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A b s t r a c t  The problem of optimal structural design having 
linked discrete variables is addressed. For such applications, when 
a discrete value for a variable is selected, values for other vari- 
ables linked to it must also be selected from a table. The design 
of steel structures using available sections is a major application 
area of such problems. Three strategies that combine a continu- 
ous variable optimization method with a genetic algorithm, simu- 
lated annealing, and branch and bound method are presented and 
implemented into a computer program for their numerical evalu- 
ation. Three structural design problems are solved to study the 
performance of the proposed methods. CPU times for solution 
of the problems with discrete variables are large. Strategies are 
suggested to reduce these times. 

1 I n t r o d u c t i o n  

In many structural engineering applications, optimization 
problems have design variables that can assume only some 
predetermined values. Such variables are called discrete. 
When some of the variables are discrete and others are con- 
tinuous, we have the so-called mixed variable nonlinear pro- 
gramming problem. Several optimization methods have been 
developed and tested to deal with such problems since the 
1960s. A detailed review of the methods has been presented 
by Arora et al. (1994). Some recent developments in this area 
can also be found in the work of Huang (1995) and Huang 
and Arora (1995, 1997). 

The design of structural steel frames using the AISC 
(American Institute of Steel Construction) standard sections 
is an example of discrete variable optimization problems. 
However, this represents a special class of discrete variable 
problems in which the section properties (e.g. section area, 
moment of inertia, section dimensions, etc.) are not inde- 
pendent of each other. Once a value for one design property 
is specified, each of the remaining properties must also be 
assigned a unique value. These properties are linked to each 
other via a table of commercially available sections, such as 
Table 1 of AISC sections (note that the table lists only a few 
of the standard sections; the manual includes several hun- 
dred sections). For example, the data in the first row of 
Table 1 must be used when the standard section W36x300 is 
selected during the optimization process. A gradient-based 
optimization method may not be appropriate for such appli- 
cations because relationships among the properties cannot be 
expressed analytically. If each property is treated as an in- 
dependent design variable, the final solution would generally 
be unacceptable since the properties would have values that 
cannot coexist. It is also not possible to use one of the prop- 
erties as the only design variable because other properties 

cannot be calculated analytically using just that property. 

There are other engineering applications where linked dis- 
crete variables occur, such as engine types, electric motor 
types, bolt type, gear type, crank shaft type, etc. A de- 
tailed review of the approaches that have been used for this 
important class of applications has been presented recently 
by Arora and Huang (1996). An overview of that work is 
presented later in this paper. 

Purpose of this research is to propose, develop, imple- 
ment and evaluate methods for structural optimization prob- 
lems having linked discrete design variables (design proper- 
ties). Three strategies are proposed that combine the use of a 
continuous variable optimization method with a branch and 
bound method, simulated annealing or genetic algorithm, to 
create a solution process. 

Section 2 contains the problem formulation and AISC re- 
quirements. The linked discrete variables are defined in sev- 
eral ways for different strategies. Cost and constraint func- 
tions are also described. Section 3 contains an overview of 
the approaches that have been used recently for problems 
with linked discrete variables. Section 4 presents three new 
approaches based on different definitions of design variables 
and the optimization algorithms used. Section 5 describes 
the structural design problems used to test the implemen- 
tations. Section 6 contains numerical results with different 
strategies and their comparative evaluation. Finally, Section 
7 contains some concluding remarks. 

2 P r o b l e m  f o r m u l a t i o n  a n d  AISC specif icat ion 

The design of steel structures is formulated as a nonlinear 
programming problem in this section. For this problem, each 
member must be chosen to have the shape and dimensions 
that are available in the AISC tables. The design variables for 
the structure are identified, a cost function is defined based 
on minimizing the weight of the structure, and the constraints 
are explained. 

2.1 Design variables 

The AISC manual contains tables for available members of 
various shapes. In this study, we use only the open sections 
such as I-sections (including W-shapes, M-shapes, S-shapes 
and tiP-shapes). The test problems described later in Section 
5 are solved using the 187 W-shape members. Depending on 
the optimization strategies used (described later), the design 
variables can be defined in one of the following three ways. 
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Table 1. Some AISC standard sections (out of 187 W-shape sections) 

A d tw b t f  Ix Sx rx Iy Sy ry 
W36x300 88.30 36.74 0.945 16.665 1.680 20300 1110 15.20 1300 156 3.830 
W36x280 82.40 36.52 0.885 16.595 1.570 18900 1030 15.10 1200 144 3.810 
W36x260 76.50 36.26 0.840 16.550 1.440 17300 953 15.00 1090 132 3.780 
W36x245 72.10 36.08 0.800 16.510 1.350 16100 895 15.00 1010 123 3.750 
W36x230 67.60 35.90 0.760 16.470 1.260 15000 837 14.90 940 114 3.730 
W36x210 61.80 36.69 0.830 12.180 1.360 13200 719 14.60 411 67.5 2.580 
W36x194 57.00 36.49 0.765 12.115 1.260 12100 664 14.60 375 61.9 2.560 

A: cross-sectional area (in2), d: depth (in), t,~: web thickness (in), b: flange width (in), tf: flange thickness (in), Ix: moment of inertia 
about the x-x axis (in4), Sx: elastic section modulus about the x-x axis (in3), r~: radius of gyration with respect to the x-x axis (in), 
Iy: moment of inertia about the y-y axis (in4), Sy: elastic section modulus about the y-y axis (in3), ru: radius of gyration with respect 
to the y-y axis (in) 

2.2 Cross-section type 1 

Four design variables for each section. They are the depth 
d, flange width b, web thickness tw, and the flange thickness 
tf. Figure 1 shows this type of a cross-section and associ- 
ated design variables. The total  number of design variables 
is 4NG, where NG is the total  number of member groups in 
the structure (a group is a collection of members having the 
same cross-sectional and material  properties). The design 
variables for the entire structure are 

x =  (Xl ,X2, . . .  ,XNG) T =  

[(d, b,tw,~fh, (e,b,tw,tf)2,..., (d, b,~w,t0Na] T . (1) 

d 

i 
i 

Y 

Fig. 1. Cross-section of a steel member 

2.3 Cross-section type 2 

One design variable for each member. In the present formu- 
lation, only the moment of inertia about the x-axis (Ix) is 
used as the sole design variable for each group (other section 
properties such as the section area can also be used as the 
primary variable), i.e. 

x = (Xl ,X2, . . .  ,xNG) T = ( I X l , I X 2 , . . . , I x N G ) .  (2) 
For this type of design variables, other section properties 
must be related to Ix somehow. 

2.3.1 Cross-section type 3 
One design variable for each member. Only the AISC section 
number N is used as the sole design variable for each group, 
i.e. 

x = (Xl ,X2, . . .  ,xNG) T = ( N 1 , N 2 , . . . , N N G )  T �9 (3) 

When a section number for a member is specified, all the 
section properties can be obtained from the table of available 
sections. 

2.4 Cost function 

The cost function which is to be minimized is taken as the 
weight of the structure (in kips) and is expressed as 

NG 
w(x) = ~ piAiLi, (4) 

i= l  
where the subscript i denotes the group number, Pi is the 
material weight density (kips/in3), A i is the cross-sectional 
area (in2), and L i is the sum of the lengths (in) of all members 
in the i-th group. Other costs, such as fabrication, life-cycle, 
maintenance and operations costs, can be added to the cost 
function, if they are known and can be expressed in terms of 
the design variables. 

2.5 Constraints 

At any design point, the structure must be analyzed to eval- 
uate the constraints, such as the stress constraints (i.e. axial, 
bending, shear, and combined action stresses), constraints to 
prevent local buckling, constraints on overall member buck- 
ling, displacement constraints, and explicit bounds on the 
design variables. They are explained in the following para- 
graphs. These constraints are usually implicit functions of 
the design variables because explicit expressions for them 
cannot be written in terms of them. 

2.5.1 Stress constraints 

The stress constraints are based on the AISC specifications 
which state that  the steel members subjected to compression, 
bending, and shear forces should satisfy 

f~ cmh < 1 (5) 
~ a  -4- (1 -- f a / F e ) F  b - ' 

in h 
o.6---~ + ~ -< 1, (6) 

fs  < 1 (7) 
F s -  
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When ~ _< 0.15, the following equation may be used in lieu 

of (5) and (6): 

fa + fb < 1 ,  (8) 

where fa, fb, and fs are the calculated axial, bending, and 
shear stresses respectively, and Fa, Tab, and Fs correspond to 
those given in the AISC manual (kips/in2); Fy is the yield 

stress (kips/in2), F'is the Euler stress (kips/in 2) divided by a 
factor of safety and Cm is a coefficient whose value is depen- 
dent on the type of joint. AISC recommends using Cm = 0.85 
for compression members in frames having joint translation. 
For truss members, fb = fs = O. 

2.5.2 Displacement constraints 

Limits are imposed on displacements of the joints as 

I~il-< 5iN, 5iv > 0, (9) 

where 5 i is the calculated displacement (inch) of the i-th de- 
gree of freedom and aiu is its upper limit. 

2.5.3 Constraints to prevent local buckling 

The AISC manual also specifies some requirements on the di- 
mension and length of a member. The laterally unsupported 
length L of the compression flange of members must satisfy 
the following two constraints: 

20000 wt f  
L < Fy h ' (10) 

76w 
L _< ~ y y .  (11) 

The dimensions of the cross-section must also satisfy 

w 95 
< - -  (12) 

2t f v ~ y  ' 

h - 2t f  14000 
< (13) 

tw - X/Fy(Fy + 16.5) ' 

where Fy has units of ksi in (10) to (13). Note that  these 
four constraints cannot be imposed when only the moment 
of inertia is used as the sole design variable (cross-section 
type 2). 

2.5.4 Design variable constraints 

Upper and lower bound constraints are imposed on all design 
variables as XiL <_ x i <_ xiu , i = 1 , . . . , n ,  where n is the 
number of design variables, and XiL and x iu  are, respectively, 
lower and upper bounds for the i-th variable. 

2.6 Standard steel sections 

The section properties of the AISC standard steel sections 
are stored in a file and accessed by the optimization pro- 
gram when searching for a discrete solution. Table 1 shows 
a description for some of the AISC sections. The table is 
augmented with the values for a,  /3, and 7 for the sections 
(to be used in the solution process that  is explained later). 
These are calculated as follows: 

A Sx r y (14) 
- vqT'  ~ = (ix)0.75-, " l -  (~x)0.25, 

where Sx and ry are the section modulus and the radius of 
gyration, respectively. 

3 O v e r v i e w  of  t h e  l i t e r a t u r e  

A detailed review of literature for structural optimization 
problems with linked discrete variables has been recently 
presented by Arora and Huang (1996). In this section an 
overview of that  l i terature is presented. 

Interest in discrete variable structural optimization goes 
back to 1960s when Toakley (1968) applied integer linear pro- 
gramming (ILP) methods for optimal design of plastic and 
elastic structures. The design of plastic structures was for- 
mulated as an LP problem which was transformed to an in- 
teger variable problem. The elastic design of determinate 
trusses subjected to displacement constraints was also for- 
mulated as a mixed integer-continuous variable LP problem. 
The algorithms used were: Gomory's cutting plane method 
(Gomory 1960), branch and bound method (implicit enumer- 
ation) and heuristic techniques, l~einschmidt (I971) also for- 
mulated plastic design of building frames as an ILP prob- 
lem and solved it using Oeoffrion's (1967) branch and bound 
method. Elastic design of trusses subjected to stress and 
displacement constraints was formulated as a nonlinear pro- 
gramming (NLP) problem which was linearized and solved 
as a sequence of linear IP problems. The same problem was 
solved directly without linearization or introduction of inte- 
ger variables using the branch and bound method by Celia 
aa~d Logcher (1971). A filtered pattern search was used dur- 
ing the branching phase of the algorithm where each trial de- 
sign was analysed using the approximate reanalysis approach 
to reduce the computational effort. A direct method combin- 
ing Box's algorithm and Hooke and Jeeve's method was used 
by Lai and Auchenbach (1973). Liebman et  al. (1981) trans- 
formed the problem to a sequence of unconstrained problems 
that  were solved using an integer discrete gradient algorithm. 
An enumeration algorithm for discrete variable optimization 
of trusses with stress and displacement constraints was de- 
veloped by Hua (1983). The method exploits the structure 
of the problem to develop heuristics that  reduce the size of 
enumeration. 

More recently, two phase approaches have been used to 
obtain a discrete solution for the problem with linked discrete 
variables. In the first phase, the problem is formulated and 
solved as a standard nonlinear program. In the second phase, 
the continuous solution is used as a starting point and a dis- 
crete variable optimization method is used to obtain the final 
solution. The solution approaches have been divided into four 
broad categories based on how the problem is formulated and 
solved (Arora and ttuang 1996). The first two approaches use 
only one design variable for each member of the structure, the 
third one uses mixed single and multiple design variable for- 
mulations, and the fourth one uses rounding-off procedures 
for the final solution. 

3.1 Single Variable approaches with approximations 

In this approach, one of the section properties (e.g. area or 
moment of inertia) is treated as a continuous design variable 
for each member (Type 2) and other properties are approxi- 
mately linked to it by a curve fitting procedure. With  this for- 
mulation, gradient-based optimization methods can be used 
to solve the problem. Main drawbacks of the approach are: 
(i) all the design code constraints cannot be imposed during 
the optimization process, (ii) the approximate representation 
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of section properties is not accurate for all the available sec- 
tions, and (iii) when new section become available, the ap- 
proximate relationships between the properties must be red- 
erived. One may get around this dilemma to some extent 
by dividing the available sections into smaller groups. Each 
group would contain only the sections for which more accu- 
rate relationships can be developed for various properties. 

Based on the foregoing ideas, Grierson and coworkers 
have extensively developed and demonstrated procedures for 
discrete variable optimization. For example, Grierson and 
Lee (1984) formulated the problem of optimal design of 2D 
frameworks using the section area as the only design variable. 
Database of available sections was extensively analyzed and 
divided into several data  sets. The optimization process con- 
sisted of two phases. Phase I used 3 iterations of a continuous 
variable optimali ty criterion method to obtain a good starting 
point for Phase II. The available sections were not assigned 
in this phase. In Phase II, a discrete solution was obtained 
using a specialized discrete variable algorithm. Grierson and 
Lee (1986) extended their previous work on optimization of 
steel frames to include constraints under ult imate load con- 
ditions. Grierson and Cameron (1989) described features of 
a computer program required for practical applications in de- 
sign of steel frameworks. A two phase procedure was demon- 
strated for a 2D mill crane building framework. Cameron 
er aI. (1991) extended previous work for discrete variable 
optimization of 2D frameworks to design of 3D frameworks. 
Chan (1992) and Chan et al. (1995) developed a procedure for 
optimal design of tall  building steel frameworks using avail- 
able sections. In the procedure, the drift constraint, member 
strength constraints and interstorey drift constraints were im- 
posed in a sequential manner by optimizing separate prob- 
lems. The last phase of the solution process involved final 
discrete member specification. For the continuous solution, 
penalty on the structural weight for each member to be speci- 
fied a higher available section was calculated. A few members 
that  had the least penalty on the weight were assigned dis- 
crete available sections, and continuous variable optimization 
was performed again with the reduced set of design variables. 
The procedure was continued until all members had been as- 
signed discrete sections. A 3D unsymmetrical frame was used 
to demonstrate the optimization procedure. This adaptive 
member selection procedure worked quite well and is similar 
to the one proposed by Arora (1989) and demonstrated for 
optimum design of truss structures. 

Using the section number as the only design variable, 
Balling (1991) implemented a simulated annealing (SA) 
method for optimum design of 3D steel frameworks using 
available sections. To reduce the number of analyses required 
in SA, approximation concepts were used to reanalyse the 
structure (Barthelemy and tIaftka 1993). An exact analysis 
was performed for the final design to check its feasibility. A 
member-by-member search strategy based on random num- 
ber generation was used to come up with a good initial design 
for the SA procedure. In this strategy, the members were al- 
lowed to change within four neighbouring sections. In the sec- 
ond phase, the SA strategy repeatedly generated candidate 
designs in a neighbourhood of the current design by randomly 
perturbing one of the discrete variables. If the candidate de- 
sign was infeasible while the current design was either fed- 

sible or less infeasible, it was rejected right away. The final 
solution for an unsymmetric 3D 6-storey frame subjected to 
3 loading conditions was compared to the one obtained with 
the linearized branch and bound (LBB) method of Hager and 
Balling (1988). 

May and Balling (1991, 1992) developed a filter for the SA 
strategy that  blocks many of the poor designs and speeds-up 
the search process. A candidate design was passed through 
the filter when a calculated probabili ty was larger than a 
random number; otherwise the candidate was rejected and 
a new candidate was generated. The strategy retained the 
essence of the SA method where worse designs were occasion- 
ally passed through the filter. The new method was shown 
to be more efficient than the standard SA and slightly more 
efficient than the LBB. 

3.2 Single variable approaches without approximations 

Instead of using approximate relationships between the sec- 
tion properties, the table containing data  for all the avail- 
able sections can be used directly in structural  optimization. 
For example, the section area A can be used as the sole dis- 
crete design variable (type 2) and, when structural analysis is 
needed, the table can be searched to obtain proper values of 
other section properties. Therefore, optimal design problem 
formulation becomes more general in which other properties 
are related to the sole design variable via the property table. 
However, these relationships are not continuous or differen- 
tiable, and so, a gradient-based method cannot be used. 

Another approach would be to use the available section 
number as the integer design variable for each member. Once 
the section number is specified, all its properties can be ob- 
tained from the appropriate row of the table and used in all 
the calculations. Liebman et al. (1981) have used this ap- 
proach for optimal design of steel frames. The constrained 
optimization problem is transformed to an unconstrained 
one using the interior penalty functions. The problem is 
then solved using the integer gradient direction method of 
Glankwahmdee et al. (1979). Three example problems are 
solved: a reinforced concrete beam and two framed struc- 
tures. The table of available sections needs to be rearranged 
such that  the section areas are in an ascending order. All 
the design code constraints can be explicitly checked. An 
initial feasible point is needed to start  the search process. 
The method is simple to implement; however, it can be quite 
time-consuming on the computer because integer gradient 
evaluation as well as step size calculation can require a large 
number of analyses. Amir and Hasegawa (1989) have also 
used an approach that  is quite similar to the one used by 
Liebman et al. (1981). In their approach, all continuous vari- 
able are also discretized. Some modifications to the approach 
are suggested to improve the search process; i.e. if the pro- 
cess fails along the calculated discrete search direction, then 
some neighbourhood points are searched for improved solu- 
tions. Three example problems are solved: a hollow rectan- 
gular simply supported beam, a reinforced concrete beam, 
and a mill building structure. 

Simulated annealing and genetic algorithms (stochastic 
methods) can also be used to solve problems with linked dis- 
crete variables. The methods are known to be slow; however, 
an advantage is that  the gradients of functions are not re- 
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quired. Therefore analytical relationships among the proper- 
ties need not be provided and the property table can be used 
directly. The section number can be used as the sole de- 
sign variable. All the design code constraints can be checked 
since all the section properties are precisely known. In their 
pure form, these approaches have not been used for design 
of steel frames because they are extremely time-consuming. 
The techniques, however, can be combined with other meth- 
ods to reduce the computational burden. 

3.3 Mixed single and multiple variable approaches 

Another approach to deal with dependent design properties 
is to treat  some of them as independent design variables. 
Hager and Balling (1988) have developed a two-phase proce- 
dure for optimum design of planar steel frames using multi- 
ple section properties as design variables along with a branch 
and bound method. The procedure was demonstrated on a 
a-bay, 8 storey frame. In Phase I of the procedure, a con- 
tinuous variable optimization problem was formulated and 
solved using the section area, strong axis moment of inertia 
and section modulus as the design variables. The final con- 
tinuous solution, however, is not likely to be close to any of 
the discrete sections. This difficulty was mitigated by adding 
enveloping constraints to the continuous optimization prob- 
lem. Using all the "economy sections", a convex hull was 
constructed which essentially defined new linear constraints 
for the problem, forcing the final solution to be close to the 
available discrete sections. In Phase II, a modified branch and 
bound method (BBM) was used to determine the discrete 
solution. To reduce the size of the enumeration in BBM, 
small neighbourhoods consisting of 3 or 4 sections around 
the continuous optimum design for each member were de- 
fined. Even with that  strategy, the number of trial designs 
was quite large, requiring enormous computational effort for 
structural analysis. To overcome this difficulty, the prob- 
lem was linearized about the continuous solution using the 
three design variables of Phase I. Thus, the Phase II prob- 
lem became an LP problem, and so, the method was called 
the linear branch and bound method (LBB). The problem 
was solved using the Simplex method of linear programming. 
Then some more members were assigned discrete sections, 
and the procedure was continued until all the members had 
been assigned available sections. The difficulty of infeasibil- 
ity of linearized problems during BBM was encountered and 
a procedure to overcome it was discussed. It is noted that  all 
the design code constraints cannot be imposed due to the se- 
lection of the linearization variables for the problem. Bailing 
and Fonseea (1989) extended the LBB method to optimize 
3D steel frames. Five section properties were used as design 
variables instead of the three for 2D frames. They were: area, 
two moments of inertia and two section moduli. 

3.4 Rounding-off methods 

If a problem can be formulated and solved with continuous 
design variables, then the simplest way to obtain a discrete 
solution is to use a rounding-off procedure. For structural 
design problems, the variables are usually rounded-up result- 
ing in a conservative design. An alternat e approach would be 
to increase only some variables to their upper discrete neigh- 
bours and decreased others to their lower neighbours. The 

main difficulty with this approach would be the selection of 
the variables that  should be increased or the variables that 
should be decreased. Huang and Arora (1995, 1996) describe 
a dynamic rounding-up method which increases only one vari- 
able at a time to its upper discrete neighbour. The selected 
variable is then fixed and the problem is optimized again, 
allowing other variables to change. This process is repeated 
until all variables have been assigned discrete values. 

In another approach (A1-Saadoun and Arora 1989), four 
design variables are used to formulate and solve the problem 
using an SQP method. For the final solution, each member is 
selected from the available ones using one of the following two 
criteria: (i) selection based on optimum depth and section 
modulus, and (ii) selection based on optimum section mod- 
ulus and minimum area of cross-section. Another approach 
is suggested by Arora (1989, pp. 491-495) for the optimal 
design of trusses. The discrete member selection process is 
dynamic and works as follows: Once a continuous solution 
is obtained, a member that  gives the least penalty for the 
cost function due to discrete specification, is selected from 
the available sections. The sensitivity of the cost function 
to design variables is used to calculate this penalty for the 
cost function. Keeping the selected members as fixed, the 
problem is then reoptimized using the continuous variable 
method. The process is continued until all members have 
been selected from available sections. 

4 T h r e e  de s ign  s t r a t e g i e s  

In this section, three strategies are presented for optimization 
of steel structures using available sections. All the strate- 
gies have two phases and are based on the following algo- 
rithms: genetic algorithm, simulated annealing, branch and 
bound method and sequential quadratic programming (SQP) 
method. Details of these methods have been presented else- 
where, so they are not presented here (Arora et al. 1994; 
krora and Huang 1996; Huung 1995; Huang and Arora 1995, 
1996, 1997). 

The proposed strategies fall into the class of mixed single 
and multiple variable approaches of Section 3.3. They are 
defined as: GADSS - Genetic Algorithm for Design of Steel 
Structures, SADSS - Simulated Annealing for Design of Steel 
Structures, and BBMDSS - Branch and Bound Method for 
Design of Steel Structures. In all the methods, each group of 
members is assigned four design variables: the depth, flange 
width, flange thickness and the web thickness of each cross- 
section. In GADSS, an SQP method is used in Phase I to 
find a continuous solution. A candidate section set (a subset 
of the AISC table) is created for each member based on this 
continuous solution. Then a genetic algorithm is used to 
solve the discrete variable optimization problem in Phase I] 
(ttuang and Arora 1997). The algorithm SADSS is similar to 
algorithm GADSS except that  a simulated annealing method 
is used during discrete variable optimization phase (Huang 
and Arora 1996b). 

In Algorithm BBMDSS, an SQP method is also used to 
find a continuous solution for the four design variable formu- 
lation, as for the foregoing two procedures. Then a candidate 
section set is created for each member such that  the moment 
of inertia, section area and section modulus are within 5% of 
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Table 2. Grouping information for the 200-member truss 

I GrouPlMembers numbers (k = 0, 1 and j = 0, 1, 2, 3, 4) 

1 l t o 5  
2 5+3j 
3 19 to 24 
4 18+7k, 56+7k, 94+7k, 132-1-7k, 170+7k 
5 26+3j 
6 6+k, 9+k, 12+k, 15+k, 27+k, 30+k, 33+k, 36+k 
7 39 to 42 
8 43+3j 
9 57 to 62 
10 64+3j 
Ii  44+k, 47+k, 50+k, 53+k, 65+k, 68+k, 71+k, 74+k 
12 77 to 80 
13 81+3j 
14 95 to 100 
15 102+3j 
16 82+k, 85+k, 88+k, 91+k, 103+k, 106+k, 109+k, l12+k 
17 115 to 118 
18 119+3j 
19 133 to 138 
20 140+35 
21 120-l-k, 123+k, 126+k, 129+k, 141+k, 144+k, 147+k, 150+k 
22 153 to 156 
23 157+3j 
24 171 to 176 
25 178+3j 
26 158+k, 161+k, 164+k, 167+k, 179+k, 182+k, 185+k, 188+k 
27 191 to 194 
28 195, 197, 198, 200 
29 196, 199 

the ones for the continuous solution. In Phase II, the prob- 
lem is formulated using the moment of inertia as the sole 
discrete design variable for a member. Approximate relation- 
ships between the section properties are used at this stage. 
In developing these relationships, the section dimensions cor- 
responding to the continuous solution of Phase I are used. 
The allowable discrete values for the moment of inertia for 
each member are specified by the selected set of sections for 
the member. Selected sections are arranged in the ascending 

Notes 

Horizontal, top. 
Verticals. 
Horizontal, interior. 
Horizontal, exterior. 
Verticals. 
Diagonals. 
Horizontals. 
Verticals. 
Horizontal, interior. 
Verticals. 
Diagonals. 
Horizontals. 
J Verticals. 
Horizontal, interior. 
Verticals. 
Diagonals. 
Horizontals. 
Verticals. 
Horizontal, interior. 
Verticals. 
Diagonals. 
Horizontals. 
Verticals. 
Horizontal, interior. 
Verticals. 
Diagonals. 
Horizontals. 
Inclined, at base. 
Verticals, at base. 

Table 3. Results with GADSS 

INo.]Problem name ICOST] CPU] NCF] NGF I 

1 10-bar truss 2.648 1098.37 43846 361100 
2 2-bay 6-storey frame 10.12311653.00 24465 1246360 
3 200-bar truss 12.744 3408.31 27289 69369 

Table 4. Results with SADSS 

]No. lProblemname [COSTI CPU I NCF I NGF] 

1 10-bar truss 3.851 283.36 91550 166541 
order of the value for the moment of inertia. The problem is 
now solved using a branch and bound method (guang and 
Arora 1996) where the discrete variables can have nondis- 
crete values during the solution process. After each local 
minimization, members are assigned discrete sections from 
the selected set according to the values of the moment of in- 
ertia. At the end of the branch and bound method, when a 
discrete solution has been obtained, the allowable section set 
is updated based on the final values for the moment of in- 
ertia, section modulus and the section area of each member. 
Then, the BBM is repeated to obtain a new discrete solution 
(the parameter IT used in later presentations indicates the 
number of such iterations). The process is continued until 
the solution cannot be improved further. 

4.0.1 Algorithm GADSS: genetic algorithm for the design 
of steel structures 
Step 1. Formulate the structural design problem. Each group 

has four design variables: depth, flange width, flange 
thickness and web thickness (Type 1 variables). 

Step 2. Assuming all design variables to be continuous and 

Step 3. 

Step 4. 

2 2-bay6-s toreyf rame 11.974 1469.50 93109 196265 
3 200-bar truss 15.254 17569.06 289280 405565 

not linked to each other, solve the optimization prob- 
lem using the SQP algorithm (Huang and Arora 
1996). Save the design variable and cost function 
values at solution as x* and f*, respectively. 
According to x*, calculate the cross-sectional area A* 
and the moment of inertia //* (about the x-x axis) 
for each group; i = 1 , . . . ,  NG; NG is the number of 
member groups in the structure. 
For each group, search AISC steel sections (Table 1 
with all 187 sections). If a section from the table 
satisfies any of the following two criteria, then include 
the section number in the "candidate section set" for 
the i-th group (the subscript "also" indicates the data 
from Table 1): 

(a) 0.3A* < Aalsc _< 5A*, 

(b) 0.3I~ <• < 5Z* (15) 
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Step 5. Using the candidate section sets from Step 4, solve 
the discrete variable optimization problem by using 
the genetic algorithm described by Huang and Arora 
(1997). During the optimization process, only the 
section number is used as the sole design variable for 
each group (type 3 variable). The section number 
gives all the section properties needed in structural 
analysis and constraint evaluation. The design vari- 
able and cost function values at solution are saved as 
x* a n d  * discr fdiscr ' respectively. 

Note that  in Step 4, sections with area or moment of iner- 
t ia close to that  from the continuous solution are chosen to 
create the discrete section subsets. This reduces the search 
domain and enables the genetic algorithm to focus on the 
more suitable sections. Note also that, depending upon the 
application, a criterion that  is different from the one in (15) 
may be used to generate candidate sets. For the test prob- 
lems, the population size in the algorithm is set to 2NV with 
a minimum of 100 and maximum of 300 (NV is the number 
of design variables). 

4.1 Algorithm SADSS.  Simulated annealing for  design of 
steel structures 

This algorithm is the same as GADSS except that  a simulated 
annealing method described by Huang and Arora (1997) is 
used in Step 5. For each simulated annealing iteration 100 
trial designs are used. 

4.2 Algorithm BBMDSS.  Branch and bound method for  de- 
sign of steel structures 

Step 1. Formulate the structural design problem. Each group 
has four design variables: depth, flange width, flange 
thickness and web thickness (type 1 variables). 

Step 2. Assuming all design variables to be continuous and 
not linked to each other, solve the optimization prob- 
lem by using the SQP algorithm (Huang and Arora 
1996). Save the design variable and cost function val- 
ues at solution as x* and f*, respectively. Set IT = 
0 

Step 3. Set IT = IT + 1. 
According to x*, calculate the cross-sectional area 
A*, moment of inertia I* (about the x-x axis), section 
modulus S* (about the x-x axis) and radius of gyra- 

�9 (about the y-y  axis) for each group; i = 1 , . . . ,  tion r i 
NG; NG is the number of member groups in the struc- 
ture. Then calculate the following three parameters: 

, A~ f l , _  S* , r~ (16) 
~i = (z.)0.~0 ' i  ' - (~.)0.%, ~i = (i*)0 2 5  

Step 4. For each group, search the standard steel sections 
(Table 1 with all 187 sections). If a section from 
the table satisfies the first two of the following cri- 
teria and satisfies the third one for groups in which 
buckling is considered, then include the moment of 
inertia I~isc into the "candidate section set" for the 
i-th group (the subscript "aisc" indicates the data 
from Table 1): 

(a) 0.95c~* _< %isc -< 1.05a*, 

(b) 0.95/3* _< flaisc -< 1.05fl*, 

(c) 0.957* ~ 7aisc --< 1.057". (17) 

The moment of inertia IaJsc'S in the candidate section 
set are rearranged in ascending order. 

Step 5. Using the member section subsets from Step 4, solve 
the discrete variable optimization problem by using 
the branch and bound method described by Huang 
and Arora (1997). During the optimization process, 
only the moment of inertia I/ (about the x - x axis) 
is used as the sole design variable for the i-th group 
(Type 2 variable). For structural analysis, cross- 
sectional area Ai,  section modulus S i (about the x - x  
axis) and radius of gyration r i (about the y - y axis) 
for each group are calculated as follows: 

o~*(] ~0.50 * 0.75 * 0.25 
ri = 7i (Ii)  Ai  = i ,  i ,  , Si =f l i  (Ii)  , . (18) 

The design variable and cost function values at the 
solution are saved as X'disc r and f$iscr respectively. 

Step 6. If ]f* - f~iscr[ -< r where s is a small positive value 
defined by the user, then stop. Otherwise, set f* = 

f$iscr' x* = X*discr and go to Step 3. 

In BBMDSS, the discrete value sets are created according to 
(17). This allows the calculated values of Ai,  S i and r i to 
remain accurate no matter  which section is chosen from the 
discrete subset during the optimization process. 

Table 5. Results with BBMDSS for first iteration 

Imo. IProbl~name ICOSTI gsl CPUINCFINCGINGF I NTGI 
1 10-bar t russ  I 2.0571 161 18.181109411079110941 2158] 
2 2-bay 6-storey frame 5.636 130 315.11 6507 4663 6496 47559 
3 200-bar truss 14.338 126 302.72 2899 1518 2898 15277 

Table 6. Results with BBMDSS for second iteration 

INo.]Problemname ]COST]NS I CPUINCFINCGINGF I NTG] 
I 1 10-bartruss [ 1.722132[ 17.21111851116111185] 2477 I 

2 2-bay 6-storey frame 5.399 70 36.4211494 461 1489 4752 I 
3 200-bar truss 14.271 64 139.91 852 636 850 11796 

Table 7. Results with BBMDSS for third iteration 

[No. IProblem name ICOST]NSI CPU]NCF]NCG]NGF I NTG] 
1 10- rtruss ] 1.7221 321 1902111801 11621 11801 3479 I 
2 2-bay 6-storey fraxae 5.384 58 33.28] 1674] 363 1668 3717 
3 200-bar truss 13.788 48 147.32 1381 504 1376 10394 

5 Tes t  p r o b l e m  

The following three test problems are used to evaluate the 
three algorithms. They are modified from the problems given 
by Hang and Arora (1979). The objective of each problem is 
to minimize the weight of the structure. All members must 
be selected from the 187 AISC W- Shape steel sections. Final 
designs for the problems are given in Section 6. The num- 
ber of constraints for each problem is calculated as follows: 
number of displacement constraints = NLC*NOD, number of 
stress constraints = 2NLC*NM, and number of local buck- 
ling constraints = 4NG, where NLC = number of loading 
conditions, NOD = number of degrees of freedom, and NM 
-- number of members. 
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5.1 Problem 1: Design of a lO-bar cantilever truss 

Figure 2 shows the geometry and dimensions of a 10-bar can- 
tilever truss. This structure has 6 joints (4 are free) and 8 
degrees of freedom. One loading condition is imposed for the 
structure: 100 kips acting in the negative y direction at node 
points 2 and 4. The displacement limit is set to -t-2 in. along 
each degree of freedom. Other problem data are given as 
follows: modulus of elasticity: 30000 ksi, material density: 
0.283 lb/cu, in., and yield stress: 36 ksi. This problem has 
68 constraints and 40 design variables of type 1 (10 of Type 
2 or 3). 

1 0 2 0 

75" 

I J  "~L.," 75" ~ ]  
i ~ 75" ~ i ~ 

Fig. 2. 10-bar space truss 

5.2 Problem 2. Design of a 2-bay &storey frame 

Figure 3 shows the geometry and dimensions of a 2-bay 6- 
storey frame. This structure has 30 members divided into 
the following 18 groups: (1, 2), (6, 7), (11, 12), (16, 17), 
(21, 22), (26, 27), (3, 5), (8, 10), (13, 15), (18, 20), (23, 25), 
(28, 30), (4), (9), (14), (19), (24) and (29). It has 21 joints 
and 54 degrees of freedom (x, y translations and a rotation 
at joints 1 through 18). Two loading conditions are imposed: 
(1) uniformly distributed load of 0.3333 kip/in in the negative 
y direction on elements 1, 7, 11, 17, 21 and 27, and 0.0833 
kip/in in the negative y direction on elements 2, 6, 12, 16, 22 
and 26; and (2) uniformly distributed load of 0.0833 kip/in in 
the negative y direction on elements 1, 2, 6, 7, 11, 12, 16, 17, 
21, 22, 26 and 27, and loads of 9 kips each at nodes 1, 4, 7, 10, 
13 and 16 in the positive x direction. The displacement limit 
is set to •  in. along each degree of freedom. Other problem 
data are given as follows: modulus of elasticity: 30000 ksi, 
material density: 0.283 lb/cu, in., and yield stress: 36 ksi. 
This problem has 300 constraints and 72 design variables of 
type 1 (18 of type 2 or 3). 

5.3 Problem 3. Design of a 200-member plane truss 

Figure 4 shows the geometry and dimensions of a 200-member 
plane truss. The 200 members are divided into 29 groups 
as shown in Table 2. This structure has 77 joints and 150 
degrees of freedom. Three loading conditions are imposed on 
the structure: (1) one kip acting in the positive x direction 
at node points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71; (2) 
10 kips acting in the negative y direction at node points 1, 
2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 2 4 , . ,  
71, 72, 73, 74, 75; and (3) loading conditions 1 and 2 acting 
together. Some problem data are given as follows: modulus 
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Fig. 3.2-bay 6-storey plane frame 

of elasticity: 30000 ksi, material density: 0.283 lb/cu, in., 
and yield stress: 36 ksi. This problem has 1316 constraints 
and 116 design variables of type 1 (29 of type 2 or 3). 

6 N u m e r i c a l  resu l t s  

The following data are collected and reported for comparative 
evaluation of the algorithms: 
COST: cost function value 
NS: number of subproblems solved 
CPU: execution time (seconds) 
RCPU: relative execution time with respect to that for the 

continuous problem 
NCF: 
NCG: 
NGF: 
NTG: 
NIT: 

number of cost function evaluation 
number of gradients evaluated of the cost function 
number of calls for constraint function evaluations 
total number of gradients evaluations 
number of iterations 

6.1 Algorithms GADSS and SADSS 

Results with algorithms GADSS and SADSS are shown in 
Tables 3 and 4, respectively. Note that  the data in the tables 
do not include measurements from Steps 1-2 of each algo- 
rithm. Steps 1-2 are the same for all three algorithms (a 
continuous subproblem is formulated and solved to prepare 
the discrete subsets). The results for Steps 1-2 are given later 
in Table 9 with the SQP method. The cost function values 
for all the three test problems are smaller with GADSS as 



32 

60" " - ~  Tab le  9. Results with SQP method for the continuous variable 
formulation 

[No. lProblem name ICOST INITI CPUINCFINCG INOFINTO I 
1 10-bar truss 1.386 53 2.85 158 53 158 912 
2 2-bay 6-storey frame 5.136 108 26.64 478 108 478 4606 
3 200-bar truss 6.742 74 56.61 202 74 202 2562 

Tab le  10. Comparison of algorithms 

No. Problem name GADSS SADSS BBMDSS Continuous 
(NV, NC) solution 

1. 10-bar truss 'COST 2.65 3.85 1.72 1.39 ' 
(40, 68) CPU 1101 286 57 2.9 

RCPU 380 99 20 1 
2. 2-bay 6-story COST 10.12 11.97 5.38 5.14 

frame ~CPU 11680 1497 412 26.6 
(72,300) RCPU 439 56 15 1 

3. 200-bar truss COST 12.74 15 .25  13.79 6.74 
(116, 1316) CPU 3465 17653 647 56.6 

RCPU 61 312 11 1 

evaluated  first. If  the  cand ida te  design is infeasible, i t  is 
re jected and  a new design is genera ted .  I f  a design is rejected 
based on infeasibility, i ts  cost func t ion  is no t  evaluated.  Thus  
in Tables 3 and  4, the  n u m b e r  of cost func t ion  evaluat ions 
is always smal ler  t h a n  the  n u m b e r  of calls for the  cons t ra in t  
funct ion  evaluat ion.  

Fig. 4. 200-member plane truss 

compared  to SADSS. We also used the  genetic a lgo r i thm to 
solve the  same problems  wi thou t  first p repar ing  the  reduced 
discrete subsets .  The  results  showed tha t ,  when  all the  avail- 
able sect ions  were used as the  allowable discrete subsets ,  the  
cost funct ion  values at  the  solut ion and  the  C P U  t imes  were 
much  higher.  The  s imula ted  annea l ing  (wi thou t  the  reduced 
discrete subsets)  had  a s imilar  behaviour .  Th i s  shows t h a t  
the select ion of allowable discrete sets is cri t ical  for the  ge- 
netic a lgor i thm and  s imula ted  anneal ing .  

Table  8. Results with BBMDSS for the fourth iteration 

INo. I Problem name [COSTINS [ CPUINCFINCGINGF I NTG I 

1 10-bar truss I 1.722 321 19.33[ 1180[ 11621 11801 3479 I 
2 2-bay 6-storey frame 5.384 50 92.26 6840 988 6834 7083 
3 200-bar truss 13.680 62 186.96 1353 774 1347 14664 

Note t h a t  in b o t h  GADSS and  SADSS, r a n d o m  designs 
are generated.  For each design, the  cons t ra in t  funct ions  are 

6.2 Algorithm BBMDSS 

Tables  5-8 show the  results  for all three  problems  wi th  BB- 
MDSS which uses an  i te ra t ive  procedure  to improve the  dis- 
crete solutions.  At  each i t e ra t ion  (IT),  a discrete solut ion 
is found which is used to create an improved  discrete sub- 
set for each design variable,  and  the  p rob lem is re-solved. 
This  process cont inues  unt i l  the  cost func t ion  value cannot  
be reduced.  For all th ree  problems,  the  good solut ions are 
found in less t h a n  five i te ra t ions  ( IT  < 5). One d isadvantage  
of BBMDSS is t h a t  the  local buckl ing cons t ra in t s  canno t  be 
imposed,  as no ted  previously.  Th i s  a lgor i thm does not  use 
the  d imensions  of the  cross-section as design variables,  so 
calculat ions  for these cons t ra in t s  are no t  possible.  Al though,  
at  any  design point ,  the  d imens ions  can be  ob ta ined  from 
the  AISC database ,  there  is still  no viable  way to impose 
these cons t ra in t s  w i thou t  making  the  func t ion  nondifferen- 
t iable  (Step 5 of BBMDSS uses a b r a n c h  and  b o u n d  me thod  
which requires differentiable funct ions) .  One solut ion would 
be to l imit  the  member s  in the  discrete sets to  the  ones t h a t  
satisfy the  local buckl ing  cons t ra in ts .  

Tab le  11. AISC sections for 10-bar truss 

Group GADSS SADSS BBMDSS BBMDSS BBMDSS 
No. I T =  1 IT = 2 I T =  3 

1 W 14x30 W 27x84 W 14x30 W 16x36 
2 W 6x15 W 8x28 W 6x20 W 6x20 
3 W10x39 W21x44 W 10• W 10x45 
4 W6•  W 16• W 6• W 6x20 
5 W 12x26 W6x15  W6x20  W6x20  Same as 
6 W6x15 W10x33 W6x20  W6x20  I T =  2 
7 W 10x49 W 16x67 W 10x49 W 6x20 
8 W 10x49 W 24x68 W6x20  W6x20  
0 W 10x54 W 16x67 W4•  W4X13 

W 12x53 W 24x68 W 5x19 W 5x19 
Cost 2.648 3.851 2.057 1.722 1.722 
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6.3 Discussion of results 

Results for the problems with continuous variables (without  
the use of available sections) using the SQP method are given 
in Table 9. Comparison of the cost function values and ex- 
ecution t imes with M1 the algori thms are given in Table 10. 
Final section designations for the problems are given in Ta- 
bles 11 to 13. Table 10 also contains da ta  for the continuous 
solutions. Also, CPU times for BBMDSS are based on three 
i terat ions of the a lgor i thm for each problem. Note that  when 
AISC sections are used, the cost function value is usually 
much higher than  tha t  for the continuous solution since some 
of the sections at the solution may  be over-designed with re- 
spect to some of the section properties.  For example, when a 
section with a large moment  of inert ia  is needed, the chosen 
section may have a cross-sectional area tha t  is much larger 
than what  is needed. 

Table 12. AISC sections for 2-bay 6-storey frame 

Group GADSS SADSS BBMDSS BBMDSS BBMDSS BBMDSS 
No. I T = I  I T = 2  I T = 3  I T = 4  

1 W 12x53 W 14x61 W 8x21 W 8x21 WSx21 
2 W12• W10x49 W8x28 Wgx28 WSx28 
3 W 12X53 W 10• W 10• W 10• W 10• 
4 W 14x61 W 27x84 W 12• W 12x26 W 12x26 
5 W 12• W 27x84 W 14• W 14x26 W 14• 
6 W 14• W 27• W 10• W 10• W 10• 
7 W 18• W 18• W 10• W 10• W 10x17 
8 W6x15 W 10x22 W 10• W8• W8• Same as 
9 W 12• W 21x44 W 10• W12• W12• I T =  3 
10 W 10• W 12• W 14• W 14• W 14• 
11 W 14• W 18x35 W 16x26 W 16• W 16• 
12 W 16• W 21• W 16• W 16• W 16• 
13 W 6• W 8• W 12• W 8• W8• 
14 W 8• W 14• W 12• W 12• W 12• 
15 W 8• W 14• W 18• W 14• W 14• 
16 W 18x35 W 14x30 W 18• W 16• W 16• 
17 W 14X30 W 27• W 18• W 16x31 W 16• 
18 W 16• W 18x35 W 24x62 W24x62 W24x62 

Cost 10.1225 11.9740 5.6358 5 .3990  5 .3839 5.3839 

The three proposed strategies, SADSS, GADSS and BB- 
MDSS, perform fairly well for all the test problems in the 
sense that  they all find a solution; i.e. they are reliable. The  
CPU times needed to solve the problems are large compared 
to those for the continuous variable problems. This is ex- 
pected for any discrete variable opt imizat ion problem having 
10-29 discrete design variables (40-116 linked discrete vari- 
ables). Among  the three methods,  BBMDSS was the most 
efficient but  it did not  give the best solution in all the cases 
(for Problem 3, a be t ter  solution was obtained with GADSS).  
The  SADSS approach was more efficient than the GADSS ap- 
proach, except  for Problem 3; however, the final solution was 
always worst than  tha t  with the GADSS or BBMDSS. It  is 
difficult to draw very general conclusions from these experi- 
ments; a larger set of test problems needs to be used. One 
point is clear that ,  if  the problem can be formulated with 
continuous and differentiable functions, then the BBMDSS 
method  is the best choice; however, this is not  always possi- 
ble. 

7 Concluding remarks 

Optimizat ion of  engineering systems having linked discrete 
design variables is discussed in this paper.  Such problems 
in s tructural  engineering are encountered when one considers 

design of steel frames using s tandard  sections. Here specifi- 
cation of a section number  or a proper ty  f rom the available 
sections dictates the use of all the remaining properties for 
tha t  section. For such problems, most of the discrete variable 
optimizat ion methods presented in the l i terature cannot be 
readily used. For example,  the branch and bound method 
discussed in engineering opt imizat ion  l i terature is not capa- 
ble of handling this type of problems because its subproblem 
solver normMly requires continuity and differentiabiIity of the 
problem functions. In the present work, it was used by defin- 
ing one section proper ty  as the pr imary  design variable for 
each member  group and then relat ing other  section properties 
to it via empirieM relationships. 

It is impor tan t  to note that  the search process with the 
genetic algori thms and simulated annealing can be acceler- 
ated considerably with the use of parallel processing and re- 
analysis of the modified structure.  In both  the methods, 
many designs need to be generated and evaluated. Wi th  the 
parallel processing capabilities, many of the designs can be 
analysed at the same t ime reducing the total  wall-clock t ime 
required to solve the problem. Also, many new al ternat ive de- 
signs that  need to be analysed are only slightly different from 
a baseline design. Therefore, it is possible to explore the use 
of re-analysis methods to determine response of the modified 
structure.  This  may  reduce the to ta l  computa t ional  effort 
needed to solve the problem. Both of these capabilities will 
allow design opt imizat ion  of larger structures.  Thus research 
work needs to continue in order to develop and evaluate bet- 
ter methods for opt imizat ion of problems having linked dis- 
crete variables with a focus on design of steel frameworks. 
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Tab le  13. AISC sections for 200-bar truss 

Group GADSS SADSS BBMDSS BBMDSS BBMDSS 
No. IT = 1 IT = 2 IT = 3 

1 W 6x15 W 6 x 1 5  W 6x15 iW 6x15 W 6x15 
2 W 8x10 W 12x14 W 6x15 W6)<15 W 6 x 1 5  
3 W 6x 9 W 10x12 W 6x15 W 6 x 1 5  W 6 x 1 5  
4 W 12x16 W 10x12 W 6x15 W 6x15 W 6 x 1 5  
5 W 12x14 W 6 x  9 W 6x15 W 6x15 W 6 x 1 5  
6 W 6 x 1 2  W 1 6 x 2 6  W 6 x 1 5  W 6 x 1 5  W 6 x 1 5  
7 W 6x15 W 1 2 x 2 6  W 6 x 1 5  W 6 x 1 5  W 6 x 1 5  
8 W 8x10 W 14x22 W 6x15 W 6x15 W 6 x 1 5  
9 W 8x10 W 8 x l 0  W 6x15 W 6x15 W 6 x 1 5  

10 W 4 x 1 3  W S x l 0  W 6x15 W 6 x 1 5  W 6 x 1 5  
11 W 6x 9 W 14x22 W 6• W 6 x 1 5  W 6 x 1 5  
12 W 8 x 1 8  W 1 4 x 2 2  W 6 x 1 5  W 6 x 1 5  W 6 x 1 5  
13 W 4 x 1 3  W 12x14 W 6x15 W 6 x 1 5  W 6x15 
14 W 6 x 1 2  W 14x22 W 6 x 1 5  W 6 x 1 5  W 6 x 1 5  
15 W 8x15 W 12x16 W 6x15 W 6 x 1 5  W 6 x 1 5  
16 W 8 x 1 3  W 4 x 1 3  W 6x15 W 6 x 1 5  W 6 x 1 5  
17 W 6x25 W 16x26 W 6x15 W 6 x 1 5  W 6 •  
18 W 8 x 2 1  W 5 x 1 9  W S x 2 8  W S x 2 8  W 8 x 2 8  
19 W 5 x 1 9  W 1 0 x 1 2  W 6 x 1 5  W 6 x 1 5  W 6 x 1 5  
20 W 10x26 W 10x22 W 8x35 W 8 x 3 1  W 8 x 2 8  
21 W S x l 0  W 8 x 1 5  W 6 x 1 5  W 6 x 1 5  W 6 x 1 5  
22 W 6x25 W 12x26 W 6x15 W 6x15 W 6x15 
23 W 18x35 W 12x35 W 8x40 W 8 x 4 0  W 8 x 4 0  
24 W 6x12 W 6 x 1 6  W 8x24 W 8 •  W S x 2 4  
25 W 2 1 x 5 0  W 1 8 x 3 5  W 8x40 W 8 •  W 8 x 4 0  
26 W 8x10 W 12x16 W 8x28 W 6x15 W 6 x 1 6  
27 W 6x25 W S x 1 8  W 6x15 W 6x15 W 6 x 1 5  
28 W 10x54 W 1 2 x 5 3  W 5 •  W 8 x 4 8  W 6 x 2 5  
29 W 8 x 4 8  W 1 6 x 5 7  W 12x79 W 10x49 W 1 2 x 7 2  

Cost 12.7437 15.2540 14.3384 14.2712 13.7880 

BBMDSS BBMDSS 
IT = 4 IT ---- 5 
W 6x15 
W 6x15 
W 6x15 
W 6x15 
W 6• 
W 6x15 
W 6• 
W 6• 
W 6• 
W 6)<15 
W 6x15 
W 6• 
W 6• 
W 6x15 Same as 
W 6• IT = 4 
W 6x15 
W 6• 
W 8x28 
W 6• 
W 8x28 

W 6x15 
W 6x15 
W 8x40 
W 8x24 
W 8x40 
W 6x15 
W 6x15 
W 6x25 
W 12x65 
13.6797 13.6797 
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