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Optimal laminate design subject to single membrane 
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loads 

A b s t r a c t  In this paper we investigate optimization of lami- 
nates for maximal membrane stiffness under single in-plane loads. 
The design parameters are the relative ply thicknesses and fiber 
orientations of an arbitrary number of plies. The design is allowed 
to vary in a pointwise fashion throughout the structure. 

From prior work on lamination parameters (Hammer et al. 
1997), it is known that the optimal design is given by either some 
sort of two ply lay-up in special strain situations or otherwise by 
just a single rotated ply. This is exploited in the present analysis 
to derive analytically the unique parameters of the optimal design 
(cross-ply, angle-ply or single ply) as expressions of the membrane 
forces. Both high and low shear stiffness material are treated. Fur- 
thermore the analysis covers all possible local strain or membrane 
force situations. 

Finally, it is shown how these expressions for the optimal con- 
figuration of the laminate also appear as bounds on the principal 
membrane forces in order to obtain alignment between the numer- 
ically largest principal membrane force and principal strain. 

1 I n t r o d u c t i o n  

A proper and thorough design process of fibrous laminates is 
of prior importance in order to fully exploit the directional 
properties of the material. 

The present paper treats the objective of how to obtain 
maximal membrane stiffness of a structure. The optimization 
covers laminates of any imaginable type with an arbitrary 
number of plies. Despite the innumerable design possibili- 
ties, the optimal laminate still turns out to be given by the 
simple types of either a single ply, a cross-ply or an angle- 
ply. Two different types of optimal designs occur depending 
on the type of ply material, whether the material has what 
is called high or low shear stiffness. This characteristic is not 
normally recognized or considered as significant. Both cases 
are thoroughly treated. The optimal design parameters, i.e. 
the two ply rotations and thicknesses are derived as explicit 
functions of the membrane forces. From this a given struc- 
ture can readily in an easy and fast way be designed to yield 
optimal stiffness properties. 

When designing a laminate the parameterization of the 
problem plays an important role. In general, one can choose 
either to work directly with the dimensioning parameters, i.e. 
the number of plies, their thicknesses and orientations, or one 
can keep the formulation in the integrated properties of the 
laminate, the so-called lamination parameters. In general, 
if the design variables are those of ply thicknesses and fiber 
orientations, one gains the insight of always knowing exactly 

how the laminate looks. However, this approach ultimately 
involves an unfortunate mixture of integer variables (num- 
ber of plies) and real variables (thicknesses and orientations). 
Numerous authors have treated the subject of laminate opti- 
mization in this way with different objective functions and by 
different means. See, e.g. Chapter 11 in the book by Haftka 
et al. (1990), or the paper by Fang and Springer (1993) for 
references to the literature. 

The lamination parameters introduced by Miki (1982) 
are the effective integrated properties of the laminate, and 
are given as moments relative to the plate mid-plane of the 
trigonometric functions entering in the rotation formulae for 
the stiffness matrices. Only four lamination parameters de- 
scribe the membrane state for a general laminate irrespective 
of the number of plies. An advantage is also that the strain 
energy and thus the objective function is linear in terms of 
these parameters, thus further facilitating the optimization. 
This parameterization has been used for membrane stiffness 
optimization by Fukunaga and Vanderplaats (1991), Fuku- 
naga and Sekine (1992, 1993), and Hammer el al. (1997). 

Fukunaga and Vanderplaats (1991), and Fukunaga and 
Sekine (1992) performed the analysis on symmetric eight ply 
laminates for which the authors could solve the identification 
problem of finding a laminate configuration with given lami- 
nation parameters. Fukunaga and Sekine (1993) maximized 
the average membrane stiffness of a single element laminate 
and combined the result to a strength optimization. The gen- 
eral identification problem for the four membrane lamination 
parameters was solved by Lipton (1994), who showed how 
to realize any set of lamination parameters by a laminate of 
at most three plies. This result was applied by Hammer er 
al. (1997) to show that the stiffest laminate is characterized 
by just a single ply solution, or a two ply thick cross-ply or 
angle-ply. Both cases of a ply material with high or low shear 
stiffness were treated. 

The present paper can be seen as a continuation hereto, 
taking the optimization results of a general laminate from the 
paper by Hammer et al. (1997) and combining these with op- 
timization results from the design problem of orienting just 
a single ply of orthotropic material. When seen in the light 
of the laminate optimization it also becomes possible to ex- 
plain some of the problems encountered in the design process 
for the single ply. More precisely, these are the problems of 
nonexistence in the special strain situations of the two prin- 
cipal strains being numerically equal. 

The single ply design giving the extreme value of the local 
energy density was found by Seregin and Troitskii (1982), 
Fedorov and Cherkaev (1983), and Pedersen (1989, 1990). 
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The analysis was also performed in the stress space by Cheng 
and Pedersen (1997). Some of the results from these analyses 
reappear in the general case of designing a laminate. 

The rather special material  with so-called high shear stiff- 
ness is only treated in a few papers (Pedersen 1990; Cheng 
and Pedersen 1997; Hammer et al. 1997), although the spe- 
cial material characteristics cause the optimal design to dif- 
fer significantly. In the compliance optimization problem at 
hand, the use of such a material actually results in an infin- 
ity of optimal designs all yielding extreme stiffness. This is 
thus a good example clearly demonstrating that  the optimal 
compliance design is not necessarily always unique. 

The outline of the paper is as follows. The constitutive 
relations for a single ply of orthotropic material and for a 
laminate are stated in Section 2. Section 3 summarizes the 
results obtained in the literature on which the analysis in 
this present paper builds. Then the optimization problem 
of maximizing the compliance of a structure is presented. 
The formulation is kept in terms of membrane forces and 
complimentary energy. The optimal laminate configuration 
is then derived first in Section 4.1 for a ply material with low 
shear stiffness and then afterwards in Section 4.2 for the more 
special case of a high shear stiffness material. A numerical 
example is given in Section 5 demonstrating the optimization 
procedure as well as illustrating the change in design caused 
by altering the shear stiffness of the ply material. Some of 
the expressions for the optimal laminate design also appear 
as bounds on the relation between the principal membrane 
forces. Where these bounds come from and how they relate 
to the optimM designs is discussed in Section 6. Finally, a 
conclusion and summary are given. 

2 C o n s t i t u t i v e  r e l a t i o n s  

In the following, the constitutive relations for a single ply of 
material and for a laminate of several plies are stated. The 
presentation is given for plies of orthotropic material in any 
lay-up. The resulting laminate thus in general has overall 
anisotropic properties. The relations can readily be simplified 
to, say, the case of a symmetric or orthotropic laminate. 

The elasticity tensor Cijki  of the ply material is for con- 
venience written in matrix form as 

Clli I C1122 ~/2C1112 ] 
[C]z = Ci122 C2222 x/2C2212 

x/2ClI12 v~C2212 2C1212 
(i) 

The relation between strains and stresses is thus 

{~) = [ c ] ~ { ~ ) ,  (2) 

where the x/2-notation is used [i.e. {~r} = {V'll,Cr22 , 
V~a12} T, etc. (see e.g. Pedersen 1995)]. The index indicates 
that the constitutive parameters are given in the coordinate 
system z. If the material  is orthotropic in the z-system, 
Cl112 = C2212 = 0. In another coordinate system X ro- 
tated at the angle 7, [C]x is most easily expressed using 
the material parameters C1_5, introduced by Tsai and Hahn 
(1980). The constitutive matrix [C]x is written in terms of 

five symmetric matrices containing the material parameters 
a s  

[C]x = [r0] + [rx] cos 2~+ 

IF2] cos 47 + [1"3] sin 27 + IF4] sin 47, 

C 1 C 4 0 ] 
[r0] = c I 0 , 

symm. 2C 5 

[rl] = 
I C 2 0 0 ] 

- C  2 0 , 
symm. 0 

C 3 -C 3 0 ] 
C 3 0 , 

symm. -2C 3 

symm. 

1 
0 - ~ C  2 

1 
0 - ~ C  2 ' 

0 

It2] -- 

[r3] = 

[r4] = 
o o -v~c3 ] 

0 ~ c 3  , 

symm. 0 

where the material parameters C I _  5 are defined as 

1 
C 1 = ~(Cl111 + C2222)~ - C3, 

1 
C2 = ~ ( C n n  -C2222)~, 

1 
C 3 -- ~(Cl111 q- C2222 - 2Cl122 - 4C1212)x, 

C 4 ---- (Cl122)x ~- C3, 

1 
C 5 -=-- (61212)x -4- C 3 -- ~(C 1 - C4). 

(3) 

If the material is isotropic in the x-system C 2 = C 3 -- 0. The 
parameter C 3 characterizes whether the ply material has so- 
called low (C 3 > 0) or low (C 3 < 0) shear stiffness. By far 
most materials possess low shear stiffness and so this situa- 
tion is often the only one treated in the literature. However, 
C 3 < 0 is also physically possible and this case is therefore 
also thoroughly analysed in the following. Figure 1 shows the 
different coordinate systems of the ply material. 

The material is now used to build a laminate consisting 
of a number of plies stacked on top of each other. The lami- 
nate is of the total  thickness h and each ply is characterized 
by its relative thickness t i and orientation 7i- The stacking 
sequence is of no importance here as only the membrane case 
is considered. All the plies consist of the same material. 

In the classical plate theory the relation between the 
membrane forces {N} and the strains {~} is 

{N} = [A]{~}. (5) 

(4) 
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-7/ ; X1 

I 
] xl  

Fig. 1. Sketch of the i-th ply of material with the global coordi- 
nate system X, a material system x, and orientation 7i of the ply 
material shown. Note the sign of 7i 

Again the x/2-notation is used (i.e. {N} = {Nl l  , N22 , 
v/2N12}T). The membrane stiffness matr ix for the whole 
laminate can be expressed in a similar way as the constitu- 
tive matr ix in (3) as 

[A]x = h ~ t ~ [ c ] ~ :  = h ~ t i  {[r0] + [rd r + 
i i 

[F2] cos(47i) + Ira] sin(27i) + [r4] sin(47i)} . (6) 

The specific energy (per area of the laminate) is then given 
either in terms of the strains or membrane forces as 

u =  ~{e}T[A]{e},  uC= I { N } T [ A ] - I { N } .  (7) 

The optimization in Section 4 is formulated in terms of 
the membrane forces and complementary energy. This choice 
is made to avoid a problem of nonuniqueness to the local 
optimization problem otherwise arising from a formulation 
in the strains and strain energies (Hammer et al. 1997). The 
price paid for this is then a far more complicated objective 
function as all linearity in the design variables is lost. 

Finally, one can in the membrane situation choose to con- 
sider the laminate as one single ply of anisotropic material 
with the laminate constitutive matr ix [C]~ m. This is then 
related to the membrane stiffness matr ix [A] as 

[c]} m = {[*Ix. (8) 

From the constitutive matr ix a set of material  parameters 
(C1_7) lam can be derived (seven as the laminate material in 
general is anisotropic). The relations between the laminate 
parameters and the ply material  parameters are derived in 
the paper by Hammer et al. (1997). Of special interest here 
is (C3) lam giving information about the laminate shear stiff- 
ness. For an orthotropic ply material  (6'3) lain is given by 

(C3) lam = C 3 E t i  cos(4~'i) . (9) 

One can thus build a laminate with high shear stiffness 
properties [(6'3) lam < 0] by a proper stacking of plies having 
low shear stiffness (C a > 0) and vice versa. For instance, 
an angle-ply [ 7 / -  7] where 3' > 22.5 ~ yields (C3) lain < O 
if C3 > 0, and the other way around gives (C3) lain > 0 if 
ca<o.  

3 B a c k g r o u n d  

The optimization results to be derived in Section 4 are based 
on earlier results in compliance optimization on laminates 
and orthotropic materials. The relatively new results from 
laminate design using lamination parameters are exploited 
together with the results on orthotropic material directions 
yielding extreme local energy densities. 

Hammer et al. (1997) formulated the laminate theory and 
the optimization problem of designing a general laminate in 
terms of the lamination parameters. The main conclusion 
in this context is that  the optimal laminate design under a 
single membrane load is shown to be either a single rotated 
ply, a cross-ply in some special strain situations or an angle- 
ply. However, as Hammer et al. (1977) performed the analysis 
in the strain-space, a problem of nonuniqueness of the local 
optimization problem arises. The full characterization of the 
optimal laminate is therefore not given. Still, the analysis is 
complete in the sense that  an optimal lay-up can be found 
numerically (as shown in the paper) without difficulties. 

The results of Hammer et al. (1977) are repeated below. 
The material direction is given in every design point relative 
to the coordinate system of the principal strains (see Fig. 2). 
These are ordered so leiI >> ]sIi I. Similarly, the orthotropic 
ply material is per definition oriented so ICl1111 _> 16"22221. 
In the case of a ply material having low shear stiffness, C a > 0 
[cf. (4)], the optimal design is given by 

a single ply: 7 = 0 ~ , if Iszl r ]si l l ,  

across-ply: [0~/90~_t] , if I s z l = l s •  (1O) 

The relative thickness t remains to be determined through 
the equilibrium conditions on the structure. In all cases the 
optimal laminate has overall orthotropic properties. 

The solution is more complex if the material has high 
shear stiffness, C a < 0. For this case the optimal lay-up is 

a cross-ply: [O~/90~_t] 
a single ply: 7 = O~ 
an angle-ply: [ T t / -  71-t]  

cos 27 = - K  , 
C 2  e i - } - e i i  

K - -  - -  - -  
4C3 e i - - e i i  

if r = ~ I I ,  

if ]K I > 1 / if 
cI  r siX, 

if II(I < 1 J 

(11) 

Again the relative thickness t remains to be determined. For 
this type of material the optimal laminate is not necessarily 
orthotropic when given by the angle-ply solution. 

In the following derivations we use mainly the fact that 
the numerically largest principal strain Ir _> ]r is al- 
ways aligned with the numerically largest principal mem- 
brane force INll _> ]Nil  I in the optimal configuration (see 
e.g. Pedersen and Bendsee 1995). This is irrespective of the 
sign of the C3-parameter. This result is found by show- 
ing that  ( A l l l l ) e  >_ (A2222)e in the coordinate system of 
the principal strains, also when the optimal orientation is 

cos27 _ C2 e I " } - g I l  as in (11). 
463 e i - - e l i  

This is exploited in the following where the problem is for- 
mulated in terms of the membrane forces. As the coordinate 
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s Nil 

, Nil 

t I I - " < ~ " ~ > < ' ~ " " ~ ~  el,N, 

Fig. 2. The coordinate systems of the principal strains (ez, en), 
and principal membrane forces (Nz, NH), relative to the cross-ply 
laminate [0~/90[_t] to the left and the angle-ply [Tt/ - "h-t] to 
the right 

systems of the principal strains and membrane forces are co- 
aligned, the optimal laminate for C 3 > 0 is characterized by 
a cross-ply of the type [0~/90~_t]. This is the only solution if 
if C 3 > 0. As the laminate is orthotropic the main direction 
of orthotropy characterized by Al111 _> A2222 will also be 
aligned with N I and e I (Pedersen and Bendsr 1995). To 
ensure this, the feasible relative ply thicknesses are restricted 
to t E [1;1]. 

If C3 < 0, the the optimal laminate can also be charac- 
terized by an angle-ply [Tt/- 71-t],  still in the coordinate 
system of the principal membrane forces. Here the thickness 
can take all values in the range t E [0; 1]. 

What remains is thus to determine the relative ply thick- 
ness t in the cross-ply solution [0~/90~_t] (for all 63), and 
the orientation 7 and thickness t of the angle-ply [7t/- 71-t] 
(for C 3 < 0) yielding the maximum stiffness. 

4 Compl iance  opt imiza t ion  

In this section, the compliance optimization problem ex- 
pressed in terms of the membrane forces is solved for each 

of the two possibilities of ply material, C 3 ~ 0. First the 
general problem is stated and it is shown how the global op- 
timization problem is made local in character. Thereafter the 
two different eases of C3 negative or positive are solved and 
discussed in turn. 

The objective of the optimization is to minimize the com- 
pliance of the laminate. The design variables are simply the 
relative thickness t and the angle of rotation 3' in the angle- 
ply. These design parameters are allowed to vary indepen- 
dently from point to point throughout the plate. The mini- 
mization problem can thus be formulated as 

min W(v*), (12) 
t,7 

where W(v*) is the compliance given by the displacement 
field at equilibrium v*; W is then the work done by the ex- 
ternal forces. The problem (12) written in terms of membrane 
forces and complementary energy yields 

m i n W ( v * ) = - 2 m i n  min uC({N}) .  (13) 
t,7 t,7 {N}6Q 

The inner problem is the principle of minimum complemen- 
tary energy and the minimization is performed over the space 
Q of all statically admissible membrane forces {N}; U C is 
the total complementary energy 

uC({N})  = / ~{N}T[A] - I { N }  d ~ ,  (14) 

[2 

integrating over the structural area ~. The two min-problems 
are independent and can be interchanged. Thereby the inner 
problem yields a minimization of the complementary energy 
over the design variables for a fixed field of membrane forces. 
From the formulation in lamination parameters (Hammer et 
al. 1997) it is furthermore shown that there is existence of a 
solution. 

d.1 Low shear stiffness material, C 3 > 0 

In the case of plies of orthotropic material with low shear 
stiffness (i.e. C3 _> 0), the laminate direction of orthotropy 
(choosing A l l l l  > A2222 ) is aligned with the direction of 
the principal laminate membrane forces ]N1] >_ INIII, and 
principal strains ]r -> Ir in the optimal configuration, cf. 
Section 3. Furthermore, the optimal laminate is a cross-ply 
[O~/90~_t] , where the thickness is restricted to the interval 

[1; 1] in order to assure Al111 > A2222. Thereby the mem- 
brane stiffness matrix in the orthotropic direction using (6) 
becomes 

[ CI+(2t-1)C2+Cs C4-C3 0 ] 
[A] = h 6 1 - ( 2 ~ - 1 ) 6 2 + c 3  o 

symm. 2(65-63) 

(15) 

The specific stress energy for the laminate is then given as 

uC= ~ { N } T [ A ] - I { N }  = 

Al111A2222 - Al122 \ - -~ - / ]  

~v~ 1 21 n - uS - r 2 A l 1 2 2 ~ - / + A 2 2 2 2  = , (16) 
.A 

where R = ( G  + C3)(X~ + lV~i), S = 2(64 - C3)N~Nzz,  

T -- (2t - 1)C2(N ~ - N~I), and U -- (61 + C3) 2 - (C 4 - 
C3) 2 - (2t - 1)26 2. 

By differentiating the expression for u e with respect to t 
and setting it equal to zero, the optimal thickness is found to 
be (afer some cumbersome calculations) 

2 t - l =  

I C1 -C4-62~-2C 3 NI+NII C1-64+263 for Nzz < 
NI-NII C2 NI - C1-64+C2+263 
NI-NII C1+64 for NII > C1+64-62 
NI+NH C2 NI - C1+64+62 

1 otherwise (17) 



These expressions for the optimal thickness are shown in 
Fig. 3 based on the material data  for graphite/epoxy and 
glass/epoxy [cf. the paper by Tsai and Hahn (1980), see Ta- 
ble 2]. The materials are highly orthotropic and possess low 
shear stiffnesses of C a = 19.7 GPa and C a = a.aa CPa, re- 
spectively. 

In the intervals where the thickness t is given by the 
first expression in (17), the strain situation calculated from 
is}  = [ A ] - I { N }  will be that  of pure shear e I = - e i i  , inde- 
pendently of the membrane force situation. Similarly, the sec- 
ond expression in (17) leads to pure strain dilation eI = e I I  

for all N i l  > C1+C4-C2.  Thus an optimal design in gen- 
NI - -  C1 +64+62 

eral can be dominated by large regions of the extreme strain 
situations of [ci] =[~II ]"  

] I 
I o:t 

"~ O /-- 

""q ' - . . .  

"-.\. .  
" . . \  

I I I I l 

%, 

? 

"7, 
tD 

d r 

Fig. 3. The optimal relative ply thickness t of the cross-ply 
0 o [0 t/901_t] as a function of membrane stresses --.NI~ The solution 

NI 
is not symmetric 

4.2 High shear stiffness material 

Now, if the material has high shear stiffness C a < 0, 
the optimal laminate is either of the form [0~/90~_t] or 

[ 7 , / -  71 -d .  
In the case of a cross-ply design the derivations of the 

optimal relative thickness are identical to the ones in Section 
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4.1 for the low shear stiffness material. The relative thickness 
t is thus again given by (17). 

If the laminate is an angle-ply [ 7 t / - 7 1 - t ] ,  the laminate is 
only orthotropic for special values of t and 7. The membrane 
stiffness matrix in this case is 

[ A ] = h [ Z ] ,  (18) 

where [Z] is given in Table 1. 

As above this is used in the specific complementary energy 
u c which can be written in the following form: 

f1(7) + (2t - 1)2f2(7) 
uC = { N } T [ A ] - I { N }  . . . . .  f3(7) + (2t 1)2f4(7) ) ( 1 9 )  

where f i (7)  are functions of the angle 7 alone. First the 
gradient of the above expression with respect to t is put equal 
to zero. Thus 

Ou c I2 (7)f3 (7) - f l  (7)f4 (7) 
Ot -- 8 ( 2 t -  1) [f3(7) + ( 2 t -  1)2f4(7)]2 = 0. (20) 

This yields the three feasible solutions of [7/ - 7], [ 0~ or 

[Tt/ -- 71-t] ,  where cos 27 = N I + N I I  C2(C1-C4-2Ca) 
N I - N I I  C~-4C3(C1+C4) and 

t can take all values in [0; 1]. In the first two cases we have 
an angle-ply with equal ply thickness or a single ply and the 
laminate itself is orthotropic. 

The next step is to find the derivatives of u c with respect 
to the orientation 7. The expression is lengthy and is thus not 

Ou c 
given here, but it can be shown that  -~7 = 0 for all thick- 

NI+NII C2 (C1 -C4 -2C3) 
nesses t in the case of cos 27 -- N x - N I I  C~-4Ca(C1+C4) " 

Similarly for the [ T t / -  71-t]  design (yielding ~ t  ~ = 0), the 
ply angle yielding extreme complementary energy density is 
given by 

cos 2 7 = 

NI+NII (C1-C4+263) 
N I - N I I  6~-4C3(C1-[-C4) ' 

for Nx___L < C~(C1-2Ca-C4)+4C3(C1+C4)-C~ 
NI -- C2(C1-2Ca-C4)-4C3(C1+C4)+C~ 

N I - N x s  C~ +C4 

N•  C2 ' 
Nil C1+C4-C2 

for > 
N I  - -  C1+C4+C2 

1 otherwise 

(21) 

By comparison of the energies for the different design pos- 
sibilities, it is found that  the optimal design all in all is given 

by an angle-ply for lower values of NJ--L a cross-ply for the 
_N I ' 

highest values and a single ply in between 

X• + N•  C2(C 1 - C 4 - 2C3) 
[ 7 , / -  7x- , ]  : cos 27 = 

N I - N i l  C~ - 4C3(C 1 + C4) 



7O 

Table 1. Scaled stiffness matrix [Z] 

h [ C1 + C2 cos 27 + C 3 cos 47 

[ symm. 

64 -- C 3 cos 47 

C 1 - C  2 c o s 2 7 + C  3cos47 

-x /2(2 t  - 1)(~C 2 sin 2 7 + C 3 sin47) ] 

- v ~ ( 2 t  1 ) ( ~ C 2 s i n 2 7 - C 3 s i n 4 7 )  j . 
2 C  5 - 2C 3 cos 4 7 

Table 2. The materia/data used in the numerical examples 

E L E T ULT GLT C3 
(GPa) (GPa) (GPa) (GPa) 

graphite/epoxy 181 10.3 0.28 7.17 19.7 
from Tsai and Hahn (1980) 

graphite/epoxy with adjusted GLT 181 10.3 0.28 47.6 -0.5 
giving high shear stiffness 

glass/epoxy 38.6 8.27 0.26 4.14 3.33 
from Tsai and Hahn (1980) 

glass/epoxy with adjusted GLT 38.6 8.27 0.26 11.8 -0.5 
giving high shear stiffness 

with any t, 

x i i  
for < 

N I -  
c 2 ( c l  - 2c3 - c4) + 4 c 3 ( G  + c4)  - c~ 

C2(C1 - 2C3 - C4) - 4C3(C1 + C4) -I- 0 2 ,  

g I  - g I z  C~ + C4 
[0U90~_~] : 2 t -  1 = 

N1 +NII  C2 ' 

Ni.r C1 + 6'4 - C2 
for W >- C 1 + C 4 - t - C 2  ' 

[0 ~ otherwise. (22) 

Figure 4 shows the optimal solution as a function of 
the membrane forces. The material data  are still those of 
graphite/epoxy and glass/epoxy with the exception of the 
shear moduli GLT which are altered to 47.6 GPa  and 11.8 
CPa, respectively. Hereby the modified materials get high 
shear stiffness with C a = -0 .5  GPa,  see Table 2. 

That  the thickness t can be chosen arbitrarily in the angle- 
ply solution of (22) can be explained by noticing that all 
members in the membrane stiffness matr ix [A] except Al112 
and A2212 are unaffected by the thickness t. This is still in 
the coordinate system of the principal strains and membrane 
forces. Thus a given strain situation will result in the same 
membrane forces and thus in the same energy density for any 
t. This is then an example of having an infinity of designs all 
yielding minimum compliance although having quite different 
appearances. 

The expression for the optimal orientation in (22) is seen 
to be the same as in the optimization problem of rotating a 
single ply of orthotropic material with C3 < 0 (Cheng and 
Pedersen 1997). The solutions only coincide in this region. 
Apart from that,  the designs and the nature of the problem 

cannot be compared as the design freedom is much bigger 
when starting out from a laminate with an arbitrary number 
of plies. 

As already mentioned, the cross-ply solution in (22) re- 
sults in the strain situation o f e i  = e I I .  Thus instead of find- 
ing the optimal laminate type by comparing the energies for 
the angle-ply and the cross-ply designs, one could reach the 
same conclusion by exploiting the result from the optimiza- 
tion in the lamination parameters in the strains (Hammer 
et al. 1997), that  the cross-ply is only optimal in the situa- 
tion of e l  = E I I '  As to the angle-ply solution, the relation 
c I = - c i i  is only obtained if 7 = :t=45~ (independently of t). 

5 N u m e r i c a l  e x a m p l e s  

In this section (17) and (21) giving the optimal cross-ply and 
angle-ply configurations are used in a numerical example to 
find the optimal laminate design of a structure subject to a 
single load ease. The same structure is optimized for a ply 
material with either high or low shear stiffness. 

The structure is analysed by means of the finite element 
method giving information about the strains and membrane 
forces throughout the structure for a given laminate design. 
The material parameters and the laminate configuration is 
kept constant within each finite element but the design is 
allowed to vary independently from element to element. An 
initial design is arbitrarily chosen. Based on the calculated 
membrane forces the laminate design is then changed into the 
optimal design solution. That  is a cross-ply with relative ply 
thickness given by (17) and oriented along the direction of N I 
if C3 > 0, or if C3 < 0 an angle-ply or a cross-ply as stated 
in (22). Then a new finite element analysis is performed, the 
design changed and so on until convergence is obtained. 
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Fig. 4. The optimal angle-ply rotation of [ T t / -  7a-t] and cross- 

o o ply thickness of [0t/90~_t] as a function of membrane stresses N~Z 
Nz 

for two materials with C~ < 0 

The structure to be designed is sketched in Fig. 5 and 
consists of a short cantilever fixed at one end and with a 
point load at the other. 

/ 
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/ 
/ 
/ 
/ 
/ 
/ 

Fig. 5. A cantilever with a point load 

The opt imal  design found us ing  the procedure described 
above is shown in Fig. 6. The  ply mater ial  is here 
graphi te /epoxy and has thus low shear stiffness C3 > 0, see 
Table 2. The small lines show the direction of the fibers 
whereas the shading shows the relat ive thickness of each of 
the two plies. Black means the thickness is zero and white 
corresponds to the max imum relative thickness of one. As 
can be seen, the opt imal  solution consists of a single ply in 
the outermost  regions and a cross-ply in the interior. The  
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strain si tuation in each finite element in the optimal design 
of Fig. 6 is shown in Fig. 7. Here black corresponds to pure 
dilation c I = r  and white to pure shear c I = - v i i .  It 
is evident that  these special cases which one might consider 
as rare exceptions, actually end up being dominant  after the 
optimization.  

ply no. 2 

ply no. 1 
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0.7 

0.6 
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0.2 
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0.0 

Fig. 6. The optimal cross-ply for a ply material with low shear 
stiffness Ca :> 0. The fiber directions are shown by the lines. 
Black shading is zero thickness and white shading corresponds to 
the maximum relative thickness of one 
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Fig. 7. ( l e z ] -  ]eHl)/2les] for the optimal design for C3 > 0. 
Black corresponds to pure dilation ei -- ~zz, and white to pure 
shear e I  = - e I I  

Using the full parameter iza t ion of lamination parameters 
in the optimizat ion process as described by Hammer  et al. 

(1997) leads to the same opt imal  design (as it should), but  
this method  is less efficient in the sense that  there one must 
solve a linear opt imizat ion problem with nonlinear side con- 
straints in each i terat ion and therefore it takes more compu- 
ta t ional  time. The  i terat ion history for both techniques is 
shown in Fig. 8, redesigning according to (17) or using the 
laminat ion parameters  both with and without  a penalty func- 
tion that  makes the problem strictly concave. See the paper 
by Hammer  e~ aL (1997) for the computat ional  details. 
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Fig. 8. The iteration history for the problem in Fig. 6. The 
total energy is plotted as a function of the iteration number. The 
design is found either by employing the lamination parameters or 
by redesigning a cross-ply 

Using a ply material with high shear stiffness, C a < 0~ 
yields the optimal designs in Fig. 9. In this example, it is 
shown numerically that the membrane forces are everywhere 
and at all times during the optimization history so that the 
optimal design is either a single ply or an angle-ply and never 
a cross-ply. Here the outer regions consist of a single ply 
solution whereas the inner part is an angle-ply. The resulting 
designs for two different choices of relative ply thickness t in 
the angle-ply solution are shown in Fig. 9. To the left t = 21- 
and to the right t = 1 (thus a single ply design). The two 
designs yield the same compliance (down to the 8-th digit). 
The designs are quite different from that of Fig. 6 (where 
C3 > 0) and it is clear how the highly improved shear stiffness 
of the material now plays an important role in the design. 

No matter what sort of ply material, convergence is ob- 
tained in very few iterations of the order of 10-20. Moreover, 
the optimization process is very computationally efficient as 
it is both simple and fast. 

"~ ~ ,  ~-7.-----G--r--i~. l--r-~---r--r------= , _ r-- F- 
/_..--d(/2//;// V/ ]-;I t7 m 57-+ 
1 - - 2 1 ~ i ~ . - ' l - / t i / l t i / l l l l l l i / I / / i i l  / l / / / / / 1 !  / / ! i / ! I / i l  ~ - ~ - ~ - ' ~  ~ I  ~ / i -  /_- / /  / / ' " ' "  �9 -z'~//'//'I/',I',# 

�9 . - ~ 1 - i - , ' / i V l ~  

Fig. 9. The optimal angle-ply design for a ply material with high 
shear stiffness, Ca < 0. The fiber directions are shown by the lines. 
White colouring corresponds to the maximum relative thickness 
of one and the grey to equal thickness of the two plies 

laminate is orthotropic here, the numerically largest principal 
strain sI, membrane force N I and laminate direction of or- 
thotropy must be coaligned in the optimal design. However, 
the requirement that IciI  >_ I e l i I  given that INll _ I N I I I  
and Al111 > A2222 , imposes the following bounds on the 
membrane forces (Pedersen and Bendsoe 1995): 

A2222 -Al122 NH A2222+A1122 < < 
Al111-A1122 - N I  - A l l l  1+Al122  

(23) 

The constraining values can be very severe depending on the 
anisotropy of the material. 

For the cross-ply [0~/90~_t] the limits become 

c1 - c 4  + 2 c 3  - ( 2 t  - 1)c2 NIZ < < 
C 1 - C  4-[-2C 3 + ( 2 t -  1)C 2 - N 1 - 

C1 + C4 - (2t - 1)C2 

C 1 + C  4 + ( 2 t - 1 ) C  2 " 
(24) 

If the inequalities above are rearranged so the thickness term 
(2t - 1) is isolated, the expressions in (17) for the optimal 
thickness distribution reappear. In other words, the optimal 

N I I  
cross-ply is always so that the relation ~ goes to the limits. 

6 B o u n d s  o n  N/i 
N/ 

In the case of a material with low shear stiffness C3 > 0, the 
optimal relations between the membrane forces and lay-up 
parameters also appear in another context. Since the overall 

7 Conc lus ions  

The optimal laminate configuration for a structure subject 
to single membrane load cases is found. Both ply materials 
with low and high shear stiffnesses are treated. In the first 
case, the optimal design is either a single ply of material or 
a cross-ply. In the latter case, a single ply, an angle-ply, 



or a cross-ply is optimal. The parameters in the form of 
the material orientation and the relative ply thicknesses are 
derived and epxressed as functions of the membrane forces in 
the design area. 

The optimization is performed in the stress space (op- 
timization on the complementary stress energy), whereby 
the design solution is determined directly from the neces- 
sary conditions. This is thus advantageous compared to the 
equivalent formulation in the displacements where the ob- 
jective function indeed turns out to be linear in the design 
parameters but where the solution to the inner local prob- 
lems becomes nonunique, thus necessitating the use of the 
equilibrium equations. 

Finally, it is shown how the optimal relations for the lam- 
inate appears as material bounds on the membrane forces 
in order to assure the required alignment of the orthotropy 
direction, the numerically largest principal force and strain. 

Numerical examples are given on optimal designs also 
demonstrating how the structure seems to be dominated by 
pure shear or dilation strains in the optimal configuration. 
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