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Partial  re laxat ion of the orthogonality  requirement for classical 
Michell  trusses  

G.I,N.  Rozvany  

FB 10, Essen University, Postfach 10 37 64, D-45117 Essen, Germany 

A b s t r a c t  It is often stated, even in standard references, that 
in classical Michell trusses (i.e. least-weight trusses for one load 
condition with a stress or compliance constraint) a pair of inter- 
secting compression and tensile bars must always be orthogonal. 
The aim of this brief note is to show that there are important ex- 
ceptions to this rnle and that the modification of this restriction 
enables us to obtain new classes of solutions. 

1 I n t r o d u c t i o n  

The theory of least-weight trusses for one load condition and 
a stress constraint was established in a milestone contribu- 
tion by Michell (1904). His pioneering work remained largely 
unnoticed until the late fifties, after which Hemp (e.g. 1973) 
developed a systematic and rigorous theory of Michell trusses, 
which was partially based on the theory of slip-lines (Hencky- 
Prandtl  nets) for plane perfectly plastic solids. 

Hencky-Prandtl  nets consist, in general, of a system of 
orthogonal intersecting curves. In his outstanding book on 
optimal structures, for example, Hemp (1973) states about 
Michell trusses: "If a pair of tension and compression mem- 
bers meet at a point, they must be orthogonal . . .  No other 
members can be coplanar with them". 

It will be clear from this note that,  in the context of the 
problems treated by Hemp (1973), the above restriction is 
completely justifiable. However, it will be shown that  there 
are classes of correct optimal solutions for Michell's prob- 
lem, which could not be obtained within this orthogonality 
restriction. 

Whilst the above comments refer to one load condition 
with a stress or compliance constraint, it was shown in the 
early nineties (e.g. Rozvany 1992; Rozvany et al. 1993; Roz- 
vany and Birker 1995) that  for several load conditions or 
for displacement constraints, least-weight trusses in general 
consist of nonorthogonal networks of members. Moreover, 
whilst the optimal microstructure for perforated plates in 
plane stress with a compliance constraint (e.g. Lurie et al. 
1982; Kohn and Strang 1986) consists of an orthogonal sys- 
tem or rank-1 and rank-2 ribs, Lurie (1994, 1995) showed re- 
cently that  for so-called non-selfadjoint problems (e.g. those 
with displacement constraints) the optimal microstructure is 
in general nonorthogonal. Explicit optimal solutions for non- 
selfadjoint plate problems were presented recently by Kgrolyi 
and Rozvany (1997). 

The subsequent discussion, however, is restricted to the 
orthogonality condition for the "classical" Michell problem. 

The conclusions of this note were mentioned in an invited 

principal lecture by the author at a recent A I A A / A S M E /  
ASCE/AIIS /ASC meeting (Rozvany 1997). 

2 A b r i e f  s u m m a r y  o f  M i c h e l l ' s  o p t i m a l i t y  c r i t e r i a  
a n d  of  o p t i m a l  r e g ions  in  M i c h e l l  t r u s s e s  

In his classical paper, Michell (1904) considered the optimiza- 
tion of truss layouts subject to the stress constraints 

- ~ o  < ~ < r  (i) 
where cr is the stress in a truss member and (~o ,  c~+) are 
the permissible stresses in compression and tension. Michell's 
optimality condition states that  for a virtual strain field ~ on 
the structural domain (7) C ~ 2  or ~ 3 )  we must have 

= k s g n f  ( f o r f ~ 4 0 ) ,  (2) 

I ~ l < k  (for f = 0 ) ,  (3) 

where k is a positive constant, f is the force in a bar and 
sgn f is the usual sign function (sgn f = 1 for f > 0 and 
sgn f = - 1  for f < 0). This means that  on line segments of 
the structural domain along which there is no truss element 
we must still satisfy the inequality condition (3). 

It was shown recently (Rozvany 1996) that  Michell's 
(1904) optimality criteria in (2) and (3) are generally valid 
only for equal permissible stresses in tension and compres- 
sion ( r  = r  We shall therefore consider this lat ter  case 
herein. 

For plane trusses, the optimality criteria in (2) and (3) 
permit the following five regions at any point with a member 
in at least one direction (Prager and Rozvany 1977): 

R+:-Q=k, I~iI<k, f />0,  fli=O, 
R-: ~i• Iv• h < 0 ,  fH=0, 
S + : - ~ l I = - g l i = k ,  f I  > O, f l i  > O, 
s-:  @ =-Qz =-k,  h < 0 ,  h i<0,  
T : g i = k ,  -gli--:-k, f i > O ,  f l l < O ,  

(4) 

where ~I and -r are the principal adjoint strains, and f l  and 
fII the corresponding member forces. 

As can be seen from (4), in R regions members run in only 
one direction and have forces of the same sign; in S regions 
members with forces of a given sign may run in any direction, 
and in T regions a set of members in compression and a set 
of members in tension intersect each other at right angles. 

The layout of various types of optimal regions, together 
with the symbols commonly used for them, are shown in Fig. 
1, in which continuous and broken thin lines, respectively, 
denote tension and compression bars. 
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Fig. 1. Types of optimal regions in Michell trusses 

3 N o n o r t h o n g o n a l  m e m b e r  j u n c t i o n s  in so lu t ions  
w i t h  T r eg ions  

Hemp's (e.g. 1973) brilliant contributions to this field in- 
cluded not only the correct optimality criteria for different 
permissible stresses in tension or compression ((to + # ~ro), 
but also a most systematic treatment of possible geometrical 
properties of T regions. 

In the context of optimal layouts consisting of T regions, 
the orthogonality condition quoted in the Introduction is usu- 
ally satisfied. The only exceptions are isolated points where 
"fans" with forces of different signs meet. This is the case 
at point A of Michell's (1904) classical solution (Fig. 2), but 
also at point B of its extension (Fig. 3) by Hemp (1973). At 
these points, an infinite number of members meet and only 
the outside members satisfy the above orthogonality condi- 
tion. However, these two isolated points seem to be the only 
exceptions to the orthogonality rule in all the solutions dis- 
cussed by Hemp, who treated mostly layouts consisting of T 
regions. 

t e n s i o n  b a r s  
c o m p r e s s i o n  b a r s  

Fig. 2. Michell's solution for a simply supported truss with a 
central point load 

4 N o n o r t h o g o n a l  t e n s i o n  a n d  c o m p r e s s i o n  m e m b e r s  
a long  t h e  b o u n d a r y  o f  an  R + a n d  a n  R -  r e g i o n  

Whilst for T regions the violation of the orthogonality rule 
is most exceptional, it was found in the study of R regions 

S s ~ s S S J J ~  %%%%%%%% 

,,Z 
'i ~ I I I I I ~ ~ ~lr 

Fig. 3. Hemp's generalization of Michell's solution to a load at a 
higher level 

(e.g. Rozvany and Gollub 1990) that  along the boundary of 
an R + and an R -  region the members in these two regions 
are in general not orthogonal to each other. The above au- 
thors developed a systematic method for deriving the optimal 
Michell layout for any convex polygonal boundary formed by 
supporting lines and their solutions confirm the above conclu- 
sion. Typical optimal truss layouts for a quadrilateral bound- 
ary are given in Fig. 4. In Fig. 4a, one tension member and 
one compression member meet at the region boundary and in 
Fig. 4b, two compression members and one tension member. 

In the detailed example that  follows, an optimal truss 
layout that  violates the orthogonality condition is derived. 

4.1 Two pin supports with a point load 

The problem under consideration, together with the optimal 
truss layout is shown in Fig. 5a. The kinematic boundary 
conditions for the supports are (Fig. 5b) 
u = v = 0, (5) 
where ~ and ~ are the adjoint displacements in the x and y 
directions. Due to skew-symmetry, we have ~ -- 0 along y -- 0 
(Fig. 5b) and along the top and bot tom bars, respectively, we 
must have ~ = k and ~ = - k  (see the double arrows denoting 
/~+ and R -  regions in Fig. 5b). Using the normalized value 
of k = 1, the Mohr circle for the adjoint strains in the top 
region is shown in Fig. 5c. In the latter, we have (for ~ > 45 ~ 
r -- R(1 - cos 2c~) --- 1, (6) 
R = 1/(1 - c o s  2~), (7) 
where R is the radius of the Mohr circle. It follows then from 
Fig. 5e that  

l + c o s 2 a _  cot 2 a .  (8) 
~II = - R ( 1  + cos 2a) - - 1  - cos2a 

Then the inequality optimality condition in (3) requires 

I e• I= c~ ~ < k = 1 ~ a _> 45 ~ . (9) 
This means that  the limiting case for this optimal layout is 

the one shown in Fig. be. For ~ >_ 45 ~ the solution satisfies 
all optimality, boundary and continuity conditions for the 
adjoint strain fields. 

For ~ = 90 ~ the obvious optimal solution is shown in Fig. 
5d, where for (to+ = ~r o the load can arbitrari ly be shared by 
the top and bot tom bars. The solution in Fig. 5e is well- 
known, together with the solutions for a < 45 ~ in Fig. 5f 
(e.g. Hemp 1973). The optimal solution derived in this note, 
therefore, is also confirmed by its limiting cases, which are ei- 
ther obviously optimal (Fig. 5d) or known from earlier studies 
by others. 
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Fig. 4. Michell trusses for polygonal supports with nonorthogonal 
member junctions along R + / I t  - type region boundaries 

5 E x t e n s i o n  to  space  trusses  

Hemp's (1973) orthogonality requirement was formulated in 
the context of 3I) or space trusses. The example in Fig. 5 can 
also be extended to a 3D truss system, if we have a supporting 
plane and a series of point loads along a line (Fig. 6). In this 
example, the adjoint strain in the third direction (normal to 
the x y  plane) is ~ = 0. 

6 C o n c l u d i n g  r e m a r k s  

It is clear from the above discussion that the orthogonality 
requirement for a pair of interseting tension and compression 
bars in a Michell truss is in general violated along R + / R  - 
type region boundaries. This means, however, that the con- 
sidered members in a given direction do not pass through 
their point of intersection but end at that point. The orthog- 
onality condition, therefore, would become of general validity, 
if we replaced the word "meet" with "cross", resulting in the 
statement: "If a pair of tension and compression members 

tv 
_ = = o t' /2 

a(~ ~ =  0 is ./~/ I~1 

o2 // o2 
- ~  szz = - cot 2 c~ ~ ~ I I  

~ a ( a )  (b) (c) 

= 90 ~ 

d = 0 (d) 

f /  ps 

d = a  (e) d > a  (f) 
Fig. 5. Detailed example of a Michell truss with nonorthogonal 
compression and tension members 

Fig. 6. Michell space-truss with nonorthogon~I tension and com- 
pression members 

cross each other, they must be orthogonal.. .  No other mem- 
bers can be coplanar with them". The above formulation 
excludes region boundaries where members "meet" but do 
not "cross each other". 

The second part of the modified statement becomes also 
generally valid, because we may only have tension and com- 
pression members in more than two directions at region 
boundaries (see Fig. 4b). 

Although the above modification of the orthogonality re- 
quirement may appear trivial, it opens up new avenues of 
optimal Michell layouts (see Figs. 4 and 5). 
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