Periodic solutions of asymptotically linear dynamical systems*

Vieri BENCI Istituto di Matematica Applicata "U. Dini", 56127 Pisa, Italy

Donato FORTUNATO Dipartimento Matematica-Università, 70125 Bari, Italy

0 Introduction

Let $V = V(x,t)$, $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$, be a C^2 real function T_0 -periodic in the t variable.

We shall study the following equation:

 $\ddot{x} + V'_x(x,t) = 0$, $x = x(t)$ kT_0 -periodic curve $(k \in \mathbb{N})$ in \mathbb{R}^n (0.1)

where $V'_x(x,t)$ denotes the gradient of V with respect to x.

We assume that the potential function V is asymptotically quadratic, i.e.

$$
V(x,t) = (1/2) (A_{\infty}x|x) + U(x,t)
$$
\n(0.2)

where (1) denotes the standard inner product in \mathbb{R}^n , $A_{\infty} = A_{\infty}(t)$ is a symmetric, real, T_0 -periodic $n \times n$ matrix and $U(x, t)$ is a function which is bounded, having bounded gradient U'_x and whose Hessian matrix (with respect to x) $U''_{xx}(x,t)$ tends to zero (uniformly in t) as $|x|$ goes to infinity.

We shall also assume that

$$
V_x'(0,t) = 0 \qquad \text{and} \qquad V(0,t) = 0 \tag{0.3}
$$

then 0 is a solution of (0.1) .

Assumptions (0.2), (0.3) allow to consider the linearized equations at ∞ and at zero which are respectively

$$
\ddot{x} + A_{\infty}(t)x = 0 \quad \text{and} \quad \ddot{x} + A_0(t)x = 0 \tag{0.4}
$$

^{*}This research has been supported by M.U.R.S.T., 40%, 60%.

where $A_{\infty}(t)$ is the matrix introduced in (0.2) and $A_0(t)$ denotes the Hessian matrix $V''_{xx}(0, t)$ of V at $x = 0$.

We denote by $L_{\infty}^T = L_{\infty}$ (respectively $L_0^T = L_0$) the self-adjoint realization in L^2 with $T = kT_0$ -periodicity conditions of the operator $x \to -\ddot{x} - A_{\infty}(t)x$ (respectively of the operator $x \to -\ddot{x} - A_0(t)x$).

Problem (0.1), in the framework of hamiltonian systems, has been studied under nonresonance conditions at ∞ (see [1, 6]), i.e. assuming that L^T_{∞} is invertible for all $T = kT_0, k \in \mathbb{N}$.

The nonresonance condition at infinity permits to get suitable a priori bounds on the solutions of (0.1) and consequently the action functional related to (0.1) (see (3.1) in section 3) satisfies the compactness Palais-Smale condition.

Some results are available also in the strong resonance case, i.e. when the function U in (0.2) goes to zero at infinity (see [3], [5]).

The aim of this paper is to prove existence results of (0.1) without the nonresonance assumption at ∞ and without the strong resonance assumption.

In order to state the results we need to recall the definition of twist number (see section 2).

We set

$$
\tau_0 = \lim_{k \to \infty} j(A_0, kT_0)/kT_0 , \qquad \tau_\infty = \lim_{k \to \infty} j(A_\infty, kT_0)/kT_0 \tag{0.5}
$$

where $j(A_0, kT_0)$ (respectively $j(A_\infty, kT_0)$) is the number of the negative eigenvalues, counted with their multiplicity, of L_0^T , $T = kT_0$ (respectively L_∞^T , $T = kT_0$). The limits τ_0 and τ_∞ in (0.5) exist (see e.g. [2]) and they are called twist number at 0 and at ∞ respectively.

Now we can state the theorem we shall prove in this paper

Theorem 0.1 *Assume that V satisfies assumptions (0.2), (0.3). Assume moreover that there is not resonance at the origin (i.e. the linearized operator at 0* L_0^T *is invertible for all* $T = kT_0, k \in \mathbb{N}$ and that $\tau_0 \neq \tau_{\infty}$ (see (0.5)). Then equation (0.1) has a non zero solution for all $k \in \mathbb{N}$ s. t.

$$
kT_0 > (2n+1)/|\tau_0 - \tau_{\infty}|.
$$

1 The Morse inequalities

In this section we shortly review some basic facts on Morse theory. In particular we recall some recent results obtained for functionals with degenerate critical points **(see [4).**

Let E be a real Hilbert space and J a C^2 functional on E. We denote by K the set of the critical points of J

$$
K = \{ x \in E \mid J'(x) = 0 \} .
$$

Definition 1.1 Let $x \in K$ and let $J''(x)$ be the second Fréchet differential of J *at x.*

The Morse index $m(x, J)$ of x (for J) is the cardinal number (possibly infi*nite) defined by*

$$
m(x, J) = \max\{\dim(S) \mid S \text{ is a linear subspace of } E \text{ s.t.}
$$

$$
\langle J''(x)v, v \rangle < 0 \text{ for any } v \in S, v \neq 0 \}.
$$
 (1.1)

Moreover the large Morse index $m^*(x, J)$ *of* x *is defined by*

$$
m^*(x, J) = m(x, J) + \dim \operatorname{Ker} J''(x).
$$

Usually we shall write $m(x)$, $m^*(x)$ instead of $m(x, J)$, $m^*(x, J)$. The critical point x is called non degenerate if $\text{Ker } J''(x) = \{0\}.$

Now if $a < b$ (b possibly infinite) we set

$$
J^{b} = \{ x \in E \mid J(x) < b \}, \qquad J_{a}^{b} = \{ x \in E \mid a < J(x) < b \}.
$$

If $a < b$ are real numbers we set

$$
K_a^b = \{ x \in K \mid a \le J(x) \le b \}.
$$
 (1.2)

Moreover we set

$$
P_t(J^b, J^a) = \sum_{q \ge 0} \dim H_q(J^b, J^a, \mathbf{K}) t^q
$$
 (1.3)

where $H_q(J^b, J^a, \mathbf{K})$ denotes the q-th singular relative homology of J^b with respect to J^a with coefficients in some field **K**. $P_t(J^b, J^a)$ is a formal series whose coefficients are cardinal numbers called "Betti numbers".

We recall the Morse relations

Theorem 1.1 Let a,b (b possibly infinite) be regular values for J (i.e. if $x \in K$ *then* $J(x) \neq a, b$ *). Assume moreover the following:*

- *J* satisfies the Palais-Smale condition in (a, b) (i.e. any sequence $\{x_n\} \subseteq J^b_{a}$)
	- *s.t.* $J(x_n)$ *is bounded, contains a convergent subsequence*) (1.4)
- $-Any \ x \in K_a^b$ is nondegenerate and has finite Morse index $m(x)$ (1.5)

Then

$$
\sum_{x \in K_a^b} t^{m(x)} = P_t(J^b, J^a) + (1+t) Q(t)
$$
\n(1.6)

where Q(t) is a formal series whose coefficients are cardinal numbers (possibly infinite).

We point out that since J satisfies the (P.S.) condition K_a^b is finite, if b is a real number, and it is at most countable, if $b = +\infty$.

If assumption (1.5) is not satisfied a relation between the set of the critical points K_a^b and the Poincarè polynomial $P_t(J^b, J^a)$ still holds. In fact, by using a generalized Morse index, the following theorem can be proved (see [4]).

Theorem 1.2 *Let a, b (b possibly infinite) be regular values for J. Assume that J satisfies the* (P.S) *condition* (1.4). Assume moreover that for any $x \in K_a^b$, x *degenerate, 0 is an isolated eigenvalue of J"(x) having finite multiplicity. Then a formal series with positive coefficients exists*

$$
i(K_a^b) \,=\, \sum_q a_q t^q
$$

satisfying the following properties:

$$
(a_q \neq 0) \implies (there \; exists \; x \in K_a^b \; s.t. \; m(x) \leq q \leq m^*(x)) \tag{1.7}
$$

(there exists $x \in K_a^b$ non degenerate and $m(x) < \infty$) $\implies (a_{m(x)} \neq 0)$ (1.8)

$$
i(K_a^b) = P_t(J^b, J^a) + (1+t)Q(t)
$$
\n(1.9)

where Q(t) is a formal series whose coefficients are cardinal numbers (possibly infinite).

We recall that if any $x \in K_a^b$ is non degenerate then $i(K_a^b)$ reduces to the Morse polynomial

$$
i(K_a^b) = \sum_{x \in K_a^b} t^{m(x)}.
$$

The following corollary holds:

Corollary 1.1 *Let a, b and J as in theorem 1.2. Let* $y \in K_a^b$ *be a non degenerate critical point with* $m(y) < \infty$. Assume that

$$
P_t(J^b, J^a) = \sum_q \beta_q t^q \qquad with \ \beta_{m(y)} = 0. \tag{1.10}
$$

Then J has a critical point $x \neq y$ *such that*

 $m(x) \le m(y) + 1$ and $m(y) - 1 \le m^*(x)$. (1.11)

Proof By (1.8) we have

$$
i(K_a^b) = \sum_q a_q t^q \qquad \text{with } a_{m(y)} \neq 0. \tag{1.12}
$$

By (1.9), (1.10), (1.12) we deduce that $(1+t)Q(t)$ "contains" the monomial $t^{m(y)}$. i.e.

$$
(1+t) Q(t) = \sum_{q} b_q t^q + \sum_{q} b_q t^{q+1}
$$

with

$$
b_{m(y)} \neq 0 \qquad \text{or} \qquad b_{m(y)-1} \neq 0. \tag{1.13}
$$

Clearly by (1.9) , (1.12) and (1.13) we have

$$
(b_{m(y)} \neq 0) \implies (b_{m(y)}t^{m(y)+1} \neq 0) \implies (a_{m(y)+1} \neq 0)
$$

 $(b_{m(y)-1} \neq 0) \implies (a_{m(y)-1} \neq 0).$

Then by (1.7) we deduce that there exists $x \in K_a^b$ s.t.

$$
m(x) \le m(y) + 1 \le m^*(x)
$$
 or $m(x) \le m(y) - 1 \le m^*(x)$. (1.14)

Since y is nondegenerate (1.14) implies that $y \neq x$. Moreover from (1.14) we deduce that

$$
m(x) \le m(y) + 1
$$
 and $m(y) - 1 \le m^*(x)$.

2 Twist number

In this section we recall some basic facts on the twist number. For a more extensive treatment we refer to $[2]$, $[7, 8]$, $[6]$.

Let $A = A(t)$ be a family of real symmetric $n \times n$ matrices depending continuously on t and T_0 -periodic. Consider the second order, linear differential operator

$$
x \to -\ddot{x} - A(t)x \tag{2.1}
$$

and denote by L^T , $T = kT_0$ ($k \in \mathbb{N}$), its self-adjoint realization in the L^2 space with T-periodicity conditions.

 L^T has discrete spectrum with only a finite number of negative eigenvalues. We set

$$
j(A,T) = number of negative eigenvalues of LT counted withtheir multiplicity. (2.2)
$$

We call $j(A, T)$ the *CZ* (Conley-Zehnder) index in [0, T] relative to the equation

$$
\ddot{x} + A(t)x = 0. \tag{2.3}
$$

It is possible to prove that the number

$$
\tau = \tau(A) = \lim_{k \to \infty} j(A, kT_0)/kT_0 \tag{2.4}
$$

is well defined and it is called twist number of the operator (2.1).

[]

The proof of (2.4) in this context can be found in [2]. A formula like (2.4) has been previously proved by Ekeland in the context of convex Hamiltonian systems [7, 8].

Now if we set

$$
j^*(A,T) = j(A,T) + \dim \operatorname{Ker} L^T
$$
\n(2.5)

it is possible to prove that (see e.g. [2])

$$
\tau(A)T - n \le j(A, T) \le j^*(A, T) \le \tau(A)T + n. \tag{2.6}
$$

In order to get another characterization of the twist number we need to introduce some definitions.

Let $W(t)$ be the Wronskian matrix relative to the equation (2.3) , i.e. the matrix which sends the initial data $(x(0), \dot{x}(0))$ to $(x(t), \dot{x}(t))$.

The complex eigenvalues $\lambda_1(t),\ldots,\lambda_n(t)$ of $W(t)$ are continuous functions of t. Then, if we set $\lambda_j(t) = \rho_j(t) \exp i\vartheta_j(t)$, $\rho_j(0) = 1$, $\vartheta_j(0) = 0$, the numbers $\vartheta_j(t)$ are uniquely determined.

The map $W(T_0)$ from C^{2n} to C^{2n} is called the Poincaré map or the monodromy map. The eigenvalues $\lambda_i(T_0)$ of $W(T_0)$ are usually called Floquet multipliers of (2.3) .

We shall consider the Floquet multipliers on the unit circle $S¹$

$$
\exp i\omega_1 T_0,\ldots,\exp i\omega_p T_0\,;\qquad \omega_1,\ldots,\omega_p\in\mathbf{R}\,.
$$

The numbers $i\omega_jT_0 = i\vartheta_j(T_0)$ $(j = 1, ..., p)$ are called Floquet exponents of (2.3) and ω_j are the fundamental frequencies of (2.3).

Proposition 2.1 *Let* $\omega_1, \ldots, \omega_p$ *be the fundamental frequencies of (2.3). Then* L^T *is invertible for all* $T = kT_0$ ($k \in \mathbb{N}$), *if and only if for all* $j = 1, \ldots, p$ *the numbers* $\omega_j T_0/2\pi$ are irrational (non resonance condition).

Proof Assume that there exists a positive integer k such that L^T , with $T = kT_0$, is not invertible. This amounts to say that there exists a nontrivial kT_0 -periodic solution of (2.3), then there exists $q \in \{1,\ldots,p\}$ s.t. $\exp i\omega_q kT_0 = 1$ and this means that $\omega_q T_0/2\pi$ is rational.

 \Box

Remark 2.1 *It can be proved that* $\tau(A) = \omega_1 + \ldots + \omega_p$ $(\omega_1, \ldots, \omega_p)$ *being the fundamental frequencies of (2.3)).*

3 Proof of Theorem 0.1

Problem (0.1) can be reduced to the study of the critical points of the $C²$ functional

$$
f(x) = \int_0^T (1/2 |\dot{x}(t)|^2 - V(x(t), t)) dt, \qquad T = kT_0, \ x \in H_T^1 \tag{3.1}
$$

where H_T^1 is the Sobolev space of the absolutely continuous T- periodic curves in \mathbb{R}^n with square integrable derivative.

We denote by $||_1$ the standard norm in H_T^1 . We denote by L_{∞} the linearized operator at infinity, i.e. the operator

$$
x \in H_T^1 \to -\ddot{x} - A_{\infty}(t)x \tag{3.2}
$$

where the matrix $A_{\infty}(t)$ has been introduced in (0.2).

The positive (respectively negative) span of L_{∞} will be denoted by H^{+} (respectively H^-). We shall set $H^0 = \text{Ker } L_\infty$. Then

$$
H_T^1 = H^+ \oplus H^- \oplus H^0. \tag{3.3}
$$

We denote by P^+ the projection operator on H^+ and by P the projection operator on $H^- \oplus H^0$, moreover we set

$$
x = x^+ + x^- + x^0
$$
, with $x^+ \in H^+$, $x^- \in H^-$, $x^0 \in H^0$.

The standard Sobolev norm $||_1$ in H_T^1 is equivalent to the norm

$$
|x|^* = (\langle L_{\infty} x^+, x^+ \rangle)^{1/2} + (-\langle L_{\infty} x^-, x^- \rangle)^{1/2} + |x^0|_1. \tag{3.4}
$$

Clearly the functional (3.1) can be written

$$
f(x) = (1/2) \langle L_{\infty} x, x \rangle - \int_0^T U(x, t) dt \qquad U \in H_T^1 \tag{3.5}
$$

where $U = U(x, t)$ has been introduced in (0.2).

Since U is bounded it is not difficult to realize that (3.5) does not satisfy in general the Palais-Smale condition when Ker $L_{\infty} \neq \{0\}.$

To overcome this difficulty we shall add to (3.4) a penalizing term which is "sensitive" for large values of $|Px|_1$.

More precisely for $R > 0$ we set

$$
\phi(t) = \begin{cases} t^4 & \text{for } t \ge 0 \\ 0 & \text{for } t < 0 \end{cases} \qquad g_R(x) = |Px|_1^2 - R
$$

and

$$
F_R^+(x) = f(x) + \phi(g_R(x)),
$$
 $F_R^-(x) = f(x) - \phi(g_R(x))$ $x \in H_T^1.$

Lemma 3.1 If the gradient U'_x of U is bounded, then for any $R > 0$ the func*tionals* F_R^+ , F_R^- *satisfy the Palais-Smale condition, namely any sequence* $\{x_n\}$ *in* H_T^1 s.t. $F_R^+(x_n)$ (respectively $F_R^-(x_n)$) is bounded and $dF_R^+(x_n) \to 0$ (respectively $dF_R^- (x_n) \to 0$) contains a convergent subsequence.

Proof Let $\{x_n\}$ be a sequence in H_T^1 such that

$$
F_R^+(x_n) = (1/2) \langle L_\infty x_n, x_n \rangle - \int_0^T U(x_n, t) dt + \phi(g_R(x_n)) \text{ is bounded } (3.6)
$$

and

$$
dF_R^+(x_n) = L_\infty x_n - U'_x(x_n, t) + 2\phi'(g_R(x_n)) Px_n = v_n \tag{3.7}
$$

where v_n goes to zero in the dual of H^1_T .

Set

$$
x_n = x_n^+ + x_n^- + x_n^0 \qquad x_n^+ \in H^+, \ x_n^- \in H^-, \ x_n^0 \in H^0. \tag{3.8}
$$

Testing (3.7) with x_n^+ we get

$$
\langle L_{\infty} x_n, x_n^+ \rangle - \langle U'_x(x_n, t), x_n^+ \rangle = \langle v_n, x_n \rangle. \tag{3.9}
$$

Since U'_x is bounded and v_n goes to zero, from (3.9) we deduce that $|x_n|^*$ (see (3.4)) is bounded.

Testing now (3.7) with $Px_n = x_n^- + x_n^0$ we get

$$
- (|x_n^-|^*)^2 - \langle U'_x(x_n, t), Px_n \rangle + 2\phi'(g_R(x_n)) |Px_n|_1^2 = \langle v_n, Px_n \rangle. \tag{3.10}
$$

arguing by contradiction assume that for a suitable subsequence

$$
|Px_n|^2 \to \infty. \tag{3.11}
$$

 \Box

As a consequence

$$
g_R(x_n) = |Px_n|_1^2 - R \quad \text{for large } n.
$$

Then from (3.10) we have

$$
-(|x_n^-|^*)^2 - \langle U_x'(x_n, t), Px_n \rangle + 8(|Px_n|^2 - R)^3 |Px_n|^2 = \langle v_n, Px_n \rangle
$$

which contradicts (3.11).

Finally we conclude that $|x_n|_1 = (|x_n^+|_1^2 + |Px_n|_1^2)^{1/2}$ is bounded.

Now standard arguments show that ${x_n}$ contains a strongly convergent subsequence.

A similar proof shows that F_R^- satisfies the Palais-Smale condition.

Lemma 3.2 Let U'_x be bounded. Then there exists $M > 0$ such that for all $R > 0$ and for any critical point y of F_R^+ (or F_R^-) we have

$$
|P^+y|_1\,\leq\,M\,.
$$

Vol. 1, 1994 Periodic solutions of asymptotically linear systems 275

Proof Let y be a critical point of F_R^+ , then

$$
dF_R^+(y) = L_\infty y - U'_x(y,t) + 2\phi'(g_R(y))\,Py = 0\,.
$$

Testing with $y^+ = P^+y$ we get

$$
(|y^+|^*)^2 - \langle U'_x(y,t), y^+ \rangle = 0. \tag{3.12}
$$

Since U'_x is bounded, (3.12) implies the conclusion.

Analogous proof holds for F_R^- .

It will be convenient to set

$$
m(\infty) = j(A_{\infty}, T), \quad m^*(\infty) = j^*(A_{\infty}, T)
$$

\n
$$
m(0) = j(A_0, T), \quad m^*(0) = j^*(A_0, T)
$$
\n(3.13)

where j and j^* have been defined in (2.2) , (2.5) .

Clearly

$$
m(\infty) = \dim H^- \qquad \text{and} \qquad m^*(\infty) = \dim (H^- \oplus H^0). \tag{3.14}
$$

A critical point y of F_R^- (respectively F_R^+) with $|Py|_1$ sufficiently large has a Morse index which is "large" (respectively "small") when compared with $m(\infty)$. More precisely the following lemma holds

Lemma 3.3 *Let V satisfy assumption (0.2). Then there exists Q > 0 (Q independent of R) s.t. if y is a critical point of* F_R^- (*respectively* F_R^+) with $|Py|_1 \geq Q$, *then we have*

$$
m(\infty) \le m(y) \tag{3.15}
$$

$$
(respectively m^*(y) \le m^*(\infty))
$$
\n(3.16)

where $m(y) = m(y, F_R^-)$ and $m^*(y) = m^*(y, F_R^+)$ (see Def. 1.1).

Proof For simplicity we set

$$
F_R^- \,=\, F_R
$$

and denote by $F''_R(y)$ (respectively $f''(y)$) the second Fréchet differential of F_R (respectively f) at y .

Clearly for all $v \in H_T^1$ we have

$$
F_R''(y)[v, v] = f''(y)[v, v] - 2\phi'(g_R(y))(Pv|v) - 4\phi''(g_R(y))(Py|v)^2 \le f''(y)[v, v]. \tag{3.17}
$$

We shall assume $H^- \neq \{0\}$, otherwise (3.15) is trivial.

We show that, if y is critical point of F_R and $|Py|_1$ is large enough, then

$$
\forall v \in H^{-}, v \neq 0 : f''(y)[v, v] < 0. \tag{3.18}
$$

(3.18) and (3.17) easily will imply (3.15).

 \Box

The norm $\vert \vert^*$ defined in (3.4) is equivalent to the norm $\vert \vert_1$ in H_T^1 , then there exists a constant $c > 0$ s.t.

$$
|v|_{\infty}^2 \le c(|v|^*)^2 \qquad \text{for all } v \in H_T^1
$$

where $|v|_{\infty}$ denotes the L^{∞} norm.

By the above inequality we easily get, $\forall v \in H^-$

$$
f''(y)[v, v] = \langle L_{\infty}v, v \rangle - \int_0^T (U''_{xx}(y, t)v|v) dt \le \q (3.19)
$$

$$
\le -(|v|^*)^2 + \left(\int_0^T |U''_{xx}(y, t)| dt\right) |v|^2_{\infty} \le (|v|^*)^2 \left(c \int_0^T |U''_{xx}(y, t)| dt - 1\right).
$$

Since y is a critical point of F_R^+ , by lemma 3.2 we have

$$
y = y^+ + Py, \qquad |y^+|_1 \le M \tag{3.20}
$$

where M is independent of R .

Moreover assumption (0.2) implies that

$$
|U''_{xx}(x,t)| \to 0 \quad \text{for } |x| \to +\infty. \tag{3.21}
$$

By (3.20) , (3.21) and using lemma 3.2 in [3], we deduce that there exists $Q > 0$ such that

$$
(|Py|_1 > Q) \implies \left(\int_0^T |U''_{xx}(y,t)| dt < 1/c\right). \tag{3.22}
$$

Then, if $|Py| > Q$, (3.18) easily follows from (3.22) and (3.19) and the proof of (3.15) is complete.

Let us now prove (3.16) . To this end we set for simplicity

$$
F_R^+=F_R
$$

and evaluate for $v \in H^1_T$

$$
F_R''(y)[v, v] = f''(y)[v, v] + 2\phi'(g_R(y))(Pv|v) + 4\phi''(g_R(y))(Py|v)^2 \ge f''(y)[v, v].
$$
\n(3.23)

We show that, if y is critical point of F_R and $|Py|_1$ is large enough, then

$$
\forall v \in H^+, v \neq 0 : f''(y)[v, v] > 0. \tag{3.24}
$$

Clearly (3.24) and (3.23) easily will imply (3.16) .

As in the proof of (3.19) we get

$$
\forall v \in H^+ \quad f''(y)[v, v] = \langle L_{\infty}v, v \rangle - \int_0^T (U''_{xx}(y, t)v|v) dt \ge
$$

$$
\ge (|v|^*)^2 \left(1 - c \int_0^T |U''_{xx}(y, t)| dt\right). \quad (3.25)
$$

Arguing as in the proof of the first part we deduce that (3.25) implies (3.24)

We shall set

$$
F_+ = F_Q^+, \qquad F_- = F_Q^-
$$

Q being the positive number introduced in Lemma 3.3.

We shall evaluate the relative homology of H_T^1 with respect to suitable sublevels of F_{-} . The following result holds

Proposition 3.1 *Assume that U and* U'_x *are bounded. Then there exists* $c < 0$ *su]ficiently small in order that*

$$
P(H_T^1, F_-^c) = t^{m^*(\infty)}
$$

where $F_-^c = \{ x \in H_T^1 \mid F_-(x) < c \}, P(H_T^1, F_-^c)$ denotes the Poincaré polynomial *of* H_T^1 *relatively to* F_-^c *and* $m^*(\infty)$ *has been defined in (3.13).*

Proof The proof is divided in various steps. First we introduce the "cylinder"

 $C = \{(u, w) : u \in H^+, w \in H^- \oplus H^0, |w|_1 \leq 1\}$

and its boundary

$$
\partial C = \{ (u, w) \in C : |w|_1 = 1 \}.
$$

Step 1. There exists $K > \sqrt{Q}$ such that for all $(u, w) \in \partial C$ the real map $\sigma(s) =$ $F_{-}(u+sw), s \in [K, +\infty[,$ is strictly decreasing.

In fact, for $(u, w) \in \partial C$ and $s > \sqrt{Q}$, we have

$$
\sigma'(s) = \langle dF_{-}(u+sw), w \rangle = \langle L_{\infty}(u+sw), w \rangle - \int_{0}^{T} (U_x'(u+sw)|w) dt - 8(s^2 - Q)^3 s|w|_1^2 \leq |U_x'|_{\infty} |w|_{L^1} - 8s(s^2 - Q)^3.
$$
 (3.26)

Then if $s > K$, with K sufficiently large, we have

$$
\sigma'(s) \, < \, 0 \, .
$$

Step 2. Let

$$
c < -|U|_{\infty}T - 2K^8. \tag{3.27}
$$

Then for all $x = (u, w) \in \partial C$

there exists only one
$$
s = s(x) > K
$$
 s.t. $F_{-}(u + sw) = c$. (3.28)

In fact for all $(u, w) \in \partial C$ we have

$$
\sigma(K) = F_{-}(u + Kw) \ge -|U|_{\infty}T - (K^2 - Q)^4 > c.
$$

Then, since $\sigma(s)$ is strictly decreasing in $[K, +\infty[$ (see Step 1) and $\sigma(s)$ diverges to $-\infty$ as t goes to $+\infty$, the conclusion easily follows.

Step 3. Consider the map ψ defined on the cylinder C by

$$
\forall (u, w) \in C \qquad \psi(u, w) = \begin{cases} u & \text{if } w = 0 \\ u + s(x)w & \text{if } w \neq 0 \end{cases}
$$
 (3.29)

where $x = (u, w/|w|_1)$ and $s(x)$ has been defined in (3.28).

It can be seen that ψ is an homeomorphism of C onto

$$
H_T^1/F_-^c = \{ x \mid F_-(x) \ge c \}.
$$

Step 4. Let us finally evaluate the Poincaré polynomial $P(H_T^1, F_-^c)$. We denote by B the unit ball in $H^- \oplus H^0$ and by ∂B its boundary. Then we have

 $P(H_T^1, F_-^c) = (\text{by excision}) = P(H_T^1 / F_-^c, \partial F_-^c) = (\text{by Step 3}) = P(C, \partial C) =$ $= P(B \times H^+, \partial B \times H^+) = P(B, \partial \overline{B}) = (\text{since } \dim(H^- \oplus H^0) = m^*(\infty)) =$ $=t^{m^*(\infty)}$.

Finally we are ready to prove Theorem 0.1

Proof of Theorem 0.1. In order to prove Theorem 0.1 we distinguish two cases: $\tau_0 > \tau_\infty$ and $\tau_\infty > \tau_0$.

Assume first that

$$
\tau_0 > \tau_\infty. \tag{3.30}
$$

In this case we shall consider the penalized functional F_{+} .

The assumption

 $T > (2n+1)/(\tau_0 - \tau_{\infty})$

and the inequalities (2.6), used with $A = A_{\infty}$ and $A = A_0$, imply that

$$
m^*(\infty) < m(0) - 1. \tag{3.31}
$$

Since F_+ is bounded from below, the sublevel

$$
F_{+}^{a} = \{ x \mid F_{+}(x) \le a \}
$$

is empty if $a \in \mathbf{R}$ is sufficiently small. Then

$$
P(H_T^1, F_+^a) = P(H_T^1, \emptyset) = 1.
$$
\n(3.32)

By (3.31) $m(0) > 0$ then, by (3.32) $t^{m(0)}$ is not "contained" in $P(H_T^1, F_+^a)$. Then, using corollary 1.1, there exists a critical point $x \neq 0$ of F_+ with

$$
m^*(x) \ge m(0) - 1. \tag{3.33}
$$

Clearly x will be a critical point of the action functional f if we show that

$$
|Px|_1 \le Q. \tag{3.34}
$$

In fact in this case the penalizing term has no influence and we will have

$$
f'(x) = F'_{+}(x) = 0.
$$

Arguing by contradiction assume that (3.34) does not hold, then by lemma 3.3 (see (3.16)) we have

$$
m^*(x) \le m^*(\infty) \tag{3.35}
$$

(3.33) and (3.35) imply that

$$
m(0)-1\,\leq\,m^*(\infty)
$$

which contradicts (3.31).

Finally consider the case

$$
\tau_0 < \tau_\infty \tag{3.36}
$$

In this case we consider the penalized functional F_{-} . Since

 $T > (2n+1)/(\tau_{\infty}-\tau_0)$

(2.6) will imply that

$$
m(0) + 1 < m(\infty). \tag{3.37}
$$

Now by proposition 3.1 there exists $c < 0$ such that

$$
P(H_T^1, F_-^c) = t^{m^*(\infty)}.
$$
\n(3.38)

By (3.38) and (3.37) we see that $t^{m(0)}$ is not "contained" in $P(H_T^1, F_-^c)$. Then, using corollary 1.1, there exists a critical point x of $F_$ such that

$$
x \neq 0 \qquad \text{and} \qquad m(x) \leq m(0) + 1. \tag{3.39}
$$

As before we argue by contradiction and assume that (3.34) does not hold. Then by lemma 3.3 (see (3.15)) we have

$$
m(\infty) \le m(x). \tag{3.40}
$$

Clearly (3.40) and (3.39) contradict (3.37).

 Γ

References

- [1] A. AMANN, E. ZEHNDER, Periodic solutions of asymptotically linear systems, *Manus. Math.* 32, 149-189 (1980)
- [2] V. BENCI, A new approach to Morse-Conley theory and some applications, *Ann. Math. Pura Appl.* 158, 231-205 (1991)
- [3] P. BARTOLO, V. BENCI, D. FORTUNATO, Abstract critical point theorems and applications to some nonlinear problems with "strong resonance" at infinity, *J. Nonlinear. Anal.* **9**, 981–1012 (1983)
- [4] V. BENCI, F. GIANNONI, Morse theory of functional of class C^1 , C.R. Acad. *Sei. Paris,* Serie I, 883-888 (1992)
- [5] A. CAPOZZI, A. SALVATORE, Nonlinear problems with strong resonance at infinity: an abstract theorem and applications, *Proc. Roy. Soc. Edinb.* 99 A, 333-345 (1985)
- [6] C. CONLEY, E. ZEHNDER, Morse type index theory for flows and periodic solutions for Hamiltonian equations, *Comm. Pure Appl. Math.* 37, 207-253 (1984)
- [7] I. EKELAND, *Convexity Methods in Hamiltonian Mechanics,* Springer-Verlag, Berlin, Heidelberg, 1990
- [8] I. EKELAND, Une Theorie de Morse pour les systemes hamiltoniens convexes, *Ann. Inst. H. Poincard, Anal. Non Lindaire* 1, 19-78 (1984)

Received June 26, 1993