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0 Introduction

Let V = V(z,t), z € R" and t € R, be a C? real function Tp-periodic in the ¢
variable.
We shall study the following equation:

4+ V)(z,t) =0, x==z()  kTp-periodic curve (k € N)in R®  (0.1)

where V/(x,t) denotes the gradient of V' with respect to z.
We assume that the potential function V is asymptotically quadratic, i.e.

Viz,t) = (1/2) (Asczlz) + U(x,t) (0.2)

where (| ) denotes the standard inner product in R", Ay = Aso(f) is a symmetric,
real, Tp-periodic 7 X n matrix and U(z,t) is a function which is bounded, having
bounded gradient U, and whose Hessian matrix (with respect to z) U, (z, ) tends
to zero (uniformly in ) as |z| goes to infinity.

We shall also assume that

V/(0,t) =0 and  V(0,f) = 0 (0.3)

then 0 is a solution of (0.1).
Assumptions (0.2}, (0.3) allow to consider the linearized equations at oo and
at zero which are respectively

I+ Ax(t)x =0 and E+Ag(t)z =0 (0.4)
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where A (t) is the matrix introduced in (0.2) and Ag(t) denotes the Hessian
matrix V! (0,¢) of V at x = 0.

We denote by LT, = L, (respectively LI = Lg) the self- adjoint realization
in L? with T = kT,-periodicity conditions of the operator & — —i — A (t)z
(respectively of the operator z — —Z — Ag(t)z).

Problem (0.1), in the framework of hamiltonian systems, has been studied
under nonresonance conditions at oo (see [1, 6]), i.e. assuming that LI is invertible
for al T = kTg, k € N.

The nonresonance condition at infinity permits to get suitable a priori bounds
on the solutions of (0.1) and consequently the action functional related to {0.1)
(see (3.1) in section 3) satisfies the compactness Palais-Smale condition.

Some results are available also in the strong resonance case, i.e. when the
function U in (0.2) goes to zero at infinity (see [3], [5]).

The aim of this paper is to prove existence results of (0.1) without the non-
resonance assumption at co and without the strong resonance assumption.

In order to state the results we need to recall the definition of twist number
(see section 2).

We set

0 = lm j(Ao, kTo)/kTy,  Too = lim j(Aco, kTo)/kTh (0.5)
k—o0 k—o0

where j(Ag, kTp) (respectively j(Aoo, kT0)) is the number of the negative eigenval-
ues, counted with their multiplicity, of LY, T = kT, (respectively LL | T = kTp).
The limits 75 and 7. in (0.5) exist (see e.g. [2]) and they are called twist number
at 0 and at oo respectively.

Now we can state the theorem we shall prove in this paper

Theorem 0.1 Assume that V' satisfies assumptions (0.2), (0.8). Assume more-
over that there is not resonance at the origin (i.e. the linearized operator at 0 LT
is invertible for all T = kTy, k € N) and that 70 # 7o (see (0.5)). Then equation
(0.1) has a non zero solution for all k € N s. t.

k1o > (277,+1)/|7‘0—-7’oo| .

1 The Morse inequalities

In this section we shortly review some basic facts on Morse theory. In particular we
recall some recent results obtained for functionals with degenerate critical points
(see [4]).

Let F be a real Hilbert space and J a C? functional on F. We denote by K
the set of the critical points of J

K={zeE | J(z)=0}.
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Definition 1.1 Let z € K and let J"(z) be the second Fréchet differential of J
at x.

The Morse index m{z,J) of z (for J) is the cardinal number (possibly infi-
nite) defined by

m(z,J) = max{dim (S) | S is a linear subspace of E s.t.
<J"(z)v,v><0 foranyv e S, v#0}. (1.1)

Moreover the large Morse index m*(z,J) of = is defined by
m*(z,J) = m(z,J) + dimKer J'(z) .

Usually we shall write m(x), m*(z) instead of m(z,J), m*(z,J).
The critical point x is called non degenerate if Ker J"(z) = {0}.

Now if a < b (b possibly infinite) we set
JP={z€E | Jz)<b}, J={z€E|a<J(=) <b}.

If @ < b are real numbers we set

Kl={zeK | a<J(z)<b}. (1.2)
Moreover we set
Py(J?, %) = Y dim Hy(J*, J* K) 9 (1.3)
g0

where H,(J® J% K) denotes the ¢-th singular relative homology of J? with re-
spect to J® with coefficients in some field K. P;(J®, J%) is a formal series whose
coefficients are cardinal numbers called “Betti numbers”.

We recall the Morse relations

Theorem 1.1 Let a,b (b possibly infinite) be regular values for J (i.e. ifx € K
then J(x) # a,b). Assume moreover the following:

— J satisfies the Palais-Smale condition in (a,b) (i.e. any sequence {z,} C J?,

s.t. J(zn) is bounded, contains a convergent subsequence) (1.4)
- Any z € K? is nondegenerate and has finite Morse indez m(zx) (1.5)
Then
ST = P, + (146 Q(1) (16)
zEK}

where Q(t) is a formal series whose coefficients are cardinal numbers (possibly
infinite).
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We point out that since J satisfies the (P.S.) condition K? is finite, if b is a
real number, and it is at most countable, if b = +co.

If assumption (1.5) is not satisfied a relation between the set of the critical
points K® and the Poincare polynomial P;(.J?, J4) still holds. In fact, by using a
generalized Morse index, the following theorem can be proved (see [4]).

Theorem 1.2 Let a,b (b possibly infinite) be regular values for J. Assume that
J satisfies the (P.S) condition (1.4). Assume moreover that for any z € K¢, =

degenerate, 0 is an isolated eigenvalue of J'(z) having finite multiplicity. Then a
formal series with positive coefficients exists

by = Z agt?
q

satisfying the following properties:
(ag #0) = (there ezists v € K& s.t. m(z) < ¢ < m*(z)) (1.7)
(there exists x € K2 non degenerate and m(z) < 00) = (@) #0)  (1.8)

(K8 = P(J°, T + (1 4+ 1) Q) (1.9)

where Q(t) is a formal series whose coefficients are cardinal numbers (possibly
infinite).

We recall that if any z € K? is non degenerate then i(K?) reduces to the
Morse polynomial
> e,

zeK?

The following corollary holds:

Corollary 1.1 Let a,b and J as in theorem 1.2. Let y € K? be a non degenerate
critical point with m(y) < co. Assume that

Py(Jb, J%) Zﬂqtq with By = 0. (1.10)

Then J has a critical point © # y such that
m(z) < my)+1 and  my)—1 < m*(z). (1.11)

Proof By (1.8) we have

W(KD) = agtt  with apmgy) #0. (1.12)
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By (1.9), (1.10), (1.12) we deduce that (1+t)Q(¢) “contains” the monomial ™),
ie.
(L+1) Q) =Y bet? + bttt
q q

with
bn(y) # 0 or b1 # 0. (1.13)
Clearly by (1.9), (1.12) and (1.13) we have

(brg) # 0) = (bnt™ @™ # 0) = (Gm)e1 # 0)
(bm(y)—l 7é 0) = (am(y)—l 7& O)
Then by (1.7) we deduce that there exists z € K? s.t.
m(z) < m(y) +1 < m*(z) or m{z) < my)—1 < m*(z). (1.14)

Since y is nondegenerate (1.14) implies that y # z. Moreover from (1.14) we deduce
that
m(z) < m(y) +1 and m(y) — 1 < m*(z).

2 Twist number

In this section we recall some basic facts on the twist number. For a more extensive
treatment we refer to [2], [7, 8], [6].

Let A = A(¢) be a family of real symmetric n x n matrices depending contin-
uously on ¢ and Tp-periodic. Consider the second order, linear differential operator

r — —I— A(t)z (2.1)

and denote by LT, T = kTp (k € N), its self-adjoint realization in the L? space
with T-periodicity conditions.

LT has discrete spectrum with only a finite number of negative eigenvalues.
We set

J(A,T) = number of negative eigenvalues of LT counted with
their multiplicity. (2.2)

We call j(A,T) the CZ (Conley-Zehnder) index in [0, T] relative to the equation
F+A(t)x = 0. (2.3)
It is possible to prove that the number

T =171(A) = kllllgoj(A,kTo)/kTo (2.4)

is well defined and it is called twist number of the operator (2.1).
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The proof of (2.4) in this context can be found in [2]. A formula like (2.4) has
been previously proved by Ekeland in the context of convex Hamiltonian systems
[7, 8.

Now if we set

i*(A,T) = j(A,T)+ dimKer LT (2.5)

it is possible to prove that (see e.g. [2])
HAT —n < J(AT) < *(AT) < 7(AT +n. (2.6)

In order to get another characterization of the twist number we need to introduce
some definitions.

Let W(t) be the Wronskian matrix relative to the equation (2.3}, i.e. the
matrix which sends the initial data (z(0),£(0)) to (z(t), Z(t)).

The complex eigenvalues A1(t),. .., A, (¢) of W(t) are continuous functions of
t. Then, if we set A\;(t) = p;(t) expivd;(t), p;(0) = 1, 9;(0) = 0, the numbers ¥;(¢t)
are uniquely determined.

The map W(Tp) from C?" to C?" is called the Poincaré map or the mon-
odromy map. The eigenvalues \;(Tp) of W(Tp) are usually called Floquet multi-
pliers of (2.3).

We shall consider the Floquet multipliers on the unit circle S*

expiwi Ty, ..., expiwpTh; wi,...,wp ER.

The numbers iw;To = 9;(To) (j = 1,...,p) are called Floquet exponents of (2.3)
and w; are the fundamental frequencies of (2.3).

Proposition 2.1 Letw,...,w, be the fundamental frequencies of (2.3). Then LT
is invertible for all T = kTy (k € N), if and only if for all j = 1,...,p the numbers
w;To /2w are irrational (non resonance condition,).

Proof Assume that there exists a positive integer k such that LT, with T = kTp,
is not invertible. This amounts to say that there exists a nontrivial k7y-periodic
solution of (2.3), then there exists ¢ € {1,...,p} s.t. expiwgkTp = 1 and this
means that wyTp/27 is rational.

O

Remark 2.1 It can be proved that 7(A) = w1 + ... +wp (Wi,...,wp being the
fundamental frequencies of (2.8)).

3 Proof of Theorem 0.1

Problem (0.1) can be reduced to the study of the critical points of the C? functional

T
f@) = [ 0RREOF-VEO.0)E, T el (3D
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where H2. is the Sobolev space of the absolutely continuous T- periodic curves in
R"™ with square integrable derivative.

We denote by | |1 the standard norm in H7.. We denote by L, the linearized
operator at infinity, i.e. the operator

r€ H}f — —i— Ay(t)z (3.2)

where the matrix A (¢) has been introduced in (0.2).
The positive (respectively negative) span of Lo, will be denoted by H™ (re-
spectively H™). We shall set H° = Ker L,. Then

Hy = H'@H o H°. (3.3)

We denote by Pt the projection operator on H' and by P the projection operator
on H~ @ H°, moreover we set

r=z"+z +a°, with zt € HT, 2~ e H™, 2% € H°.
The standard Sobolev norm | |; in H} is equivalent to the norm
7] = (<Looz™, 2" 5)2 4 (—<Looz™, 7 >)/2 4 2°); . (3.4)

Clearly the functional (3.1) can be written
T
f(z) = (1/2) <Leoz, x> —/ Uz, t)dt UeHr (3.5)
0

where U = U{z, t) has been introduced in (0.2).

Since U is bounded it is not difficult to realize that (3.5) does not satisfy in
general the Palais-Smale condition when Ker L., # {0}.

To overcome this difficulty we shall add to (3.4) a penalizing term which is
“sensitive” for large values of |Pzl;.

More precisely for R > 0 we set

tt fort>0
o0 = {5 iZ0  anle) = |Pe -

and

Fi(z) = f(z)+¢(gr(z)),  Fr(z) = f(z)— é(gr(z)) z€ Hk.

Lemma 3.1 If the gradient U, of U is bounded, then for any R > 0 the func-
tionals F}, Fr satisfy the Palais-Smale condition, namely any sequence {zn} in
H} s.t. Ff(z,) (respectively Fg (z,,)) is bounded and dF# (z,) — 0 (respectively
dFg () — 0) contains a convergent subsequence.
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Proof Let {z,} be a sequence in H} such that

T
Fi(zn) = (1/2)<LooZn, Tn> —/ Ulxn, t) dt + ¢(gr(xy,)) is bounded (3.6)
0
and
dFE (2n) = LeoTn — Ul(@n, t) + 2¢' (gr(zn)) Prn = vy (3.7)

where v, goes to zero in the dual of H}.
Set

Tn = b+, +28 ot e HY, x, cH, 22 € H. (3.8)
Testing (3.7) with z;7 we get
<Loo$n7$;r> - <Ug/;(xn)t)7$:;> = <Un, Tp>. (3.9)

Since U], is bounded and v, goes to zero, from (3.9) we deduce that |z,|* (see
(3.4)) is bounded.

Testing now (3.7) with Pz, = z,, + 20 we get

- (IIL‘Z\*)Q — <Ug(zn,1), Pon> + 2¢'(gr(2n)) [Pz} = <vp, P>, (3.10)

arguing by contradiction assume that for a suitable subsequence
|Pz,|? — oo. (3.11)
As a consequence
gr(zn) = |Pr,|3 ~ R for large n.
Then from (3.10) we have
—(Jz, |")? — <Ul(zn, 1), Prn> + 8(|Pzy|? — R)*|Pzy|T = <vp, Pzn>

which contradicts (3.11).
Finally we conclude that |z,|; = (J; |3 + |Pz,|?)!/? is bounded.
Now standard arguments show that {z,} contains a strongly convergent sub-
sequence.
A similar proof shows that F; satisfies the Palais-Smale condition.
0

Lemma 3.2 Let U, be bounded. Then there exists M > 0 such that for all R >0
and for any critical point y of F;{ (or Ff, ) we have

|PTyl, < M.



Vol. 1, 1994 Periodic solutions of asymptotically linear systems 275

Proof Let y be a critical point of F3, then
dFf;(y) = Looy — Un(y,t) +2¢'(gr(y)) Py = 0.
Testing with y* = Pty we get
(y*1)? = <Ur(y, t),yt> = 0. (3.12)

Since U}, is bounded, {3.12) implies the conclusion.
Analogous proof holds for Fg;.

O
It will be convenient to set
m(o0) = (A, T), m*(00) = j*(Auc, ) 1)
m(0) = j(Ao,T), m*(0) = j*(4o,T)
where j and j* have been defined in (2.2), (2.5).
Clearly
m(oo) = AimH~  and  m*{co) = dim(H~ @ HY). (3.14)

A critical point y of F; (respectively F) with | Py|; sufficiently large has a Morse
index which is “large” (respectively “small”) when compared with m(co). More
precisely the following lemma holds

Lemma 3.3 Let V satisfy assumption (0.2). Then there exists Q@ > 0 (Q inde-
pendent of R) s.t. if y is a critical point of Fy, (respectively F ) with |Pyl > Q,
then we have
m(co) < m(y) (3.15)

(respectively m*(y) < m*(o0)) (3.16)
where m(y) = m(y, Fg ) and m*(y) = m*(y, F,) (see Def. 1.1).
Proof For simplicity we set

Fy = Fp

and denote by Ff(y) (respectively f”(y)) the second Fréchet differential of Fi
(respectively f) at y.
Clearly for all v € H} we have

Fry)lv,v] = f(y)lv,v] — 2¢'(gr(y)) (Pvlv) — 46" (9r(y))(Pylv)* < f"(y)[v,v].
(3.17)
We shall assume H~ # {0}, otherwise (3.15) is trivial.
We show that, if y is critical point of Fr and |Pyl; is large enough, then

Vee H ,v#0 : f'(y)v,v] <0. (3.18)
(3.18) and (3.17) easily will imply (3.15).
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The norm | |* defined in (3.4) is equivalent to the norm | |; in HX, then there
exists a constant ¢ > 0 s.t.

|2, < e(|v]*)? for all v € H}.

where |v|o, denotes the L™ norm.
By the above inequality we easily get, Vv &€ H™

T

F(y)v,v] = <Loov,v> _/0 (UL (y, tywlv)dt < (3.19)

< ("2t ( / Tl%(y,tndt) ol < o2 ", dt 1)

Since y is a critical point of F’ }'{ , by lemma 3.2 we have
y=y " +Py, Pth<M (3.20)

where M is independent of R.
Moreover assumption (0.2) implies that

Uze(z, )] — 0 for |z] - +oo. (3.21)
By (3.20), (3.21) and using lemma 3.2 in [3], we deduce that there exists @ > 0

such that
(IPvh > @) = ([ 10twolar < vje). (3.22)

Then, if |Py| > @, (3.18) easily follows from (3.22) and (3.19) and the proof of
(3.15) is complete.
Let us now prove (3.16). To this end we set for simplicity

Ff = Fg

T
|

and evaluate for v € Hi.

Fry)lv,v] = £ (9)lv, o] + 20" (9r(¥)) (Polv) + 46" (9r(y)) (Pylv)* > " (y)[v, ].
(3.23)
We show that, if y is critical point of Fg and |Py|; is large enough, then

Vve HY, v#0 : f'(y)v,v] > 0. (3.24)

Clearly (3.24) and (3.23) easily will imply (3.16).
As in the proof of (3.19) we get

T
Vee HT f'(y)v,v] = <LOOU,’U>—/ (U (y,t)v|v) dt >
0

> <|v|*>2(1 o T|U;;<y,t>1dt). (3.25)

Arguing as in the proof of the first part we deduce that (3.25) implies (3.24)
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We shall set
F, =F}, F_=F,

@ being the positive number introduced in Lemma, 3.3.
We shall evaluate the relative homology of Hi. with respect to suitable sub-
levels of F_. The following result holds

Proposition 3.1 Assume that U and U, are bounded. Then there exists ¢ < 0
sufficiently small in order that

P(H} F¢) = tm ()

where F¢ ={z € H}. | F_(z) < c}, P(HL, F¢) denotes the Poincaré polynomial
of H} relatively to F° and m*(oco) has been defined in (3.13).

Proof The proof is divided in various steps. First we introduce the “cylinder”
C={(uww) : ve H"', we H @ H", lw|; <1}

and its boundary
0C = {(w,w) € C : jwjy =1}.

Step 1. There exists K > /@ such that for all (u,w) € 8C the real map o(s) =

F_(u+ sw), s € [K,+oo], is strictly decreasing.
In fact, for (u,w) € 8C and s > /@, we have

T
o'(s) = <dF (u+sw),w> = <Loo(u+sw),w>*/ (UL{u + sw)jw) dt —
0
8(s2 = Q)%slwf < ULl [wlsa — 85(s% - Q)°. (3.26)

Then if s > K, with K sufficiently large, we have

o'(s) < 0.
Step 2. Let
e < —|UloT — 2K%. (3.27)
Then for all z = (u,w) € 8C
there exists only one s = s(z) > K s.t. F_(u+sw)=c. (3.28)

In fact for all (u, w) € 8C we have
o(K) = F_(u+ Kw) > —|U|T — (K2 —Q)* > ¢c.

Then, since o(s) is strictly decreasing in [K, +oo| (see Step 1) and o(s) diverges
to —oo as ¢ goes to 400, the conclusion easily follows.
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Step 3. Consider the map 1 defined on the cylinder C' by

U ifw=20

u+s(z)w Hw=#0 (3:29)

vV (u,w) € C W(u,w) = {

where x = (u, w/|w|;) and s(z) has been defined in (3.28).
It can be seen that 1 is an homeomorphism of C onto

HY/FC = {z | F_(z)>c}.
Step 4. Let us finally evaluate the Poincaré polynomial P(H, F¢). We denote by
B the unit ball in H~ @ H? and by 0B its boundary. Then we have

P(HL, F¢) = (by excision) = P(H}./F¢,0F¢) = (by Step 3) = P(C,0C) =
= P(Bx HY,0B x Ht) = P(B,8B) = (since dim (H~ & H") = m*(o0)) =

— pm (o0}

Finally we are ready to prove Theorem 0.1

Proof of Theorem 0.1. In order to prove Theorem 0.1 we distinguish two cases:
To > Toe and T4, > To.
Assume first that

T > Too - (330)

In this case we shall consider the penalized functional F.
The assumption
T>(2n+1)/(10 — Too)

and the inequalities (2.6), used with A = A, and A = A, imply that
m*(oc0) < m(0) —1. (3.31)
Since F. is bounded from below, the sublevel
Fo = {z | Fi(z)<a}
is empty if @ € R is sufficiently small. Then
P(H},F%) = P(Hp,0) = 1. (3.32)

By (3.31) 7n(0) > 0 then, by (3.32) ™) is not “contained” in P(H}, F'2). Then,
using corollary 1.1, there exists a critical point o # 0 of F. with

m*(z) > m(0)—1. (3.33)
Clearly z will be a critical point of the action functional f if we show that

1Pzl < Q. (3.34)



Vol. 1, 1994 Periodic solutions of asymptotically linear systems 279

In fact in this case the penalizing term has no influence and we will have
@) = Fi() = 0.

Arguing by contradiction assume that (3.34) does not hold, then by lemma 3.3
(see (3.16)) we have
m*(z) < m"(c0) (3.35)

(3.33) and (3.35) imply that
m(0) — 1 < m*(o00)

which contradicts (3.31).
Finally consider the case
70 < Too - (336)

In this case we consider the penalized functional F_.
Since
T>(2n+1)/(re0 —70)

(2.6) will imply that
m(0) +1 < m(c0). (3.37)

Now by proposition 3.1 there exists ¢ < 0 such that
P(H}, F¢) = tm () (3.38)

By (3.38) and (3.37) we see that t™(® is not “contained” in P(H%, F¢). Then,
using corollary 1.1, there exists a critical point z of F_ such that

x #0 and m(z) < m(0)+1. (3.39)

As before we argue by contradiction and assume that (3.34) does not hold. Then

by lemma 3.3 (see (3.15)) we have
m(co) < m(z). (3.40)

Clearly (3.40) and (3.39) contradict (3.37).
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