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Abstract. We investigate the spatially inhomogeneous states of two com- 
ponent, A - B ,  Widom-Rowlinson type lattice systems. When the fugacity of 
the two components are equal and large, these systems can exist in two 
different homogeneous (translation invariant) pure phases one A-rich and one 
B-rich. We consider now the system in a box with boundaries favoring the 
segregation of these two phases into "top and bottom" parts of the box. 
Utilizing methods due to Dobrushin we prove the existence, in three or more 
dimensions, of a "sharp" interface for the system which persists in the limit of 
the size of the box going to infinity. We also give some background on rigorous 
results for the interface problem in Ising spin systems. 

1. Introduction 

This is the first part of a study of the interface between two coexisting phases. The 
desired goal of our study is an understanding of the interface of a continuum 
system; e.g., that of a liquid-vapour or a segregating binary mixture in IR 3. There 
are good reasons for believing that in the absence of external forces acting to 
spatially segregate the phases, e.g., gravity, the location of the interface would 
undergo very large fluctuations in the equilibrium state of the system [1, 2]. That 
is, if we imagine the gravitational field gradually turned off, then the mean square 
fluctuation of the height of the liquid-vapour interface would tend to a quantity 
r(A), where A is the cross-sectional area of the system, with r(A)-*oo as A~oo  
[presumably r(A)~lnA 1]. It is expected nevertheless that it is possible to define 
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"locally" an interface structure which is independent of A for large A. The "width" 
of this interface should be related to the surface tension, becoming infinite only at 
the critical temperature when the two phases cease to be distinct [1, 2]. 

Needless to say we are very far from achieving our ultimate goal. We do not 
even know, at the present time, how to define, in a precise way, the position of an 
interface in a continuum system. Nor can we prove rigorously the existence of a 
liquid-vapour phase transition for a system with realistic interactions; e.g., 
Lenard-Jones pair potentials. For these reasons the rigorous study of interfaces has 
been so far confined entirely to lattice systems where there are essentially no 
conceptual problems, only difficult technical ones [3, 4]. Even for lattice systems, 
however, the results are very far from complete. Many important questions, such as 
the existence of a "roughening" transition, remain unanswered even for the spin 1/2 
Ising system with nearest neighbor ferromagnetic interactions, the system to which 
most studies so far have been confined [3, 4]. Perhaps even more important, as far as 
our goal is concerned, these Ising spin systems have no reasonable limit which 
would correspond to a continuum fluid. Continuous spins on a lattice and the 
Euclidean field theory limit [5] do have their own interest and difficulties. The 
problems involved in these studies appear to us, however, as different from those 
encountered in continuum fluid systems. 

We decided for this reason, as well as for its own intrinsic interest to start 
our study with the Widom-Rowlinson model on a lattice [6, 7]. This is a two- 
component, A - B ,  mixture in which there is an extended hard-core exclusion 
between the A and B particles favoring segregation at high densities. This model 
does have a direct extension to a continuum binary mixture. Both the lattice and 
continuum models are isomorphic to a one component fluid with many body 
interactions [7, 8]. Indeed, this system, or some variations on it, is the only 
continuum system with short range interactions for which the existence of a phase 
transition can be proven rigorously [-6, 9]. In this paper we prove the existence of a 
"sharp" interface at high fugacity for certain Widom-Rowlinson type lattice 
models in three or more dimensions: high fugacity here corresponds to low 
temperatures in the isomorphic one component fluid system. Interestingly enough, 
our result does not hold, and we actually believe it to be untrue for some type of 
Widom-Rowlinson models; e.g., those with only nearest-neighbor exclusion. This 
will be discussed in Sect. 7. 

The dimensionality here is important. For  continuum systems (and for lattice 
systems with a continuous symmetry), one may expect sharp interfaces to occur in 
four and more dimensions, Put otherwise, interfaces for continuum fluids in three 
dimensions are expected to behave like lattice system interfaces in two dimensions 
which are known to fluctuate widely [10]. To clarify this point, as well as to set our 
results in their proper context - we rely very heavily on the work of Dobrushin [3] 
for the Ising spin system - we first briefly sketch the history and current status of 
the interface problem for Ising systems. (We include some generalization of 
previous results.) This enables us also to pose the problem in the general context of 
non-translation invariant Gibbs states, the context in which this problem naturally 
belongs from an abstract point of view. We then give a brief survey of relevant 
results (not relating to interfaces) for the W - R  model. 
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Background 

An infinite volume Gibbs state is said to be translation invariant if the probability 
of a given spin configuration on a set of lattice sites A, A C Z~, is the same as on the 
set A translated by any lattice vector x. 

In the two dimensional Ising model, with ferromagnetic nearest neighbor 
interactions and no external field, there are exactly two extremal translation 
invariant Gibbs states (with opposite spontaneous magnetization) at low tempera- 
tures. T <  T~ [11, 12]. These two states, denoted by + and - ,  are obtained from 
finite volume Gibbs states with boundary conditions (b.c.) in which all spins on the 
boundary are equal to + 1 or - 1. This implies that if we take the thermodynamic 
limit with any kind of b.c. and then average the resulting state over lattice 
translations, we get some linear combination of the states + and - .  The question 
is whether we need to make this space average or do we always get a translation 
invariant Gibbs state when taking the thermodynamic limit? The latter is always 
true for T >  T~ when there is a unique Gibbs state [17]. 

A natural candidate for a non-translation invariant Gibbs state is one in which 
the two phases, + and - ,  coexist and are separated by a flat interface. Such a state 
would look like the + state, if one goes to infinity in one direction and like the - 
state in the opposite direction. It seems natural that such a state should be 
obtained with the following b.c. denoted _+ : all boundary spins on " t o p " =  + 1 and 
all boundary spins on "bo t tom"=  - 1. This is the b.c. studied by Gatlavotti [10]. 
He found, however, that, at low temperatures, this state is in fact translation 
invariant. Later, Messager and Miracle-Sole [13] have shown that this state is 
actually translation invariant at all temperatures (using an explicit computation of 
Abraham and Reed [14]). They also proved that a large class of boundary 
conditions lead to translation invariant Gibbs states. But this result has not yet 
been proven for all possible boundary conditions. 

The description given above of the translation invariant states also holds for 
the three-dimensional Ising ferromagnet. Furthermore Dobrushin has shown [3] 
that the +b.c. lead to a non-translation invariant Gibbs state with a "sharp" 
interface between the + and - state. Dobrushin's result was obtained only at very 
low temperatures. Using, however, a completely different method, namely, cor- 
relation inequalities, van Beijeren [4] has shown the following: the three- 
dimensional state with _+ boundary condition is not translation invariant for any 
temperature such that there is a spontaneous magnetization in the corresponding 
two-dimensional Ising model. It is natural to ask whether this non-translation 
invariant state persists all the way to the critical temperature (for spontaneous 
magnetization) of the three-dimensional system or is there a "roughening tran- 
sition" at a lower temperature? Indeed, numerical evidence [15] suggests that 
above some temperature T R [~0.57T~ (3-dim.)] only translation invariant Gibbs 
states exist. This corresponds to a roughening of the interface present in the non- 
invariant states. Since Tc(2-d)~0.5Tc(3-d), van Beijeren's results, TR>T~(2-d), 
seems a very good lower bound. However, no rigorous upper bound on T R [less 
than T~(3-d)] has been proven. 

We give in Appendix B a slightly more general version of van Beijeren's 
argument, using a remark of Hegerfeldt [16]. 
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Widom-RowIinson Model 

The Widom-Rowlinson model on a lattice is a two-component, A -  B, lattice gas, 
in which there is a finite diameter hard-core exclusion between the A and B 
particles. This model was first studied by Lebowitz and Gallavotti [6] who proved 
the existence of a phase transition in two and more dimensions, similar to the one 
in the ferromagnetic Ising model. Large activities correspond to low temperatures 
and equal activities for the two components are analogous to zero external field. 
Although their estimates did not allow them to prove the same result for the 
continuum model (by letting the lattice spacing go to zero), Ruelle [9] proved it, 
by superimposing a fixed lattice on the continuum model. This made the situation 
in the continuum, at least as far as phase transitions are concerned, look similar to 
the one on the lattice. In fact, results of [-17] on the Ising model about the 
uniqueness of the phase when the free energy is differentiable with respect to the 
magnetic field have been carried through to the Widom-Rowlinson model [18]. 

On the other hand, no results have been obtained until now on the existence or 
non-existence of non-translation invariant Gibbs states for this model. We prove 
here the existence of a sharp interface (and therefore of non-translation invariant 
Gibbs states) in the three-dimensional lattice Widom-Rowlinson model (with some 
types of hardcores). We expect, but do not prove, the absence of such a sharp 
interface in the three dimensional continuum model. 

As one can see in Appendix B, van Beijeren's argument depends strongly on 
the ferromagnetic nature of the interaction and we do not think that this argument 
can be generalized to lattice Widom-Rowlinson models (see e.g. [8] for rewriting 
of the Widom-Rowlinson model as a one component Ising spin with many-body 
interactions). This is why we use the original Dobrushin's techniques here. 

These techniques actually give much more information about the interface 
than can be obtained from inequalities. This will become clear in a second paper 
where we prove 

i) The probability of a displacement of the interface is exponentially small. 
ii) Exponential clustering of the correlation functions in this non-translation 

invariant state. 
iii) A simple formula for the surface tension in this model as well as for the 3-d 

Ising system. 
In the third paper of this series we prove anatyticity of the correlation functions 

of the _+ state and of the surface tension in the variable e -  ~J for the Ising model, at 
low temperatures (and in the variable e -~ for the Widom-Rowlinson model, at 
large fugacity). 

Formulation of Problem 

We consider a three-dimensional simple cubic lattice in IR 3. Each cell of the lattice 
is labelled by its center xe;g 3. Sometimes we also use x for the cell with center x. At 
each site x there can be either an A-particle or a B-particle or nothing. Let us 

define Ix-yf= max Ix~-yil as the distance between x and y~2~ 3, and C(x,d) 
i=1,2,3 

= {y~2g 3 : I x - y f  <d} £2~ 3, where xsTZ 3 and d is a positive integer. The interaction 
between particles is expressed by two hard-core conditions: there is at most one 
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particle in each cell, and if there is a particle of a given kind at x, then there is no 
particle of the other kind at y~ C(x, d), For simplicity we restrict ourselves to the 
case d = 1, but all our results are true for d > 1 and for more general hard-cores. We 
shall say more about this later (Sect. 7). 

Let AL, M= {XETZ 3 :[xl[ < M ,  Ix2[ < L ,  Ix 31 <L}  be a parallelepiped of base 
(2L+ 1) 2 and height 2 M +  1, L, and M being positive integers. We consider now 
the system enclosed in AL, M, choosing the same chemical potential p for the two 
kinds of particles, and putting an A-particle at each x ~ ~.3\AL, a¢ with x ~ > 1 and a 
B-particle at each XE2~3\AL, M with x l < - - l .  There are no particles at sites 
X~2~3\AL, M with x 1 =0.  The configuration outside AL,~v t is thus compatible with 
the hard-core conditions. This boundary condition for AL, M corresponds to the _ 
boundary condition in the Ising system. 

The Hamiltonian of the system is 

HL M • - -  E 2 , a ( s ~ -  ~), 
X~AL,M 

where S~ = + 1, resp. - 1, if there is an A-particle, resp. B-particle, at x and S x = 0 if 
there is no particle at x. We consider only configurations compatible with the 
hard-core conditions. To each configuration of the system inside AL, M we can 
associate in a unique way a configuration on all 2~ 3 by taking the boundary 
condition for the configuration outside AL, M. This will be convenient for the 
definition of the interface. 

As already mentioned, our analysis follows closely the paper of Dobrushin [3]. 
In particular, Sects. 3 and 5 are a direct adaptat ion of Dobrushin's  results to our 
system. We present them here for the convenience of the reader. 

2. Definition of the Interface 

Let E be a set of  TZ 3. We say that E is connected if for each pair x and y~E we can 
find a sequence x l=x ,  Xa,. . . ,xn=y such that xi~E and [ x i - x ~ + l l = l ,  
i = 1 . . . . .  n -  1. Let AL, M with the boundary condition above be given. Let w be a 
configuration of the system. We consider w defined on all 2g 3. Let 
Eo={xEE 3 :Sx=0  }. We decompose this set into maximally connected com- 
ponents. Obviously there is exactly one infinite component:  we call it A =A(w). 
The union of the cells whose centers are in A is also denoted by A. Let F(A) be the 
boundary of this set in IRa. We decompose F(A) into maximally connected 
components F1, F 2 . . . . .  Y,, n > 2. (Here connected has the usual meaning for sets in 
IR3.) We say that two cells x and y are adjacent if I x - y [  = 1. Geometrically this 
means that the two cells have a face or an edge or a vertex in common. We say that 
a cell y is adjacent to F(A) if y has a face or an edge or a vertex in common with 
F(A). The set of all cells y of ;E3\A adjacent to some cell of A is denoted by OA. By 
definition all cells of 8A are occupied by some particle, and by the definition of a 
connected component  of F(A), say /'1, all cells of 8A adjacent to F 1 form a 
connected set and hence all these cells are occupied by the same kind of particle, 
say of kind A. In this case we say that F~ is an A-border of A. 

Definition. The interface A = A(w) of a configuration w is the couple given by the set 
A(w) and all particles of w in 8A. 
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Remark. We stress the fact that when we give the interface z] we specify the kinds of 
particles in ~A. We therefore know which F/(A) are A-borders and which are 
B-borders. We can have two different interfaces with the same A and hence ~A but 
with different A-borders and B-borders. We make the convention that/ '~ is always 
the infinite A-border of A and F)_ the infinite B-border of A. Finally we will 
concentrate only on the part of z] which lies in At, M. We use the same symbols zJ, 
A, ~3A, F1, F2, etc. 

3. The Probability Distribution of the Interface 

Let us consider a particular fixed interface zl in At, M. Let S(A)=AL~u\{A w(?A}. 
We decompose this set into maximally connected components, 5"1(3 ) . . . . .  Sm(zJ ). 
We observe that 3S/(z]), which is the set of all sites ye  QA adjacent to some site of 
Si(A), is a connected set of occupied sites and hence all particles in ~Si(A) are of the 
same kind. Furthermore, the union of all ~Si(A ) is 0A. We note that inside S/(A) we 
have a system with pure A boundary conditions or pure B boundary conditions. 
Using the symmetry of the system with respect to the interchange of A-particles 
and B-particles, we can always consider that the system enclosed in a connected 
component Si(z~ ) has pure A-boundary condition. If Z(S(A)[A) is the partition 
function of the system enclosed in S(z]) with pure A-boundary condition then we 
can write the probability of having a particular interface z] as 

exp ( - #l A I)Z(S(A)[A) (3.1) 
PL'M(A)= 2 exp(-#IAI)Z(S(A)IA)'  

XeDz~,M 
where IAI is the number of sites in A and Dr, u is the set of all possible interfaces in 
AL, M. 

To study in more detail the expression (3.1), we will write it in a more 
convenient form using properties of the pure phases of the system which we state 
in Lemma 3.1. The proof is in Appendix A. We introduce the following concept: 
two sets in 7/3, E 1 and E2, are  congruent, E I ~ E z ,  if we can obtain E 2 by a 
translation of El. 

Lemma 3.1. a) Let A be a finite set in 77 3. Then there exists a ~ < oo independent of  
A such that for all # > ~  we can define a function g,(t,A) for all t e A  with the 
following properties : 

logZ(AIA) = ~ g~(t, A), 
teA 

Igu(t, A)I _-< K < oe, 

with K a constant independent of # and A. 
b) Let A 1 and A 2 be two finite sets in 773. For t i dA l ,  t2~A2, let 

d(tl, A 1 ; t2, Az)- -  sup {d :(A:t ~C(tl, d)),'~ (A2nC(t2, d))} 

then for all # > fi 

tgu(q, A 1 ) -  g,(tz, A2)I < J exp ( -  c~d(tl, A 1 ; t2, Az)), 

where J <  co and c~>0 are two constants independent of A and #. 
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To use Lemma 3.1, we replace Z(S(A)IA) in both the numerator and de- 
nominator of formula (3.1) by Z(S(A)[A)/Z(AL, MIA). We then write the logarithm 
of this ratio as ~, fu(x, A,AL, M) where the function fu(x, A, AL, M) has properties 

x~A 

similar to those of gu(t,A) of Lemma 3.1. In order to do this we introduce the 
lexicographic ordering in 2g 3 and for each fixed interface J we associate to each 
teAL, M an element x(tIA) of A in the following manner: 

x(t[A)=t if tea 

x(t]A) is the first element of A (in the ordering introduced above) such that 
]t-x(tlA)[ is minimal if t(~A. 

We define now the function f,(x, A, AL, M) for all # >  fi and all xe  d by 

fu(x,A,AL, M)= ~ (gu(t,S(A))--g,(t, AL, M))-- ~ gu(t, AL, M). (3.2) 
teS(A) te(A c~ Ozl) 

Here ~ means the sum over all t in Ac. M such that x(tlA)=x. We see immediately 

that ~ fu(x,A, AL,~)=logZ(S(A)IA)--logZ(AL, MIA). We introduce now the 
x~A 

quantity d(xl, A 1, AL~M~ ;x2, A z, AL2M2) as the supremum over all d such that 

(AL,M, C~ C(x 1 ; d)) ~ (AL~v2 c~ C(x2 ; d)), 

(ZI 1 ('5 C(x I ; d)) ~ (A 2 ~ C(x 2 ; d)). 

Lemma3.2. Let p>~, where fi is defined in Lemma3.1. Then there exist two 
constants K < oo and ~ > O, depending only on ~ such that 

IL(xl ,  A 1, ALI I)I <R, 

</ (exp  ( -  ~d(xl, A 1, AI.IM, ;x2, A 2, AL~t~)). 

Proof: Let A 1 -=ALiMI. If teS(A1) and x 1 =x(tlA1) then 
d(t,S(Zlt);t, A1)>l t -x l [ -2 .  If teAl wc?A1, then ]t-x(t[A1)[< l. Hence the number 
of different t in A 1 w c~A 1 having the same x(t[A 1)= x~ does not exceed 2 7 - 1  = 26. 
Using Lemma 3.1 we obtain 

IL(xl,Ai, A1)l<26K + ~, J e x p ( - e ( l t -  Xl]-2))=-R~. 
t6g  3 

To prove the second part of Lemma 3.2, let A 2 = AL2M2 and 

d=d(xl,A1,A 1 ;x2, zI2,A2)>6. 

Let to=x2-xle7Z 3. Suppose t h a t  tl@S(zJl) and i t , - x l [  < _d Then by definition 
= 2 "  

of d the two sets C(x, ; d)c~A 2 and C(Xg;[~)c~A 2 are congruent and the same is true 
for C(x 1 ;£/)md I and C(x2 ,d )~z l  2. Hence the sets 

{q :t, ~S(z~ 1), I t , - x l ] <  ~} and It2 :t2~S(z~2), ]t 2 -x21< ~} 
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that d(t 1, S(zil); t 1 + t o, S(zl2) ) > ~, since are congruent. Furthermore, we have 

( d )  c C(xl ; a)2" TherefOre c t 1 ; ~  = 

tfu(xl, A i, A 1 ) -  fu(x2, A 2, A2)I 
Xl 

<= ~, ~ {[gu(tl, S(A1))--gu(tl +to,S(Az))l+[gu(ti,A1)-gu(tl +toA2)[} 

xl 

+ ~ ~ lg,(tl, S(A1))-g,(t l ,  A1)[ 

X2 

+ ~, . Ig.(t2, S(zl2))- gu(t2, A2)I 
~2Gs(22), tt2 - x2t > a 

+ ~ ]g.(t 1, A 1)-  gu(tl + to, A2)]- (3.3) 
tle(Jl wOAj) 

We estimate the first sum. 

tleS(~l), ftl - xl[ <d 

where (~ + 1) 3 is larger than the number of points t of ;g3 such that ] t -x l [  N ~. We 

estimate the third sum. 
Xl 

[ g g ( t l ,  S(zJ 1 ) ) -  g.(tl, A1)[ 

(3) < ~ J e x p ( - a ( I t l - x l t - 2 ) ) < C 2 e x  p - ~l 
tleS(Xl), It1 -x~l >~- 

because d(tl, S(A1); tl, A1) > It 1 - xl] - 2. 
The second sum and the fifth sum in (3.3) are estimated like the first sum. The 

fourth sum is estimated like the third sum. [] 
We now study the probability distribution of the interface in the infinite 

p a r a l l e l e p i p e d  BL= { x ~  3 ; t x  2] <L,  Ix31 <L}. We denote by DL= U DLM the set of 
M 

all finite interfaces (]A[ < oo) in B L. From Lemma 2 we get the following corollary 

Corollary 3.1. The following limit exists for all L, x e A and A ~D r 

f,(x, A, L)=  lim f ,(x, A, AL, M). 
M---~ oo 

This limit has the properties: 

[f~(xl,A1,L~)] <=t( 

]fu()q, A 1, L~) - £ (x  2, A 2, L2)I -<-/~ exp ( -  5d(xl, A 1, L1 ;x2, A 2, L2)), 

2 We also remark that x(tl[A1)=x 1 if and only if x(t 1 +tolA2)=x2 since the lexicographic order is 
translation invariant 
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where B2<~ and 5 > 0  are two constants and d(xl, dl ,L1;x2,  d2,L2) is the 
supremum over all d such that 

(BE, ~ C(x 1 ; d)) ~ (BL2 C~ C(x 2 ; d)), 

(A i n C(x 1 ; d)) ~ (A 2 n C(x 2 ; d)). 

The proof of this corollary is immediate. We mention only that we use the fact 
that for large M~ and ME, 

d(Xl, A1, AL~MI ;X2, A2, AL2Mz ) = d(Xl, A 1,L1 ;x2, A2, L2). 

Lemma 3.3. a) The number of connected sets with k elements in 77 3 which have a 
common element Xoe77 3 does not exceed (26) k. 

b) The number of interfiTces with a given finite A in B L does not exceed 2 lat. 

Proof The first part of Lemma 3.3 is proved in the demonstration of Lemma 4 of 
[ 19]. To prove the second part we remark that the number of internal components 
of F(A) i.e. the components which are not F 1 or F 2 cannot exceed IAl. So we have 
at most 2 j~t possibilities of choosing the A-borders and B-borders. []  

We consider now the Gibbs state for the system enclosed in B L with A - B  
boundary condition: we put an A-particle at each xe773\Br~ with x1>1  and a 
B-particle at each xe773\Br with x 1N -- 1. We define the interface as before. We 
can prove the following proposition for all # large enough. 

Proposition 3.1. a) The interface of a configuration is in D E = I.j DLM with probabili- 
ty 1. M 

b) I f  the interface A is in D L then Prob (/3)= PE(z]) where 

pL(~)=exp(--PlAI+ ~ f ~  (x'A'L)) 

ZL 
with 

ZE=--~'~D~ exp( - 'ulAl+ ~ j  ~ f , (x ,A,L)) .  

Proof Assume b). Then ~ PE(/])=I. Therefore let us prove b). From (3.1) and 
3eDL 

(32) we have that (for M large enough) 

with 

ZL, M= ~ exp ( -#JA[+  ~ f , ( x , A ,  AL, M)). 
~eDr~,~ xeA 

Using Lemma 3.3 and Corollary 3.1 we obtain that 

PL(J) = lim PL, M(Z]), if p is large enough. []  
M--* oo 

lim ZL, M = ZL < Go and 
M--* ao 
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4. The Geometrical Description of the Interface 

Let zi be a finite interface in B L, zt~Di,, and let F(A)=F 1 + F  2 + ... +Fro where F 1 
is an A-border and F 2 is a B-border as in our convention of Sect. 2. The other F~ 
are either A-borders or B-borders but this does not play a role in most of the 
results of this section. We concentrate on the part of zl inside B L. Let us define the 
regular plane a as a={xeT/3:xl=O} and the projection p(x) of a point 
x = (x 1, x 2, x3)~ 7/3 on the regular plane o- by p(x)= (0, x 2, x3). We define two kinds 
of points in A. We say that x~A is a c-point ifp(x)=p(y) and y e a  implies that y =x.  
All other points are w-points. Now we decompose A into maximally connected 
components of c-points and maximally connected components of w-points. 

Definition. A ceiling C is a couple given by a maximally connected component of 
e-points C and all particles of A in OAc~OC. 

A wall ~-V is a couple given by a maximally connected component of w-points 
Wand  all particles of A in 0A~0W. 

Lemma 4.1. a) The A-border F~ and the B-border F 2 divide each B L into two disjoint 
regions. 

b) F 1 is always above F z. 
c) All F~, i>3 are closed polyhedra and lie between F a and F 2. 

Proof By definition F~ is a connected set in IR 3 and each face belonging to Fi is 
common to an empty cell and to an occupied cell. Therefore each edge of a face of 
F~ belongs to an even number of faces of F~. The lemma then follows from this and 
the choice of the boundary condition. []  

We now state the crucial lemma of this section, It is here that the choice of the 
hard-core matters. 

Lemma 4.2. Let x be a c-point, X=(XI,X2, X 3) of A. Let 

Qx = {ye 7/3 :y = (x 1, y2,  y3), Ix _ Yl ----- 1 }.  

Then Qx c A. 

Proof Since x is a c-point, U = ( X I + I , x Z ,  x 3) is occupied by an A-particle and 
v = (x I - 1, x 2, x 3) is occupied by a B-particle. [Lemma 4.1a) and b)] So all adjacent 
points to x in the plane {y~7/3 :yl = x  1 } are empty points and so belong to A. []  

Lemma 4.2 leads immediately to a series of results. Let C be a particular ceiling 
in A. By definition C is a connected component of c-points of A. So we get from 
Lemma 4.2 that C lies in a plane a 1 parallel to ~;. Furthermore all adjacent points 
to C in cr~ are w-points. Consider now the projection p(C) of C in rr. The boundary 
of this set p(C) is made up of the projections of all vertical faces separating a 
c-point of C and a w-point adjacent to C. The boundary of p(C) can be 
decomposed into n connected components 71 . . . .  ,7,, and the complement of p(C) in 
a consists of n connected components E 1 .. . .  ,E,  with boundaries 7~ ..... 7,. Let 
Ai= {x~A :p(x)eEi}i= 1, ..., n. Then A i and Aj are disconnected if i+j  because the 
E~ and E~ are disconnected. Since C is a ceiling A\C=A 1 + ... +A,. Since A is 
connected, the A ~ are connected. Indeed if we have a path 7 in A joining x and y in 
A~ (such a path exists because A is connected) and if this path does not lie entirely 
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in A i, then there is a first point x~ of 7 such that x f i  A i and x j+ l~Ai and there is also 
a last point Xg of 7 such that xveAi for all p>k.  But xj+ 1 and Xk_ ~ belong to C. So 
by Lemma 4.2 we can find another path joining x and ye A~ and lying entirely in A~ 
because we can join xj and x k by w-points of A~ adjacent to C. As a corollary of 
these simple facts we obtain Lemma 4.3. 

Lemma 4.3. Let W be a wall in 3. Let p(W) be the projection of Won a. Then 
a) {x~A :p(x)~p(W)} = W, 
b) the complement of p(W) in a contains exactly one infinite component, 
c) suppose that the complement of p(W) in a is composed of m disjoint connected 

components GD ..., G,,. Then all points in A adjacent to Ware c-points which belong 
to exactly m ceilings C1 .. . . .  C,,_ such that p(C~)c= Gi. 

d) Two different walls in A, W1, and ~-V2, are such that p(W1) and P(W2) are 
disconnected. 

Proof To prove a) we consider any ceiling C in J and we construct the connected 
subsets A 1,---, A,, as above. W must be in some of the A i, say A r Then we take a 
ceiling in A 1 (if there is one ceiling in A 1) and we repeat the procedure. After a finite 
number of such procedures we have a connected subset which contains W and 
only w-points. So this subset coincide with W. The proof of b) is trivial: The proof 
of c) follows directly from Lemma 4.2 and the fact that W is a connected set. The 
proof of d) follows from a) and c). [] 

At this point we introduce some further definitions which will help us describe 
more precisely the interface z]. We know from Lemma 4.3 that the complement of 
p(W) contains exactly one infinite connected component, say G~, and that there is 
a ceiling C adjacent to 17V such that p(C)CG r We call this ceiling the base of the 
wall. We know also that each ceiling C of J is such that C lies in a plane 
{ye~3 :yl =s} parallel to a. The height of C is defined as s. We define also the 
interior of the projection of a wall VV,, Int (W), as the set of points of a which belong 
to p(W) or to one of the finite connected components of the complement of p(W) in 
a. Among all interfaces J in D L there are very simple ones which contain only one 
wall • Of course the base of this wall lies in the regular plane a. All walls which 
are obtained in this way are called standard walls. The end of this section is 
devoted to the proof of the fact that any interface zt in D L can be described in a 
unique way by a set of standard walls. We introduce now a total ordering in the 
plane a and we define the origin of a standard wall W as the first point of the 
projection p(W) of W. We call a collection of standard walls admissible if p(IV//) and 
p(Wj) are disconnected, i+j  for all pairs of standard walls Wi, Wj of the collection. 

Lemma 4.4. There is a one-to-one correspondence between the set of interfaces D L 
and the set of admissible collections of standard walls in B L. 

Proof Let zt be an interface in D L. Let ~] and ~ be to different walls of A. Then by 
Lemma 4.3 p(Wi)c~p(Wj) = 0. Let s i be the height of the base of 17V i. We translate ~'V i 
by (-s i ,  0, 0) in order that the base lies now in the regular plane a. To prove that 
the translation of ~ is a standard wall we must construct an interface which has 
only this wall. This can be done in a unique way [see Lemma4.3c)] by 
constructing ceilings C~,..., C,, such that p(Cj)= G~ where G~, j = 1,..., m are the 
different disjoint components of a~p(W~). 
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Let (17V 1 . . . . .  17Vv) be an admissible collection of standard walls. Let (A_-~ . . . . .  zip) 
be the collection of interfaces associated to the standard walls (ITvt . . . . .  Wp) by the 
construction above. We observe that for any pair (!~, g~) of standard walls of the 
collection either Int W~ C Int Ws, o r  I_nt W~ 3 Int V¢~ or Int Wf~Int Wj = 0._So we can 
introduce a partial ordering, W~ > VVj if Int W~ 3 Int VVj, such that if W i > W~ and 
~ >  ~ then VV~_> ~ or ~>  ~. Now we pick out the minimal elements of the 
family (W 1 . . . . .  ~ ) ,  say (l~], W 2, W3), with respect to this ordering. Consider l~ 1. 
We know that there is a unique next wall ~ > 17V~. By Lemma 4.3 Int W 1 lies in one 
component, say G~, of a~p(VVk). We modify now the interface z] k by taking out the 
part of the ceiling Ck~ whose projection is Int(W~) and replacing it by the part of zl~ 
whose projection is Int(W~) and which is translated in such a way that the base of 

lies now in the plane containing Ck. We do this construction for all minimal 
elements, (W 1, W2,_W3_)and we obtain a new family of interfaces by taking out 
A 1, A 2, A 3 from (A ~, A 2 . . . . .  Zip) and replacing the interface z] k by its modified 
interface etc. We repeat the procedure with the minimal elements of (I7V 4 . . . . .  I7Vp). 
Finally we get a family of interfaces such that any pair of walls (W, W') belonging 
to different interfaces is such that I n t W ~ I n t W ' = 0 .  So in a trivial way we can 
construct an interface which is associated with the family (17V~ ... .  ,17Vp) of standard 
walls. [] 

5. The Groups of Walls 

Let J be an interface and (17V 1 . . . . .  l~p) be its set of admissible standard walls. Then 
(I7V2,..., Wp) is also a set of admissible standard walls. Let z] o be the associated 
interface. The ratio 

PL(A)/PL(Ao) 
can be well estimated when 17V 1 is far from W2, W3,..., ~ in a sense made precise 
below. This is the reason why we introduce groups of walls, a group of walls being 
a set of standard walls which are close so that two different groups of walls are by 
definition far apart of each other. We will then study the effect of removing a group 
of walls instead of a standard wall. 

For any standard wall 17V we define //(fV)=lWl-lp(W)l. By definition of 
w-points we have p(W)<-_½[Wt so that H(VV) >_= ½I W] and H(17V)>__]p(W)l. If t t and 
t2sInt(W ) then )1-t21 < H ( W ) - 1 .  It is also clear that 1At = ( 2 L +  1) 2 + ~ / - / (~)  
where the sum is over all different walls of zJ. So we obtain 

exp(--#~H(V/V))exp(x~ f~(x,A,L) ) 

PL(A) = Z L exp (/~(2L + 1) z) (5.1) 

Let us  a. We define d(u) as the number of elements of A which have projection 
u. We say that two standard walls W1, W z are close if there exist ulsp(g~) and 

u2sp(W2) such that [ul-u2]< d]/d~l)+ ]/d(u2). A family of standard walls is a 
9coup of walls if the family is admissible and if for any two walls ITg~ and VV 2 of the 
family there is a sequence of walls of the family (17V 1 = V1, Vz,..., W2 = V,) such that 

and ~ + ~ are close, i = 1 . . . . .  n -  1. The origin of the group of walls is the first 
origin among the origins of the walls of the group. We define for a group of walls 
F, FI(F)=~H(rZV) where the sum is over all walls of the group. A set of groups of 
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walls is admissible if all the walls of this set of groups are admissible and if any 
ITVI~F i and I7V2~F~, i:,t=j, are not close. By Lemma 4.4 there is a one-to-one 
correspondence between the admissible collections of groups of walls in B L and the 
interfaces in D L. Let (Ftl .... , Ft,) be a family of groups of walls. Then we define 

Prob(F,,  .. . .  , F~)=  {O L(z~) if the family is admissible (5.2) 
if the family is not admissible, 

where zl is the interface associated to (Ftl, . . . .  Ftn ) by Lemma 4.4. 

Lemma 5.1. For all sufficiently large # and all L and all (F<, .... Ft. ) the conditional 
probability 

Prob {Ftl[F,2, .... Ft,~}~exp(-~H(F,~)) 

if {Ft2 , .... Ft, } is admissible, 

Proof. If (F,, . . . . .  Ft, ) is not admissible then Prob {Ft~[Ft2, .... Ft, } =0. Suppose that 
(Ftl . . . . .  F~,) is admissible. Let A be the interface associated to (Ft~, ... ,  F~) and A* 
the interface associated to (Ft2 . . . . .  Ft,,). Then 

PL(A) 
Prob {Ft~IFt2 .... , Ft. } <= pL(5 ~ 

= e x p ( - # I I ( F t , ) ) e x p { L f ~ ( x , A , L ) -  ~ . f , ( x ,A* ,L)  }. 
k 

Let (i7V~I . . . . .  I7V,~) be the standard walls in Ftc We decompose o-\ i~l p(W~)into 

disjoint connected components, E l , . . , ,  Eq. Let A~, resp. A*, be the part of A, resp. 
A*, which projects onto E~, i = 1 . . . . .  q. Then by looking at the proof of Lemma 4.4 
we see that there is a 1 - 1 correspondence between A~ and A*. So the same is true 

for ~ A i and ~ A*. This bijection is denoted by 5. Let xsA  i. Then d(x,A,L; 
i = 1  i = 1  k 

J(x),A*,L)>r(x) where r(x) is the distance from p(x)=p(5(x)) to U p(W,). So 
i = 1  

<= ~ l fu(x,A,L)-  fu(5(x),A*,L)l 
q 

x~ U & 
i=1 

+ \ ~  I£(x, A, L)I + 2 lf~,(x, A*, L)[ 

<K  ~ exp(-o:r(x))+4F2II(Ft,). 

k 
Let p(f , , )=  U p(W~,j). For all x6 0 Ai we have d(p(x))<(r(x)) 2 + 1 where d(p(x)) is 

j = l  i = 1  

the number of elements in A which have projection p(x) on a. So we have 

Y, exp ( -  o:r(x)) < y, d(u) e x p ( -  ~:r(u)) 
x ~ i ~  ~ zli uCp(F% ) 

< Z exp(-er(u))((r(u)) 2+I)</(H(F,~)" []  
uCp(Fq) 
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Lemma 5.2. The number of distinct groups of walls with H(F)= K and a common 
origin toe~ does not exceed S~. 

Proof. Let F =(ITv 1 . . . . .  I7Vp). For a given family (W 1 . . . . .  We) we have by Lemma 3.3 
at most S~ mv) different F. Let uep(Wi). Then there are d(u) points in W~ having the 

same projection u. We define E(u)= C(u, ] / ~ ) c ~ a  and 

P 

where p(F) = ~1P(Wi)" By the definition of a group of walls/? is connected and/~ 
i TM 

determines uniquely F. Thus we have 
P 

IFI _-< ~ IW~I + ~ IE(u)[ 
i = 1 u ~ p ( F )  

P 

< 2 2//(W~)+ ~ 4d(u)<Kll(F). 
i = 1 u ~ p ( F )  

By applying again Lemma 3.3 we obtain Lemma 5.2. [] 

6. Proof of the Main Theorem 

Let us begin with a simple remark. If 17V 1 and 17V 2 are two different walls of the 
interface A they have disconnected projections in the regular plane a. Therefore for 
any wall 17V of J there is a path 7' = (xi . . . . .  x~) such that x i is a c-point of A, xi, and 
xi+ 1 have a face in common and P(7) goes around p(W). We say that such a path 7 
is regular if it lies in a. We say that a path 7 in G goes to infinity if it crosses the 
boundary of the squares { x ~ ) : x  1 =0, txZt<=L, tx3]<=L} for any finite L. 

Theorem 6.1. 1) The probability, Jbr the distribution PL on the interfaces 
(Proposition 3.1), that there exists a regular path with starting point x~ • and goin9 
to infinity, is, for # large, bigger than (1 - C e x p ( -  #/5)) with C < ~ ,  uniformly in x 
and L. 

2) There exists a function g(#), going to zero exponentially fast as # ~  o% such 
that, for any Gibbs state P obtained as a limit when L ~  of the states PL, 
P(S~: + 1)> l - g ( # )  if xl > l, P(S~= - 1)> l - g ( # )  if xl <= -1 .  

Proof. To prove 1), let x and J s B  L be given. If there is no regular ? with starting 
point x and going to infinity then there must exist a wall ITv in J such that 
x~Int  W; otherwise we could always find ? as observed in the beginning of this 
section. L e t ~  x be the probability that there exists a wall tTV in A with x~IntW. 
Each wall W is contained in a group of walls F t with origin t and clearly I t -x[  + 1 
<=H(ft). 

Therefore 

Nx --< ~ Prob {H(Ft) > I t -  x[ + 1}. 

Now 

Prob{H(Ft)>lt-xl+l}<-_ ~ S ~ e x p ( -  3 k  ) 
k_>_lt-xl+ x 

<__C'exp(-~(]t-x]+ 1)). 
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Therefore 

5 ~ < t ~ 2 C ' e x p ( - ~ ( l t - x l + l ) < C e x p ( - 5 )  ) 

with C a constant independent of L. 
To prove 2), observe that, if there is a regular path through p(x)E a, then x is in 

a pure phase region and the estimates hold by [6] (or one can prove it directly with 
our definition of contours). On the other hand, the probability that there is no such 
path is exponentially small with # by point 1). []  

7. Discussion and Comments 

We gave in detail the treatment of the hard-core with d = 1. Suppose that we let 
d > 1. We choose then 

AL, M = {xe2~ 3" - M < - x  1 < M  + d -  1, ]xel < L ,  ]xal <L}  

and we put an A-particle at each XEff,3\AL, M with x 1 > d  and a B-particle at each 
XE2~3\AL,~ with x 1 < - t .  There are no particles at sites xE27,3\AL, M with 
0 < x i < d. We then have the same definitions and results as before for  Sects. 2 and 
3 except that 26 in Lemma 3.3 is now ((2d+ 1) 3 -  1). 

There are some changes in Sect. 4. We define the regular plane a as before but 
we say that xEA is a c-point if there are exactly d points yEA including x with p(x) 
=p(y). The next change is Lemma 4.2 which we replace by 

Lemma 7.1. Let x 1 . . . . .  x d be c-points in A with the same projection x on a. Let 
d 

(2x = U Q~," Then Q~C A. 
i = 1  

Using this Lemma we prove that any ceiling C is such that C lies between two 
parallel planes which are parallel to o- and such that the distance between them is 
d. The rest of Sect. 4 is the same except for some minor changes in the definition of 
the base of a wall. The changes in Sect. 5 are the following: we define/-/(W) = IW[ 

1 1 
-d[p(w)l and we have therefore Ip(w)l<-d-+-flw I so that H ( W ) >  ~ ] - I W [  and 

H(W)>=p(W). So we obtain Theorem 6.1 for cubical hard cores of side d. 
Suppose now that the hard-core between unlike particles is not a cube but 

is specified by a symmetric set like in model 2 of [6]. Then we shall obtain Theorem 
6.1 if we can prove Lemma 4.2. There are, however, models for which this Lemma is 
not true and this is the case for model 1 of [6]. In this model if we have an 
A-particle at x then it is impossible to have a B-particle at y if x and y have a face 
in common. We can define the interface for this model as before and by modifying 
slightly the definition of the F i we have that a F~ is either an A-border or a 
B-border. (With this new definition two different F i can however intersect each 
other, but they cannot have a face in common.) The main difference between this 
model and the "cube" model with d >  1 is that the ceilings do not lie in planes 
parallel to cr because Lemma 4.2 is false. We do not have a well defined base for a 
wall and we cannot describe the interface even by specifying all walls contained in 
it. In fact we do not expect to find a sharp interface. It is easy to see that if we 
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choose x = (x ~, 0, 0) with x ~ arbitrary, then we can find an interface 3 e  B z with A 
containing only c-points and xe  A, if L is large enough. The ratio of the probability 
of zJ and the probability of the interface 3 o with A 0 = o- converges to 1 when L---, oo. 

A study of the interface in this model might help in understanding what 
happens in the Widom-Rowlinson model in the continuous case where a similar 
phenomenon can occur. As mentioned in the Introduction, we are unable at the 
present time to either prove or disprove the existence of a sharp interface for such a 
system. 

Acknowledgement .  It is a pleasure to thank Professors O. Penrose and J. Slawny for very valuable 
discussions. 

Appendix A. Proo f  o f  L e m m a  3.1 

The proof of this temma follows the ideas of Martin-LSf [20] using correlation 
inequalities valid for the lattice Widom-Rowlinson model [21]. 

The statements of the lemma follow from the formula : 

logZ(A[A)= ~ ~ l o g Z ( A , # ' [ A ) d # '  

03 

= E ~ ((1 : ' - St ))a,  u'd# 
teA l~ 

and the estimate: 3~, J, c~ such that V#>fi, and any A1,A2C=Z3 finite, t l eA1 ,  
t 2 E A  2, 

2 2 ](S, )A,  . -  (S~2)a~,,[ < Je  e x p ( -  c~#d(tl, 11, t2,12) ) ; (A. 1) 

( )a,u denotes the expectation value with respect to the Gibbs measure in A with 
A boundary conditions. 

By translation invariance we have only to consider t 1 = t2, since 

d(t t, At ,  t 2, A2) = d(tl, A~, t 2, A 2 - t 2 Jr tl).  

We write 

= + , . ( t ) .  

where 

nA(t ) = + 1 

= 0  

nB(t ) = + 1 

= 0  

if there is an A particle at t 

otherwise, 

if there is a B particle at t 

otherwise. 

We have only to show (A.1) with na( 0 and n~(t) instead of S 2. We use the fact 
that nA(t ) and nB(t ) are monotone functions in the sense of F,K.G. (see [21]) which 
implies : 

(na(t)) A1 > (nA(t)) A2, (1.2) 

(nB(t))al < (n,(t))a2, (A.3) 

if t~A  1C=A 2. 
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With this and the definition of d(tl, Al, t2,A2) we take for A1,A2, cubes 
centered at t and A 1 =A 2. We show now (A1) for hA(t), the proof for nB(t ) being 
similar. 

Given some event E in the configuration space in Az, we call ( >A2,E the 
conditional expectation with respect to E. P(E)= probability of E 

<nA(t) > A2 = <nn(t) > Ai" EP(E) + (1 - P(E))<nA(t) > a=,p ~ , (A.4) 

where/~ = complement of E. 

Definitions. A contour is a connected set of empty sites. 
The interior of a contour is the union of the points in that contour and in the 

finite connected components of the complement of that contour. 
An outer contour is a contour that is not contained in the interior of any other 

contour. 
Let E be the event: there exists an outer contour of empty sites which contains 

in its interior the point t, as well as a point of the boundary of A1 (i.e. the points in 
A~ adjacent to the complement of A1). 

Then, (A.1) follows from (A.2), (AA) and the two points below: 

i) <na(t))a2,g> <nA(t)>A,, (A.5) 

ii) P(E) < C exp ( - ~#d(t, #A 1)), (A. 6) 

d(t, 0A~) = distance between t and 3A 1 =½d(t, A 1, t, A2). 
To prove i) we notice that: 

(na(t))A2,g= ~_ <nA(t)>Ai,I~}P({y}IE), (A.7) 

where the sum runs over the sets of outer contours containing points in the 
boundary of A 1 in their interior but not the point t, and over the empty set. 
< >a~,(~} is the conditional expectation with respect to the set of configurations 
that have exactly {7} as outer contours containing points of the boundary of A 1 in 
their interior. 

Now define A { , } = A I \ ( ~  Interior 71" For all the configurations entering the 

expectation ( >a~,(~}, there is an A particle at all the points in the boundary of A~¢} 
(i.e. inside A{.~} but adjacent to the complement of A{~). 

Indeed, the points adjacent to an outer contour must have an A particle 
because otherwise the contour would be modified, and the points in the boundary 
of A (which are in A{~} if there is no contour in {?} containing them) must also have 
an A particle, otherwise they would be contained in some contour. This is due to 
the pure A boundary conditions on A 2 that forces all B particles to be in the 
interior of some contour. 

Given this, we have 

<na(t)>a~,(,} ~ <na(t)>a~ 

because the 1.h.s. is in fact the expectation in a region, A{~\{the boundary of A{~}, 
contained in A~, with pure A b.c. and we use (A.2). This inequality and (A.7) 
implies (A.5). 
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The proof of (A.6) follows as in [20] once we have the following estimate on the 
probability of a contour : 

P(~) < 21Vie -~lvt . (A.8) 

Indeed, one can fill all the points in 7 with A particles provided one first 
changes all the B particles adjacent to ~ into A particles. These B particles can only 
be in the finite connected component of the complement of 7 and therefore the 
indeterminacy in the change of B in A is certainly less than 2M (see Lemma 3.3). On 
the other hand, filling with A particles gives a factor e -"lvI. 

Remarks. 1) One can prove (A.1) with any monotone function f (in F.K.G. sense) 
instead of na(t ). 

2) Inequality (A.8) gives an alternative proof of the result of [6] because any B 
particle must be in the interior of some contour. For the continuum Widom- 
Rowlinson model, using the technique of Ruelle [9] one can define contours of 
empty sites and obtain inequality (A.8). This also gives an alternative proof of 
Ruelle's result. 

Appendix B 3 

Let us consider an Ising model on ;ga, i.e. a spin o-x = _+ 1 at each point and the 

Hamiltonian in a finite region A given by - H =  ~ dxyaxay. 
x , y~A  

We assume the following properties of J~y, Vx, y~Tle: 

i) d~,y >-0 (ferromagnetism). 

For 

let 

x = (x~, . . .  ,x~) 

~ = ( - x  1 . . . . .  x . )  

then 

ii) 

iii) 

iv) 

Let 

dxy=J~f (reflection invariance). 

Jxy>=Jxy for xl, yl >O (growth condition). 

J x y < O o ,  V x ~  a. 
ye~ a 

A={x~71al Ix~lNM, i=1  ... d} 

A+ = {x~Atx 1 >0},  

A ={x~Alx 1 <0}, 

A o={x£AIx 1 =0}. 

This generalization of [4] was also noticed by H. van Beijeren (private communication) 



Non-Translation Invariant Gibbs States with Coexisting Phases 19 

We take the + b.c. where, for xEEa\A 

5 x = + l  if x l > 0 .  

5 ~ = - 1  if x 1 < 0 .  

This gives an additional term in the Hamiltonian. Let H'  be the Hamiltonian of a 
system confined to the plane x 1 = 0  with the same interactions Jxy in the plane and 
+ b.c.: 

-H'= Z S.f;f;+ E S~,f;. 
x, yeAo xeAo 

yeA 
yl=O 

Theorem. For the expectation values in the Gibbs states corresponding to H (resp. 
H') with +_ (resp. +) b.c.: 

Vx~Ao, <fix>A,++_ ~-~Z-~ <f 'x>Ao, + " 

Proof. We follow van Beijeren's argument [4] who considered nearest neighbor 
interactions and notice, as in [16], that the proof actually goes through for the 
above Harniltonian. 

Let 

S x = f x + f ~  

t x = a x - f  ~ for x~A+ , 

S x = f f  x + ftx , 

t x = % - f '  ~ for x~A o. 

We have to show: 

(tx) >0 x~A o 

for the expectation with the Hamiltonian [that we write using ii)]" 

JXy " - H(f, f') = ~ 5-ts~s" + t~t,) 
x, yeA + 

Jxg + (sxsy- t~ty) 

Jxy  + Y~ ~ -  s~(s~ + t )  
x~A+ 
y~Ao 

+ 2 ~-(Sfiy+txt,)  
x, ye Ao 

xeA+ yeA 
yl>O 

+ E  ES.s~+E E 
xeA + y6A xeAo 

,l=o ~% 

x~Ao y~A 
yl>O 

Jxfi~ 
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U s i n g  c o n d i t i o n s  i) a n d  iii), we see tha t  H(cs, cr') is a p o l y n o m i a l  wi th  posi t ive  
coefficients in  s~, t~ a n d  therefore  the pos i t iv i ty  of  ( t ~ )  fol lows as usual .  

Remarks. 1) W i t h  this t h e o r e m  one  can  deduce,  as in  [4],  the existence of  n o n -  
t r a n s l a t i o n  i n v a r i a n t  G i b b s  states for d = 3 wheneve r  the c o r r e s p o n d i n g  sys tem 
wi th  d = 2 exhibi ts  s p o n t a n e o u s  magne t i za t i on .  

2) The  t h e o r e m  still ho lds  if ~r x, i n s t ead  of  be ing  = + 1, is d i s t r i bu t ed  wi th  a n  
even measu re  o n  i l l  

3) F o r  the W i d o m - R o w l i n s o n  model ,  the ha rd -co re  (or the m a n y - b o d y  forces 
in  the  o n e - c o m p o n e n t  vers ion)  des t roys  the  f e r romagne t i c  n a t u r e  of the  i n t e r ac t i on  
in the s~, t x var iab les  used in the proof.  
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