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0 I n t r o d u c t i o n  

Let V = V(x, t ) ,  x E R n and t E R ,  be a C 2 real funct ion T0-periodic in the t 
variable. 

We shall s tudy  the following equation: 

2 + V~(x,t) = O, x = z(t) kT0-periodic curve (k C N)  in R n (0.1) 

where V'(x,  t) denotes the gradient of V with respect to x. 
We assume tha t  the potent ia l  funct ion V is asymptot ica l ly  quadratic,  i.e. 

V(z ,  t) = (1/2) (Aooxlz) + U(z, t) (o.z) 

where ( I )  denotes the s t andard  inner p roduc t  in R n, Aoo = Am (t) is a symmetric ,  
real, T0-periodic n • n matr ix  and U(z, t) is a funct ion which is bounded,  having 
bounded  gradient  U~ and whose Hessian matr ix  (with respect  to z) U~( z ,  t) tends 
to zero (uniformly in t) as Izl goes to infinity. 

We shall also assume tha t  

V~(0, t) = 0 and V(0, t) = 0 (0.3) 

then  0 is a solution of (0.1). 
Assumpt ions  (0.2), (0.3) allow to consider the linearized equat ions at oe and 

at zero which are respectively 

Y: + A ~ ( t ) x  = 0 and ~ + Ao(t)x = 0 

*This research has been supported by M.U.R.S.T., 40%, 60%. 
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where A m ( t )  is the matr ix  introduced in (0.2) and Ao(t)  denotes the Hessian 
I f  matr ix  V~'x(0, t ) of V at x = 0. 

We denote by L T = L ~  (respectively L r = L0) the self- adjoint realization 
in L 2 with T = kT0-periodicity conditions of the  opera tor  x -~ - 2  - A ~ ( t ) x  
(respectively of the opera tor  x ~ - ~  - Ao( t )x) .  

Problem (0.1), in the framework of hamil tonian systems, has been studied 
under  nonresonance conditions at oc (see [1, 6]), i,e. assuming tha t  L ~  is invertible 
for all T = kTo, k E N .  

The nonresonance condit ion at infinity permits  to get suitable a priori bounds  
on the solutions of (0.1) and consequently the act ion functional  related to (0.1) 
(see (3.1) in section 3) satisfies the compactness  Palais-Smale condition. 

Some results are available also in the s t rong resonance case, i.e. when the 
function U in (0.2) goes to zero at infinity (see [3], [5]). 

The  aim of this paper  is to prove existence results of (0.1) wi thout  the non- 
resonance assumpt ion  at ec and wi thout  the s trong resonance assumption.  

In order to s tate  the results we need to recall the definition of twist number  
(see section 2). 

We set 

To = lim j ( A o ,  kTo) /kTo  r,c = lim j (Aoc ,  kTo) /kTo  (0.5) 
k ---~ o o  ' k ~- a ,o  

where j ( A o ,  kTo) (respectively j ( A ~ ,  kTo)) is the number  of the negative eigenval- 
ues, counted with their multiplicity, of L T, T kTo (respectively T = L ~ ,  T = kTo). 
The limits ~-0 and T~ in (0.5) exist (see e.g. [2]) and they  are called twist number  
at 0 and at oc respectively. 

Now we can state the theorem we shall prove in this paper  

T h e o r e m  0.1 A s s u m e  that V satisfies assumptions (0.2), (0.3). A s s u m e  more- 
over that there is not resonance at the origin (i. e. the linearized operator at 0 LTo 
is invertible for  all T = kTo, k E N )  and that To # T~ (see (0.5)). Then equation 
(0.1) has a non zero solution for  all k E N s. t. 

kT0 > + 1)/IT0 - 

1 T h e  M o r s e  i n e q u a l i t i e s  

In this section we short ly review some basic facts on Morse theory. In par t icular  we 
recall some recent results obta ined for functionals with degenerate critical points  
(see [4). 

Let E be a real Hilbert space and J a C 2 functional on E.  We denote  by K 
the set of the critical points of J 
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D e f i n i t i o n  1.1 Let x �9 K and let JH(x) be the second Frdchet differential of J 
at x. 

The Morse index rn(x, J) of x (for J )  is the cardinal number (possibly infi- 
nite) defined by 

m ( x , J )  = max{dim(S)  [ S is a linear subspace o r e  s.t. 

<J"(x)v ,v> < 0 for any v �9 S, v 7~ 0} .  (1.1) 

Moreover the large Morse index m* (x, J) of x is defined by 

m*(x, J) = re(x, J) + dimKer  J " ( x ) .  

Usually we shall write rn(x), m* (x) instead of re(x, J) ,  m* (x, J) .  
The critical point x is called non degenerate if Ker J " (x )  = {0}. 

Now if a < b (b possibly infinite) we set 

Jb = { x � 9  I J ( x ) < b } ,  Jb = { x � 9  [ a < J ( x ) < b } .  

If a < b are real numbers we set 

Ka ~ = { x � 9  I a < _ J ( x ) _ < b } .  (1.2) 

Moreover we set 

p t ( jb  ja)  = ~ d imHq(Jb ja K ) t  q (1.3) 
q>_O 

where Hq(J  b, j a  K) denotes the q-th singular relative homology of jb with re- 
spect to ja  with coefficients in some field K. Pt(J  b, ja)  is a formal series whose 
coefficients are cardinal numbers called "Betti numbers". 

We recall the Morse relations 

T h e o r e m  1.1 Let a,b (b possibly infinite) be regular values for J (i.e. if  x �9 I f  
then J(x) r a, b). Ass~,~e moreover the following: 

J satisfies the Palais-Smale condition in (a, b) (i.e. any sequence {Xn} C 3 b, 

s.t. J (xn)  is bounded, contains a convergent subsequence) (1.4) 

- Any x �9 Kba is nondegenerate and has finite Morse index re(x) (1.5) 

Then 

t~(x) = p~( jb  ja)  + (1 + t) Q(t) (1.6) 
x c K  b 

where Q(t) is a formal series whose coefficients are cardinal numbers (possibly 
infinite). 
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We point out that  since J satisfies the (P.S.) condition K b is finite, if b is a 
real number, and it is at most countable, if b = +oo. 

If assumption (1.5) is not satisfied a relation between the set of the critical 
points K b and the Poincar~ polynomial Pt(J  b, Ja) still holds. In fact, by using a 
generalized Morse index, the following theorem can be proved (see [4]). 

T h e o r e m  1.2 Let a, b (b possibly infinite) be regular values for J. Assume that 
J .satisfies the (P.S) condition (1.~). Assume moreover that for any x E Kba, x 
degenerate, 0 is an isolated eigenvalue of J" (x )  having finite multiplicity. Then a 
formal series with positive coefficients exists 

i(K ) = a tq 
q 

satisfying the following properties: 

(aq # O) ~ (there exists x e K~ s.t. re(x) <_ q <_ m*(x))  (1.7) 

(there exists x e K b non degenerate and re(x) < oc) ~ (a,,(~) # 0) (1.8) 

i(Kba) = pt ( jb ,  ja)  + (1 § t) Q(t) (1.9) 

where Q(t) is a formal series whose coefficients are cardinal numbers (possibly 
infinite). 

We recall that  if any x e K b is non degenerate then i ( K  b) reduces to the 
Morse polynomial 

i(K~) = E t'~(~)" 
xEK~ 

The following corollary holds: 

C o r o l l a r y  1.1 Let a, b and J as in theorem 1.2. Let y ~ Kba be a non degenerate 
critical point with re(y) < oo. Assume that 

pt(  jb, ja )  = E flqtq 
q 

Then J has a critical point x ~ y such that 

re(x) <_ ,~(y) + 1 and 

P r o o f  By (1.8) we have 

i(Kb) = E aqtq 
q 

with 3~(,) = O. (i.iO) 

ra(y) - 1 <_ m*(x ) .  (1.11) 

with am(y) # O. (1.12) 
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By (1.9), (1.10), (1.12) we deduce that  (1 + t)Q(t) "contains" the monomial t re(y), 
i.e. 

(1 + t) Q(t) = ~-~bqt q + ~-~bqt q+l 
q q 

with 
bin(y) • 0 or bin(y) 1 • 0. (1.13) 

Clearly by (1.9), (1.12) and (1.13) we have 

(bin(y) # O) ~ ( bm(y)t re(y)+1 # O) ~ ( a,~(~).l ~ O) 

Then by (1.7) we deduce that  there exists x E K b s.t. 

re(x) <_ re(y)+ 1 < m*(x) or ra(x) <_ re ( y ) -  1 <_ m*(x). (1.14) 

Since y is nondegenerate (1.14) implies that  y ~ x. Moreover from (1.14) we deduce 
that  

re(x) < re(y) + 1 and re(y) - 1 <_ m*(x). 

[] 

2 T w i s t  n u m b e r  

In this section we recall some basic facts on the twist number. For a more extensive 
treatment we refer to [2], [7, 8], [6]. 

Let A = A(t) be a family of real symmetric n • n matrices depending contin- 
uously on t and T0-periodic. Consider the second order, linear differential operator 

x -~ - 5  - A(t)x (2.1) 

and denote by L T, T = kTo (k E N)~ its self-adjoint realization in the L 2 space 
with T-periodicity conditions. 

L T has discrete spectrum with only a finite number of negative eigenvalues. 
We set 

j (A,  T) = number of negative eigenvalues of L r counted with 

their multiplicity. (2.2) 

We call j (A,  T) the CZ (Conley-Zehnder) index in [0, T] relative to the equation 

+A(t )x  = O. (2.3) 

It is possible to prove that  the number 

~- = T(A) = lira j (A,  kTo)/l~To (2.4) 
k---+ c~ 

is well defined and it is called twist number of the operator (2.1). 
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The proof of (2.4) in this context can be found in [2]. A formula like (2.4) has 
been previously proved by Ekeland in the context of convex Hamiltonian systems 
[7, 8]. 

Now if we set 
j*(A,T) = N(A,T) + d i m K e r L  T (2.5) 

it is possible to prove that  (see e.g. [2]) 

T ( A ) T - n  < j (A ,T)  < j*(A,T) < r (d)T  + n .  (2.6) 

In order to get another characterization of the twist number we need to introduce 
some definitions. 

Let W(t) be the Wronskian matr ix  relative to the equation (2.3), i.e. the 
matr ix  which sends the initial data  (x(0), 3?(0)) to (x(t), ~(t)). 

The complex eigenvalues kl ( t ) , . . . ,  As (t) of W(t)  are continuous functions of 
t. Then, if we set Aj (t) = flj (t) exp i~)j (t), flj ( 0 )  : 1 ,  ~)j (0) = 0, the numbers ~j (t) 
are uniquely determined. 

The map W(To) from C 2n to C 2n is called the Poincar6 map or the mon- 
odromy map. The eigenvalues Aj(To) of W(To) are usually called Floquet multi- 
pliers of (2.3). 

We shall consider the Floquet multipliers on the unit circle S 1 

expiwlTo,. . .  ,expiwpTo ; 021,... ,Cdp C R .  

The numbers iaJjTo = itgj(To) (j = 1,...  ,p) are called Floquet exponents of (2.3) 
and c0j are the fundamental  frequencies of (2.3). 

P r o p o s i t i o n  2.1 Let wl , . . .  ,Wp be the fundamental frequencies of (2.3). Then L r 
is invertibIe for all T = kTo (k E N), if and only if for all j = 1,.. .  ,p the numbers 
cojTo/2~r are irrational (non resonance condition). 

P r o o f  Assume that  there exists a positive integer k such that  L T, with T = kTo, 
is not invertible. This amounts to say that  there exists a nontrivial kT0-periodic 
solution of (2.3), then there exists q E {1, . . .  ,p} s.t. expiwqkTo = 1 and this 
means tha t  WqTO/27r is rational. 

[] 

R e m a r k  2.1 It can be proved that T(A) = wl + . . .  + wp (wl , . . . ,Wp being the 
fundamental frequencies of (2.3)). 

3 P r o o f  o f  T h e o r e m  0.1  

Problem (0.1) can be reduced to the s tudy of the critical points of the C 2 functional 

P T 

f (x)  = [ (1/2]2(t)12-V(x(t) , t ) )dt ,  T = k T o ,  x e  H~ (3.1) 
do 
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where  H 1 is the  Sobolev space of the  absolute ly  cont inuous T-  periodic curves in 
R n with square  integrable  derivative.  

We denote  by I I1 the  s t anda rd  no rm in H),.  We denote  by L ~  the  linearized 
ope ra to r  at  infinity, i.e. the  ope ra to r  

x E H~ --+ - ~ -  Aoo(t)x (3.2) 

where  the  ma t r ix  Am(t) has been  in t roduced  in (0.2). 
T h e  posi t ive (respectively negat ive)  span  of Loo will be  denoted  by H + (re- 

spect ively H - ) .  We shall set  H ~ = Ker  L ~ .  Then  

H 1 = H + | 1 7 4  ~ (3.3) 

We denote  by  P +  the  projec t ion  ope ra to r  on H + and  by  P the  project ion opera to r  
on H | H ~ moreover  we set 

x = x + + x - + x  ~ w i t h x  + E H  +, x -  E H - ,  x ~ E H  ~ 

The  s t anda rd  Sobolev no rm I I1 in H 1 is equivalent  to the  no rm 

Ixl* = (<ncox+,x+>) 1/2 ~- (-<noox ,x >)1/2 + ix011. (3.4) 

Clearly the  funct ional  (3.1) can be wr i t t en  

f ( x )  = (1/2) <L~x,  x> - U(x, t) dt U e H~ (3.5) 

where  U = V(x, t) has been in t roduced  in (0.2). 
Since U is bounded  it is not  difficult to realize t h a t  (3.5) does not sat isfy in 

general  the Pa la is -Smale  condi t ion when Ker  L ~  r {0}. 
To overcome this difficulty we shall add  to (3.4) a penalizing t e r m  which is 

"sensitive" for large values of  IPXll. 
More precisely for R > 0 we set 

t for t_> 0 
r  = 0 for t < 0 gR(x) = IPx121 - R 

and 

F+(x) = f (x )  + r  

L e m m a  3.1 I f  the gradient Us 

F (x) = f ( x )  - �9 e H # .  

of U is bounded, then for any R > 0 the rune- 
tionals F +, F R satisfy the Palais-Smale condition, namely any sequence {Xn} in 
H~ s.t. F+(Xn) (respectively F~(Xn)) is bounded and dF+(xn) ~ 0 (respectively 
dUR(xn) O) contains a convergent s bsequence. 
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P r o o f  Let {xn} be a sequence in H I such that 

/0 F + ( x n )  = ( 1 / 2 ) < L ~ x n , x n >  - U ( x , ~ , t ) d t +  r  is bounded (3.6) 

and 

d F + ( x n )  = L ~ x ~  - Us t) + 2r Px~ = v~ (3.7) 

where v** goes to zero in the dual of H~. 
Set 

+ + x~ + 0 + H +. 0 H 0 " xn = xn  x n  Xn E , X~ ~ H - ,  xn E (3.8) 

Testing (3.7) with x + we get 

<L~x,~, x~+> - < U ; ( ~ ,  t) ,  x~+> = <v~, ~ > .  (3.9) 

Since U" is bounded and v~ goes to zero, from (3.9) we deduce that I~1" (see 
(3.4)) is bounded. 

0 Testing now (3.7) with Px,~ = x ~  + x~ we get 

- -  ( I X n l * )  2 - -  <U.;(x~,~,t),Pxn> @ 2r Ipxn121 = < v ~ , P x ~ > .  (3.10) 

arguing by contradiction assume that  for a suitable subsequence 

IPxnl~ ~ oc.  (3.11) 

As a consequence 

gR(Xn) : IPXnl 2 -- ]~ 

Then from (3.10) we have 

for large n. 

which contradicts (3.11). 
Finally we conclude that Ix~ll = (Ix+l~ + ]Pxnl~) 1/2 is bounded. 
Now standard arguments show that  {xn} contains a strongly convergent sub- 

sequence. 
A similar proof shows that F~  satisfies the Palais-Smale condition. 

[ ]  

L e m m a  3.2 Let Us be bounded. Then there exists M > 0 such that for  all R > 0 
and for  any critical point y of  F + (or F ~ )  we have 

IP+yll  ~_ M .  
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P r o o f  Let y be a critical point of F +, then 

dF+(y) = L ~ y -  U~(y,t) + 2r = O. 

Testing with y+ = P+y we get 

(ly+l*)2 _ <U,(y,~),y+> = 0. 

Since Ux ~ is bounded, (3.12) implies the conclusion. 
Analogous proof holds for F~.  

It will be convenient to set 

m(oc) = j ( A ~ , T ) ,  rn*(cc) = j* (A~ ,T)  

re(O) = j (Ao ,T) ,  m*(0) = j*(Ao,T) 

where j and j* have been defined in (2.2), (2.5). 
Clearly 

(3.12) 

[] 

(3.13) 

m(ec) <_ rn(y) (3.15) 

(respectively ,~*(y) < .~*(~))  (3.16) 

wh~e ,~(y) = m ( y , F ~ )  and ,~*(y) = -~*(y, Ffi) (see Def. 1.~). 

P r o o f  For simplicity we set 
F R = F R  

and denote by F~(y) (respectively f"(y)) the second FrSchet differential of FR 
(respectively f )  at y. 

Clearly for all v E H~ we have 

F~(y)[v, v] = f"(y)[v, v] - 2 4 / ( g R ( y ) ) ( P v l v )  - 4 r  2 <_ f"(y)[v, v]. 
(3.17) 

We shall assume H -  ~ {0}, otherwise (3.15) is trivial. 
We show that,  if y is critical point of FR and IPyll is large enough, then 

Y v e / j - ,  vT~0 : f"(y)[v,v]<O. (3.18) 

(3.18) and (3.17) easily will imply (3.15). 

L e m m a  3.3 Let V satisfy assumption (0.2). Then there exists Q > 0 (Q inde- 
pendent of R) s.t. if y is a critical point of F~ (respectively F +) with Ipyll >_ Q, 
then we have 

m(oo) = d i m H -  and m*(oo) = d i m ( / j - |  (3.14) 

A critical point y of F R (respectively F +) with IPyll sufficiently large has a Morse 
index which is "large" (respectively "small") when compared with m(oc). More 
precisely the following lemma holds 
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The norm tt* defined in (3.4) is equivalent to the norm tl]  in HT 1 , then there 
exists a constant c > 0 s.t. 

1vi i  _< c(Ivl*) 2 for all ~ c H i  

where ivl~ denotes the L ~ norm. 
By the above inequality we easily get, V v E H -  

.~0TrU '' ~)vlv) dt < (3.19) f"(y)[v,v] = < L ~ v , v > -  ~ ~x[Y,~ - 

(/o ) (Jo ) _< - ( i ~ i * ) 2 +  iV':(y ,~) id~ Ivi~ -< (i~i*) 2 e i U : : ( y , t ) l d t - 1  . 

Since y is a critical point of F +, by lemma 3.2 we have 

y = y+ + P y ,  ly+I1 < M (3.20) 

where M is independent of R. 
Moreover assumption (0.2) implies that  

iU"Ax, t)] -~ 0 for ixt ~ + ~ .  (3.21) 

By (3.20), (3.21) and using lemma 3.2 in [3], we deduce that there exists Q > 0 
such that  

( IPy]a > Q )  ~ x ~ y ,  )l dt < . 

Then, if IPyl > Q, (3.1s) easily follows from (3.22) and (3.~9) and the proof of 
(3.15) is complete. 

Let us now prove (3.16). To this end we set for simplicity 

rR+=F~ 

and evaluate for v C H~ 

F~(y)[v, v] = f"(y)[v, v] + 2r  ) + 4r 2 >_ f"(y)[v,  v]. 
(3.23) 

We show that,  if y is critical point of FR and ]PYll is large enough~ then 

Y v E  H +, v~=0 : f " ( y ) [ v , v ]>O.  (3.24) 

Clearly (3.24) and (3.23) easily will imply (3.16). 
As in the proof of (3.19) we get 

/o V v E H - -  f " ( y ) [ v , v ]  = < L ~ v , v > -  (U'~'~(y,~)viv)dt>_ 

( /o ) > (i,]*) 2 i ~ Iu~':(y~t)] d~ . (3.2~) 

Arguing as in the proof of the first part we deduce that  (3.25) implies (3.24) 
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We shall set 
s§ r_=F  

Q being the positive number  introduced in Lemma 3.3. 
We shall evaluate the relative homology of H 1 with respect to suitable sub- 

levels of F_.  The following result holds 

P r o p o s i t i o n  3.1 Assume that U and U~ are bounded. Then there exists c < 0 
su]ficiently small in order that 

P ( H ~ , F c )  = tm*(oc) 

where F ~_ = { x e H~ I F_(x)  < c }, p (H1 ,  F~_) denotes the Poincard polynomial 
of H~ relatively to F c_ and m*(oo) has been defined in (3.13). 

P r o o f  The proof is divided in various steps. First we introduce the "cylinder" 

C = { (u ,w)  : u E H  +, w c H - O H  ~ I w l l _ < l }  

and its boundary  
OC = { (u ,w)  e C  : }wll = 1 } .  

Step 1. There exists K > V ~  such that  for all (u, w) E c9C the real map a(s)  = 
F_(u + sw), s E[K,  +oc[, is strictly decreasing. 

In fact, for (u, w) E OC and s > v ~ ,  we have 

~'(s) jr0 
T 

< d F _ ( u + s w ) , w >  = < L o o ( u + s w ) , w > -  ( U ~ ( u + s w ) l w ) d t -  

- -  U ! _ _  _ _  . 8(82 Q)%lwl~ -<t xloolwlL1 8~(~ 2 Q)z (3.26) 

Then if s > K,  with K sufficiently large, we have 

Step 2. Let 

~'(s) < 0. 

c < -IUIooT - 2K s . (3.27) 

Then for all x = (u, w) r OC 

there exists only one s = s(x) > K s.t. F_(u + sw) = c. (3.28) 

In fact for all (u, w) C OC we have 

~(K) = r_ (~  + Kw) _> - I u t ~ T -  (K 2 - Q)4 > c. 

Then, since a(s)  is strictly decreasing in [K, +cc[  (see Step 1) and a(s)  diverges 
to - o c  as t goes to +(x~, the conclusion easily follows. 
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Step 3. Consider the map ~ defined on the cylinder C by 

u i f w = 0  
V (u, w) E C r w) = u + s(x)w if w e 0  

w h e r e  x = (~, w / l ~ l l )  and s(x) has been defined in (3.28). 
It  can be seen tha t  r is an homeomorphism of C onto 

= {x  I > c } .  

(3.29) 

P(H 1, F_ c ) = (by excision) = P(H$/F~_, OF_ ~) = (by Step 3) = P(C, OC) = 
= P(B • H+,OB x H +) = P(B, OB) = (since d i m ( H -  @ H ~ = m*(oo)) 
= t,~* (oo). 

Finally we are ready to prove Theorem 0.i 

Proof of Theorem 0.I. In order to prove Theorem 0.i we distinguish two cases: 

T0 > Too and ~-~ > To. 

Assume first that 

To > T ~ .  (3.30) 

In  this case we shall consider the penalized functional  F+. 
The  assumpt ion 

T > (2n + 1)/(T0 -- 7~)  

and the inequalities (2.6), used with A = Aoo and A = A0, imply tha t  

m*(~) < re(O)- i. (3.31) 

Since F+ is bounded from below, the sublevel 

r ;  = {x  i F + ( x ) _ < a )  

is empty  if a E R is sufficiently small. Then  

P(H)r, F2) = P(H)r,O) = 1. (3.32) 

By (3.31) re(O) > 0 then, by (3.32) ~m(0) is not  "contained" in P(HIT, F~_). Then,  
using corollary 1.1, there exists a critical point  x 5 A 0 of F+ with 

m*(x) >_ m ( 0 ) -  1. (3.33) 

Clearly x will be a critical point  of the action functional f if we show tha t  

IPxl  < Q. (3.34) 

[] 

Step 3. Let us finally evaluate the Poincar6 polynomial  P(H~, F~). We denote by 
B the unit ball in H -  | H ~ and by 0 B  its boundary.  Then  we have 



Vol. 1, 1994 Periodic solutions of asymptotically linear systems 279 

In fact in this case the penalizing term has no influence and we will have 

f ' ( x )  = F~_(x) = O. 

Arguing by contradiction assume that  (3.34) does not hold, then by lemma 3.3 
(see (3.16)) we have 

(3.33) and (3.35) imply that  

which contradicts (3.31). 
Finally consider the case 

m*(x) <_ m*(oe) (3.35) 

m(0) - 1 _< m * ( ~ )  

To < ~-~. (3.36) 

In this case we consider the penalized functional F_. 
Since 

r > + - 70) 

(2.6) will imply that 
m(0) + 1 < m(c~).  (3.37) 

Now by proposition 3.1 there exists c < 0 such that  

P ( H ~ ,  F~_) = t m*(~)  . (3.38) 

By (3.38) and (3.37) we see that  ~(0)  is not "contained" in P(H~,F_~). Then, 
using corollary 1.1, there exists a critical point x of F_ such that  

x r 0 and r e ( x )  _~ m ( 0 ) +  1. (3.39) 

As before we argue by contradiction and assume that  (3.34) does not hold. Then 
by lemma 3.3 (see (3.15)) we have 

m(oc) <_ re(x). (3.40) 

Clearly (3.40) and (3.39) contradict (3.37). 
r~ 
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