
NoDEA 1 (1994) 229-248 1021-9722/94/030229-20 $1.50+0.20 
@1994 Birkh/iuser Verlag, Basel 

Global inversion of functions: 

an introduction * 

Giuseppe DE MARCO 
Universit~ di Padova, Dip. di Matematica Pura e Appl. 

via Belzoni 7, 35131 Padova, Italy 

Gianluca GORNI 
UniversitS~ di Udine, Dip. di Matematica e Informatica 

via Zanon 6, 33100 Udine, Italy 
email: Gorni~udmi5400.cineca.it 

Gaetano ZAMPIERI 
Universit~ di Padova, Dip. di Matematica Pura e Appl. 

via Belzoni 7, 35131 Padova, Italy 
email: Gaetano@pdmat 1.unipd.it 

Dedicated to Roberto Conti on the occasion of his 70th birthday 

A b s t r a c t  

This  is an exposi t ion of some basic ideas in the  realm of Global  Inverse Func- 
t ion theorems.  We address ourselves mainly  to readers who are interested in 
the  appl icat ions to Differential  Equat ions .  But  we do not deal wi th  those 
appl icat ions and we give a 'self-contained'  e lementary  exposition. 

The  first par t  is devoted  to the  celebrated Hadamard-Cacc ioppol i  theo- 
rem on proper  local homeomorph i sms  t rea ted  in the  f ramework of the  Haus- 
dorff spaces. In the  proof, the  concept  of 'a3-1imit set '  is used in a crucial way 
and this is perhaps the  novel ty  of our approach. 

In the  second par t  we deal wi th  open sets in Banach  spaces. The  concept 
of ' a t t r ac t ion  basin '  here is the  main  tool  of our exposi t ion which also shows 
a few recent results, here ex tended from finite dimensional  to general Banach  
spaces, toge ther  wi th  the  classical theorem of Hadamard -Levy  which assumes 
tha t  the  opera to r  norm of the  inverse of the  derivat ive does not  grow too  
fast (roughly at most  linearly). 
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40~ Equazioni Differenziali Ordinarie e Applicazioni. 
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I n t r o d u c t i o n  

A fundamental  problem in Analysis is the existence and/or  uniqueness of the so- 
lutions to the equation y = f ( z )  in the unknown x. The function f : X ~ Y 
relates two spaces X, Y with some structure, otherwise we are impotent.  From the 
other side, the concrete case where X, Y are subsets of the n-space ]R ~ is often 
too restrictive, and actually many applications arise in more general spaces. We 
especially think about  injectivity and surjectivity problems in Differential Equa- 
tions which are not discussed in this paper  but constitute one of the reasons of 
our discussion. 

The books Prodi  and Ambrosett i  [31], and Chow and Hale [9], give the proof 
of global inversion theorems in general spaces and show applications to differential 
equations. Let us also refer to Invernizzi and Zanolin [21], Brown and Lin [6], and 
Radulescu and Radulescu [33] among the papers which could be mentioned for 
results in differential equations obtained by means of the inversion of functions 
in infinite dimensional Banach spaces. Finite dimensional problems are also im- 
portant .  The research field of the Jacobian conjectures deals with deep questions 
of invertibility linked to global stability problems, see Olech [27], Meisters [23], 
Meisters and Olech [25], [26], and the references contained therein. The inversion 
of functions, of course, also plays a role in the applied sciences, e.g. Economics and 
Network Theory. 

More references are listed at the end of the paper  with no claim to complete- 
ness. The present paper  is not a survey on the rich literature on these topics. 

Section 1 below is devoted to the following theorem which we call after 
Hadamard  and Caccioppoli since Hadamard  was probably the first to have the 
idea in finite dimension, and Caccioppoli was perhaps the most important  author 
in the process of clarification and generalization to abstract  spaces (but other 
mathematicians also gave a contribution). 

T h e o r e m  0.1 ( H a d a m a r d - C a c c i o p p o l i )  . Let f : X --~ Y be a local home- 
omorphism with X,  Y path connected Hausdorff spaces and Y simply connected. 
Then f is a homeomorphism onto Y if and only if it is a proper function, namely 
if and only if the inverse image f ~  (K) of any compact set K C Y is compact. 

The proof below uses, in a crucial way, the concept of w-limit set. This is perhaps 
the main novelty of our approach. 

The statements of the Theorem in the books of Prodi  and Ambrosett i  [31], 
and Chow and Hale [9] (whose t rea tment  of this topic is based on [31]), seem 
different from Theorem 1 at a first glance since they mention possible singular 
points of f ;  however those s tatements  actually follow at once from the one above. 
Incidentally, those books state the theorem in metrizable spaces. We believe that  
the more general framework of Hausdorff spaces does not cost more than usual 
presentations in metrizable spaces even if these are, of course, the relevant case 
for applications. And generality usually favours understanding the essence of a 
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subject. The framework of Theorem 1 is somehow essential, in particular it is false 
in non-Hausdorff topological spaces as a simple counterexample will show. 

Finally we show an application of the theorem to Algebra, due to Gordon. 
Namely we show, following [14], that  there cannot be a product in IR n for n _> 3 
(see Proposition 1.3 below for a precise formulation). This is related to the fact 
tha t  ]R n \ {0} is simply-connected if and only if n _> 3. We quote this application 
to convince the reader of the depth of the Hadamard-Caccioppoli  theorem in a 
concise way. 

In Section 2 we deal with local homeomorphisms f : D --+ Y from an open 
connected set of a Banach space X to a Banach space Y. In order to briefly 
mention the ideas discussed there, let us here refer to the particular case of a local 
diffeomorphism f .  Then the celebrated Wa~ewski equation with parameter  v E Y, 

= f ' ( x )  -1 v (0.1) 

is often used in the literature to deal with invertibility problems. Wa~ewski in- 
troduced (0.1) in [40], for X = Y = IR ~, to give an estimate for a ball, around a 
given point x0 E D, where the inverse function can be defined. Instead of (0.1) we 
consider 

5c = F ( x ) ,  F :  D ~ X ,  x ~-+ - f t ( x )  -~ ( f ( x )  - f ( x o ) )  , (0.2) 

whose trajectories are also trajectories of the family of equations (0.1) (as v E Y) 
but  with different parametr izat ion (incidentally, remark that  the family (0.1) has 
many  more trajectories). 

The point x0 is an asymptotical ly stable equilibrium for (0.2) and its at- 
t ract ion basin ,4 will be proved to coincide with the maximal open subset of D, 
containing x0, such that  f i n  is injective and, at the same time, the image f ( A )  is 
s tar-shaped with respect to Y0 := f ( xo ) .  Using these ideas we show some criteria 
for the injectivity of f .  Moreover, we shall see that  the solutions to the equation 
(0.2) are all defined on the whole ]R if and only if f is a global homeomorphism 
onto Y. In particular, this fact leads to the following: 

T h e o r e m  0.2 ( H a d a m a r d - L e v y )  Let f : X -* Y be a local di f feomorphism 
with X ,  Y Banach spaces. Then  f is a di f feomorphism onto Y i f  there exists a 
continuous (weakly) increasing m a p / 3 :  R+ -+ R+ \ {0} such that 

~o +~176 1 /3(s) dS = +oc ,  I l f ' (x)-~ll  </3(]lxlI). (0.3) 

In  particular this holds if, for  some a, b E R+, we have 

[]f'(x)-lll < a + blJxrl. (0.4) 

This theorem was discovered by Hadamard  in IR ~. Then it was generalized by Levy 
to infinite dimension under condition (0.4) with b = 0. Meyer dealt with the full 
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condit ion (0.4), and finally Plastock gave a proof  for the general s tatement .  In  the 
l i terature it is often named  after H a d a m a r d  only. 

Finally, we deal with the injectivity of f ( together with the s tar-shape of 
the image) by means of global Lyapunov  functions. We extend to general Banach 
spaces some results previously obtained in [17] by two of the authors  for R 'n. 

Our  approach to  the  invertibility of functions, by means of a t t rac t ion  basins 
for (0.2), is one of the ingredients used in [26] by Meisters and Olech to prove 
one of the results in tha t  paper,  namely  the global asympto t ic  stabili ty for certain 
polynomial  vector fields. We hope tha t  it can lead to fur ther  consequences, in 
part icular  for the Differential Equat ions.  

1 The Hadamard-Caccioppol i  Theorem 

In  this Section X, Y, Z will always be topological Hausdorff  spaces. 

Local  h o m e o m o r p h i s m .  As is well known the function f : X --~ Y is called 
a local homeomorph i sm at x0 C X if there exist open neighbourhoods  U, V of x0 
and Y0 :=  f ( x o )  respectively, such tha t  f ( U )  = V and the restriction f l U :  U --~ V 
is a homeomorphism.  Then  g :=  ( f lU)  -1 : V -* U is called a local inverse of f 
at Y0. Moreover we say tha t  f : X -* Y is a local homeomorph ism if it is a local 
homeomorph ism at any x0 ~ X.  Such a mapping  is clearly continuous and open, 
namely inverse-images and images of open sets are open sets. 

L i f t i ng .  Let  f : X --~ Y be a local homeomorph i sm and let p : Z --* Y be a 
continuous function. A continuous function/5 : Z -~ X is called a lifting of p by f 
whenever f o 15 = p, t ha t  is, if the  following d iagram commutes :  

X 

Z P~ Y 

L e m m a  1.1 (Uniqueness).  Let  f : X ---+ Y be a local homeomorphism between 
Hausdorf f  spaces and let p : Z --~ Y be continuous with Z connected. I f  Pl, p2 : 
Z --~ X are both liftings o f p  then e i ther~ l  = ~ o r a l ( z )  r ~2(z) for  every z C Z .  

Proof. Let C :=  {z E Z : /51(z) = /52@)}. Let us see tha t  C is open in Z. If  
C = 0 then it is open; otherwise take z0 E C and let z0 :=  /~l(z0) = /52(z0). 
Moreover let U, V and g : V -+ U be as in the definition of local homeomorph i sm 
above. The  set W : = / 5 ~ ( U )  A/~-  (U) is an open ne ighbourhood of z0 and we have 
1511W =/~21W = g o p l W .  Thus W c_ C and C is open. 

Now, Z \ C is open by an easy s tandard  a rgument  (which uses tha t  X is 
Hausdorff) ,  so we are done since Z is connected.  

[ ]  
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P a t h - l i f t i n g  p r o p e r t y .  We say t ha t  the  local h o m e o m o r p h i s m  f : X ~ Y 
lifts the  pa ths  if, for every cont inuous funct ion (~ : [0, 1] ~ Y,  with c~(0) E f ( X )  
(called a p a t h  in Y with  origin in f ( X ) ) ,  and for every x0 �9 f~- (0) ,  there  exists a 
lifting & : [0, 1] --~ X of c~ with ~(0) --- x0. By  L e m m a  1.1, if f lifts the  pa ths  then  
it does it with uniqueness,  t h a t  is the  c) above is unique. 

H o m o t o p y - l i f t i n g  p r o p e r t y .  A cont inuous m a p  H : Z • [0, 1] --* Y is called 
a h o m o t o p y  with  base  Ho : Z --* Y ,  z H H(z,  0). We say t ha t  f : X --~ Y lifts the  
homotop ies  if, for any such H ,  and any  cont inuous m a p  H0 : Z --* X such tha t  
f o H0 = H0 (/~r0 is a lifting of the  base  of the  homotopy) ,  there  exists a cont inuous 
lifting/~r wi th  base/2/0, t h a t  is f o H = H a n d / ~ ( z ,  0) = H0(z)  for all z �9 Z. 

T h e  path- l i f t ing p rope r ty  is clearly a par t icu lar  case of the  homotopy- l i f t ing  
proper ty ,  wi th  Z a one-point  space. I t  is then  remarkab le  the  following 

L e m m a  1.2 (Path-lifting ~ Homotopy-lifting). If the local homeomorphism be- 
tween Hausdorff spaces f : X --~ Y lifts the paths, then it lifts the homotopies. 

Proof. W i t h  the  nota t ions  as in the  above definitions, let t ~-* / t (z ,  t) be the  
unique lifting of the  p a t h  t ~-* H(z,  t), wi th  o r i g i n / t 0 ( z ) ,  for any  z �9 Z. Clearly 
f o/~r = H ,  and  H ( z ,  0) = Ho(z) .  So s ta r t ing  f rom H and Ho as above,  we have 
defined/~r, all we are left to  prove is its cont inui ty  on Z • [0, 1]_ Take zo �9 Z,  and 
let D be the  subset  of [0, 1] consist ing of all t �9 [0, 1] such t h a t  H is not  cont inuous 
at  (zo, t). We argue  by  contradict ion:  assuming  D non empty,  D has an inf imum 
a _> 0; since t ~-~ H(zo ,  t) is continuous,  given any  ne ighborhood  U of H(zo,to) 
in X there  exists an interval  J1, an open ne ighborhood  of a in [0, 1], such t ha t  
/J(Zo, t) �9 U for every t �9 J1. By  restr ic t ing U if necessary we can assume U 
open,  and  t h a t  f induces a h o m e o m o r p h i s m  f l u  : U ~ V onto a ne ighborhood 
V of H(zo, a). By cont inui ty  of H there  exists a ne ighborhood W1 of zo in Z, and 
ano the r  interval  J2, open ne ighborhood  of a in [0, 1], such t ha t  H(W1 • J2) C_ V. 
Let J = J1 A J2, and pick b �9 J ,  wi th  b < a if a > 0; if a = 0 let b = 0; in 
bo th  cases z H H(z ,  b) is cont inuous at  zo (as a funct ion f rom Z to X) ,  and  since 
/~(Zo, b) �9 U, with U open,  there  exists a ne ighborhood W2 of Zo in Z such tha t  
H(W2 • {b}) C_ U; pu t  W = W1 • W2. We claim t h a t  

H [ W  x J = ( f lU)  -1 o H I W  • J; 

in fact these  funct ions coincide on W • {b}; bu t  then,  for every z �9 W the  functions 
defined on J by  t H H ( z ,  t), t ~-* (f iN) -1 oH(z,  t) are liftings of t ~-+ H(z ,  t) which 
coincide on b �9 J ,  an hence coincide on all of J .  The  equal i ty  jus t  proved shows tha t  

is cont inuous at  (z0, t), for every t �9 J, t > a, cont radic t ing  the  min imal i ty  of 
a.  

[ ]  

L e m m a  1.3 (Simply connected codomain). Let f : X --~ Y be a local homeomor- 
phism between Hausdorff spaces which lifts the paths. I f  X ,  Y are path connected 
and Y is simply connected, then f is a homeomorphism. 



234 Giuseppe De Marco, Gianluca Gorni and Gaetano Zampieri NoDEA 

Proof. Firs t  of  all let us see the  surject ivi ty.  Let  Yo E f ( X ) ,  xo E f~(Yo) ,  an d  
let c~: [0, 1] --~ Y be  a p a t h  wi th  c~(0) = Yo an d  c~(1) = y. T h e r e  exists a (unique)  
l if t ing 5 of a wi th  c~(0) = x0. T h e  fo rmula  f o 5 = c~ gives f((~(1)) = y. 

Now, let us see the  in jec t iv i ty  of f .  Let  x0, x l  E X sat isfy  f (xo) = f ( x l )  =:  
Y0- Since X is p a t h  connec t ed  we c a n  cons ider  a p a t h  a : [0, 1] --~ X jo in ing  
x 0 , x l ,  t h a t  is wi th  a (0)  = x0 a n d  a (1)  = Xl. T h e  fo rmula  c~ :=  f o cr defines 
a circuit  in Y (i.e. a closed pa th )  wi th  c~(0) = c~(1) = Y0. Since Y is s imply  
connec ted  the re  exists a h o m o t o p y  wi th  fixed end-po in t s  h be tween  c~ and  the  
c o n s t a n t  p a t h  [0, 1] --~ !/, t ~-~ Y0, n a m e l y  a con t inuous  func t ion  h : [0, 1] 2 ~ Y 
such t h a t  h(t ,  0) = c~(t), h(t, 1) = Y0 for all t E [0, 1], a n d  h(0, s) = Y0 = h(1,  s), 
for all s C [0, 1] (see the  figure below).  

Since f lifts pa ths ,  then,  by  L e m m a  1.2, the re  exists  a un ique  h : [0, 1] 2 ~ X 
which lifts h a n d  which satisfies h(t ,  0) = cr(t), for all t E [0, 1]. 

In  the  rest  of  the  p roo f  we use the  following i m p o r t a n t  fact:  a c o n s t a n t  p a t h  
is l ifted to a c o n s t a n t  p a t h  (which works  be ing  con t inuous  a n d  which  is the  un ique  
lifting by  L e m m a  1.1). T h u s  h(0, s) = a (0)  = z0, h(1, s) = a (1)  = x l ,  for all s E 
[0, 1]; a n d  since t ~-~ h(~, 1) is also cons tan t ,  we have  x0 = h(0, 1) = h(1,  1) = x l .  

[] 

$~ 
/ ;f 

t 

M a x i m a l  p a t h - l i f t i n g .  Let  f : X --~ Y be a local  h o m e o m o r p h i s m ,  let 
c~ : [0, 1] -~ Y be  a p a t h  wi th  c~(0) E f ( X ) ,  and  let x0 C ff- (c~(0)) .  We define 
the  m a x i m a l  l if t ing r : J --~ X of  a wi th  q~(0) = x0 in the  following way. The re  
cer ta in ly  exists a con t inuous  m a p  Cr : I + X ,  wi th  I = [0, b [c  [0, 1], such t h a t  
Cz(0) = x0 and  f o r  = c~lI. By  t he  un iqueness  L e m m a  1.1, t he  fo rmula  r = r  
defines the  m a p p i n g  r : J --~ X on the  un ion  J of  all t he  intervals  1. 
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co-l imit  se t .  Let  r : [0, b[--~ X,  0 < b < + c o  be a cont inuous function. Then  
the  following formula,  where  'cl '  denotes  the  closure in X ,  defines the  co-limit set 
of r 

cor := N c l r  
tc[0,b[ 

Equivalently,  z E cor if and  only if x is a cluster  point  of a sequence (r  
for some sequence tn C [0, b[ which converges to b; in the  par t icu lar  case of X 
metr izable ,  x E co4 if and only if there  exists a sequence (tn) with t,~ E [0, b[ such 
t ha t  t~ ~ b and r  --* x as n --~ oc. 

I f  r were a solution of an au tonomous  differential equat ion  ~ = F(x) ,  then  the  
te rminology  'co-limit set '  would be  usual.  This  concept  has p a r a m o u n t  impor tance  
since one of the  ma in  goal of Dynamics  is precisely to say wha t  is the  dest iny of 
the  mot ions  (incidentally, recall t ha t  co is the  last le t ter  of the Greek  a lphabet ) .  

L e m m a  1.4 (co-limit set of a maximal path lifting). Let f : X --~ Y be a local 
homeomorphism between Hausdorff spaces, and let r : J --~ X be the maximal 
lifting of a :  [0, 1] --* Y with r = x0 E f ~ - ( a ( 0 ) ) .  I f  J ~ [0, 1] then it is open to 
the right, i.e. o r = [0, b[ with b E]0, 1], and the co-limit set of r is empty: cor = O. 

Pro@ We argue  by  contradic t ion  by  assuming  t h a t  Y = [0, a] wi th  0 < a < 1. 
We consider a local inverse of f at  f(d)(a)) and we easily extend r to a lifting 
defined on a larger domain ,  this cont radic ts  the  max imal i ty  of r So @ : [0, b[-~ X 
for a sui table  b E]0, 1]. 

Now, let us cont radic t  co+ = 0 and  let x0 E co4- Then  f (xo)  = c~(b) since by 
cont inui ty  f ( c l r  b[)) C_ c l / ( r  hi) and  

N c l f (C([ t ,b[ )= ~'] c~([t,b])={a(b)} 
tC[0,b[ tE[0,b[ 

(in metr ic  spaces we could jus t  a rgue  with  sequences).  

Consider  open ne ighbourhoods  U, V, of x0 and  f (xo)  respectively, such t ha t  
f l u  : U ~ V be a homeomorph i sm,  and  let g be  the  inverse function. We can 
consider a E [0, b[ such t h a t  c~([a, b]) c V, and  such t h a t  r  E U. Moreover,  we 
can define ~p : [0, b] ~ X lifting of c~][0, b] by ~Pl[0, a] = qSl[0, a] and  by r = 
g o el]a,  b]. This  contradic ts  the  max ima l i ty  of qS. 

[ ]  

Now we are ready  to prove  T h e o r e m  0.1 of the  In t roduc t ion .  
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P r o o f  o f  t h e  H a d a m a r d - C a c c i o p p o l i  T h e o r e m .  Let f be proper (in the 
other sense the theorem is trivial). We are going to prove that  f lifts the paths. 
This gives the theorem by means of Lemma 1.3. 

We argue by contradiction by assuming the existence of a pa th  a : [0, 1] --+ Y 
and a point Xo E f f-(a(O)) such that  the maximal lifting r of a,  with r = x0, is 
defined on [0, b[, with b < 1 (but not on [0, 1]). Then Lemma 1.4 says tha t  we = 0. 

But r b[) C f~(c~([0, 1])) and this last set is compact  since f is proper. 
Since every finite family of closed sets {clr b[)}i has nonempty intersection, 
then 

:=  A cl,([t,b[) O, 
t~[0,b[ 

a contradiction. 
[] 

C l o s e d  local  h o m e o m o r p h i s m s .  The hypothesis of properness of f can 
be replaced by closedness of f: that is, a local homeomorphism between Hausdorff 
spaces which maps closed subsets of X into closed subsets of Y has the path 
lifting property. To see this, argue as above: to prove that we is non-empty, take a 
sequence tn ~ [0, b[ converging to b and such that a(tn) consists of distinct points, 
and is never equal to a(b) (such a sequence certainly exists, unless a is constant on 
some left neighborhood of b ). If the sequence (r has no cluster point, then its 
range R ---- {r : n E N} is a closed set in X; but  then {~(tn) : n  E N} --= f ( R )  
is closed in Y; this is plainly absurd, sinoe .(b) I(R), but converges to 
a(b). There are relations between properness and elosedness, see Proposition 1.1 
below. 

A c o u n t e r e x a m p l e .  \u are going to show tha t  the preceding theorem is 
not true if we drop the Hausdorff property. Let S = N U {c} with c ~ R with the 
following topology: the open sets in R, {e} • A, with A open neighbourhood of 0 
in R, and {e} U A \ {0}. The topological space S can be said ' the line with two 
origins', it is pa th  connected but the Hausdorff property does not hold true. We 
easily check that  the function f : S --~ ]R whose restriction to R is the identity, 
and with f(e) = 0, is a proper local homeomorphism but it is not injective. 

Incidentally, also simple connectedness is essential, at least for locally well 
behaved spaces. 

P r o p e r  m a p s .  Now, let us state two Propositions, whose proofs are easy, 
to remind what proper functions are in the context of metrizable spaces and for 
maps I~ n --~ ~m. 

P r o p o s i t i o n  1.1 (Proper maps in metrizable spaces). Let f : X ~ Y be a con- 
tinuous function between the metrizable spaces X ,  Y .  Then f is proper if and only 
if  every sequence (Xn) in X admits a converging sub.sequence whenever ( f (xn) )  
converges. Moreover, if such a function f is proper then it is closed. Finally, a 
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closed local homeomorph i sm  between metrizable spaces wi thout  isolated points  is a 

proper map. 

P r o p o s i t i o n  1.2 (Proper maps between Euclidean spaces). A continuous func t ion  
f : ]R n --~ N m is proper i f  and only i f  it  is coercive, namely  

I f (x) l - -+  ~ ,  as Ix] ~ ~ .  

Finally, let us see Gordon ' s  applicat ion of  the Hadamard-Caccioppol i  Theo- 
rem to Algebra. We give some more details than  the original paper  [14]. 

P r o p o s i t i o n  1.3 (Nonexis tence  o f  a product  in n-space f o r  n >_ 3). The n-space 
R ~ with n >_ 3 cannot  be endowed o f  a product  operation IR ~ x R '~ --~ N ~, (x,  y) 
x y  which has the fol lowing propert ies  f o r  any x ,  y, z �9 IR n and any a E ]R 

. ( i )  

�9 ( i i )  

�9 ( i i i )  

�9 ( i v )  

x (ay )  = ( a x ) y  = a x y ,  

x ( y  + z) = x y +  x z ,  

x y = O ~ either x = O or y = O , 

x y = y x .  

In  other  words: IR n, with n _> 3, does not have a commuta t ive  algebra s t ructure  
wi thout  zero divisors. Remark  tha t  the  associative proper ty  x (y z) = (x y ) z  is 
not  required. 

P r o @  We again argue by contradict ion,  and we denote  by F : (x,  y) ~-+ x y  
the product .  Consider the funct ion f : X --+ Y, x ~-+ x 2 = F ( x ,  x) ,  with X = 

n Y = IR n \ {0}. First,  note  tha t  f is a C ~ funct ion on X:  if x = ~ k = l  xkek ,  

where e l , . . . ,  e~ is the s t andard  base of R n, then f ( x )  = ~ , z = l  x k x t F ( e k ,  ez), a 
quadrat ic  polynomial  function, hence C ~ .  Next, denot ing by m, M the minimum, 
respectively the maximum,  value of I f ( x ) l  when x ranges over the unit  sphere of 
R n, we have 

0 < mlxl  2 ~ I f (x) l  ~ Mlxl 2, for every X �9 X : ]i~ n \ {0} 

this follows from If(x)l = I f ( I x l ( x / I x l ) ) ]  = Ixl21f(x/Ixl)l, valid for every x �9 X 
(note that ,  by (i), f ( t x )  = t 2 f ( x )  for every non-zero real number  t), and readily 
implies t ha t  f is a proper  map.  The  differential of f is given by d f ( x ) v  = 2xv ,  for 
every x E X and v E ]R n. In  fact, by (i) and (ii), 

f ( x  + tv )  - f ( x )  = x x  + t x v  + t v x  + t2vv  - x x  = t x v  + t v x  + t2 f ( v )  ; 
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by (iv) we then have f ( x  + tv) - f ( x )  = 2txv  + ~2f(v),  so tha t  

lim f ( x  + tv) - f ( x )  = 2xv + lim ( t f ( v ) )  = 2xv .  
t--+O t t ~ O  

By (iii), xv  = O, x # 0 imply v = 0. Thus  dr(x)  is nonsingular,  for every x C X.  
Now all the  hypotheses  of the  Hadamard-Caceioppol i  theorem are satisfied (in 
part icular  Y is s imply connected),  and so f is a homeomorphism,  in par t icular  it 
is injective; but  clearly f ( x )  = f ( - x ) ,  a contradict ion.  

[ ]  

Remark  to the pro@ Y = R ~ \ {0} is simply connected if and only if n _> 3, 
and actual ly commuta t ive  division algebra s tructures  exist on IR n if n <_ 2; the 
quaternions prove tha t  commuta t iv i ty  is essential for the above result (what  fails 
is tha t  dr(x),  now given by d f ( x ) v  = xv  + vx,  is singular for some x E X) .  

2 S t a r - s h a p e d  images  

In this Section X, Y will always be Banach spaces, D an open connected set, with 
0 r D C_ X,  and f : D --~ Y a local homeomorphism.  

T h e  a u x i l i a r y  flow. Let x0 C D, and Y0 = f ( xo ) .  We are going to define 
a flow q~ : D~ --~ D which will be our tool  in investigating the invertibility of 
f a round x0. The  basic propert ies of ~, so tha t  it is called a flow in D,  are the 
following: 

�9 (i) D~ is an open subset of D x R, and ~5: D~ --* D is continuous; 

�9 (ii) for all x E D, the set {t E ]R : (x, t) E D~} is an interval containing 0; 

�9 (iii) ~5(z, 0) = z  for a l l z E D ;  

�9 (iv) (X, tl),(X,~:I -I-~2) E Dd) ~ (~(X, t l ) , t 2 )  E Dd) 
~5(z, t l  + t 2 )  for all x E D, t l , t2  E R .  

and (I)(q)(z, t l ) ,  t2) = 

If {x} x [0, +eo[c D~ we say tha t  the t ra jec tory  th rough  x is global in She future. 
Moreover, whenever D e  = D x R we say tha t  �9 is a (global) dynamical  sys tem 
in D. 

To define g2 we star t  from the following dynamical  sys tem in Y: 

~ :  I / x  R ~ Y ,  ~ ( y ,  t) : =  y0 + e t (y  _ y0 ) ,  (2.1) 

whose trajectories are the half-lines hinged at Y01 but  with an exponential  param-  
eter instead of a linear one, so tha t  ~ (y ,  0) = y, ~ (y ,  t) -~ Y0 as t --~ +oc .  It  is 
indeed a dynamical  system, because g~(q2(y, Q),  t2) = ~ (y ,  t l  + t2). 
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L e m m a  2.1 (The auxiliary flow). Let X ,  Y be Banach spaces, let D C_ X be open 
and connected, let Xo E D, and let f : D ~ Y be a local homeomorphism. Then 
there exists a flow q? : De -~ D which satisfies the following formula 

f(q?(x, t))  = q2(f(x) , t )  for all (x , t )  E D e ,  (2.2) 

and two such flows coincide in the intersection of their domains (so �9 will be 
maximal in the sequel). In the particular case where f is a local diffeomorphism 
(namely it is also C 1 together with all its local inverses), the mapping �9 is C 1 and 
it is the flow of the following differential equation 

5c = F ( x ) ,  F :  D --~ X ,  x ~-+ - f ' ( x )  -1 ( f (x )  - f (xo))  �9 (2.3) 

In  other  words we could say tha t  �9 is the maximal  lifting of �9 o ( f  • id) (where 
id the  identi ty in R) such tha t  (I)(z, 0) = x for all x E D. 

Pro@ Fix x E D and consider the continuous function R ~ Y ,  t ~-+ 
q2(f(x), t ) .  By similar a rguments  as in Section 1 we prove the existence of a unique 
maximal  lifting ]a(z),  b(x)[--* D, t ~-+ ~5(x, t), with ~2(x, O) = x, - c o  <_ a(x) < 0 < 
b(x) < +oo. Let D e  :=  Ux~D{X}• b(x)[. All the propert ies above are easy 
to check except (i) which requires some arguments .  

We consider the  subset D • [0, +ec [  only; the set D x ]  - o o , 0 ]  is handled 
similarly. Let  zo E D be given. First consider the  supremum T(xo) of all real 
numbers  t _> 0 such tha t  {x0} x [0, t[ is contained in the interior of D e  (if no such 
t > 0 exists, then ~-(z0) = 0). Next, define E to be the set of all real t E [0, T(x0)l 
such tha t  �9 is not  cont inuous at (x0,t);  arguing as in L e m m a  1.2 one easily sees 
tha t  E is empty. And  still arguing as in Lemma 1.2, with T(x0) in place of a, it is 
also easy to see tha t  ~-(x0) = b(zo), hence tha t  D e  is open. 

[ ]  

T h e  a t t r a c t i o n  bas in .  Let f : D --* Y, x0, q5 be as in L e m m a  2.1 (in the 
general case), and let Y0 = f (xo) .  Let U be an open ne ighbourhood of x0 where f 
is injective and let g :=  (flU) -1. For any small r > 0, the ball B(y0; r) (with center 
at Yo and radius r) is conta ined in f (U) ,  and for such r let U~ :=  g- l (B(yo;  r)). 
Then  U~ is a ne ighbourhood of  x0, and for all x E U~ the trajectories t H (I)(x, t) 
of q) are defined globally in the future, belong to  Ur for all t _> 0 and converge to x0 
as t --* +c~.  Then  x0 is an attractor, namely  it a t t rac ts  a whole ne ighbourhood (any 
U~ will do), and it is stable, tha t  is, any of its ne ighbourhoods  contains a positively 
invariant ne ighbourhood  with global existence in the future, indeed again we can 
consider Ur, with small enough r (we remind tha t  positive invariance means tha t  
�9 (x, t) C U r  for any x C U r  and t > 0, such tha t  (x , t )  E De) .  So we just  proved 
tha t  x0 is asymptot ica l ly  stable, i.e. a stable a t t ractor .  

The  maximal  ne ighbourhood  A of x0 such that ,  for all x E ,4, the trajectories 
t H O(x, t) of �9 are defined globally in the  future, and converge to x0 as t ~ +oo,  
is called the  basin of a t t rac t ion  of x0. 
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P r o p o s i t i o n  2.1 (Injectivity in the attraction basin). Under the hypotheses of the 
first part of Lemma 2.1 the attraction basin A of xo for  q2 is open. Moreover: 

�9 (i) the restriction of f to ,4 is injective, 

�9 (ii) f ( A )  is star-shaped with respect to Yo :=  f ( xo ) ,  and 

�9 (iii) ,4 is the maximal  connected subset of D which contains xo and has the 
properties (i) and 5@ 

Pro@ A is open because D e  is open in X • ]R and ~5 is continuous.  
To prove tha t  f is injective on .4, let xl ,  x2 E A be such tha t  f ( x J  = f (x2) .  

Then  for all t > 0 

f ( ~ ( x l , t ) )  = Yo + e t ( f ( x l )  - Yo) = Yo + e - t ( f ( x 2 )  - Yo) = f(O;(x2, t))  . 

Since, for large t, bo th  ~)(x~, t) and r t) enter a ne ighbourhood of x0 where f 
is injective, we have tha t  as(Xl, t) = ~)(x2, t) for large t. Thus  for large t we have 
X l  : ( I ) ( ( I ) ( x l ,  t ) , - - t )  = ( I ) ( ( I ) (x2 ,  t ) , - - t )  = X 2 . T h e  image I ( A )  is s tar -shaped with 
respect to Y0 because 

I ( A )  = {Y0} U {Y0 + e - t ( f ( x )  - Yo) : (x , t )  C D e } .  

The  maximal i ty  is also easily verified. 
[] 

P r o p o s i t i o n  2.2 (Bijectivity r De  = D • IR). Let  X and Y be Banach 
spaces, let D C X be open and connected, let xo E D, let f : D --* Y be a 
local homeomorphism, and let q) be the auxiliary flow as above. Then f is a global 
homeomorphism onto Y if  and only if  the f low q~ is a global dynamical system. 

Proof. Suppose first tha t  f is a global homeomorph ism onto Y. Then  the 
inverse mapping  f - 1  is defined and continuous on Y and the expression ~)(x, t) = 
f - l ( y 0  -t- e - t ( f ( x )  - Yo)) is defined and continuous for all (x, t) C D • IR. 
Conversely, suppose tha t  D e  = D • ]R. Let y E R ~ and e > 0 such tha t  Y0 +e(Y - 
Yo) E I ( A ) ,  and let g :=  ( f iN)  -1.  Then 

s(D) D s(A)  

and f[A is proved to be onto Y. To verify that f is also one-to-one on all of D, i.e., 
that A = D, it suffices to prove that A is a closed subset of D, because we already 
know that it is open and nonempty. Let then xn 6 A be a sequence converging 
to  x E D. Since f(.A) = Y, there exists 2 E A such tha t  f (2 )  = f ( x ) .  Recalling 
tha t  ( f [A)  -1 : Y --* A is continuous,  f rom f(x,~) --* f ( 2 )  we get tha t  x~ --~ 2, 
whence x = 2 C .d. 

C~ 
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Now, let us prove Theorem 0.2 in the Introduction. 

P r o o f  o f  t h e  H a d a m a r d - L e v y  T h e o r e m .  By the preceding Proposition 
2.3 we can just show that  the solutions to the equation (2.3) are defined on the 
whole R. First remark that  by (2.1), and (2.2), 

I I f ( ~ ( ~ ,  ~)) - y0ll = u ~ l l / ( ~ )  - ~011 

so this is bounded whenever t ranges on a bounded interval. Then, along a trajec- 
tory 7 :]a, b[---~ D, 7(t) = ~(2, t), defined in a bounded interval of time ]a, b[, we 
have the following estimate for the vector field in (2.3): 

IIF(7(t))ll _< I I f ' ( 7 ( t ) ) - l l l  I I f @ ( t ) ) -  y011 < c r  

for a suitable c > 0 (the function/~ was introduced in (0.3)). 
From now on the arguments are standard, however we prefer to complete the 

proof to be self-contained. Let r(t) := II~(t)ll. Then for a _< tl  _< t2 _< b we have 

f12 
l i t ( t 2 ) -  r(h)l l  < l ib ( t2 ) -  7(tl)11 _< c r dr. (2.4) 

Jr1 

The function z ~-~ llzll is Lipschitz continuous and the function 7 is C 1 (remind 
that  f is a local diffeomorphism in the present theorem), so that  t ~ r(t) is locally 
absolutely continuous and it has derivative almost everywhere. By the previous 
estimate, dividing by t2 - t l  and going to the limit we have IIr'(t)ll <_ c/~(r(t)) 
almost everywhere. Now, for t, to E]a, b[ 

~(t) 1 ds f t l  r'(s) ds f t l  r'(s) ds (to) = -< _ < c l t - t 0 1 < _ c l b - a i .  

Then r(t) for t C]a, b[ is bounded from above by any r0 > 0 large enough to give 
f~(to) ~(~)1 ds _> c I b - a I (remind the first formula in (0.3)). Using again the 

inequality (2.4) and this time the monotonicity of/~ we see that  iI3/(t)II _< c/~(r0). 
Then 7 is Lipschitz continuous on ]a, b[ and it can be extended by continuity to a 
and b. 

[ ]  

In the sequel we shall need the following Lemma: 

L e m m a  2.2 (On 0,4 the trajectories have finite life). Let us assume the hypothe- 
ses of the first part of Lemma 2.1. Then the attraction basin ~4 is invariant, namely 
x E ~4 ~ q~(x, t) E ~4 for all t such that (x, t) E D~, and also 0~4 (the bound- 
ary of A in D) is invariant. Moreover, there is not global existence in the future 
for t H ~5(x, t) if x E OA. 
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Pro@ First of all let us see tha t  

f(O.4) C_ Of( .4) .  (2.5) 

The set .4 is open in X and f is a one-to-one local homeomorph i sm on .4, so 
tha t  f ( .4)  turns  out to be open, too, and f lA:"4 --* f( .4)  is a homeomorphism.  
f(O.4) is contained in the closure of f ( .4)  because f is continuous.  Let �9 be a 
point in the closure of .4 such tha t  f(5:) E f( .4),  i.e., f (~ )  = f ( x )  for some x E .4. 
Let xn, n >_ 1, be a sequence of points of .4 converging to ~. By continui ty of f 
we have f ( xn)  --+ f (~)  = f (x ) ,  and by continui ty of (fl .4) -~ we have x~ -- 
( f l . 4 ) - l ( f ( z ~ ) )  --. ( f l . 4 ) - z ( f ( x ) )  = x ,  so tha t  ~ = x c .4. From (2.5) and the 
fact tha t  f ( .4)  is a ne ighbourhood of Y0 = f (xo) ,  there exists e > 0 such tha t  

x E O A  ~ I l f ( x )  - y0ll  > e .  ( 2 . 6 )  

i t  is obvious from its definition tha t  .4 is invariant for the flow (x, t) H q)(x, t). 
The same holds for OA: In fact, let x E OA, Xn E A,  Xn --+ X, (X,t) E De.  
Then (x~,t)  E De for all large n, because D e  is open, and, by continui ty A 
r  ~ ~5(x,t). The point  ~(x , t )  belongs to the closure of A,  but  not to A, 
because otherwise x = ~ ( ~ ( x ,  t), - t )  itself would be in .4. 

Finally, f rom (2.6) we get: 

z c 0 A  ~ E < Ilf(02(z,t)) -y011 = e-~llf(x) -y011 t _< in Ilf(x) - y0ll 

[ ]  

B o u n d e d  s e t s  in  D. In the sequel we say tha t  a set B _C D is bounded  in 
D if (i) it is bounded  as a subset of X,  and (ii) its closure in X is contained in D. 

T r a p p e d  t r a j e c t o r i e s .  We need to guarantee  tha t  the trajectories of 02 
which are t r apped  into a closed and bounded  subset of D are defined globally in 
the future (condition (c) in L e m m a  2.3 below). This is familiar and always t rue for 
solutions to differential equations which are ' t r apped '  into compact  sets in finite 
dimension. The following Lemma 2.3 shows few technical conditions each of which 
implies this property. In the s ta tement  we denote  by [f(x0); f (x)]  C Y the line 
segment from f (xo)  to  f (x) .  

L e m m a  2.3 (Trapped trajectories never die). Let X and Y be Banach spaces, let 
D C X be open and connected, let xo E D, let f : D --~ Y be a local homeomor- 
phism, and let 02 be the auxiliary ftow as above. Consider the following conditions: 

�9 (a-l) the restriction f i b  is proper for any set B closed and bounded in D; 

�9 (a-2) f is a local C 1 diffeomorphism and for each bounded and closed set 
B C D we have 

sup I I / ' (x ) - l l l  < + o c .  (2.7) 
xEB 
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(b) for any B,  closed and bounded subset o lD,  and any x E B, the connected 
components of f f - ( [ f (xo) ;  f ( x ) ] ) A  B are compact; 

(c) for any 13, closed and bounded subset o lD,  and any x e B, if q~(x, t) E B 
for all t > 0 such that (x , t )  E De,  then the trajectory through x is global 
in the future (in other words: trajectories which are eventually in bounded 
closed sets never die). 

Then either one of (a-l)  and (a-2) imply (b), which implies (c). All conditions 
are trivially satisfied if X is finite dimensional. 

Proof. The  proof  is trivial except for (a-2) ~ (b). Let L be a component  of 
f f - ( [ f (xo) ;  f (x)] )  N B. Pick Xl ~ L, and let v = f ( x )  - f (xo) .  If  v = 0, then 
If(x0); f (x)]  consists of the single point  f (xo)  and L is then also a singleton, since 
f is a local homeomorphism.  Assume then  v r 0. Since f ( L )  is connected,  the set 
{t E R :  f ( x ~ ) + t v  E f ( L ) }  is a bounded  interval I of N containing 0. Let  a :  J ~ L 
be the maximal  lifting of the pa th  e(t) = f ( x l )  + tv (t E I)  with origin a(0)  = xl .  
Since f is a local diffeomorphism, such an a is differentiable, and differentiating 
f ( a ( t ) )  = f ( x l )  + t v  we get f ' ( a ( t ) ) (a ' ( t ) )  = v, whence a'(t)  = f f  (a ( t ) ) - l v .  Since 
SUPx~L IlY(x)II is finite, a '  is bounded  on its maximal  interval J of existence; thus 
the w-limit set of  a is nonempty,  and  it is conta ined in the closed set L. It  follows 
tha t  Y = I ,  and by the same token, t ha t  i n f I  E I ,  and sup I E I ,  t ha t  is, I is 
compact .  It is now obvious tha t  f induces a homeomorph i sm of L onto f (L ) ,  which 
has a o g-1 as inverse. Thus  L is compact ,  since f ( L )  is homeomorphic  to I via g. 

[ ]  

A c lass  o f  f u n c t i o n s  s a t i s f y i n g  ( a - l ) .  The  condit ion (a-l)  is fulfilled if f = 
p + c with p proper  and e compact ,  i.e., mapp ing  closed bounded  sets to  compact  
sets. Indeed,  remind Propos i t ion  1.1, and consider a sequence (Xn) in the closed 
bounded  set B,  with ( f (Xn))  convergent.  Since c is compact ,  it maps  a subsequence 
(x~ k) to  a convergent  sequence (e(xnk)), thus p(xn k) = f(x~k ) - c(x~k) converges 
and finally (x~ k) has a convergent  subsequence since p is proper. 

C o e r c i v e  a u x i l i a r y  f u n c t i o n s .  The  nonnegat ive continuous function k : 
D --* ]R is called coercive whenever for any a > 0 the inverse image M-([0, a]) is 
bounded  in D. 

G l o b a l  L y a p u n o v  f u n c t i o n s .  In  our  framework the  function k : D -~ JR+ 
is called a global Lyapunov  function for the flow (P above, if it is continuous,  
nonnegative,  coercive, and weakly decreasing along the  trajectories,  namely  t ~-+ 
k(~(x ,  t)) weakly decreases for all x C D. 

P r o p o s i t i o n  2 .3  (Injectivity and star-shaped image by Lyapunov functions). Let 
X , Y  be Banach spaces, let D C X be open and connected, let xo E D, and let 
f : D --~ Y be a local homeomorphism. Then f is inject@e, and the image f ( D )  is 
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star-shaped with respect to f(xo),  if there exists a global Lyapunov function for 55, 
and f satisfies any of the conditions (a-l), (a-2), (b), (c) in Lemma 2.3. 

Proof. We are going to prove tha t  D = A. So we are done by Proposi t ion  2.1. 
It  is enough to show tha t  the bounda ry  0.4 (of .4 in D) is empty. We argue 

by contradict ion and assume tha t  x E OA By L e m m a  2.2 the maximal  positive 
t ra jec tory  th rough  x, 7 : [0, b[-+ D, ~ ~-* 55(x, t), lies in 0A,  and has a finite life: 
~([0, hi)  c_ OA, and b < +oo. 

The Lyapunov  function k : D --+ IR+ is coercive and, in particular,  B :=  
k~-([0, b]) is bounded  in D. Moreover, k o ~, is decreasing and so ~y([0, b[) C_ /3. 
Now L e m m a  2.3 says tha t  condit ion (c) above holds true, namely  b = +oc ,  a 
contradiction.  

[ ]  

The  preceding result, as well as the following one, extend some results in 
[17] (by two of the authors)  where the finite dimensional  case is treated.  T h a t  
paper  also shows tha t  the converse of Proposi t ion  2.3 holds t rue in R n (and proves 
other  related facts). In the following s ta tement  we consider an Hilbert space X 
with scalar p roduc t  ' -  ', and B(x0; r) will denote  the open ball IIx - xoll < ~. We 
could formulate an analogous fact in general Banach spaces bu t  it would be more 
complicated to be s ta ted (but  not to be proved). 

P r o p o s i t i o n  2.4 (.4 criterion of injectivity on a ball). Let X be a Hilbert space, 
xo E X ,  Y be a Banach space, f: B(x0; ro) ---+ Y be a local C 1 diffeomorphism 
satisfying any of the conditions of Lemma 2.3. Then the following two conditions 
are equivalent: 

�9 (a) f is injective and f(B(xo; r)) is star-shaped with respect to f (xo)  for all 
positive r <_ ro; 

�9 (b) the following inequality holds for all z E B(xo; to) 

( x -  x o )  f ' (x )  - l ( f ( x )  - f (xo))  >_ O. (2.s) 

Pro@ The left-hand side of (2.8) is the derivative with respect to t at t = 0 
of the scalar function 

1 
t ~+ ~l155(x,t) - x0[I 2 . 

Asking it to  be nonnegative is the same as asking the scalar funct ion z ~-+ ( 1 / 2 ) I I z -  
z0112 to be weakly decreasing along the flow 55, which in tu rn  is the same as 
requiring the same from each of the functions z ~-+ 1 / ( r  2 - I l x -  z0 II 2) on B(x0; r), 
0 < r < r0. These last functions have the advantage  of being coercive on B(z0;  r). 
Hence condit ion (b) is satisfied, Proposi t ion 2.6 can be applied to get condit ion (a). 
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Conversely, if condition (a) holds, then the sets B(x0; r) are positively invariant 
for ~5 and the (square) norm of O(x, t) must be a weakly decreasing function of t, 
whence inequality (2.8). 

[] 
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