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On the Bergman space norm of the Cesfiro operator 

By 

ARISTOMENIS G. SISKAKIS 

I. Introduction. Let D denote the unit disc in the complex plane rE, and dm = 
(l/re) dx dy the normalized Lebesgue measure on ID. For  I < p < ~ the Bergman space 
A p is the closed subspace of all analytic functions in L p (ID, dm). For  f analytic on ID the 
A p norm is 

(1.1) tlfll~, = j" If(z)Vdm(z),  
UD 

while for p = 2 we can use the expression 

(1.2) Ilf{[~ = Z ra,[2/( n + 1), 
n__>0 

where f (z)  = Z a,z". For  such f analytic on ID the Ces~iro transformation C is defined 
by ,_>o 

(1.3) C ( f )  (z) = -z o - g ,= o ~ k~O Z". 

The averaging operator  C and its continuous analogues have been studied on various 
spaces including sequence spaces and the Hardy  spaces [1, 2, 3, 7, 9, 1i]. In the case 
of Hardy  spaces, C has been related to a semigroup of composit ion operators [2, 3, 11], 
thereby giving a method of studying C by studying the semigroup. The observat ion 
providing this link is that  on the space of all analytic functions on D,  ( -  C)-* (g) (z) = 

- z (1 - z) 9' (z) - (1 - z) 9 (z), and the restriction of this differential operator  on Hardy  
spaces is found to be the infinitesimal generator of a specific strongly continuous compo-  
sition semigroup. 

Any semigroup of composit ion operators  is also strongly continuous on the Bergman 
spaces A p, in fact  on their weighted versions Ag with weights w (r) = (i - rZ) ~. This was 
the main result of [12], along with the identification of the corresponding infinitesimal 
generators. In addition as an application we found in [12] that the operator  

(y~ ak ~zk where f ( z ) =  Z ak zk, d ( f ) ( z )  Z 
,,~=o \~=n k + l j  k>=o 

is bounded on A~ if and only if c~ + 2 < p [12, Theorem 3]. In particular with • = 0 
d is bounded on A p if and only ifp > 2. It  is clear that the operators  C and ~r are induced 



Vol. 67, 1996 Bergman space norm of Cesfiro operator 313 

by infinite matrices that  are transposes of each other, in fact On the Hardy  space H 2 with 
the usual inner product,  C and d are Hilbert space adjoints of each other. This is no 
longer true on the Bergman space A 2 ( d  is not bounded on A p p < 2), and in fact even 
for p > 2 using the usual pairing for the duality of Bergman spaces we can see by an easy 
calculation that  C and d do not form a dual pair. Thus the partial results obtained for 
d on Bergman spaces in [12] cannot  be used to study C. 

The main question here is to find the norm of the Ces~iro operator  on Bergman spaces. 
We use a specific semigroup of composit ion operators, induced by functions {~b,}, much 
like we did for Hardy  spaces in [11]. We recall that  for the case of Hardy  spaces, we 
obtained growth estimates for the semigroup by transfering to Hardy  spaces on a half- 
plane and doing the calculations there. In our present case however we exploit an identity 
satisfied by the functions {~bt} (see 2.4 below) and a change of variables in the integrals 
to obtain the analogous growth estimates for the semigroup. We should stress here that 
this identity could not have been usef for the case of Hardy  spaces because the Hardy  
space norm is obtained by integrating the boundary  function. In contrast  the boundary  
values of Bergman space functions are defined only as distributions and because of this 
we cannot  replicate the calculations in [11] to obtain the growth of the semigroup on 
Bergman spaces. 

2. The semigroup and its properties.  For  t > 0 let ~bt: D -* D be given by 

e-tz  
(2.1) d~t(z) = (e - t  - 1)z + i '  

and let the operators  St be defined by 

(2.2) St ( f ) ( z  ) = (dpt(z)/z) f (d?t(z)) . 

We next show that  {Sr is a strongly continuous semigroup of bounded operators  on A p. 
We remark  that  this does not  follow directly from results in [12] because in [12] we had 
considered only unweighted composit ion semigroups. The following reasoning however 
gives the desired conclusion. 

Let 1 < p < oo. It is well known that  composit ion by any analytic self map  of I[9 is a 
bounded operator  on A v. Also if f e A  1' then [Izf(z)llp< [ I f  lip, and if f E A  p with 
f 0 )  = 0 then II f (z)/z 1[ p < K (p)l[ f lip where K (p) is a constant  depending on p but not  
on f [14, p. 75]. Combining these we see that  each St is a bounded operator  on A p. 

Further  for s, t > 0 we have ~btoq5 s = 4~,+~ and we easily see that  StS~ = S~+~ and 
So = I, the identity operator.  Thus {St} is a semigroup of bounded operators  on A p. 

For  the strong continuity let f be any function in A p, and set g (z) = z f  (z). The function 
g ~ ~bt - g vanishes at 0, and we have 

l iSt(f)  - f I]v = ]l (g (q~, (z)) - 9(z))/z[tp < K(p)  H 9 ~  glie- 

Using Theorem I of [12] we know that  composit ion semigroups are strongly continuous 
on A p. Thus, since g ~ A p we have lira [1 g ~ qSt - g lip = 0 and we conclude lira [I St ( f )  

t~O t~O 

- fJlp = 0 implying that {St} is strongly continuous on A p. 
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To ident i fy the inf ini tes imal  gene ra to r  of {S~} let z ~ E), then  

l im ~ (St ( f ) (z ) )  = - z(1 - z ) f '  (z) - (1 - z ) f ( z ) .  
t~O 

Using  this obse rva t ion  and  app ly ing  the reason ing  of [12] we find tha t  the inf ini tes imal  
genera to r  Ap of {St} on A p is given by  

(2.3) A p ( f ) ( z )  -- - z(1 - z ) f ' ( z )  - (1 - z ) f ( z )  = - (1 - z ) ( z f ( z ) ) ' ,  

with d o m a i n  D o r a  (Ap) = { f  e AP: (1 - z ) ( z f  (z))'~ AP}.  

Next  we s tudy  {St} and  Ap. Recall  t ha t  (1 - z) ~ ~ A p if and  on ly  if Re (2) > - 2 / ! ) .  We 
use ~r() and  a s ( )  to deno te  the spec t rum and  the po in t  spec t rum of  an opera to r .  

L e m m a  1. I f  I < p < co then {z: Re(z) < - 2/p} c a(Ap). 

P r o o f. F i r s t  we find the po in t  spect rum.  If  A p ( f )  = 2 f  then an  easy ca ieu ta t ion  
shows tha t  2 = - k - I for  some k ~ (0, 1, 2 . . . .  } and  if 2 = - k - I the co r r e spond ing  
e igenfunct ion has the form f k ( z ) =  CZk(1 --Z)  -~k+l) with  c a nonze ro  cons tant .  This  
funct ion is no t  in A p for p > 2 so for such p the po in t  spec t rum is empty.  If I =< p < 2 then  
fk ~ AP for k = 0 only  so a~(Av) = { - t }  in this case. 

Let  ,t e t E  with Re(2)  < - 2/1) (and if 1 < p < 2, 2 4: - I). Choose  an integer  n such 
tha t  R e ( 2  + n + 1) > - 2/p and  let 

P,,z(z) = (2 + 1) k ((--1)k/k)(~) zk.  
k = l  

Then  the funct ion ( 1 -  z) z+"+1 exp (P,,a(z)) is in A p. If  2 -  Ap is inver t ible  then the 
equa t ion  (2 - A p) (y) (z) = (2 + 1) (1 - z) ~ +" + 1 exp (P,, ~ (z)) has a so lu t ion  y (z) ana ly t ic  
on ID, and  y ( z ) ~  Dom(Ap)  c A p. F r o m  (2.3) we see tha t  this equa t ion  is 

(2  + 1 - z )y ( z )  + z ( l  - z)y ' (z )  = (2 + 1)(i  - z) ~+"+1 exp (P,~.(z)), 

and  a rou t ine  ca lcu la t ion  shows tha t  y ( z ) =  (1 -z ) ;~exp(P , ,z (z ) )  is the only  ana ly t ic  
solut ion.  But  y(z)  is no t  in A p because  Re(2)  < - 2/p. Thus  {z: Re(z)  =< - 2/p} c a(Aj,). 

L e m m a  2. Suppose p >_ 4. Then I[ St ]] p < e t -  2/p)t for  each t > O . 

P r o o f. An easy ca lcu la t ion  shows tha t  the funct ions q~t def ined in (2.1) satisfy 

(2.4) (d?t(z)/z) 2 = e - '  ~b't(z ), z ~ K), t > O . 

F o r  f e A p, us ing (2.4) we have 

II S, (f)]tpe = f i q~, (z)/z [P ] f (4t (z))[P dm (z) 
g) 

= e -  23 ~ ]03 (z)/z [P- 4 [ f (d)t (z))]" ] (o', (z)] 2 dm (z) 
D 

-< e -  2, S ] f (~bt (z))]P ] ~b; (z)] 2 dm (z),  
D 
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where in the last step we have used I~bt (z)/zl < 1, a consequence of Schwarz's lemma. 
Since q~t is I - 1, by a change of variable in the last integral we further obtain 

= e - zt ~ I f  (w)lP dm(w) 
r (D) 

< e -2 '  ~ [ f (w) lPdm(w)  = e -2 '  II f 11~, 
ID 

and the conclusion follows. 

For  1 < p < 4 we have to use a different version of the semigroup. For  these values of 
p let 

(2.5) T t ( f ) ( z  ) = ((ot(z)/z)4/P f ((gt(z)), t > O. 

Since [q~t (z)/zl < 1 the operators T t are bounded on A v, and a calculation similar to the 
one in Lemma 2 shows that 11Tt lie < e(- z/P)t. The strong continuity of {Tt} can be shown 
by following the proof  of [11, Theorem 1], we omit the details. The infinitesimal generator 
in this case is found to be 

(2.6) E e ( f ) ( z  ) = - z(l  - z ) f ' ( z )  - (4/p)(1 - z ) f ( z ) .  

3. The result. Let C e denote C acting on A e. We prove the following. 

Theorem 1. 

(i) Suppose 4 < p < oe. Then IICpll = p/2 and a(Cp) = {z:  lz - (p/4)[ < p/4}. 
(ii) Suppose 1 < p < 4. Then p/2 < II Cell < 2 and {z" Iz - (p/4)l < p/4} c a(Cp). 

P r o o f. (i) From Lemma 2 and [4, Theorem VII I . I . l l ]  we see that the spectrum cr (Ap) 
is contained in {z: Re(z) < - 2/p}. From Lemma 1 then we have ~r(Ae) = {z: Re(z) 
< - 2/p}. It follows in particular that 0 is in the resolvent set of A e. Let R(2, Ae) 
= ( 2 -  Ap) -1 denote the resolvent operator for 2 in the resolvent set. We see that 
R(0, Ae)=  C e. Further for the spectrum of Cp we have cr(Cp)= { - l / z :  z e a ( A p ) }  
= {z : [z  - (p/4)l < p/4}. This shows also that II r e  II >_- p/2. For  the opposite inequality 
[4, Corollary VIII.l.14] applies and gives II R (0, Ae)I1 _-< p/2. Thus IICe II = p/2. 

(ii) Using the estimate II T, lie --< e<-2/e)t we see that the spectrum of E e is contained in 
{z : Re (z) __< - 2/p}. We calculate the resolvent of E e at 2 -- 0 and we find that for 
f (z) = Y~ a,z"  ~ A e, 

n>= O 

Z n " (3.1) R(O, E e ) ( f ) ( z  ) = ,=>02 n + (4/p) k=0 

Using the estimate It T, ILe < e(- 2/e)t and [4, Corollary VIII.I.14] we see that II R (0, Ep)II 
<= p/2. Now let L e be the operator defined for f ( z )  ~ A e by 

z 
1 (3.2) L e ( f ) ( z  ) = f ( z )  + ((4/p) - J) ~ S f ( O d (  " 

0 

We see that Lp acts on f ( z ) =  Z anz"~ A e as a multiplier of Taylor coefficients: 
n_>-O 

{a,} --+ {2,a,} where 2, = (n + (4/p))/(n + 1). Also since the operator of integration has 
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norm equal to 1 on A p, from (3.2) we find [[ Lp [[ < I + [(4/p) - 1 i = 4/p. Observe now that 
C v = LpoR(O,  Ep) so for the norm we have [tCpl[ < tlLv[[I[R(O, Ep)[I = 2. In particular 
C v is bounded on A p for 1 N p < 4 and this implies that the point 0 is in the resolvent set 
of Ap. From Lemma 1 we then have that a(Cp) contains the set { - I / z :  R e ( z ) <  

- 2/p} = {z: [z  - (p/4)l < p/4}. Thus [tCpl[ > p/2 and this completes the proof. 

R e m a r k. There is no hope to prove l[ Cp [1 = p/2 lbr the full range 1 __< p < 0% since 
on the Hilbert space A 2 we have {[ C a 1t > 1. Indeed for the constant function f = t, 
111112=1, C ( 1 ) ( z ) = l + ( t / 2 ) z + ( 1 / 3 ) z  2 + - - . ,  and [[C 2[I ->l[C(1)[ lz= 52 i /n  3 > 1 ,  

n=>l 

In fact setting q = 2IIC(1)112 > 2 and letting p~(2,  q) we have [[C(I)IIp > tIC(l)[I2 
= q/2 > p/2 so []Cp[[ => [tC(1)[[p > p/2 for 2 < p < q. The same phenomenon of bad 
behaviour of the norm for small values of p appeared on Hardy spaces [t~], where the 
bad range is 1 < p < 2. 

4. Spectra of composition operators. As a byproduct  of  the above we obtain ~n~brma- 
tion for the spectrum of composition operators 

C , ( f ) =  f~  f E A  p,  

induced by the maps ~b(z) = rz/((r - l )z  + 1), 0 < r < I. The spectra of composition 
operators on Hardy  spaces were studied by H. Kamowitz [6] and by many others. 
Functions ~b of the above form are a special case of those considered in [6, Theorem 3.8]. 
For  our ~b the results of [6] give the spectrum of C o on H p to be 
a ( C ,  : H p) = {z : Izt < r 1/~'} l j  {1}. Using the estimates of Lemma I and Lemma 2 we are 
going to find that a similar result holds for the spectrum of C 6 on A v. Setting r = e - ' ,  
0 < t < o% we have the composition operators C , ( f )  = f o  ~t where ~b, are given by (2.1). 
From (2.2) we see that M~ oS, = C t ~ M~, t > 0, where M= is the operator of  multiplication 
by z. We can relate the spectra of St and Ct by the following lemma. 

Lemma 3. Suppose I < p < oo. Then for  each t > O, ~r(Ct : A p) = a(St  : A p) ~ {1}. 

P r o o f. First we determine the point spectra. Suppose 2 E C with C , ( f )  = 2 f  i.e. 
f o ~ t = 2 f .  This is a Schroeder's equation and has analytic solutions only for 
2 e {(q~'t(0))" : n = 0, 1, 2, . ,  .}. For  each such 2 the solution is unique [f0, p. 93]. Since 
~b't(0 ) = e -t  and since the function h, (z) = z"/(l - z ) "  satisfies Schroeder's equation for 
2 = e -"t, n = 0, 1, 2 . . . . .  we see that a~(Ct : A p) = {e-"t : z"/(1 - z)" ~ A p} = {I} for p > 2 
and a~(Ct : A p) = {1, e -t} for 1 < p < 2. Similarly we find a,~(St :A  p) = {e -t} for 
1 N p < 2 and a ,  (St : A p) is empty for p > 2. 

Next let 2 e �9 such that 2 --- Ct is invertible. Then 2 -  S t is injective and we will show 
that it is also surjective and thus invertible. Indeed let 9 e A p then the function 
y (z) = (2 - Ct) ~ 1 (z9  (z)) is in A p and vanishes at 0 (because 2 + 1) so from [14, p. 75] we 
have y(z ) / z  e A p and it is easy to see that (2 - St)(y(z) /z)  = g(z) so 2 - S, is surjective. 
Conversely suppose /t - S t is invertible and 2 4= 1, then 2 - C t is injective. I f g  e A p 
then (g (z) - g (O))/z E A P. Set y (z )=  (2 - S t ) - l ( ( g  (z) - g (O))/z) and Y l (z) = z y (z) 
+ (2 - 1)- ! g (0) e A p. It is easy to see that (2 - Ct) (TO = g so 2 " C~ is also surjective 
and the proof  is complete. 
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We now use Lemma 1 which states that {z : Re (z) __< - 2/p} ~ ~ (Av). From the general 
theory of strongly continuous semigroups [8, Theorem 2.3] we have {etX:2 e ~(Ap)} 
c ~(St : A p) hence {z :[z] <__ e (-2/p)t} ~ a(S~ : A p) for 1 _-< p < 0o. For  p __> 4 using Lem- 
ma 2 we then obtain tr(S~ : A p) = {z :]z[ < et-2/P)t}. Using these and Lemma 3 and re- 
calling that e -t  = r we obtain: 

Proposition 1. Let  d? (z) = rz/((r - 1) z + 1), 0 < r < 1, and Cr the operator of  composi- 
tion by ~b on A p. The following holds. 

(i) I f  p >- 4, then cr (C,) = {z: Izl _-< r z/p} w {1). 
(ii) I f  i <= p < 4, then {z : lz l  5- r 2Iv} u {1} = a(C,).  

5. A general result on the Cesiiro operator. In this section we state a general necessary 
condition for C to be bounded on certain Banach spaces of analytic functions. Let X be 
a Banach space consisting of analytic functions on E) such that: 

(P 1) X contains the constant functions. 
(P 2) The multiplication operator M z (f)(z)  = z f  (z) is bounded on X. 
(P 3) Point evaluations are continuous linear functionals of X. 

Examples of spaces satisfying these conditions include: 

(1) The Hardy spaces H p (1 < p < ~) .  
(2) The Bergman spaces A p and their weighted versions A~, 1 < p < ~ ,  ~ > - 1, with 

norm t[ f ]]~,~ = ~ [f(z)]P( 1 - IzlZ)~dm(z) �9 
D 

(3) The family of weighted Dirichlet spaces ~ , ,  ~ > - 1 ,  with norm [[ f I[~ = If(0)12 
+ ~ If '(z)lZ(1 -IzlZ)=dm(z). 

D 

The spaces in the last example are Hilbert spaces, ~0 is the classical Dirichlet space. 
In order for the Ces~ro operator to be bounded on such spaces X, it is necessary that 

X contains relatively fast growing functions. More precisely: 

Theorem 2. Let X be a Banach space of  analytic functions on D satisfying the properties 
(P1), (P2) and (P3). Assume C is bounded on X,  then 

(i) (1 - z)-~ E X for all sufficiently small positive s. 
(ii) tl C [Ix > C/Sx where c = 1/]t Mz [Ix and s x = sup {s : (1 - z) -~ e X}. 

P r o  of .  Since point evaluations are bounded functionals we have O,(z)-~g(z) 
for each z e D whenever 9,, g e X and [ t g , -  91]x ~ 0. Assume C is bounded and let 
B = M z o C. Applying B to the constant function 1 we find B (1)(z) = log (1/(1 - z)) and 
by iterating, 

B" (1) (z) = ~ log" , n = 1 , 2 , 3  . . . .  

Let s be positive such that s II B lix < 1, then we obtain 

ls"log"( 1 ) ~(silBIIx)"tllllx, 
x 
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and it follows that  the series 

1 
Y ~ (s log (l/(1 - z)))" 

n>___0 

converges in X. Since point  evaluations are cont inuous on X, we see that  the sum of 
the series coincides with the pointwise sum which is the function (1 - Z)" .  It follows 
that  ( 1 - z ) - s E X  for each s with 0 < s < 1 / ] l B l l x ,  providing the first part.  Fur ther  
s x = sup {s : (1 - z) -s ~ X} -> 1/[] B [Ix and since 1[ C ]Jx => [I B IIx/][ Ms Ilx the second par t  
follows. 

Theorem 2 can be applied to give lower estimates on the norm of C on various spaces. 
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