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II. Nonlinear, Spatially-Periodic 

Russel E. Caflisch* 
Department of Mathematics, Stanford University, Stanford, CA 94305, USA 

Abstract. The results of Part I are extended to include linear spatially periodic 
problems-solutions of the initial value are shown to exist and decay like e -;tp. 
Then the full non-linear Boltzmann equation with a soft potential is solved for 
initial data close to equilibrium. The non-linearity is treated as a perturbation 
of the linear problem, and the equation is solved by iteration. 

1. Introduction 

The linear Boltzmann equation with a soft intermolecular potential was solved 
globally in time in Part I [13, if the initial density is a spatially homogeneous 
perturbation of a global Maxwellian. Moreover it was proven that this per- 
turbation decays in £~o2 or sup norm like e-  ~ ,  with 2 > 0, 1 > fl > 0, if it is initially 
bounded by a Maxwellian. We will refer to formulas or results from Part I by 
preceeding their numbers with an "I" as in (I 1.7). 

In this paper we find the same result even if the initial perturbation is spatially 
dependent in the cube with periodic boundary conditions. In addition we can solve 
the spatially periodic nonlinear problem globally in time if the initial perturbation 
is small enough, and we find that the solution decays to the Maxwellian 
equilibrium. 

The linear, spatially-dependent Boltzmann equation is 

~ f  +~. ~--~f +Lf =O, (1.1) 

f(t=O)= foe.A#, (1.2) 

where f0 and f = f ( t , x , { )  are periodic in x e T 3 = [ 0 , 2 n ]  a, t>0 ,  {elR 3, and 

~ r =  ~g(x,{). S S v2({)g(x,{)d{dx=O for ~ ({ )=1 ,~ ,  or ~2~. The requirement 
t T 3 Ig3 J 

that fo6  ~A/" just means that we have chosen the right Maxwellian equilibrium to 
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perturb about, so that it has the total mass, momentum, and energy. Our first 
result, Theorem 2.1, is that the solution of this problem decays like e -x~p. 

As in Part I we remove the null space of L = v + K by adding on a finite rank 
operator. N(L) is spanned by the functions t&({) defined in (I2.14). We define the 
modified linear operator 

L = v + k ,  (1.3) 

K=K+P, (1.4) 

4 

P =  2 (Pl, ')~Pi, (1.5) 
i = 0  

where now the inner product is the ~2(x,{) inner product. Since ~Pi are 
independent of x and Pfo =0, the linear problem (1.1), (1.2) is not changed if we 
replace L by L. Since the nonlinearity vF of the Boltzmann equation is also 
perpendicular to ~&, this replacement of L by L does not affect the nonlinear 
problem either. 

The relevant norms, which are defined in Sect. 2, are 5¢ z norms of f and its 
spatial derivatives, then £f2 or sup over {. The derivatives are introduced in order 
to be able to use the Sobolev inequality when estimating the nonlinear terms. For 
consistency they are also included in the linear theory of Sects. 2 and 3 where they 
are not really needed. The estimates on K given in Part I all have analogues which 
are presented in Sect. 2. 

Just as in Part I the velocities are cut off by defining the characteristic function 

z~(~) = ~ > w,  

and introducing 

Bw= ~. ~--~ +v(~)+ )(w£, (1.7) 

as an operator on y2(~ < w, xe  T3). The only new twist in the spatially dependent 
problem comes in the analysis of the semigroup e -tB', given in Sect. 3. This 
employs spectral perturbation theory [4] and an argument given by Ukai [5]. The 
rest of the proof of Theorem 2.1 goes exactly as in Part I. 

The nonlinear Boltzmann equation is 

-~ f +~.~xf +Lf=vF(f,f), (1.8) 

f(t=O)= foE~r, (1.9) 

where f and fo are periodic in x. If f0 is sufficiently small, this problem can be 
solved for all time and the solution f(t) decays to 0, as stated in Theorem 4.1 in 
Sect. 4. The estimates on F in Sect. 5 state that if f is small, vF(f, f) is even smaller. 
So this problem is just a perturbation of the linear problem, which also keeps its 
solution small. The solution is found by an iterative procedure described in Sect. 7, 
after the iteration equation is analyzed in Sect. 6. 



Boltzmann Equation with a Soft Potential. II  99 

References to previous work and more explanation of the Boltzmann equation 
are found in Part I. I am very grateful to Harold Grad, who suggested this 
problem, and to Percy Delft, George Papanicolaou, and Robert  Turner for a 
number of helpful discussions. This work was performed at the Courant Institute 
and the Mathematics Research Center; I am happy to acknowledge their support. 

2. The Linear Equation 

We will use an y 2  Sobolev norm over space alone, as well as norms over both x 
and {, which are sup or £02 norm over ~ of the Sobolev norm over space. If the 
function is not spatially dependent these (x, {)-norms are exactly those used in 
Part  I and we will use the same notation. 

Definition. Let f = f(x,  {) be periodic in x. Define 
4 

tt/11 = (~  tlf(g, ")[l~s4(x) dg) i/2 , (2.2) 

II fll~,,= sup(1 + ~)'e<~ll f(~, ")lls+4(x), (2.3) 

I1 f ll: = II f II~,o, (2.4) 

Nfllo~-- Irfrlo,o. (2.5) 

Denote J ~  = {f(x, ~):II f ll~ < oo and f periodic in x}. As in Part  I, e will always 
refer to exponential decay and r to algebraic decay in ~. If ~ ever appears in the 
subscript of a norm it is in the algebraic decay part. The algebraic decay is used in 
the following proofs, but not in the statements of the theorems. The Sobolev 
inequality in T 3 states that 

II f g  [I re(x) --< c II f I[ ~s4(x)II g [1 s~(x) - (2.6) 

The main result for the linear problem is the following: 

Theorem 2.1. Let 0 < e < ¼ ,  and let foeA#c~=. Then there is a unique solution of 
the linear Boltzmann equation (1.1) and (t.2) in ~ .  It decays in time like 

llf(t)[I <cllfoll~e -ae, (2.7) 

I1/(t)l] oo <_- ell fo i l=e-  ~.t~, (2.8) 

I I f ( t )  ll~ <cllfoll~. (2.9) 

In which f l = ~  and 2=(1 -2e )cd -B  for any e>0.  The constant c depends 

On & 

The estimates on K are exactly as before. We first note that, since K is 
independent of x, 

11 R i g , .  )1I m(~) ---- K(tl f (  "," )11 ,~,(~)) (g). (2.10) 
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Using that inequality we easily show 

Proposition 2.2. 

tIK fl[o,,+ 3]2 ~ clIf[I , 

I[g flI=,,+,+ 2 <cllfl] .... 

tlgfll <=cllfll~ . 

These estimates and Theorem 3.1 
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of the next section are used 

(2.11) 

(2A2) 

(2.t3) 

to prove 
Theorem 2.1 just as in Part I. In the proof we solve two types of equations: 

-~g+Bwg=gl ,  on ~ < w ,  (2.14) 

in which B w = {. ~-~ + v + )~wk, and 

~ h + ~ .  ~--~h+ vh=h~. (2.15) 

We rewrite these as 

t 

g(x, t, {) = e-m'~go(X, {) + S e-  ('- s)B'~g 1 (X, S, ~) ds, (2.16) 
0 

h(x, t, ~)= e-t~(~)ho(x- t~, ~) + i e-  ('- ~)~(¢)hi( x -  ( t -  s)~, s, ~) ds. (2.17) 
0 

Now take the H4(x ) norm and use Theorem 3.1 to estimate 

II g 11 t~,(~)( t, ~) < e -  ~t~<~,)[I go )[ H~(~)(~) 
t 

+ ~ e-U(t-~)~(w)llglllH~(s, ~) ds, (2.18) 
0 

I1 h [[/_/4(x)(t, ~) N e-t"(¢)l[ ho [[m(~)(~) 
t 

+ S e-  (t- s)~(¢)ii h l I I m( s, {) ds. (2.19) 
0 

These are exactly like the equations treated in Sects. 9-12 of Part I. 

3. Spectral Theory for the Cutoff Linear Operator 

Consider the transport and collision operator 

a 
B={. Ux +v+~ (3.1) 

on ~,q~Z(x, {). Recall that/~ is the modification of K defined in (1.4). We shall show 
that, after restriction to a bounded set of velocities, this operator generates a 
strictly contracting semi-group. Our main result is 
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0 
Theorem 3.1. Consider the operator Bw= ~. ~x + v(~)+ Zwk on ~2{x,{ :~<w}. 

i) - B  w is maximally dissipative. 
ii) Let 0 < # < 1 .  I f  w is sufficiently large, 

Ile-tB~ll < e -t"~(w) . (3.2) 

The theorem is proved by looking at the Fourier transform of B w. The 
modification of K only affects the 0 Fourier variable, so that 

Bw,~= - i k . { + v + K ,  k4=0, (3,3) 

Bw.o= v + / ( ,  (3.4) 

where k a vector with integer components. Each Bw, k is an operator on ~2(~ < w) 
and satisfies 

Re(Bw, k f, f )  ~ 0. (3.5) 

The following results are analogous to Theorem 7.1 and Proposition 7.2 in Part I. 
An important point is that the statements are independent of k. 

Proposition 3.2. Let 0 < # < 1. For w sufficiently large, Bw, k has spectrum whose real 
part is bigger than #v(w), i.e. 

G(Bw.k) C {2 : Re2 > #v(w)}. (3.6) 

Moreover the sufficient size of w is independent of  k. 

Proposition 3.3. Let f be an eigenfunction of  Bw, k with eigenvatue ~o such that 
Re2<#v(w). Then f is rapidly decreasing in 4, i.e. 

sup(1 + ~)" If({)[ < % ~ f({)z  d{, (3.7) ¢ 

in which the constants % are independent of 2, w, f ,  k. 

The following lemma will be used in the proof of Proposition 3.2. 

Lemma 3.4. Let f e ~ 2 ,  O~R, and kelR 3 with k= I. Then 

lim sup ~ f Z d { = 0  (3.8) 
e~O O,k= 1 A 

in which A={~ :lk.~+0[<e}. 

Proof of Proposition 3.3. Rewrite the eigen-equation as X w K f = { - ( v - 2 )  
+ik -{} f .  Therefore tKf ({ ) l>(1-p)v(~) l f ( { ) l .  Then proceed as in Proposi- 
tion I7.2 using this inequality and the estimates 06.1) and (I6.2). 

Proof of Proposition 3.2. If k=0 ,  the proposition is exactly Theorem I7.1. So we 
consider only k + 0  

a) First we show that the values 2~(Bw,k) with Re2<#v(w) are necessarily 
discrete eigenvalues with finite multiplicity. [In fact we could put here v(w) instead 
of #v(w).] The proof is exactly as in [2] using the methods of [4]. 

The Fredholm set of ( - i k - ~ + v )  is {2 :2+- ik .~+v(~)} .  Since xwK is 
compact, then this is also the Fredholm set of Bw, k. Therefore the set 
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S = {4 : Re2 <v(w)} is contained in a connected component of the Fredholm set of 
B~, k. This set S contains negative values of 2 which are in the resolvent set of Bw, k 
because of (3.5), so that nul(Bw, k -2 )=de f (B~ ,k -2 )=0 .  Since the nullity and 
deficiency are constant in connected components of the Fredholm set, except at 
isolated points, nut(B~, k -2 )=de f (Bw,k -2 )=0  in S except at isolated points. 
These points are isolated eigenvalues of finite multiplicity. Every other point of S is 
in the resolvent set. 

b) Now suppose the theorem is not true, so that there are sequences w,, 2,, k, 
with Re2.~ a(Bw.,k.), 2. < #v(w.) and k. 4= 0. According to (a)each 4. is an eigen- 
value for B~.,k" with eigenfunction f . ,  i.e. 

Bw. . k . f .=2 , f  . and ltf~tl--1. (3.9) 

Write 2, = q~, + iO,. Then just as in the proof of Theorem 17.1, q),--,0 and K f , ~ g ,  
after restricting to a subsequence, with the result that 
li~m ( -v(~)+  ik,. { + iO,)f, = g. As before we can divide by the factor on the right 

to obtain 

1 
f =- l i ~  f .  = li+rn _ v(~) + ik.. { + iO, g" (3.10) 

Denote the function inside the last limit in (3.10) as g.- 
Next we show that limk. 4= oc. Suppose to the contrary it was oo and restrict to 

a subsequence with limk. = o¢. Choose e as in Lemma 3.4, such that 

sup ~ f2d~<e ,  (3.11) 
~,k= 1 A 

1 
in which A={{ ' [k -~+~o l<V~ }. Choose n large enough that ~ < e  and 

I I f - g ,  II 2 < a  We will obtain a contradiction by integrating f2  over the two sets 
A, = {~ Ik~" ~ + 0,1 < ]/~,} and c 3 " A, =IR - A,. Denote 1~. =k,/k,,. Then 

A. = {{: II~. { + O,/k.I < 1/]/-kT, }. Since 1 / ~ , ,  < I/e, 

f2d~<=g. (3.12) 
An 

2 2 In A~,, g. < g /k, and 

f2d~<= ~ g2d~+e 
A~ A~ 

__<e]lgll2+e. (3.13) 

Adding (3.12) and (3.13) together results in 

Hfll2~2~+~llgll 2, (3.14) 

B___yy choosing ~ small enough we get a contradiction since II f II = 1, which shows that 
lim k, < oe. 
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Similarly 0, must stay bounded, and we get k , ~ k  and 0,--+0 after restricting to 
a subsequence. Since k, is on the integral lattice, k, = k for n large enough and so 
k +0. Take the limit n ~  co in the eigen-equation (3.9) again and find that 

- i k . { f  + v f  + K f = i O f .  (3.15) 

Integrate this against f ;  the real part is (vf  + K f ,  f ) = 0 .  Since L =  v + K  is a 
positive semi-definite self-adjoint operator, then fEN(L) ,  which means that 

f(D=~o +~.~,+~=. (3.16) 

Since ( v+K) f=O,  then - ( k . { ) f = O f ,  which implies that k=O=O. But this is a 
contradiction, since k#~0. This concludes the proof of Proposition 3.2. 

Proof of Theorem 3.1. i) Since/~w is densely defined on 5~2(x; { : ~ < w) and 

Re( /~  f, f )  = Re ((v + Z~,k) f, f )  > 0, (3.17) 

then/]w is maximally dissipative• 
ii) This proof is exactly that of Theorem 1.1 in E5], except that we have 

removed the null space by changing the operator K to /(. Denote Aw= { 

• 8x- + v(~), Kw = z~K, and B w = A w + Kw, operators on &Q = 5¢2{(x, {) : ~ < w}. We 

outline the proof in the following steps 
a) Kw(2-  A~,) -1 is compact on 5ez({,x), for Re2<pv(w). 
b) a(B~) C {2 : Re2 < #v(w)} for w sufficiently large. 
From a), K~ is A~-compact so that ajB~)=cZjAw)={2:ReA>v(w)} [4]. In 

{Re2<v(w)}, A~ is Fredholm and so is B~. Moreover if Re2<0 ,  then 2 is in the 
resolvent set 0(Bw). Therefore {Re2<v(w)}C~(B~), except for a discrete set of 
points which are eigenva]ues of B~. But Proposition 3.2 shows that B w has no 
eigenvalues to the left of Re2=#v(w) for w large enough. 

c) l ira sup IlK j 2 -  A~)I[-,0. 
IZl -* go Re). < ~v£w) 

d) Denote Z(2) = (Z -  A~)- l ( i _  K j 2 -  A~)- 1)- 1 K j  2 _  A~)- 1 so that 
(2  - B~) - ~ = (2 -- A~.)- ~ + Z(2). Denote 

1 ~ e-  i~,~(fl + iT) dy (3.18) z~( t )  = ~ - ~  

I f  13 < #v(w), Za(t) converges absolutely in the weak topology and II Zp(t)H < c where c 
is independent of t and 2. 

e) e- tB~ = e- ta~ + e- t"Z~(t). 

Choose 13 = #v(w). Since !1 e-  taw [[ <~ e-  tv(w) the result (ii) in Theorem 3.1 follows. 

4.  T h e  N o n l i n e a r  E q u a t i o n  

T h e o r e m  4.1. Let 0 < ~ < ¼ .  There is a positive constant 6, such that if [[foL[~<fi, 
then the nonlinear Bottzmann equation (1.8) and (1.9) has a unique solution in ~ ,  
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which satisfies 

Ilf(t)ll <cllfoll~e -aa, (4.1) 

II f(t) ll co --< cll G II~e- ste, (4.2) 

IIf(t)ll~ <cllf0ll~ (4.3) 

inwhichfl= 2 ~ - -~and2=(1-2~)  (c~)l-a(c°)Pforanye>O.~ ~- Theeonstamcdepends 

OFt 13. 

This fi and 2 are chosen just as in the linear problem, but they correspond to 7 

and } rather than ~. 

5. Estimates on/ '  

The nonlinearity F(f,g) was analyzed by Grad in the Appendix of [3]. We 
decompose F as (this is slightly different from [3]) 

F(f, g) = rl(f ,  o) + 1"2( f,  9), 
1 t/2 vF1(f,g)= ~-y(fgl +glf)col  d~ ,  

1 ' '  f i g )  1 dUt, vG(f,o)  = -~,((f gl + ' ' c°1/2 

dO = B(O, V) dO d{~ , 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

in which f~ =f({ ' l)  as given by (2.4) in Part I, etc. The following estimates are 
analogous to those proved by Grad. 

Proposition 5.1. 

LIvFl(f,g)ll~,,r~c(flfll~,,,-,ligl[ + tlfLI tlglt~.r-,), (5.5) 

II vG( f ,  g)/I ~,, _-< e II f ]1 ~,,- k- ~ [I g II~,,- 1-7 '  (5.6) 

Proof. a) By the symmetry in F 1 it suffices to consider v q , ( f , # ) =  ± f c  . . . .  1/2 df~. 2 J d~l~1 

First take the H4(x ) norm and use the Sobolev inequality (2.6). Since the integral 
does not involve 4, we can factor the f term out to get 

]l vF1 l(f, g)ll ~4(~ < ell fll ~4(~ ½ f Ilga llH4(x)col/2B( O, V)dO d{l.  (5.7) 

Replace the first factor using 

II fllm(x)(~) < (1 + ~)-'e-<~llfll~,,. (5.8) 

Then use the definition (I1.6) of co and the bound (t2.21) on B and apply the 
Schwartz inequality to the integral over {~ to obtain 

Ilgl IIH~(x)c01/a d~<ellgtl f e- 1/2d1~-~11- 27 d~I /2  
LR3 

< c II g tl (1 + 4)-7.  (5.9) 
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Combining (5.8) and (5.9) results in 

ItvFll tt~,r+,~cLtftt~,rl[glt , (5.10) 

from which (5.5) follows. 
b) Again we only estimate 

v f 2 1  1 f ~ct q tr ,~ l /2dO 

= ½ ~  ~ f (~+v)g(~+w)~ol /2(~+v+w) 
~3 wJ-v 

Q(v, w) 
v ~  dw dr, (5.11) 

in which w and v are defined by (I 2.10) and (I 2.11). We continue exactly as Grad 
did. Resolve { into components ~1 and {2 parallel and perpendicular to v 
respectively, so that 

o~1/2(~ + v + w) = col/2(v + ~1)~i/2(w + ~2), 

and, using also the Sobolev inequality, 

II f(~ + v)g({ + w)[I re{x) 
<c( l  +l~ +vl)-r(1 + I~ +wl)-r  exp { -  c~(l~ +vl/+[~+w12)} 

[ E 

< c(1 + 4)-r+ 1(1 ÷ ~ 1)- 1( I + 42)- 1 e-  ~¢~ [[ f II ~,~ H g 1[ ~,~. (5.13) 

After applying the H4(x ) norm to vF21 we can use (5.13) in estimating (5.11) to find 

11 vF21 llm(~) < c(1 + 0  -~+ 1 e-~¢~ llfH~,r I/gll~,~ 

• ~ ~ ( l + 4 0 l ( l + 4 2 ) - i c o l 1 2 ( v + { l ) o l / e ( w + ~ z ) ~  dwdv. 
~3 w k v  

(5.14) 

Denote the integral on the right by I. According to Proposition 5.2 from Part I, 

1 
- ~ o)ll2(w+~z)Q(v,w)dv<c(1 + 42 +v) -(~+ 1), (5.15) 
'/3 w L v  

so that 

I<c  ~ (1 +~1)-1(1 +~2)-~(1 +¢2+v) -('+ 1)1-6ol/2(¥+~1)dv. (5.16) 
rg3 /) 

It is easy to see that 

(1 + 42 + v)- (~+ 1)col/¢(v + {t) < c(1 + ¢)- (~ + 1) (5.17) 

Combine this with the estimate 

~!(1 + 41)- 1( 1 + 4z)- 109*/4(~1 + v)dv < c(1 + 4)- x, (5.18) 
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which comes (almost exactly) from the Appendix of [-3], to obtain 

I<c(1  +~) -(7+2) . (5.19) 

Using this in (5.14), we find 

II vr21 tII-I4(x)<= C(1 + ~)-(~+ ~ + *)e -~e~ II f L , .  IlgH=,~ • (5.20) 

The result (5.6) follows after replacing r with r +  7 + 1, dividing, and taking sup 
over ¢. 

6. The Inhomogeneous Iteration Equation 

Consider the equation 

f +{. ~-~ f +  L f  =vI"(h,,h2), (6.1) 

f ( t = O ) = f o e Y C ~  (6.2) 

which is an inhomogeneous version of the iteration equations that will be solved in 
the next section. Pick 2 and fi as in Theorem 4.1, i.e. corresponding to c~/2. For 
f0, hp h 2 we require 

Iif0ll~<bo, (6.3) 

sup {llhi(t)ll~, eat'llhi(t)ll, eat~lthi(t)ll~ } _-<bi, i=  1, 2, (6.4) 
t 

in which the sup is taken over time as well as over the three components. 

Proposition 6.1. The solution f of (6.1) and (6.2) satisfies 

max { }1 f(t)tl,, ea" !I f(t)II, ea~ I! f(t)I! ~ } 
< c(b o + b,b2). (6.5) 

We will employ two useful inequalities. The first is a special case of an 
interpolation theorem for the e, r-norms. 

Lemma 6.2. 

II fl[~/2 < 2  [Ifll~/= IIfll ml/2 . (6.6) 

Proof For any 40>0, 

[[ f [[~/2 ~ e~/2 ~g sup [/({)[ + e-  ~/2 {2 sup e<=[ f(~)[ 
~<¢o ¢>go 

< e~/2egllfll ~ + e-~/2¢~[[fll~ 

<2 ~ / t l f t { ~ -  (6.7) 

by choosing e~/2¢°~= ]/llfIIJI]fll~, 
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Lemma 6.3. For 0 < [~ < 1, 
t 

exp { - 2 ( t -  s) g - 2s ~} ds < c(1 + t)- 1 e - ~,t, (6.8) 
0 

where c depends on ~. 

Proof. Just use the estimate ( t -  s) p - ( t  p - s  p) > c{(t/2) 2 -  ( s -  t/2) 2 } in the integral. 

Proof  o f  Proposition 6.t. a) First we infer from Lemma 6.2 and (6.4) that 

[I hi(t)l[ ~/2 ~ cb~ el/2 ~ . (6.9) 

According to Proposition 6.1 and (6.4), 

[I vF1 (hi, h2) (t)I[ ~ ___< cb lb2 e-  ~ ,  (6.10) 

H vF2(hl, h2)(t)tl~,,+ 1 <cblb2,  (6.11) 

]lvF(hl, h2) (t) ll~/2 < cblb2e-X~. (6.12) 

e 
Note that the ~-norm decays, while the e-norm does not. This decay is the reason 

for using the e/2 and will be needed in the next estimate. 
b) Using the estimates (2.7) and (2.8) for the linear problem and then (6.12) and 

Lemma 6.3, we find that (recall that 2 corresponds to e/2) 

t 

max{llf(t)ll, [If(t)l[~} <=ce-Zt~llfol]~/2 +c f e-Ztt-s)~NvF(hl,h2)(s)ll~/2ds 
0 

t 

< ce-  Xt~b o + c ~ e-  ~(~- S)Pe - a~ ds b lb2 
0 

< ce-Z~(bo + bib2). (6.13) 

c) To estimate Ilf(t)l]~ we go back and redo the linear estimate. As in (2.19) we 
estimate 

r[ f( t ,  %)1[ m(~)--< e-t*(~)l] To Ii a~(x) 

+ i e-  (t- ~)~.(~)( Ii g f  II ~ ) ( s ,  {) + I] vrtl m~)(s, {)) ds. (6.14) 
0 

Using the argument in Sect. 12 of Part I, we find that 

sup {e~e:e-(t-s)~(¢)II g f II .,<x)(S, {)} 

<c(1 + t -  s)- l -  ~/2 {e~¢g it f (s)l I +(1 + ~o)- 3/2tl f (s)H~} (6.15) 

for any ~o- Choose ~o large enough and use (6.13) to obtain 

i sup {e~e~e- (t- ~)v(~)II K f  l] m¢~)( s, {)} ds 
o 

=<½ sup llf(s)lt~+c(bo+blb2). (6.16) 
O<_.s<_t 
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The last term in (6.14) is split into two parts using F = l ~  + F  2 [cf. (5.1)]. The 
reason for going back to the linear equation was to estimate the term containing 
r2: 

=< sup{(1 + ~)-~- 1/2e-(t-~)~(e)} • HvF: 11~,~+ l/Z 

< c(1 + t -  s)- 1 -~/:blbz ' (6.17) 

where we used Lemma 112.1 and (6.11) in the last step. Since this is integrabte over 
time. 

t 
sup {e~2e - (t- s)~(~)H vFz t1 u~(x)( s, ~)} ds < cb 1 b2 . (6.1 8) 

o 

The term containing F t is easily estimated 

i sup {e~¢~e-(t-s)~(e)[lvFx [tm(~)(s, ~)} ds 
0 

< i IlvF~]l~,ds<cbxb2, (6.19) 
0 

because of (6.10). 
The three terms estimated in (6.16), (6.18), and (6.t9) plus the initial term in 

(6.14) are just what appear on the right side of (6.14) after multiplying by e ~ and 
taking sup over {. The result is that 

Hf(t)H~<=c(bo+blb2)+ ½ sup lf(s)lt~, (6.20) 
O < s < t  

from which it follows that 

tlf(t)l!~_-< c(bo + bib2). (6.21) 

This concludes the proof of the Proposition. 

7. Proof of Theorem 4.1 

The nonlinear Boltzmann equation (1.8) and (1.9) is solved by an iteration starting 
with 

f i(O = e-Xtafo (7.1) 

and proceeding by 

8f  0f~ 1 ~-t n+l+~'~X-X n + l + L f . +  = v r ( f . , f . ) ,  f . + l ( t = 0 ) = J o .  (7.2) 

First we show the boundedness and decay of f ,+ 1. Denote Hfo [[~ = bo and suppose 
that 

max { I[ f~ [I ~, e ~  [[ f~]l, e~'~ [[ f ,  [100 } < b. (7.3) 
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We need in add i t i on  tha t  b > b 0 in o rde r  to get the induct ion  star ted.  Accord ing  to  
P ropos i t i on  (6.1), the es t imate  (7,3) will also be t rue for f , +  ~ if b > c(b o + b2). This 
can be fulfilled as long as b o is small  enough,  and  we can even make  b as small  as 
desired. 

Nex t  we es t imate  the  difference h.+ l = f . + ~ - f . .  F o r  h.+ 1 we have  the 
equa t ion  

~ h,+l -l-~-'~--~hn+l +Lh,+~ = v r ( h , , f , + f , _ t ) ,  h , + l ( t = 0 ) = 0 .  (7.4) 

Deno te  H = sup { II h(t)II ~, e ~  tl h(t)1t, eXtO II h(t)ll ~o }- Then I[Ih2111 =< 2b f rom (7.3), and  
t 

1 
using P ropos i t i on  6.1 again,  ltlh.+ ~(t)lll <2cblUh.~t. After  choos ing  b < 2cc' we find 

tha t  ~ [llh.+ ~(t)lll < o% and  it follows tha t  
. = 2  

f , - ~ f  (7.5) 

in the n o r m  IH • Ill. M o r e o v e r  f solves Eqs. (1,8) and  (1.9). This concludes  the p r o o f  of 
T h e o r e m  4.1. 
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