
Structural Optimization 17, 55-64 @ Springer-Verlag 1999 

An evolutionary method  for optimal design of plates with 
discrete variable thicknesses subject to constant weight 

D .  N h a  C h u  

Department of Science and Technology, Ministry of Education and Training, 49 Dai Co Viet, IIanoi, Vietnam 

Y .M.  X i e  
Department of Civil and Building Engineering, Victoria University of Technology, PO Box 14428, MCMC, Melbourne, 
VIC 8001, Austral ia 

G.P .  S t e v e n  

Department of Aeronautical Engineering, University of Sydney, NSW 2006, Austral ia 

A b s t r a c t  This paper presents a simple evolutionary method 
for optimization of plates subject to constant weight, where design 
variable thicknesses are discrete. Sensitivity numbers for sizing 
elements are derived using optimality criteria methods. An opti- 
mal design with minimum displacement or minimum strain energy 
is obtained by gradually shifting material from elements to the 
others according to their sensitivity numbers. A simple smooth- 
ing technique is additionally employed to suppress formation of 
checkerboard patterns. It is shown that the proposed method can 
directly deal with discrete design variables. Examples are pro- 
vided to show the cap~city of the proposed evolutionary method 
for structural optimization with discrete design variables. 

1 I n t r o d u c t i o n  

In many engineering applications of structural  optimization, 
the design variables must be selected from a given set of dis- 
crete values. For example, structural  members may have to 
be selected from standard sections or thicknesses commer- 
cially available from manufacturers. Traditional optimization 
techniques such as mathematical  programming and optimal- 
ity criteria methods are valid for problems where sizing de- 
sign variables are continuous in order to calculate derivatives 
of objective and constraint functions with respect to design 
variables. These methods usually require sophisticated math- 
ematical treatment when dealing with discrete design vari- 
ables. Often the problem is solved for a continuous optimal 
solution assuming all designs variables are continuous. Then, 
one of the methods, such as rounding-off, branch and bound 
methods, simulated annealing, genetic algorithm, Lagrangian 
relaxation methods, is used to get a discrete solution (Huang 
and Arora 1995; Olsen and Vanderplaats 1989; Ringertz 1988; 
Sandgren 1990; Schmit and Fleury 1980). Usually the values 
given for each discrete design variable are required be close 
to each other for the validity of converting the continuous 
optimal solution to the discrete one (Ringertz 1988). The 
branch and bound method, basically known as an enumer- 
ation method, is more widely used for discrete optimization 

problems. After obtaining a continuous optimal solution for 
the problem, each variable is assigned a discrete value in se- 
quence and the problem is solved again in the remaining vari- 
ables. It can be seen that  the number of times the problem 
needs to be re-solved increases enormously with the number 
of variables (IIuang and Arora 1995). 

Recently, a simple method, called Evolutionary Struc- 
tural Optimization (ESO), which is based on the concept of 
gradually removing redundant material to achieve an optimal 
design, was proposed by Xie and Steven (1993). The ESO 
method was developed by Xie and Steven (1993, 1994) first 
for shape and layout problems with stress consideration and 
then for frequency optimization (Xie and Steven 1996). The 
ESO method for shape and topology problems with displace- 
ment constraints has been presented recently by Chu et al. 

(1995, 1996). It is found that  the ESO method for shape and 
layout problems is simple and can be easily implemented into 
any general purpose finite element analysis (FEA) program. 
Many structural shape and topology optimization solutions 
obtained by other mathematically more complicated methods 
have been reproduced by the ESO method (Xie and Steven 
1993, 1994, 1996; Chu et al. 1995, 1996, 1997, 1998; Chu and 
Xie 1997; Chu 1997). It appears that  the ESO method can 
be also applied to sizing optimization problems. An earlier 
development in this direction was presented by Manickarajah 
et al. (1995) to increase the buckling load capacity of struc- 
tures while keeping their volumes constant. More recently, 
an evolutionary procedure for discrete variable problems of 
weight minimization subject to displacement constraints has 
been presented recently by Chu (1997) and Chu, Xie and 
Steven (1998). 

This paper presents an ESO method for problems of min- 
imizing a specified displacement or the strain energy (equiva- 
lently maximizing stiffness) of structures subject to constant 
weight, where sizing design variables are discrete. Sensitivity 
numbers for sizing elements are formulated using optimality 
criteria methods. An optimal design of the structure will be 
obtained by repeating the cycle of finite element analysis and 
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material shifting until no further improvement in the objec- 
tive can be achieved. An additional smoothing technique is 
used to suppress formation of checkerboard patterns in the 
resulting designs. It will be seen that  the proposed ESO 
method for sizing problems is simple and capable of dealing 
with discrete design variables. 

2 P r o b l e m  f o r m u l a t i o n  

Consider the problem of minimizing a displacement compo- 
nent at a point of a structure for a given weight. It is realized 
that when material is removed from an element by reducing 
its sizes, the displacement will generally increase. In con- 
trast, when material is added to an element by increasing its 
thickness, the element becomes stiffer and consequently, it in- 
creases the overall stiffness of the structure. As a result, the 
displacement is generally reduced in the absolute value. So 
the displacement can be significantly reduced when the ma- 
terial is shifted from the locations where it has a small effect 
on the increase in the displacement to the locations where 
it has a large effect on the reduction of the displacement. 
A substantial reduction in the structure's strain energy can 
also be obtained when a similar material  shifting technique 
is used, which results in a stiffer structure. 

The problem can be stated as follows. 

By shifting materials between elements, 

minimize the specified response of a structure 
subject to a constraint on the weight. 

Shifting material from one element to the other can be 
done by reducing the thickness of one element and increasing 
the thickness of another one. In general, when elements vary 
differently, it may not be possible to shift the same amount 
of material from one element to another. However, it is pos- 
sible to shift the same amount of material  from a number of 
elements to other elements. In some cases, additional scaling 
design variables are needed to keep the weight unchanged. At 
any step, every element can be either reduced or increased. 
Therefore, to solve this problem we need to evaluate the ef- 
fects on the specified response (displacement or strain en- 
ergy) by removing and adding material due to decrease and 
increase in the element thickness, respectively. 

3 Sensitivity analysis 

3.1 Sensitivity numbers for displacement minimization 

Suppose the i-th element is to be sized to the next lower 
or upper available dimension. This results in the change in 
the element weight by the value A~w i = w new - w i and the 

change in its stiffness matr ix by [AK i] = [Ki] new - [Ki]. 
The change in displacements can be determined by consid- 
ering equilibrium conditions before and after sizing the i-th 
element. This gives 

[K]{u} = {P},  (1) 

and 

[K + AK]{u + a u }  = {P},  (2) 

where [K] is the global stiffness matrix, {u} is the global 
nodal displacement vector, and {P} is the nodal load vec- 
tor. No change in the nodal load vector is assumed. By 
subtracting (1) from (2) and ignoring the higher-order term, 
the change in the displacement vector can be found as 

{Au}  = - [K ]  -~ [AK] {u} .  (3) 

To find the change in the specified j - th  d!splacement com- 
ponent uj, a virtual unit load vector {FJ}, in which only 
corresponding j - th  component is equal to unity and all the 
others are equal to zero, is introduced. Multiplying (3) by 
{F J} T, the change in the specified displacement due to sizing 
the i-th element is determined by 

Auj = {FJ}T { ~ u }  -=- --{FJ}T[K]-I[AK]{u} = 

--{uJ} T[ A K]{u} = --{uij} T [ A Ki}{u  i} = 

{u i j}T [Ki]{ui} - {uij} T [Ki]new {ui} , (4) 

where [AK] = [ A K  i] = [Ki] new - [K i] is employed, {.uJ} is 

the solution of (1) for the virtual unit load {FJ}, {u z} and 
{u/j] are the displacements of the i-th element due to the 
real load {P} and the virtual unit load {FJ}, respectively. It 
should be noted that  Auj can be positive or negative, which 
implies that  uj may increase or decrease. 

The value 

c~ij = {uij}T[Ki]{u i} ( i - -  1, n) (5) 

is known as the virtual energy of the i-th element. Further- 
more, by taking the sum of aij in (5) over all elements, we 
have the well-known relationship 

n 

uj = E ~ ' (6) 
i=1 

where aij is also referred to as the element contribution, 
Assuming small changes in the displacements due to sizing 
an element, the change in the element virtual energy can be 
approximately determined as 

Aai j  = a~9 w -- aij = 

{uij}T[Ki]new{ui} - {uij}T[Ki]{u i} (i -= 1, n). (7) 

Therefore, (4) and (7) give 

Auj = - { u i j } T [ A K i ] { u  i} = --Ac~ij (i = 1,n) (8) 

which means that,  in absolute values, the change in the spec- 
ified displacement is equal to the change in the virtual energy 
within an element due to changing its sizes. 

By using (8), the change in the specified displacement is 
estimated by the change in the element virtual energy due to 
changing the element sizes. It is obvious that reducing the 
element, whose Ac~ij is close to zero or IAaij[ is the low- 
est, will result in the minimum change in the displacement. 
When all elements can be reduced by equal weight portions, 
reduction of the element with the lowest ]Aaij I is always the 
best choice, because the weight of structure is reduced by 



the same amount with the least change in the specified per- 
formance. However, when elements are reduced differently, 
the efficiency of reduction of an element depends also on how 
much the change Awi in its own weight w i. Comparing two 
elements whose reductions result in the same [Ao~ij], it is 
obvious that reduction of the element, which gives a larger 
reduction in weight, will result in a lighter structure with an 
equal response. This means that reduction of the element 
with lower ratio IAo~ijl/lAwilis more efficient. The question 
of whether the ratio I,a~ijl/I,awil can be used as sensitiv- 
ity numbers for material reduction and addition to elements 
for minimum displacement design can be addressed using a 
Lagrange multiplier approach. 

For the problem of minimizing the absolute value of the 
displacement lujt subject to a weight constraint 

n 

w = ~ wi = w * ,  (9) 
i=1 

the Lagrangian is defined as 

( 5 )  L = I~jl  - a w ~ -  W* , (1O) 

\ i=1  

where A is a Lagrange multiplier and W* is the prescribed 
weight for the structure. Taking w i as the design variables, 
the optimality condition for the problem is 

OL Ouj 
Owi = ~w i - ~ = 0  ( i = l , n ) ,  (11) 

which can be approximated by 

Auj  
Awi - ~ = 0  ( i = l , n ) .  (12) 

Recalling relationship (8), which implies that the change in 
the specified displacement, in the absolute value, is equal to 
the change in the element virtual energy due to sizing the 
element, the above optimality condition becomes 

Z~cti3 
Awi - - )~=0  ( i =  l , n ) ,  (13) 

o r  

Ac~ij 
7 i =  Awi  = 1 = c o n s t .  ( i = l , n ) .  (14) 

The optimality criterion (14) states that at the optimum the 
absolute ratio of the change in the element virtual energy and 
the change in the element weight is equal for all elements. 
The value 7i in (14) can be viewed as a measure of effective- 
ness of the material within the portion to be removed from 
or added to an element. Thus, the sensitivity number for the 
sizing element in the displacement minimization problem is 
defined as 

tAc~iJt t{uij}TCAKi]{ui}[ (i = 1 ,n) .  (15) 

G ~ -  Imwil- Iz~w~l 
It is obvious that the most effective way of removing ma- 

terial is to remove the material from the element with the 
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lowest value of 7i because it will have the smallest effect on 
increase in the displacement. On the contrary, the most ef- 
feetive way of adding material is to add the material to the 
element with the highest value of 7i because this amount of 
material will have the largest effect on decrease in the dis- 
placement. This sizing strategy can result in more efficient 
design in the sense that more uniform values of 7i can be ob- 
rained. In some cases, it is possible to reach a uniform state 
of 7i by which the optimality criterion (14) is satisfied for all 
elements. 

Based on the sensitivity numbers defined by (15), different 
optimization procedures can be employed to obtain the solu- 
tion. One way is to use only the material removaI (element 
size reduction) technique to soIve this problem. Using (15), 
the sensitivity numbers for eiement reduction are calculated 
for all elements. Material is removed from elements with the 
lowest sensitivity numbers by changing their thicknesses to 
the next lower values. As a result, the weight of the structure 
decreases. In this case scaling the design variables is neces- 
sary to satisfy the weight constraint (9). The disadvantage 
of this procedure is that by using the design variable scaling, 
the resulting thicknesses of elements will not have the exact 
values as given in the sets of discrete values. It is preferable 
to use a procedure which will keep the thicknesses within the 
given sets. 

It is possible to keep the weight of the structure un- 
changed, without involvement of design variable scaling, by 
shifting material between elements, i.e. the same amount of 
material, which has been removed from some elements, is 
added to others. To do this, the best elements to remove 
material from and the best elements to add material to need 
to be identified. Because the increase and decrease in thick- 
nesses can have different effects, two sensitivity numbers need 
to be calculated for each element using (15). 

Assume that a plate structure to be optimized is rood- 
elled by elements with thicknesses chosen from the given 
set t i = { t l , t y , . . . , t s _ l , t s , t s + l , . . . , t r } .  For convenience, 
thicknesses in the set are often put in ascending order. This 
way, if the current thickness of an element is ts, the next 
lower and higher thicknesses are t s_  1 and ts+l ,  respectively. 
Materials can be removed from or added to an element by 
selecting the next lower or higher thickness in the given set. 
Due to reduction and increase in the i-th element thickness, 
the changes in the element weight are 

( A w l ) -  = wi ( t s_ l )  -- wi(ts ) (i = 1,n) ,  (16) 

and 

(z~wi) + = wi(ts+l)  -- wi(ts) (i = 1,n).  (17) 

Correspondingly, the changes in the stiffness matrix of the 
element are given as 

[AKi l  - = [ K ~ ( t s _ ; ) ] -  [K~(ts)] (i = 1 ,~ ) ,  (18) 

and 

[ A K i ]  + = [Ki(ts+l)]- [K i ( ts ) ]  (i = 1 ,n) ,  (19) 



58 

where the superscript "-" denotes thickness reduction and 
"+" denotes thickness increase. The change in the element 
virtual energy can be calculated using (8), which gives 

(Ac~ij)- = {ui j ]T[~,Ki]-{u  i} (i = 1,n),  (20) 

(Ao~ij) + = {ui j}T[AKi]+{u i} (i = 1, n). (21) 

Therefore, for each element two following sensitivity numbers 
are calculated: 

( A a i j ) -  ]{u i j }T[~Ki]-{ui} l  ( i - -  1,n) (22) 
7 ~ =  ( A ~ d -  = I(Awd-I 

7 t  = (Aaij)+ I{uij}T[AKi]+{ui}l  (i = 1,n). (23) 

= i(A~i)+[ 

It is obvious that removing material from elements will 
generally increase the displacement and adding material will 
reduce the displacement in absolute values. Reducing the 
thickness of the element with the smallest 7i- will result in the 
minimum increase in the objective displacement. Conversely, 
increasing the thickness of the element with largest 7i + will 
make the maximum decrease in the objective displacement. 
If the maximum valu e of 7 t  is much larger than the minimum 

value of 7i-, the specified displacement will be significantly 
reduced when the material is shifted from the element with 
minimum 7i- to the element with maximum 7 t '  

3.2 Sensitivity numbers for strain energy minimization 

The strain energy of a structure is defined as 

S = ~{P}T{u},  (24) 

where {u} is the displacement due to the real load {P}. The 
element strain energy is 

si = ~{ui}r[Ki]{ui}  (i = 1,n),  (25) 

where {u i} is the displacement of the i-th element, which is 
obtained from {u}. Similar to the change in the displacement 
given by (8), the change in the strain energy of the structure 
is equal, with an opposite sign, to the change in the element 
strain energy due to the change in the element size, i.e. 

A s = - l  { u i } T [ z ~ K i ] { u i } = - A s  i ( i =  1,n). (26) 

For a weight constraint given by (9), the Lagrangian for 
the problem of minimizing the strain energy is defined as 

L = S + )~ w i - W *  , (27) 

where A is a Lagrange multiplier. In this case, by using (26), 
the optimality conditions become 

Asi + A O (i l,n) (28) 
Aw i 

o r  

Asi =A=-cons t .  ( i =  1,n). (29) 
7i = Aw i 

The sensitivity number for sizing elements to minimize 
the strain energy is 

Asi - -  l { u i } T [ A K i ] { u i }  (i = 1 ,n ) .  (30) 
7i = Awi -- Awi 

To shift material within the structure for minimizing the 
strain energy, the following two sensitivity numbers for each 
elements are calculated: 

(As i ) -  l { u i } T [ A K i ] - { u i }  (i = l,n) 
- - (31) 

7 t  -- (Asi)+ l {u i }T [AKi ]+{u i }  (i = 1 , n )  
(Z~w~)+ -- ( ~ ) +  

(32) 

where the superscript ..... denotes thickness reduction and 
"+" denotes thickness increase. The changes in the element 
weight and the element stiffness matrix are calculated by 
(16)-(19). Similarly, the strain energy can be significantly 
reduced if material is shifted from the elements with lowest 
7i- to the elements with largest 7 t  defined by (31) and (32), 
respectively. 

4 Op t imiza t i on  p r o c e d u r e  

To obtain an accurate solution, an iterative procedure, where 
only a small amount of material is shifted in each iteration, 
should be employed. The evolutionary optimization proce- 
dure for the displacement minimization problem is as follows. 

Step 1. 

Step 2. 

Model the structure by finite elements with interme- 
diate thicknesses. 

Analyse the structure for the given real load and the 
virtual unit load corresponding to the objective dis- 
placement. 

Step 3. 

Step 4. 

If convergence in the objective displacement has been 
reached, go to Step 7. Otherwise, go to Step 4. 

Calculate the sensitivity numbers 7i- and 7 + for each 
element. 

Step 5. If the sensitivity numbers are uniform, go to Step 7. 
Otherwise, go to Step 6. 

Step 6. Shift a specified amount of material in the structure 
by selecting the next lower thicknesses for a number 
of elements which have the lowest 7i- and the next 

larger thicknesses for other elements with highest 7 t"  
Go back go to Step 2. 

Step 7. Stop. 
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Exactly the same evolutionary optimization procedure is 
used for strain energy minimization, except that the struc- 
ture is analysed for the real load only. For the proposed 
evolutionary procedure two parameters, the tolerance and 
the amount of material to be shifted at each iteration, need 
to be specified. Tolerance is used to check the convergence 
of the objective displacement. Convergence is reached when 
the relative change in the objective between two successive 
iterations is less than the given tolerance 5, i.e. 

l u new _ uold snew _ sold 
u~-gvT. ~ < 5 or ~n-~w <: 5. (33) 

The optimization process will also be terminated when the 
sensitivity numbers are uniform, by which the optimality con- 
ditions are satisfied and the optimal solution is reached. 

The amount of material to be shifted can be prescribed 
by the mater ial  shif t ing ratio (MSP~), which is defined as the 
ratio of the portion of the weight (material) to be shifted 
at each iteration to the total weight (material) of the struc- 
ture. This parameter controls the change of the design in each 
step. Depending on the step size, it controls the number of 
elements subjected to thickness decrease and increase. In the 
most general case where elements can change differently, the 
number of elements subjected to thickness reduction and the 
number of elements subjected to thickness increase are differ- 
ent and vary from iteration to iteration. When all elements 
can change by equal weight portions, as in the case where 
all elements are identical and equal step sizes are used, the 
number of elements subjected to decrease equal to the num- 
ber of elements subjected to increase and is constant. In this 
case, an equivalent parameter called the element  shif t ing ra- 
tio (ESR), defined by the ratio of the number of elements to 
be reduced (or increased) at each iteration to the total num- 
ber of elements, can be used. Values less than 1% or 2% can 
be adopted for MSR although the influence of the MSR on 
the final design needs further investigation. 

During the optimization process, elements having their 
thicknesses changed to the maximum or minimum values are 
not allowed to be further increased or decreased. It is noted 
that the thicknesses initially chosen for all elements must 
be other than maximum or minimum thicknesses, otherwise 
shifting the material within the structure cannot be carried 
out. The initial thicknesses for all elements are determined 
from the given weight for the structure. 

It is worth noting that the order of the sensitivity numbers 
of an element is more important than their absolute values. 
For the simplest case where there is only one point load Q 
acting on a structure and the objective is to minimize the 
displacement at the same location and in the direction of the 
load, we have {uJ} = (1/Q){u} and there is no need to anal- 
yse the structure for the virtual unit load. The sensitivity 
numbers for this problem are exactly of the same order as 
in the problem of minimizing strain energy. This means so- 
lutions of these two problems are identical if the same mesh 
and the same ESR or MSR are used. 

A computer program has been written to calculate the 
sensitivity numbers and shift a specified amount of material 
over elements. A batch file is set up to link this program 
to a finite element program and a loop is created to carry 

out the iterative process of optimization. The thicknesses ts  
(s = 1,r) are input in either ascending or descending order 
as property number increases. Initially, all elements are as- 
signed an intermediate thickness which is determined from 
the weight (or volume) given for the structure. P~emoving or 
adding material from or to an element is done by substitut- 
ing the current property by the preceding or exceeding prop- 
erty. The properties with maximum and minimum thickness 
are identified so that elements, which have the thicknesses 
changed to the maximum or minimum thicknesses, will not 
be further increased or decreased. The input data file for the 
optimization subprogram includes the value for tolerance, the 
material (or element) shifting ratio, the parameter indicates 
the order of thicknesses (ascending or descending) input in 
the plate property file, the parameter for keeping symmetry, 
the properties with the minimum and maximum thicknesses. 
It also includes the maximum number of iterations which is 
allowed for a particular problem. 

5 S m o o t h i n g  t e c h n i q u e  for suppres s ion  of checker- 
b o a r d  p a t t e r n s  

It is observed that checkerboard patterns often appear in so- 
lutions derived by the proposed method for two-dimensional 
continuum structures (see Figs. 2a and 3@ This is quite 
typical in solutions for optimization problems using finite 
elements. With checkerboard patterns the shapes obtained 
may become practically unacceptable. The origin of checker- 
board patterns is still not fully understood but it is likely 
to be related to the finite element approximation as a nu- 
merical phenomenon (Bendsee et al. 1993). Diaz and Sig- 
round (1995) pointed out that material in checkerboard ar- 
rangements in 4-node element meshes appears to be locally 
stiffer than any real material built. It is desirable to suppress 
of the formation of checkerboard patterns. One way is to 
use higher-order elements. Rodrigues and Fernandes (1993) 
showed that the checkerboard patterns which appear by using 
4-node elements, can be avoided by using 9-node elements. 
Another way is to use a special algorithm to control forma- 
tion of checker board patterns as proposed by Bendsee et al. 
(1993). A simpler algorithm for density redistribution was 
suggested by Youn and Park (1995) to suppress formation of 
checkerboard patterns. 

In our method for minimizing structural response (dis- 
placement or strain energy), the sensitivity numbers defined 
by (15) or (30) can be expressed by the following formula: 

ei ( i= l,n), (34) 7i -.= ~-/ 

where Pi is mass density and 

zx~/j z~s/ (i = 1, ~) (35) 
e i =  A v i  or e i =  A v i  

is the virtual energy density or the strain energy density in 
the part of the element to be removed, and A v  i is the volume 
of this part. It is obvious that in continuum structures, the 
energy density is a continuous function. However, the en- 
ergy density e i determined by (35) is only an average value 
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and therefore becomes a stepwise function, experiencing dis- 
continuity at the nodes. To provide continuity of the energy 
density at the nodes, a smoothing technique is needed. The 
simplest procedure for smoothing energy density and sensi- 
tivity numbers is as follows. 

1. Calculate the virtual energy density at each node by av- 
eraging the virtual energy densities of all elements con- 
necting to the node. 

2. Calculate the smoothed virtual energy density for each 
element by averaging the obtained energies densities at 
its nodes. 

3. The smoothed sensitivity numbers for elements are then 
calculated from the smoothed energy densities according 
to (a4). 

It will be seen through examples that  the optimization pro- 
cedure based on the smoothed sensitivity numbers is able to 
suppress formation of checkerboard patterns. 

6 E x a m p l e s  

We shall illustrate the capability of the proposed method for 
minimizing the response of structures subject to a constant 
weight where the design variables are discrete. All examples 
are solved using a 586 Pentinm/150 MHz personal computer. 
The number of design variables ranges from four to eight 
hundred with sets of three to ten discrete values for element 
thicknesses. 

6.1 Minimum displacement design for a simply supported 
plate 

Consider an example of minimum displacement design for a 
plate in bending. A simply supported square plate with sides 
of 8 m is carrying at the centre a point load P = 100 kN 
normal to its plane as shown in Fig. 1. Young's modulus E -- 
30 GPa and Poisson's ratio ~, = 0.2 are assumed. The plate 
is designed for different sets of discrete thicknesses ranging 
from the minimum 0.2 m to the maximum 0.4 m. Because 
of symmetry, only a quarter of the plate is analysed using 
400 quadrilateral plate elements. Initially, all elements are 
assigned the thickness 0.3 m, which defines the weight of the 
plate. The initial out-of-plane displacement at the centre 
is 4.22 mm. To show the effect of the proposed smoothing 
technique, the problem is solved first using the original and 
then using smoothed sensitivity numbers. Adopting MSR = 
1% and tolerance 5 = 0.01, solutions are obtained for the 
following two sets of thicknesses. 

1. Design for three thicknesses: At = 0.1 m, ESR = 3% 
(i.e. 12 elements having thicknesses reduced and 12 ele- 
ments having thicknesses increased in each iteration), the 
optimal designs are shown in Fig. 2. 

2. Design for five thicknesses: At  = 0.05 m, ESR = 6% 
(i.e. 24 elements having thicknesses reduced and 24 ele- 
ments having thicknesses increased), the optimal designs 
are shown in Fig. 3. 

/ ......... 
/ 

[< 8m >1 

Fig. 1. Initial uniform thickness design for a plate in bending 

It can be seen that  the solutions obtained by using original 
sensitivity numbers contain checkerboard patterns as shown 
in Figs. 2a and 3a. However, the use of the proposed smooth- 
ing technique effectively avoids formation of checkerboard 
patterns in the solutions as observed in Figs. 2b and 3b. To 
keep symmetry of resulting designs for this example, a de- 
sign element linking is used. This type of element linking 
is based on the fact that  elements in the symmetrical posi- 
tions have equal sensitivity numbers. The linked elements 
(elements have equal sensitivity numbers) are sized equally. 

It is seen that  the optimal designs for two cases (Figs. 
2b and 3b) have similar thickness distributions. The areas 
with the minimum thickness in all cases are located along the 
elastic hinge lines, which have been reported by Suzuki et al. 
(1992), and Tenek and Hagiwara (1994). The structural re- 
sponses of the optimal designs for both cases are significantly 
improved compared to the initial uniform design while the 
weight remains the same. The objective displacement (out- 
of-plane displacement at the centre) is reduced from 4.22 mm 
to 2.46 mm by 41.7% with respect to the initial value for the 
case of three thicknesses and to 2.47 mm by 41.5% for the 
case of five thicknesses. 

Optimization histories for two cases using the smoothing 
technique are very similar as given in Fig. 4. It is seen that 
the displacement is sharply reduced in first several iterations. 
The change in the displacement is more steady in the follow- 
ing iterations and becomes smaller for the later iterations. 
The same computational time of 11 minutes is needed for 
each solution. This illustrates the effectiveness of the pro 
posed sensitivity numbers for shifting material and efficiency 
of the 'proposed ESO method. 

It is observed frorn this example (Fig. 4), that  the value 
MSR = 1% gives very similar change in the objective dis- 
placement despite big differences in the step size (0.1 m and 
0.05 m) and in ESR (3% and 6%). This illustrates that the 
parameter MSR plays a more important  role in controlling 
the level of change in the objective displacement during the 
optimization process using the proposed ESO method. 

6.2 Minimum strain energy design of a cantilever plate 

This serves as an example of minimization of the strain energy 
of a plate subject to constant volume, which is equivalent to 
maximizing the overall stiffness of the plate. A rectangular 
plate with dimensions Lx = 4 m and Ly -- 2 m is clamped at 
one long edge. Three point loads P = 20 kN, normal to the 
plate, act at the free corners and in the middle of the free edge 
(see Fig. 5). Young's modulus E = 30 GPa and Poisson's ra- 
tio u = 0.2 are assumed. The plate is being designed for 
different sets of thicknesses ranging from the minimum of 0.1 
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(a) 

Cent re  
(b) 

0.2 0.3 0.4 (m) 
Fig. 2. Optimal designs for a quarter of the simply supported 
plate, three thicknesses, /vISR = 1% (a) without smoothing, (b) 
with smoothing 

m to the maximum of 0.2 m. Because of the symmetry, only 
a half of the plate is analysed using 400 quadrilateral plate el- 
ements. InitiMly, all elements are assigned a thickness of 0.15 
m, which is defined from the weight of the plate. The initial 
strain energy is 74.0 Nm. Adopting MSR = 0.5% and tol- 
erance 5 = 0.01, solutions are obtained using the smoothing 
technique in the following cases. 

1. Design for three thicknesses: At = 0.05 m, ESR = 1.5% 
(i.e. 6 elements having thicknesses reduced and 6 elements 
having thicknesses increase d), the optimal design is shown 
in Fig. 6. The strain energy is reduced from 74.0 to 49.4 
Nm by about 33.2% with respect to the initial value. The 
computation time is only 13 minutes. 

2. Design forfive thicknesses: At = 0.025 m, ESR = 3% (i.e. 
12 elements having thicknesses reduced and 12 elements 
having thicknesses increased), the optimal design is shown 
in Fig. 7. The strain energy is reduced to 49.0 Nm by 
about 33.S% with respect to the initial value. For this 
case 14 minutes computation time is needed. 
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Fig. 3. Optimal designs for a quarter of the simply supported 
plate, five thicknesses, MSR = 1% (a) without smoothing, (b) 
with smoothing 

The optimal designs in both cases are similar. No checker- 
board patterns have been observed during the solution pro- 
cess. The structural responses of the optimal designs are 
much more improved in the sense that the strain energy is 
significantly reduced while the weight remains unchanged. 
The optimization history is given in Fig. 8. The same trend 
of reduction in the objective, as shown in the previous exam- 
ple, is also observed in this example. Once again, using the 
same value MSR = 0.5% produces almost the same change 
in the strain energy in both sets of thicknesses. 

6.3 Minimum strain energy design for a plate under tor- 
sional loading 

A plate of dimensions 0.20 m x 0.10 m is clamped along one 
short edge and is under the influence of a torsional loading, 
which is created by applying two loads of the same magnitude 
P = 1 N but opposite direction at the corner nodes of the free 
boundary (see Fig. 9). Young's modulus is E = 90 GPa and 
Poisson's ratio is v = 0.3. A similar example was considered 
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Fig. 6. Minimum strain energy design for the cantilever plate, 
three thicknesses, MSR = 0.5%, tolerance = 0.01 
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Fig. 4. History of a minimum displacement for the simply sup- 
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Fig. 5. Initial uniform design for a cantilever plate 

by Tenek and Hagiwara (1994). The plate is designed for the 
set of 10 thicknesses ranging from the minimum of 0.1 mm to 
the maximum of 1.0 mm with the step size At = 0.1 mm. The 
whole plate is modelled by 800 quadrilateral plate elements. 
All elements are initially given the thickness of 0.7 mm and 
the initial strain energy is of 2.22 x 107-3 Nm. 

Using MSR = 0.5%, the optimal design obtained after 50 
iterations is shown in Fig. 10. It takes 2 hours 29 minutes 
to derive to this solution. It is seen that the thicknesses are 
mainly bounded at the minimum and maximum values. From 
the result, there is a tendency for thickening along the edges 
and across the plate, which suggests for such structures that 
edge beams and stiffeners are useful. The strain energy is 
reduced to 1.18 x 10 -3  Nm, by 46.8% with respect to the 

initiM value. The structure in much more efficient in com- 
parison with the initial uniform design for the same weight. 
The strain energy of the plate is steadily reduced as observed 
in Fig. 11. 

7 Conc lus ions  

It has been seen that the proposed ESO method can directly 
deal with discrete sizing problems. Optimality criteria are 
formulated for the problems. The sensitivity numbers for 
shifting materials over the structure are proposed, which al- 
low us to reach the optimal solution by an iterative process. 
The thicknesses of elements are gradually changed to neigh- 
bouring values from the given set of discrete values according 
to their sensitivity numbers. The simple smoothing technique 
is able to suppress formation of checkerboard patterns creat- 
ing more practically acceptable solutions. Compared with 
other existing solution methods, where repeated analyses are 
needed in order to find a continuous solution and the problem 
is re-solved to obtain a discrete solution, the proposed evo- 
lutionary optimization method is simple and efficient. Only 
one finite element analysis is required for each design step. 
The structural response (displacement or strain energy) of 
the optimal designs obtained by the proposed method for 
structures is significantly improved in comparison with the 
initial uniform design for the same weight. 

It is found that in the proposed method for optimization 
of structures with a given weight, the material shifting ratio 
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Fig. 7. Minimum strain energy designs for the cantilever plate, 
five thicknesses, MSR = 0.5%, tolerance = 0.01 

is more important than the element shifting ratio. The value 
of the material shifting ratio is more closely related to the 
level of change between successive designs. It is obvious that 
the smaller value for the material shifting ratio is used, the 
more accurate the solution will be, but at higher computa- 
tional costs. Although the values of 0.5% and 1% for the 
material shifting ratio are used, which give good results, the 
influences of this parameter on the final designs needs further 
investigation. 

It should be noted that the sensitivity numbers are for- 
mulated from results of the general static problems, so the 
proposed method can be applied to other types of structures 
such as trusses or frames, where bar elements can be selected 
fi'om commercially available sections. An extension of the 
proposed method for truss and frame structures will be re- 
ported in the near future. 
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