)] } < 0 .  (3.14) 

It may be worth pointing out that in the application F is the free energy density 
of the system. If e(<0) is the energy of a bond, then for a chemical system, 
modelled by the equations, the ratio of the two rate constants is 

/(1//(2 = exp (e/kT), (3.15) 

where T is the temperature at which the system is maintained. Substituting this in 
(3.9), using (3.11) and (1.2), we obtain 

F(c) = - S(c) + M(c) [ln (6 A ) -  1] - eM(c)/(k T) 

~ A - l  {-- ~ ~,[ln~ -- l ] - -e  Z ~,/(k T)} . (3.16) 

This is the free energy, at the temperature T, since the chemical energy is 

E(c)=e - ~. ~ - e A M ( c ) ,  (3.17) 

relative to the state in which all the units form a single linear polymer molecule. 

b) Proof of the F-Theorem 

In order to use the formal derivation of Eq. (3.14) we introduce approximating 
dynamics for which (3.14) is easily justified. The F-theorem follows by a 
semicontinuity argument. 
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The approximating dynamics, obtained by suppressing the reactions which 
involve molecules longer than z, are described by the following equation. 

0 , [2idyc(y)-xc(x)+(c*c)(x)-2c(x)~-f 'dyc(y) O < x < z  
~c(t ,x)= l O~ o z <x . (3.18) 

Let a~ be the semigroup on J whose generator is the bounded operator 
described by the first two terms in (3.18), and let K~(c) be defined by the last two 
terms in that equation. 

Since 

ct;(c) = (1 - P~)c + ~t(P~e) 

= o~t(c) + (1 - P~)c - ~t((1 - P~)c) (3.19) 

we have [using (2.11)] : 

Lemma 3.1. ~ is a positivity preserving semigroup on ~ and Y c a Y ,  t>O:  

llla~clfl __<(1 + t) IIlcllf 
] ] ]~e -  ~;cH] =< (2 + t)I]t(a - P~)c]]]. 

In analogy with our interpretation of Eq. (1.5), we shall study Eq. (3.18) using 
its integrated form: 

t 

c~(t, • )=  e;c(O,. )+  I dsc~;_ ~K~(c~(s,. )). (3.20) 
0 

Lemma 3.2. For a given c~(0, . )~ff+ Eq. (3.20) has a unique solution in ~+. It  
satisfies 

IIIc=(t,. )111 ~ (1 + t)lilt(0,. )Ill. 

Proof Let b>][Ic~(0, .)[[[ and let T be the positive solution of (T+  T2/2)10b 
=(b-I]Je~(0, ")lt])+2/b. We define the mapping R~,c(o) in the Banach space of 
continuous functions f :  [0, T] ~ f f  by: 

t 

(R~,c(o)f) (t, x )=  a~c~(0,, )+  S ds ~_ ~KZ(f(s,.)). (3.21) 
0 

By estimates analogous to those used to prove Lemma 2.2 it follows that 

sup (R; c~(o)f) ( t , . ) - ( R  .... co)g) (t,.)][[ 
[o, T] 

--<_2 sup [I]f(s,')--g(s, .)]][ (3.22) 
se [0 ,  T] 

with some 2 < 1 which is independent of z. Thus for any f in the above Banach 
space R~,c(o) f converge to the unique fixed point of R~,c(o), which is the local 
solution of (3.20). 



System of Reacting Polymers 215 

The positivity of the solution and the global existence follow by the argument 
given in the proof of Proposition 2.2. Equation (2.18) are, however, replaced by: 

d 
dx xcz(t, x = 0 

dt o 

d S dx Cz(t, x) dx xc~(t, x) - S dxdyc(x)c(y) 
dt o o 0<x+y<~ 

CO cO 

<= ~ dx xc~(t, ~) = ~ d~ xcz(O, x)  . 
0 0 

These follow by integrating Eq. (3.18), since the generator of e~ is bounded and 
thus solutions of Eq. (3.20) are Ill" [[I-differentiable in t. [] 

Lemma 3.3. Let c(t, x) be a solution of Eq. (2.9) and let Cz(t, x) be solutions of Eq. 
(3.20) with c(O, . ) ,c~(O..)e~+ and lilts(0, . ) - c ( 0 ,  ")111 ,0. Then for any t>O 

(z ~ cO) 

IllCz(t, • ) - c ( t , .  )Ill--'0 as z-- ,  oo. 

Proof. Dividing the time in intervals, it is enough to prove that for any b > 0 3 T 
= T(b) > 0 such that if c is a solution of Eq. (2.9) and d~ is a solution of Eq. (3.20), 
with [llc(0," )Ill, tltd~(0,- )Ill <_b/R, then 

sup [llc(t, • ) -  dz(t," )111 < al[Ic(0,. ) -  dz(0, • )111 + ~(z; c, 73 (3.23) 
tE[O,TI 

with some a < oe and a dz-independent function e for which 

lim ~(z; c, 73 = 0 .  (3.24) 
z ~ 0  

Let now T and R~,c(O) be as in the proof of Lemma 3.2 (d(O)=dz(O, • )). Then 

dz(t,.  ) =  l i ra  (RT,d~o~C)(t,') (3.25) 

and, using (3.21), 

sup l]ld~(t, " ) -  c(t, .  )Ill 
te[O,T] 

O9 

= sup ~(R~,d(o)c-R~,d(o)C)(t, ~ + 1 , . ) 
tE[O,T] n= ----o 

=<(1 - ) 3 - 1  sup tll(R~,e¢o~C)(t,. ) - c ( t , .  )Ill • (3.26) 
ts[O,T] 

To get a bound for the right hand side we subtract (2.9) from (3.21). Thus 

[[l(Rz,d(o)C) (t, . )-- c(t, . )Ill 
t 

< Hlefl(0," ) - ~tc(O," )1II + S dsl[[c~-~K~(c(s, "))-°~t-~K(c(s," ))Ill 
0 

< Ifl~2(d=(O, • ) -  c(O,. ))iti + 11t(~ - ~7)c(0, -)III 
t 

+ ~ dsllle~_~lg~(c(s, • ) ) - K ( c ( s , .  ))[ Ill 
0 
t 

+ ~ dslll(~7_ ~ -  ~ N ) g ( c ( s , . ) ) t t l  • (3.27) 
0 
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With the bounds  of L e m m a  3.1 we thus get 

sup llld.(t, " ) -  c(t,. )Ill 
t~[O,T] 

_-< (1 - -  2 ) -  1(1 + T)llld(0, • ) -  c(0 , .  )111 + e(z, c, T) 

with 
T 

s(z, c, 7-) = (1 - )0 -1 ~ ds(1 + t - s)IIIK~(c(s, • ))- K(c(s,.  ))111 
0 

T 

+ (1 - 2)-  1 ~ ds(2 + t - s)lll(1 - P~)K(c(s,. ))ttl. (3.28) 
0 

IIIc(s, ')111 is bounded  uniformly in s, and by (2.10) so are IIIK'(c(s, "))111 and 
IIIK(e(s, .))111. Therefore,  (3,24) follows by the bounded  convergence theorem. [ ]  

T o  prove  Proposi t ion  3.1 we shall also need:  

Lemma  3.4. Let f , f , ~ F + ,  IL f , - f l l l  ,0. Then 
( n ~ )  

lira infF(J~) > F ( f ) .  (3.29) 

(F is lower-semi-continuous on Y+.)  

Proof Applying Jensen's inequality to 

dxg(x) [f(x)/g(x)] In [f(x)/g(x)] 

one can prove  that  (with h = In 9) 

+ sup dxf(x)h(x)[ h > O, sup h < c~, ,[ dye h(y) = 1 . (3.30) 
0 

Since F in ~--+ is a sup remum over I/• I[ 1 -cont inuous functions, it itself is lower- 
semi-continuous.  [ ]  

Proof  of  Proposition 3.1. Let z <  oo. I f  cz(t, • ) is a solution of Eq. (3.18) with 

c ~ ( 0 , - ) e S ~  and sup c ( 0 , x ) < ~ ,  (3.31) 
x~[0,z] 

then V T < oo : 

sup Cz(t, x) < oo . (3.32) 
x~[0,z] 
te[0,T] 

In such a case the formal  derivat ion gives the correct  answer, and  similarly to Eq. 
(3.14), 

d 
F(e,(t, . )) = - ~ dxdy [c(x + y ) -  c(x)e(y)] 

O < x + y < z  

• {ln c(x + y ) -  In [c(x)c(y)]} < O. (3.33) 
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Let now c(t, • ) be a solution of Eq. (2.9). We may assume that F(c(O,. )) < oo, 
otherwise (3.10) is trivially true. One may always choose a sequence of func- 
tions G(0,. ), with z = 1, 2,..., which obey (3.30) and 

Illez(0, " ) -  e (0 , .  )IH > 0 (z~ oo) 

F(G(O,. )) , f (c(0, .  )). 
(z~)  

By Lemma 3.3, Vt>=0: 

c(t, . ) = l i ra  G(t, . ) .  

Therefore, by Lemma 3.4 and (3.32), 

F(c(t, . ))<= l im  in f  F(G(t  , . )) 

__< lira infF(G(0,. ))= F(c(O,.  ) ) ,  
Z ~ c O  

which proves the proposition. [] 

All the results of this section extend, after the obvious modifications, to the 
discrete case described by Eq. (1.1). 

IV. Exponential Decay of the Excess Free Energy 

The free energy, F, is bounded below. Let us define: 

/~(N, M) = inf {F(c)[c~ ~ , N(c) = N,  M(c)  = M }  . 

Proposition 4.1. F is well defined on ~+  and 

i) /~(N, M) = M In (M2/N)-  2M.  

ii) The unique F-minimaIizing state, ]'or specified N and M is given by 

CN,M(X) = M 2 / N  exp ( - M / N x )  . 

iii) For  any N > O, 

inf {/~(N, M ) I M  > 0} = F(N, N:/2). 

Proof. For c(-)GJ~+ and N =  N(c), M =  M(c)  : 

dxc~,M(x ) In CN,M(X) = ~ dxc(x) in CN,M(X) . 

Thus 

F ( c ) -  F(CN,M) = -- S dxc(x) In [C(X)/CN,M(X)] 

= S dXCN,M(X)~4C(X)/CN, M(X)) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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with 7J(z) = - z In z. Since T is bounded below F(c) is well defined, possibly + oo. 
By the convexity of ~, and Jensen's inequality, 

F(c)-F(cN,M) 

> 7J(~ dxcN, M(X) [C(X)/Cu, ~t(X)] / ~ d2Cu, ~(2) ) ~ dycu, M(Y) 
= ~ ( 1 ) M  = 0 .  

The inequality is strict unless c = CN, M. 
This proves ii) which directly implies i) and iii). 5 

Since F(c(t)) is a decreasing function of t which is bounded below it has a limit. 
Had it been known that this limit is the equilibrium value of F, under the 
constraint of N, it could have been deduced that c(t) converges strongly to the 
equilibrium. This method is due to Boltzmann, however so far it has not been easy 
to apply it to Boltzmann's equation. 

We shall now prove, with the aid of a new inequality, that F(c(t)) does decrease 
all the way to its equilibrium value, in fact exponentially fast, provided initially it is 
finite. 

Let c(t) be a solution of Eq. (2.9) with c ( 0 ) ~ +  and let N(t)=N(c(t)), 
M(t) = M(c(t)), F(t)=f(c(t)) and F(t)= F(cn(t),M(O ). By Proposition 4.1, F(t)>=F(t). 
With this notation we have: 

Proposition 4.2. 

O<-_F(t)-F(t)<[F(O)-F(O)]exp[- i dsM(s) t • (4.5) 

This will be proved by the following inequality which appears to us to be new. 

Proposition 4.3. Let c(. )>=0 and c, c ln c~Ll([O, ~))  then 

dxdyc(x)c(y) In c(x + y) 
0 0 

< dxc(x) dyc(y) In c(y)- dxc(x) . 
0 0 

(4.6) 

(The equality is attained only by the exponential functions e-~.)  

Proof Let f(x)= ~ dyc(y) 
x 

oO cad O0 

S dxdy c(x)c(y) in c(x + y) - ~ dx c(x) ~ dy c(y) In c(y) 
0 0 0 0 

c~ O0 

= S dx c(x)f(x) ~dy c(x + y)/f(x) [c(y)/c(x + y)] in [c(x + y)/c(y)]. 
0 0 
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Applying Jensen's inequality for the semibounded concave function a~->aln a-1 
we get for the above expression 

" (,li<)1' d <-_ ~dxc(x)f(x c x n x c 
0 kO J L 1 0  J 

= -  dxc(x) ln ~dyc(y)- dyc02) dx ~xf(X ) lnf(x) 
[ 0  0 

2 = _ f2(0) In f(0) - f(0) If(x) in f(x)] ~ + f(0) ~ dxf(x) in f(x) 
0 

= - x c ( x  . [ ]  

Remark 4.1. The above inequality does not hold on IK e.g. for e-lxl however a 
slightly weaker inequality does hold in IR". For f >0, and f f In feLl(IR) 

7 d"x 7 d"yf(y)In f (x  + y) 
- -  tYO - -  00 

2 d"xf(x)!d"yf(y) lnf(y)-  ½n In 2 [ 2 dxf(x) j .  (4.7) 

In fact, differentiating Young's inequality with its best constants (which were 
found by Beckner [6] and by Brascamp and Lieb [7]) one may get, for f ,9 ,h>0  
etc., 

d"x ~ d"y f(x)902 ) In h(x - y) 

< ½ ~d"x f(x)In f(x) ~d"y g(y) + ½~d"x f(x) ~d"y 9(Y)in 902) 

+ ~ d"xf(x) ~ d"yg(y) [ln ~ d"zh(z) - ½ in j" d"zf(z)- ½ In ~ d"zg(z)] 

- n½ in 2 5d"xf(x) 5d"yg(y). (4.8) 

The equality is attained by (amon others) j -g - r -  -e-2x2, h=e-~ .  
We need the stronger inequality, (4.6), to control the decay of F. 

Proof of Proposition 4.2. It was shown in the previous section that c(t, • ) may be 
approximated by solutions of the modified Eq. (3.18) which are bounded and 

dF is supported in [0, z]. For these functions -dr- given by (3.32) which coincides with 

(3.14). It follows by the semi-continuity of F that it is enough to prove the 
proposition for these functions, i.e. assuming that Eq. (3.14) is valid and that the 
four terms in the integrand in (3.14) are integrable. In such case [with c(. )= c(t, • )] 

oo ao co 

d F (t) = ~ dxdy c(x)c(y) In c(x + y) - 2 ~ ~ dxdy c(x)c02) In c(y) 
O 0  O 0  

+ ~dxdy c(x)c(y) [c(x + y)/c(x)c(y)] In [c(x)c(y)/c(x + y)]. 
0 0 

(4.9) 
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Applying the inequality (4.6) to the first term and Jensen's inequality for the 

function a~-+alna -1 to the last term in (4.9) we get ]since concave 
L 

dxdyc(x + y) = N(c) 
0 0 

d 
-~ F(t) < - M(t) ~ dy c(y) in c(y) - M(t) 2 + N(t)In [M(t)2/N(t)] 

0 

= - M(t)F(t) - 2M(t) 2 + N(t)In [M(t)2/N(t)] . (4.10) 

But 

F(r) = M(t) In [M(t)2/N(t)] - 2M(t) (4.11) 

and, by (2.13) 

d Lff(t) = [N(t) -- M(t) 2] In [M(t)2/N(t)] .  (4.12) 
dt 

(4.10)-(4.12) add exactly to: 

d 
dt IF ( t ) -  F(t)] < - M(t) IF(t) - F'(t)]. (4.13) 

Thus 

dt IF(t)-/?(t)] exp dsM(s) < 0 
ko 3 

which proves (4.5). [] 

Remark 4.2. It is illuminating to follow the time evolution by observing the three 
thermodynamic quantities : N(c), M(c), and F(c). For a given value of N(c), which is 
a constant of motion, the joint range of (M(c), F(c)) is the convex set defined by 
M(c)>O,F(c)>F(N(c),M(c)).  The extremal points of this set (and only those) 
correspond to unique functions -Cu,~u (which describe states of "quasi-equili- 
brium"). While M undergoes an autonomous time evolution, F decreases always 
faster than it does at the corresponding boundary point with the same M (by 
Proposition 4.2). Thus a function with an extremal value of (M,F)  retains this 
property. 

Indeed it may be verified directly that for any N and M(0), 

c(t, x) = CN,~(,~ (X) (4.14) 

is a solution provided M(t) obeys Eq. (2.13), i.e. M(t) is of the form (2.16). Families 
of simple solutions which preserve a "canonical form" (in the terminology of [81) 
and which exhibit convergence to equilibrium were found also for other related 
equations, e.g. one which describes a harmonic oscillator interacting with a heat 
bath [9]. 

Any solution c(t) may, therefore, be compared to a solution with the same N 
and M(t) for which F is minimized at all times. Furthermore, the difference in F 
decays exponentially fast (see also Remark 6.3). 
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V. Convergence to Equilibrium 

a) BoItzmann's Argument Made Precise 

The decay of the free energy implies directly strong convergence to equilibrium. 

Proposition 5.1. Let c(t, .) be a solution of Eq. (2.1) with c(0, .)~Y÷ and 
F(c(O)) < oo. Then 

lie(t, ")--CN,N~/2( ")1]1 '0  (5,1) 
t ~ c O  

with N = N(c). 

To prove it we use the following estimate (see also remark [123). 

Lemma 5.1. Ve >03a(e) < co such that V c ~ +  

ti c -- CN, M Ill < eM + a(e) [F(c) - F(cN,M)] (5.2) 

with M = M ( c )  and N=N(c) .  

Proof Let g(u)=ulnu+ 1 - u .  Since g is strictly convex and g(1)=g'(1)=O, Ve>0 
a(e) < oo such that 

Vu => 0 " lu -  11 < e + a(e)g(u). (5.3) 

(5.2) follows by substituting U=C(X)/CN,M(X ) and integrating (5.3) with 
oo 

~ dxcN,~(x). [] 
0 

Proof of Proposition 5.1. Let N = N ( c )  and M(t)=M(c(t)). By Lemma 5.1 and 
Proposition 4.2, for any e >0  

Ilc(t, " )--CN,N,,~(" )11t < tie(t,- )--CN, M~(" )1!1 
+ II c , , ,~d"  ) - c ~ F ~ ( "  )ll~ 

x 

+ [tcu,Mm(" )--CN,N,/2(" )111 (5.4) 

which proves (5.1). [] 
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b) A Stronger Result 

The only restrictive assumption in Proposition 5.1 is that F(c(O))< ~ .  This may be 
removed by an additional argument, leading to: 

Proposition 5.2. There exists a function Q(t, N), with 

lim Q(t,N)=O V N > 0 ,  (5.5) 
t---~ o0 

such that for any solution of Eq. (2.9) in Y+ : 

tic(t," ) -  CN,m/2 ( • )111 ----< Q(t, N) (5.6) 

for N = N(c(O)). 

The proof is based on the following three lemmas. 

Lemma 5.2. There exists a function TI(e,N,F)< oo such that for any solution in 
~+ of Eq. (2.9) with N(c)=N and F(c(O))<f : 

Ilc(t,. ) -  CN~c),N(c),/2(')][1 =< e Vt > Tl(e, N, F) .  (5.7) 

Proof. This lemma is directly implied by the inequality (5.4) and by: 

]M(c(t))- N1/2(c)[ < N 1/2 [coth (N~/2t)- tanh (N1/2t)] (5.8) 

which follows from (2.16). [] 

Lemma 5.3. For any ~, T , N , M > 0  3~=6(e, T,M,N) such that if Q(t,x), c2(t,x ) are 
two solutions, in ~+, of Eq. (2.9) which satisfy: 

[fq(0)l]x < N ,  frci(O)Ifl<M i=1 ,2  

IIIq (0)  - c2(0)111 < ,~ 

then 

[HCl(t)-c2(t)ll I <e Vte [0, T] . 

Proof c 1 can be obtained from c 2 by repeatedly applying the Picard mapping 
(2.12). To prove the lemma it suffices to show that for any N, M >0  there is T > 0  
for which the claim holds, and it is convenient to choose T so that the Picard 
mapping is a contraction on the space of functions 

c : [0, T]--+ { fe  ~+ fN(f) <= N, M(f) <= M} ,  

as in the proof of Lemma 2.2. For such T the claim follows from the invariance of 
c 2 under the Picard mapping which corresponds to c2(0, • ), by an argument which 
was used in the proof of Lemma 3.3. [] 

Lemma 5.4. VN > 0 3 G(N) < oo and B(t, N), with 

lim B(t, N) = O, 
t ~ c J O  

such that any solution of Eq. (2.9) admits a decomposition 

c(t, x) = b(t, x) + g(t, x) (5.9) 
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for  which 
i) b(t,x), g(t,x)>=O Vt, x>=O, 

ii) ]l]b(t, . )]]] <= S( t, N) Vt>0,  

iii) II g(t, . )ll + - s u p  {g(t, x) x~ [0, ~)} < G(N(c)) V t>  O. 

Proof  Let c(t, x) be a solution of (2.9) in if+ and let 

N = N(c(O)), M(t) = M(c(t)). 

By (5.8), V N 3 t o ( N ) <  oo such that Vt>=to(N ) 

(3/4)N t/2 ~ M(t) <= ( 5/4)N 1]2. (5.10) 

It is therefore enough to find B and G for which the claim is satisfied on the 
restricted class of functions c for which (5.10) holds Vt>=0. 

According to the explicit solution (2.8) 

o~t f=al l ) f+al2) f  

with 

(a~l)f) (x) = e-*Xf(x) (5.11) 
0{3 CO 

(c~12)f) (x) = 2te-tX S dy f (y )  + t2e-tX ~ dy (y- x)f(y) . 
0 0 

The only use which will be made of the explicit formula for a~2) is to derive : 

l]~ll)fH oo £ ]If l] oo, H<z)fH m <2tltfH 1 +t2Hf]]x • (5.12) 

The main idea of the proof is to decompose c into solutions of the following 
equations 

b(t, . ) = exp  { -  2 i duM(u)]~p)c(O, .) 

+ -]~o) b s (5.13) + ds exp - 2 j+ duM(u)| t_+[ ( , . ) * b ( s , .  )] + 
0 o J 

and 

t 

+,.  + = °,+ I-+ + +,++++>] 
t -] c~ (z) c s • )*c(s, (5.14) +o}dsexp - 2 ! d u M ( u ) ]  t-~[ ( ,  ")] 

+ ds exp - 2 ~ duM(u) e}~{O(s, • )* [c(s,. ) + b(s,. )]},  
o L o J 

which add up to the Eq. (2.15) for c(t, x). 
The local existence and uniqueness of a solution of (5.13) in if+ can be easily 

seen by a contraction mapping argument similar to the one used to prove Lemma 
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2.2 and Proposition 2.3. In order to prove the decay of b(t, .) it is convenient to 
look at 

b(t, x) = et~b(t, x) (5.15) 

which satisfies 

b(t, . )=exp[ -2 iduM(u)]c (O,  .) 

By the above mentioned argument, Eq. (5.16) has a unique LL" ill -continuous 
solution. While it is not obvious from (5.15) that If(t,-)JI 1 < 0% b has to be that 
solution by the uniqueness of the solution of (5.13). It follows that rf(t, .)lbl is 
differentiable and satisfies: 

d II/~(t," )Ir l -- -2M(t)rlb(t,- )FI1 + II/~(t," )[I 2 

]l/~(0, • )ll i = M ( 0 ) .  (5.17) 

This implies 

[I b( t , -  )111 ~ M(t), (5.18) 

d d 
IFb(t, " )111 = M(t). since ~ If(t ,-  )Etl < ~ M ( t )  whenever ~* 

By (5.10) and (5.17) 

IE/~(t," )ti1 <(5/4) N1/2 (5.19) 

and 

d 
dt ff( t , .  )111 <-- -2(3/4)  N1/z j)(t, . )H1 

+ (5/4)N 1/2 If(t," )ill = -4 -1Xl /Z  II/;(t,. )111, (5.20) 

for t = 0  and hence for all t_>0. Therefore 

[I/~(t," )111 ~M(0) exp [ - 4 - i g l / 2 t ]  , (5.21) 

yielding 

Illb(t," )111 < II/)(t, • )Ill sup {(1 + x)e -t~} 
< (5/4)N1/2(1 + t-  l)exp [ -  4-1N1/2t] (5.22) 

which proves ii) [-for the class restricted by (5.10)] with B(t, N) defined by the last 
expression. 

For any solution of Eq. (5.14) 

sup IIg(t, ")It __<A +Dsup  lig(t,. )II~o(__< co) (5.23) 
t>_-O ~->0 
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with 

A = sup { [2tN1/2+ tz(5/4)N1/2] exp [--2(3/4)N1/Zt] } 
t>=O 

oo 

+ ~ du[2uN 1/z + 2u2(5/4)Ni/2] 2 exp [ -  2(3/4)N1/Zu] < oc (5.24) 
0 

and 

[!  t} V = sup j" ds [M(s) + II b(s,. )111] exp - 2 duM(u) 
~>0 [0 

[i 1} = sup ~ ds [M( t -  s) + t] b(t - s,. )[I 1 ] exp - 2 duM(t - u) (5.25) 
t > 0  1.0 

(by 5.i2). The last identity was written to facilitate the limit t~oo.  Since 
lib(s,. )111 <M(s) and 

i d s M ( t - s ) e x p [ - 2 i d u m ( t - u ) l  =½.  (5.26) 

D is the supremum of a continuous function which is bounded by 1 and equals 0 at 
0 and ½ at oo. Thus 

D < 1.  (5.27) 

Using (5.27) in the standard constructive argument which was refered to 
before, one can easily prove the existence, uniqueness and positivity of a solution 
of Eq. (5.14). It satisfies 

sup { Ha(t,-)11 ~ + IIIg(t, • )Ill} < oo, (5.28) 
t>O  

since one gets a similar inequality to (5.23) for the III • HT -norm, with the same D and 
a modified but finite A. 

Therefore b(t,x)+g(t,x) is a solution of Eq. (2.15) in ~-+ which, by the 
uniqueness, implies (5.9). 

Finally, (5.23), (5.27), and (5.28) imply 

sup Ilg(t,. )ll ~ <A/(1 - D ) ,  (5.29) 
t > 0  

proving iii) with G(N)=A/(1-D). [] 

Proof of Proposition 5.2. It is enough to show that for any ~, N > 0 3 T =  T(e, N) 
such that for any solution in if+ of Eq. (2.9) with N(c)= N 

lie(t, ")-eN,m/~( ")ll 1 <e Vt>T(e,N). (5.30) 

Let e,N be given and let T 1 = Tj(e, N, (5/4)N 1/2 In G(N)), with the notation of 
Lemmas 5.2-5.4. By Lemma 5.4 3 Tzz [to(N), co) [t o is defined by (5.10)1, such that 
Vt>=Tz: 

2B(t, N)<6@, T~, N, lO/4N1/Z) . (5.31) 
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We define T by: 

T(~, N) = T~ + T 2 . (5.32) 

For any c(t, x) as above and t > T(e, N) one may find, by Lemma 5.4, a function 
Ot_r~(X) >=0 such that 

lllc(t-- TI, " )--9,_ r,( " )}It <=2B(t- T1.N) (5.33) 

II,G-rl(')II~_-<G(N), 
and 

N(gt- r,) = N(c), M @ _  r,) < (10/4) N l n  

[for the last inequality use is made of: t -  T t > T 2 > t0(N)]. We approximate c(t, • ) 
by gt-T~(T~," ) which is obtained evolving from 9t-r~(" ) for the time Tt, by Eq. 
(2.9). By Lemma 5.2 

II,q,- r~(TI, " ) - c N y / d "  )111 <e  (5.34) 

and by Lemma 5.3 

Hc(t,- )--Ot_T,(T1,. )111 < e ,  (5.35) 

since 

[llc(t - T1, .  ) - g t -  T,(" )Ill < 6(~, TIN, (10/4)N~/2). 

(5.30) follows now by adding (5.34) and (5.35). []  

VI. The Linearized Equation 

In order to study the time evolution flow in the vicinity of any of the equilibria 
CN,N~/2(X) = exp ( -  N-1/2x) it is convenient to change variable to cp(. ) defined by" 

c(x) = exp ( -  N -  1/2x) + (p(x) exp ( -  N -  1/Zx/2) . (6.1) 

The equation for q~ which corresponds to Eq. (1.5) is 

oo 

~ ~o(t, x)= 2 ~ dye -N- '/21x-yl/Zq)(y) 
o 

- 2 j" dye -u -  "2(x + y)/2qo(y) - (2N 1/2 + x)cp(x) 
o 

oo 

+ (q~* (p) (x) - 2q)(x) I dye- N- m,/zqo(y). 
o 

In the vicinity of the equilibrium cu,N,/~ , described by 

/~ \1/2 
ii~oll2:i!dxi~o(x)[Z ) ,~ j~rl/2 , 

(6.2) 

(6.3) 
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the non-linear terms are of second order, leaving us with the linearized generator 
L n defined by: 

cO 

(LNcp) (x)= 2 ~ dye-N-l/21x-yl/2fp(y) 
o 

CO 

- 2 ~ dye -N- 1/~(~+ x)/2rp(y)_ (2NZ/2 + x)~o(x). (6.4) 
o 

The local behaviour of a flow near a stationary point depends on the spectrum 
of the linearized generator. The spectra of L N can be computed exactly and are 
described in the following result. 

Proposition 6.1. For N > 0  : 
i) L N are self adjoint operators on L2([0, ~)). 

ii) N-1/2L N are unitarity equivalent. 
iii) The spectrum of L n is ( -  0% - 2 N  1/2] u {0}. On ( -  ~ ,  - 2 N  1/2) the spectral 

measure is absolutely continuous with respect to the Lebesgue measure, with 
multiplicity 1, and at - 2 N  ~/2 and 0 it has two, non-degenerate, eigenvalues. 

iv) I f  cp~L2([0, co)) corresponds to c with N(c)=N,  then q~ is orthogonat to the 
O-eigenvector of L N. 

Proof. The sum of the first two terms in the r.h.s, of (6.4) can be written as an 
integral over IR of the antisymmetric function sgn (x)cp(lxj) with the translation 
invariant kernel 2e- N- 1/2ix_ rl/2. It follows that 

8N1/2 
L n -  1 +4Np 2 -(2N1/2 + x) , (6.5) 

where -p2  is the Laplacian with the Dirichlet boundary condition and (2N 1/2 + x) 
is a multiplication operator. 

Since the first term in (6.5) is a bounded operator and the second a selfadjoint 
one, L N is selfadjoint on the domain ofx. N-1/2L N is unitarily equivalent to L 1 by 
the dilation : q~(x)~Ni/4~p(xN1/2). 

Thus i) and ii) are proven. By ii), to prove iii) and iv) it is enough to describe the 
spectrum of L = L v  This is done by the following two lemmas. 

Lemma 6.1. L has exactly two eigenvectors in L2([0, av)). The corresponding 
eigenvalues are 0 and - 2 .  

Proof 

CPo(X ) = xe-  x/2 (6.6) 

is a O-eigenvector, as may be guessed from the time invariance of 

cO cO 

dx xc(x) = 1 + ~ dx xe -  x/2 p(x) . (6.7) 
o o 

(Notice that iv) is satisfied.) 
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Let now (px be a 2-eigenvector. Then (pa is in the domain of x, which coincides 
with that of L, and 

8/(1 + 4p2)q~. - (2 + x)%~ = 2q%.. (6.8) 

Therefore 3fxEL2([O, co)) such that 

f~ = 8/(1 + 4p2)q~ = (X + 2 + 2)q0~, (6.9) 

which implies 

(1 +4p2) f~=8q)~=8/(x+2+2) fa .  (6.10) 

Thus the function 

g ( x )  = A ( x  - (;~ + 2)) (6.111 

has an absolutely continuous derivative and solves the eigenvalue problem, in 
/22([2 + 2, co)), 

( - 4A - 8/x)9(x) = - 9(x) (6.12) 

with the boundary condition: 

9 ( 2 + 2 ) = 0 .  (6.13) 

By a standard argument, which uses the constancy of the Wronskian of the two 
solutions [10], the Schr6dinger equation (6.12) has at most one solution which is 
not divergent at co. This solution may be found from the known eigenvector qo o. It 
is : 

g(x) = (x - 2)xe- (x- 2)/2 . (6.14) 

The lemma follows now, using (6.13), from the number and location of the zeroes 
of 9. The ( - 2)-eigenvector of L is 

cp_2(x)=(x-2)e  -~/2 . [] (6.15) 

Lemma 6.2. On the orthogonal complement of  {Cpo, q0 2} the spectrum of L is 
( -  co, 2] and the spectral measure is absolutely continuous with multiplicity t. 

Proof We may use the former approach to find also generalized eigenvalues. For 
distributions, however, (6.9) does not imply the last equality in (6.10). Consequent- 
ly, (6.12) is replaced by 

( -  4 A - 8/x)9(x) = - 9(x) + c~c~(x) , (6.16) 

with an undetermined ~. In addition to (6.14), (6.16) admits the solution 

0(x)= {~ x-2)xe-(~-2~/z  x>=Ox<=O. (6.17) 

To the zeroes of ~ correspond the following generalized eigenvectors 

c#a(x ) = 8- ~(1 - 4A)O(x + 2 + 2) 

= 6(x + 2 + 2 ) -  (x + 2)e-(X+ ~)/20( x + 2 + 2) (6. t 8) 

with 22 ( - co, - 2). Here O(x)-- (t + sgn x)/2. 
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Although ~o;~ were found by an uncomplete argument, the following orthonor- 
mality and completeness relations can be verified directly, proving Lemma 6.2. 

dX~gxI(X)(P2tz(X) = (~(1]'1 --/~2) (6 .19)  
0 

for 21e ( -  0% -2), 22e ( -  0% -2)w{-2 ,0} ,  and 

- 2  

5 d2O~(x)q)a(Y) + q~- 2( X)@ -- 2(Y) -}- ~00(X)(D0(Y) = •(X - -  y ) .  [ ]  (6 .20)  
-co  

Remark 6.i. That the essential spectrum of L is ( -c~,  - 2 ]  may be seen without 
diagonalizing L using, instead, Weyl's theorem [10], since (1+4/)2) -1 is a 
relatively compact perturbation of - (2 + x). 

Remark 6.2. The kernel of the linearized semigroup can be obtained explicitly 
using (6.19) and (6.20). For the discrete case this was done, independently, by Kja~r 
[4] who used it to study the approach to equilibrium. 

Remark 6.3. In the formal expansion ofF(c) in (p, defined by 6.1 with N=N(c). the 
linear term vanishes and 

co 
F(c) ~ F(cN, N,/2) + ½ 5 dxl~°(x)l 2.  (6.21) 

o 

The spectral analysis suggests that whenever (6.21) is a valid approximation and 
M(c(O, . )) 4= N(c) ~/2 then 

[F(c(t,. ) ) -  F(CN,2V , /2  ( . ))]/[M(c(t,. ) ) -  g a/2] 2 I_,._,____+ N- 1/2 (6.22) 
t~eo 

Appendix:  An Exact  Solution for the Laplace Transform 

The Laplace transform, 7(t, y) = J" e-XYc(t, x)dx, may be expressed in a closed form. 
0 

Equation (1.5) transforms to 

07 - 2  7(t'0)-y(t'Y) + +y2 _ 27(t, y)~/(t,0) (A1) 
0t y (~y 

~,(t, 0) equals M(c(t)) given by Eq. (2.16). Setting Z(t, y)= ,/(t, y)-y(t,  0) we obtain 

0)~ 07~ 2 
- - ; ~ -  Z 2 - 1 .  (A2)  

& 0y y 

The left hand side is the derivative of )~ along y + t = const, and along this line the 
equation therefore is a Riccati equation. Using a standard substitution for Riccati 

y 1 
equations we set X = ~ + ~ ( y ) ,  obtaining 

_ 09 = 2y 
& ~Sy @ y ~ l )  g - l  (A3) 
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The solution is 

y 2  1 -e-  2Y( y~+2]zf(y + t), (A4)  °(t'Y)= y / 

where f is an arbitrary function of one variable. To determine f we consider 

l im o~,(t, y). We have 
t 0 

Y 2YZ (AS) 
y(t, y) = 7(t, 0) - ~ - ~  + y2 _ 1 + 2e- Z,(y + 1)2f(y + t)" 

Hence for t--,0 we get 

(y)2 
f ( y )  = limo f ( y  + t) - ~ e2' + 1 1 - y eZ , 

7(0, y) - y(O, 0)-~ y 2 1 + y 
y + l  

and substituting in Eq. (A5) we obtain an expression for 7(t, y) in terms of 7(0, t + y) 
and 7(0, 0). This expression, however, does not readily lend itself to transformation 
back to c(t, x). 
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