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A b s t r a c t  Yield stresses, allowable stresses, moment capaci- 
ties (plastic moments), external loadings, manufacturing errors, 
etc., are not fixed quantities in practice, but must be modelled 
as random variables with a certain joint probability distribution. 
In reliability-oriented structural optimization the violation of the 
random behavioural constraints are evaluated by means of the cor- 
responding probability p, of survival. Hence, the approximative 
computation of p~ and its sensitivities is of utmost importance. 
After the consideration of lower bounds of p~ based on a selec- 
tion of certain redundants in the vector of internal forces/bending 
moments, and the consideration of upper bounds of p~ based on 
an optimizational representation of the yield or safety constraints 
by a pair of dual linear programs, a conical representation of p~ 
is introduced based on a cone Yo of admissible pairs of external 
loads/strength increaments. Approximations of p~ can be con- 
structed then by replacing the (finitely generated) cone Yo by 
more simple ones, e.g. spherical or ellipsoidal cones. For the di- 
rect numerical computation of sensitivities of Ps and its bounds 
or approximations by using e.g. sampling methods or asymptotic 
expansion techniques based on Laplace integral representation of 
multiple integrals, exact differentiation formulae - of arbitrary or- 
der - for p, and its bounds or approximations with respect to 
deterministic input or design variables are obtained by applying 
the transformation method/stochastic completion techniques; the 
derivatives of p~ are represented again by certain expectations or 
multiple integrals. 

1 L imi t  (collapse) load analys is  of s t r u c t u r e s  as a 
l inear  p r o g r a m m i n g  p r o b l e m  

Assuming that the material behaves as an elastic-perfectly 
plastic material (Hodge 1959; Neal 1965) a conservative es- 
timate of the collapse load factor AT is based (Haftka et al. 
1990; Kirsch 1993; Tin-Loi 1995) on the following linear pro- 
gramm: 

maximize A (la) 

s.t. F L < F < F  U, (lb) 

CF = ARo. (Ic) 

Here, (lc) is the equilibrium equation of a statically indeter- 

minate loaded structure involving an m • n matrix C = (cij), 
m < n, of given coefficients cij , 1 < i < m, 1 < j < n, de- 
pending on the undeformed geometry of the structure having 
no members (elements); we suppose that rank C = m. Fur- 
thermore, Ro is an external load m-vector, and F denotes the 
n-vector of internal forces and bending-moments in the rele- 
vant points (sections, nodes or elements) of lower and upper 
bounds F L, F U. 

For a plane or spatial truss (Lawo et al. 1980; Spillers 
1972) we have that n = no, the matrix C contains the direc- 
tion cosines of the members, and F involves only the normal 
(axial) forces moreover, 

L Fj : : ~ L j A j ,  F y : : ~ U . A j ,  j : l , . . . , n ( : n o ) ,  (2) 

where Aj  is the (given) cross-sectional area, and ~rLj ~r U. 
' Y3 ' 

respectively, denotes the yield stress in compression (nega- 
tive values) and tension (positive values) of the j - th  member 
of the truss. In case of a plane frame, F is composed of 
subvectors (Spillers 1972), 

F( k ) :  F(k) 2 : m + , (3a) 

F(k) 3 ~ 
where F(k) l  : t k denotes the normal (axial) force, and 

F(k)2 : mk+ , F(k)3 : m k are the bending-moments at the 

positive, negative end of the k-th member. In this case F L, 
F U contain - for each member k - the subvectors 

F(k)L = _Mkpl  , F(k)U = Mkp l , (3b) 

-Mkp~ Mkp~ 
respectively, where Mkp b k = 1 , . . . ,  no, denotes the plastic 
moments (moment capacities) (Hodge 1959; Neal 1965) given 
by 

Mkpl = U (3c) Cry k Wkps , 

and Wkp t = Wkpe(Ak) is the plastic section modulus of the 
cross-section of the k-th member (beam) with respect to the 
local z-axis. 

For a spatial frame (Lawo 1980; Spillers 1972), corre- 
sponding to the k-th member (beam), F contains the sub- 
vector 

m + m + - - I (4a) F(k) : : ( t k ' m k T '  k~ k~ 'mk  9 'mk~)  ' 

where t k is the normal (axial) force, mkT the twisting mo- 

ment, and m+k~' m-~, mkff , -  mk~- denote four bending mo- 

ments with respect to the local ~-, z- axis at the positive , 
negative end of the beam, respectively. Finally, the bounds 
F L-, F U for F are given by 

[ L A M ~ _ M  y ~ z  M y ~zz F(k)L : <~yk ~ k , -  kpt' kps ' -  kpt'-~'~kP g) 

(4b) 

: kpe' kp~' ~V~kp~' kp~' ' 
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where, (cf. Hodge 1959; Neal 1965), 

:= ~yk Vr kp~, ~Wkp~ := ~ Wkpg : 

(4d) 

are the plastic moments of the cross-section of the k-th 
element with respect to the local twisting axis, the local 
~-, g-axis, respectively. In (4d), W~p~ = W;p~(X) and 

x = kpf = W~pi( ), respectively, denote 
the polar, axial modulus of the cross-sectional area of the 
k-th beam and ry k denotes the yietd stress with respect to 

torsion; we suppose that ry k = r yk" 
Remark 1.1. Possible plastic hinges (Hodge 1959; Lawo 

1987; Neal 1965) are taken into account by inserting appro- 
priate eccentricities ekl > 0, ekr > 0, k = 1, . . .  ,no, with ekl , 
ekr < <  Lk, where L k is the length of the k-th beam. 

Remark 1.2. Working with more general yield polygons 
(Arnbjerg-Nielsen 1991; Tin-Loi 1990; Zimmermann 1991), 
the stress condition (lb) is replaced by the more general sys- 
tem of inequalities 

H ( F U ) - I F  _< h .  (5a) 

Here, (H, h) i s  a given u x (n + 1)matrix, and F y  := (FUhij) 
denotes the n x n diagonal matrix of principal axial and bend- 
ing plastic capacities 

F u  := u v w ~ j  (5b) CrykjAkj, F y  := ykj kdp~, 

where kj, nj are indices as arising in (3b)-(4d). The more 
general case (ha) can be treated by similar methods as the 
case (lb) which is considered here. 

2 P las t ic  and  elast ic design of  s t r uc tu r e s  

In the plastic design of trusses and frames (Kirsch 1993) hav- 
ing no members, the n-vectors F L, F U of lower and upper 
bounds 

rL =  L(Gtr ,x), = (6) 
for the n-vector F of internal member forces and bending- 
moments Fj, j = 1 , . . . ,  n, are determined (Haftka et al. 1990; 
Kirsch 1993) by the yield stresses, i.e. compressive limiting 
stresses (negative values) tryL = (~yL1,.. " ,~Lno), ' the tensile 

yield stresses tryU = (~rU 1 ~U V , - . . ,  ynoJ , and the r-vector 

X = ( X l , X 2 , . . . , X r ) '  (7) 

of design variables of the structure. In case of trusses we have 
that, of. (2), 

r L = tr dA(X)= A(X)dtr , 

F U = tr dA(X) = A(X)dtr , (8) 

where n = no, and trL trU denote the n x n diagonal yd ' yd 
matrices having the diagonal elements Cryj,L qyj,U respectively, 
j ---- 1, . . .  ,n; moreover, 

i ( X )  = [ & ( X )  . . . . .  A ~ ( X ) ]  t (9) 

is the n-vector of cross-sectional areas Aj  = Aj(X), j = 
1 , . . . ,  n, depending on the r-vector X of design variables Xk,  
k = 1 . . . . .  r, and A(X)d denotes the n x n diagonal matrix 
having the diagonal elements Aj  = Aj(X),  1 < j < n. 

Corresponding to (lc), here the equilibrium equation 
reads 

C F  = I t u ,  (10) 

where Ru describes (Kirsch 1993) the ultimate load [repre- 
senting constant external loads or self-weight expressed in 
linear terms of A(X)]. 

The plastic design of structures can be represented then 
(Arnbjerg-Nielsen 1991; Augusti et a11984; Kirsch 1993; Roz- 
vany et al. 1995) by the optimization problem 

minG(X) ,  ( l la)  

L L U,X) < F < FU(tryL,trU,x) (11b) s.t. F (try, try 

CF = Ru ,  (11c) 

where G = G(X) is a certain objective function, e.g. the 
volume or weight of the structure. 

Remark 2.1. As mentioned in Remark 1.2, working with 
more general yield polygons, ( l lb)  is replaced by the condi- 
tion 

H[FU(tr~, X ) d ] - l r  < h .  (11d) 

For the elastic design we must replace the yield stresses 
t rL  trU by the allowable stresses tra L, tr U and instead of 
ultimate loads we consider service loads Rs. Hence, instead 
of (11) we have the related program 

minG(X) ,  (12a) 

s.t. FLttrL, a,  trUa, X) < F < FU(trL, t r Y , x ) ,  (12b) 

CF = I t s ,  (12c) 

X L < X < X  U, (12d) 

where X L, X U still denote lower and upper bounds for X. 

3 Analysis  and  design of  s t r u c t u r e s  in t he  case o f  
r a n d o m  d a t a  

In practice, yield stresses, allowable stresses, the loads ap- 
plied to the structure, other material properties and the man- 
ufacturing errors are not given fixed quantities, but must be 
treated as random variables on a certain probability space 
(~2, A, p). Hence, (1), (11), (12) are stochastic programs 
which have the same basic structures represented by a ran- 
dom objective function 

Z(w) := G(w,X),  w � 9  (13a) 

and by stochastic constraints of the type 

c r  = It(w), (135) 

FL(~) < F < F~(w) ,  (13c) 

where t t  = R(w), w �9 /2, is a random load m-vector given 
by 

It(w) = ARo(w), It(w) = Ru(w), It(w) = Rs(w),  (14) 

respectively and for the n-vector F = (Fj) of internal member 
forces and bending-moments we have the n-vectors of random 
bounds 

FL(w) = FL(w,X) ,  FU(w) = (w,X),w � 9  (15) 

depending on an r-vector X of design variables Xk,  k = 
1 , . . . , r .  

Obviously, each realization of the random element w �9 
/2 yields new loading conditions, represented by the vector 
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R = R(ca), and therefore new arrangements F = F(ca) of 
internal forces and bending-moments. Hence, the survival of 
the structure can be evaluated by the probability of survival 

Ps := P [there is F = F(ca) such that CF(w) = R(ca) 

FL(ca) _< r(ca) _< rU(ca)], (16) and 

(see Augusti et al. 1984; Nafday and Corotis 1987), assuming 
that 
S[FL(.) ,FU(.) ,R(.)]  := {ca �9 
there is a vectorF : F(ca)fulfilling (13b) and (13c) } (17) 

is a measurable set. Denoting by IF L, F U] the n-dimensional 
interval 
[r L,F U ] : = { F � 9  L < F < F U } ,  (18) 

we find that 
S[FL(.), FU(.), R(.)] := 

{ca � 9  R(w) �9 c[rL(ca) ,  FU(ca)]} (19) 

with C[F L, F U] = {CF : F L < F < FU}, and therefore 

p~ = P {StFL(-), rU(.), ~(.1]} = 

P {R(ca) �9 c[rL(ca), rU(ca)]} : 

/ P {R(ca) �9 c[FL, rUllrL(ca) = 

r L, FU(ca) = F U } ~r(dF L, dFU),  (20) 

where ~r denotes the distribution of the bounds [FL(ca), 
FU(ca)]. Since the bounds F L, F U in (13c) depend also on 
the vector X of design variables X k ,  k = 1 . . . . .  r, cf. (15), we 
have Ps = P (X)  with the probability function 

P(X)  = P {R(ca) �9 c[FL(Ca, X),FU(ca,X)]} ; (21) 

furthermore, if the external load g = g(ca) is given by 
mR 

R(ca) = a(ca, ~):= Z ~ia(i)(ca), 
i=1 

:= ( ~ I , . . . , A m R ) ' ,  (22) 

with random m-vector R(i) = R(i)(ca), i = 1 . . . .  , m R ,  
and deterministic coefficients Ai, i  = 1, . . .  , m R ,  then PS = 
P(A, X) with 

P(A, X) := 

p l ~ A i R ( i ) ( c a ) e C [ F L ( c a , X ) , F U ( c a , X ) ] } .  (23) 
k i : l  

Especially, in the case of trusses and with R(ca) := 
ARo(ca), for the consideration of ps we have the following 
probability functions: 

PA(A, X) := 

(24a) 

(24b) 

Ps(X) := P {Its(ca) �9 C[A(X)d~raL(ca), A(X)derU(ca)]} . 

(24e) 
Since Ps = P(X)  are very complicated expressions in gen- 

eral, in the following we are looking for approximations of 
ps = P(X)  by simpler probability functions. For simplifica- 
tion, P(X)  is used also to denote P(A, X). 

4 Lower  a n d  u p p e r  b o u n d s  for  Ps = P(X)  

According to (19) we have that  
m 

s [r"(.), r%), N si (25a) 
i=1 

where 

si [FL(.), r~(.),~(.)] : =  

{wel2:Ri(w )eCi [FL(w),FU(w)]} , i= l , . . . ,m,  (25b) 
and C i denotes the i-th row of C. Hence, we have the in- 
equality (Cornell 1967; Ditlevsen 1979) 

P(X)  < min Pi (X) ,  (26a) 
- l < i < m  

where 

Pi(X) := P {Ri(ca) �9 ci[rL(ca, x) ,rU(ca,x)]}  (26b1 
We find that  

is an interval in ~ 1  having the bounds 

~,/L(ca, X) = m i n  CiGt(ca, X ) ,  
i<t<J  

7Y(ca, X) = m a x . C i t t ( c a , X )  (27b) 
l< t<g  

where GP = GP(w, X), t = 1 , . . . ,  J,  are the extereme points 
of the interval [FL(ca, X), FU(ca, X)]. Since the components 
G~(ca,X), j  = 1 , 2 , . . . , n ,  of GL(ca,X),t = 1 , . . . , J ,  are cer- 

tain elements of [FL(ca, X), FU(ca, X)], the measurability of 
the bounds F L, F U with respect to ca �9 (~2, A, P) yields the 
measurability of 7 L and 7Y, i = 1 , . . . ,  m, with respect to ca. 

Hence, Si[FL(.),FU(.),  g ( . ) ] , i  = 1 , . . . ,  m, are measurable 
sets, and Pi(X) is well-defined. Using (25), more exact up- 
per bounds follow from the work of Cornell (1967), Ditlevsen 
(1979), Galambos (1977) and Kounias (1968). 

4.1 Lower bounds by selection of redundants 

For the construction of lower bounds for P(X) ,  the vector 
F = F(ca) is partitioned 

r(ca) = ( F I  N ) (28) 
into a certain (n - m)-vector N = (Fj~), 1 < g < n - m 
of redundants (Kitsch 1993) Fjl  , g = 1 , . . .  , n -  m, and m- 
vector F I of statically determined member forces/bending- 
moments. Hence, with a corresponding partition of the m x n 
matrix C into m • m , m x (n - m) submatrices CI ,  C I I  , 
respectively, where 

rank C I = rank C = m,  (29) 
the equilibrium equation (13b) yields for F(ca) the represen- 
tation 



Consequently, selecting for each w C $2 a vector of redundants 
N = N(w) = [Fj~(w)], 1 < g < n - m ,  such that N(.) is a 
measurable function on (~2, A, P),  we have 

[FL( . ,X) ,FU( . ,X) ,R( . ) ]  D S[X,N( . ) ,R( . ) ]  , (31) S 

where S[X, N(.), l:t(.)] is the measurable set given by 

~[x ,  N(.),  it(.)] : :  

{~ ~ :  FL(~ ,X)  < ( C 7 1 [ i t ( ~ ) - C I ~ N ( ~ ) ] ~  < E 
- \ N(w) ] - 

F u ( ~ , X ) } .  

(32) 
Thus, for (P(X) corresponding to (Augusti et at 1984) we 
find the lower bound 
P(X)  _> /5[(X, N(.)],  (33) 

where 

/5IX, N(.)] := 

P F~i(to, X) _< N(w) _< F~l(W,X) 

(34) 

and F IL, FI  IL and F U, F/UI denotes the partition of F L, F U 
respectively, corresponding to (28). Note that inequality (33) 
holds for any choice N = (Fj~), 1 < t < n - - m ,  of an ( n - m ) -  
subvector of redundants such that (29) holds and any repre- 
sentation of N as a random vector N = N(w) on (9,  A,P);  
especially, N can be selected as a deterministic vector of re- 
dundants: 

N(w) = z a.s. (almost sure), (35) 

where z E j ~ n - m  is a deterministic vector; in this case we 
set /5IX, N(.)] = /5 (X,  z). 

~.I.i  Special cases 
(a) In case of trusses, cf. (2), (8), we have that 

F/L(w, X) = AI(X)d~r/L(w), FU(w, X) = Ai(X)dO'y(w)  

FL/(w, X) = Ai i (X)do 'L i (w) ,  F/~,(w, X) = Aii(~o)dr 
(36) 

L L U U where AI,  A I I ,  o" I , erii , cr I , ~ I I  are the partitions of A, 
tr L, ~r U, corresponding to the partition FI ,  FII of F, and 
AI(X)d denotes the diagonal matrix has the components of 
AI(X)  as its diagonal elements. Thus, we have 
P(x,~) = 

AI(X)do 'L(w)  < C~ -1 [it(w) -- CIIZ] 
< A ~ ( X ) d ~ u ( ~ )  = 

P Au(X)d~[~(w) _< 
< Au(X)~*y~(-) 
o'/L(w) _< A I ( X ) d l C / I [ R ( w  ) -- Ci iz]  

-< crU(w) ) . (37) 
e A I , ( X ) ~ L I ( w  ) < 
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(b) Suppose that the partition of F L, F U into F L, F U and 

FLI, F y  I can be chosen such that [r~(w,X),F~(~,X)], 
[FLI(w),FUI(W)] are stochastically independent. If (35) 
holds, then 

P ( x ,  z) := 
P (FL(w,X)_< C / I [ R ( w ) -  C i i z  ] < FU(w,X))  • 

, x)_<z < x ) ) .  (38) 

5 Fai lure  modes ,  l imit  s t a t e  func t ions  and  u p p e r  
bounds  for  P(X)  

According to (16) and (21) we have that 
P(X)  : P (there is F = F(w) such that CF(w) : it(w) and 

F j ( w ) - F y ( w , X ) _ < O ,  j = l , . . . , n ,  

F j L ( w , X ) - F j ( w ) < 0 ,  j : l , . . . , n ) ,  (39) 

where we suppose that all bounds Fj, F y  are finite, i.e. 

- o c  < FL(w, X) <_ FU(w, X) < +oo a.s., 1 g j _< n,VX.(40) 

Defining 

tEw, xl =l_<mj% { - Ff x), 

F L ( w , X ) -  Fj (w)}  , (41) 

we obtain 

P(X) = P (there is F = F(w) such that CF(w) = R(w) 

and t[w, F(w), X] < 0) = 

P (inf {t(w, F(w), X ) :  CF(w) : R(w)} _< 0) : 

P[t*(~, x )  < 0], (42) 
where 

t*(w, X) := inf {t[w, F(w), X] :  CF(w) = R(w)} (43) 

is the minimal value of the program 

min t[w, F(w), X]),  (44) 

s.t. CF(w) = R(w) 

being equivalent to the linear programm 
mint (45a) 

s.t. F j - F y ( w , X ) - t _ < 0 ,  j = l , . . . , n ,  (458) 

~(~, x )  - ~j - t < o, i = 1 , . . . ,  ~,  (45c) 

CF(w) = R(w), (45d) 

with the variables F1, F2 , . . .  , Fn, t. 
Because of condition (40), for each (w, X) we have 

t[w, F(w),X] > max (w, X) - (~o,X) > - o o  
- -  l<j<n -2 

(46) 
for arbitrary F(w); hence, the objective function of the linear 
program (45) is bounded from below for each (w,X). Since 
the LP (45) always has a feasible solution, for each (w, X) 

F* an optimal solution ( t*)  of (45) is guaranteed, and we have 
that 
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t* = t[w, F*(w), X] = t*(w, X).  (47) 

Consequently, by means of duality theory the optimal 
value t*(w, X) of the equivalent programs (44) and (45) can 
be represented also by the optimal value of the dual program 
of (45) given by 

max R ( w / u  - FU(w, X)tfi + + FL(w, X)tfi - , (48a) 

s.t. Clu -- fi+ + ~'- = 0, (48b) 

l 'f i  + + l ' f i -  = 1, (48c) 

fi+>_O, ~->_0, (48d) 

where u E ~ n  is not restricted. 

5.1 Remark 

Obviously, (48b) is the member-node (or joint) displacement 
equation. According to its mechanical meaning, we call (45) 
and (48), respectively, the static kinematic linear programm 
(LP) cf. Augusti et aL 1984; Ditlevsen 1984; Nafday and 
Corotis 1987; Simoes 1990; Zimmermann et al. 1991). 

Having (48), t*(w, X) reads 

t*(w, x)  = 

max -FV(w,X) ~: a+ =:aez~o , (49) 
FL(w, X) v- 

where A o denotes the convex polyhedron in ~m+2n repre- 
sented by the constraints (48b-(48d) of the LP (48). Taking 
any subset A1 C Ao of Ao, and defining then t~(w, X) by 

t~(~o,X)=sup -FV(w,x)  a : ~ e z h  , (5o) 
FL(w, X) 

corresponding to Augusti et al. (1984) we have 

t*(w, X)  >_ t~(w,X)  , (51) 

which yields for P(X)  the following upper bound: 

P(X)  = P[t*(w, X) _ 0] < P[t~(w,X) < 0]. (52) 

Moreover, if 

8 ( 0 =  fi+(/) , g =  1 , . . . , go ,  (52) 
~-(t) 

denote the extreme points of the convex polyhedron Ao, then 

t*(w,X) = max R ( w / u  (~) - FU(w,X/ f i  +(~) + 
l<e<to 

FL(w, X)%-(0,  (ha) 
which shows that t*( . ,X) is measurable. Hence, 

S [FL(.), F(.), R(.)] = {w e f2 : t*(w,X) < 0} is meau- 

table, cf. (21), (42), and we have as in the book by Augusti 
k J 

et al. (1984) 

P(X)  = P [R(w)/u (e) - FV(w, X)t f i+(0+  

FL(w, X) l f i - (  g ) _< 0,1 _< g_< go] �9 (54) 

According to (13b) and (13c), the survival or failure of 
the underlying structure can be described by the inequality 

t* (w, X) < 0, t* (w, X) > 0, respectively. (55) 

Thus, the structure fails if and only if 

R ( w / u  (~) + FV(w, X)th+(~) - FL(w, X ) ' f i - ( 0  > 0 

for at least one 1 < g < go ; (56) 

obviously, (56) represents the different failure modes of the 
structure. 

Having a certain number gl ~ go of basic solutions c~(gr), 
r = 1 . . . .  , gl, of the LP (48), and defining 

t~(w,X) := max R(w/u (&)  - FU(w,x) t f i  +(er) + 
l<r<gl  

F L(w,x)'~-(eT), (57) 
corresponding to (51), here we have, cf. (Augusti et al. 1984), 

t*(w,x) > ~ (w,x )  (58) 
and therefore 

P(X)  = P [t*(w,X) < 0] < P [t l(w,X) < 0] . (59) 

6 T h e  p robab i l i ty  of  fa i lure  p f  

According to (16), (21), (42) and (55), for the probability of 
failure p f  := 1 - Ps = 1 - P ( X )  we obtain 

p f  = P [t*(w,X) > O] = 

P [R(w)tu - FU(w, X / f i  + + FL(w, X) t f i -  > 0 

(w)] 
for at least one fi+ 6 Ao = 

f i -  

R [R(w)'u(O - FV(w, X)'a+(O + FL(w, X)',~-(e) > 0 

for at least one 1 < s < go] = 

P Fe(x) , (60) 

where Fg(X ) denotes the t-th failure domain 

Fg(X ) : :  {w 6 ag: R(w)tu(e) - FU(w, x) / f i+(e)+ 

FL(w, X/fi-( e ) > 0} = 

{w 6 9 :  Me(w , X )  < 0} �9 (61) 
with the corresponding limit stale functions (Augusti et aL 
1984; Nafday 1987; Rackwitz and Cuntze 1987) 

Me(w , X) := FV(w, x) t f i  +(0  -FL(w,  x ) t f i  - ( / ) -  R(w) 'u  (t) , 

s = 1, . . . ,go (62) 

especially, for trusses, of. (8), we find 

i e ( w  , X) := erU (w)t A ( X ) d  fi+(e) - ~rL(w)' h ( X ) d  f i-(e)  -- 

R(w)tu(/) .  (63) 

Using known inequalities for probabilities (Cornell 1967; 
Ditlevsen 1979; GMambos 1977; Kounias 1968), for pI  we 
find the bounds 

go 
max pf ~ < pf < ~ vf,e, (64) 

l<~<go J' g=l 

where pj:,g is given by 
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Pf,t := P [Fl(X)] = P [Mi(w, X) < 01 = 

p [ ~ ( ~ ,  Xl'a+(~) - FL(~, X ) ' a - (  ~1 < R(~)' .(~)]  = 

1 - P [R(w)tu (t) < FU(w, X) ' f i  +(t) - FL(w, X)'f i  - ( l ) ]  (65) 

and sharper bounds can be obtained by using more general 
inequalities for probabilities. 

7 Conica l  r e p r e s e n t a t i o n  of  Ps 

According to (20) we have that  

where [FL, F U] is given by (18). Representing therefore the 

vector F of internal member forces/bending-moments by 

F = F L +/iF L = F U -/iF U , 

with n-vectors /iF U, /iF L _> 0, the condition R E 
C IF L, F U] can be represented by 

R -  CF  U = - C A F  U 

-(F U-F L)=-/iF U-/iF L, AF U >0,/iF Lk0. (66) 
Thus, we consider the cone Yo C ~:~rn-t-n defined by 

} ]Io := I I AF L : AFU ~> 0 , A F  L >_ 0 = 

a k y  k : a  k > 0 , k = l , . . . , 2 n  , (67) 
k=l 

where the cone-generators y(k), k = 1, . . . ,  2n , are given by ( )  (o) Ck ,1 < k < n , y ( k ) : =  
y(k) := ek ek 

n < k ~ 2n, (68) 

and %,  e k denotes the k-th column of C, of the n • 
n identity matrix I, respectively. Having Yo, the set 
S [FL(.), FU(.), R(.)] defined in (17) can be described by 

S [FL(.), FU(.),R(.)] = 

{ (R(~)-CFU(~'X)) } 
E ~: -F U(w, X) + F L(~, X) E (-i)]Io , (69) 

which shows again the measurability of S [FL(.), FU(.), 

R(.)]. 
Moreover, the probability function P = P(A, X) defined 

by (23) can be represented by 

P ( A , X ) = P  FU(w,X ) _ FL(w,X ) e Y o  .(70) 

Remark 7.1 
The cone Yo can be interpreted as the cone contain- 

U L U ing all parts ( C A F  , / i F  + AF ) of admissble external 
load/strength increments. A big advantage of this conical 
representation of Ps is that  the cone ]Io is given explicitly 
by the cone-generators y(k), k = 1 , . . . , 2 n  whereas in the 
representation of Ps by means of the limit state functions 
Mi = M~(w,X), l = 1 . . . ,~o ,  the extreme points 5 ( l )  

-- 1 , . . . , l o ,  of the convex polyhedron A o are not known 
explicitly, but must be computed in general by a very expen- 
sive enumeration procedure. 

According to the reperesentation (67) of }Io there are a fi- 
nite number of boundary hyperplanes in j~:~m-t-n represented 

by vectors ~?(0 rw(l)~ I = (v(l)) ,  t = 1 , . . . ,~o,  such that  

{y= (:) :y,: 
0,1 < ~ < #o } �9 (71) 

Hence, because of (69) and (71), the survival of the struc- 
ture can be represented also by the inequalities 

F L ( w , X ) ] t v  (0_<0  l<g<~o l, 

which yields 

R(w)tw(0 - rU(w, X)' [C'w (~) + v (~)] + 

FL(w,X)fv  (s < 0,1 _< ~ <lo, (72) 

and therefore 

Ps = P [R(w)'w (~) - FU(w, X) ' [Cfw (0 + V(~)]-~ - 

FL(w, X)tv(l)  < o, 1 < t < #o] �9 (73) 

Obviously, the conditions for structural safety given by (551 
and (72) coincide. 

For an arbitrary subset y ( t ) t  = 1,2, such that 

Yo (11 C Yo C Yo (2) , (74 / 

we have 

p!l) < ps _< p!21 (75) 

where the bounds p!i), ~ = 1,2, are defined by 

p!e) : = p  FU(~~ X) _ FL(~ ,X)  eyo(e) 

e = 1,2. (76) 

7.1 Construction of approximating cones 

Suppose next to that  we have a cone axis (centre or middle 
line) 
g = {)~.~ : A >__ 0} (77) 

generated by a vector ~ E Yo, Y ~ O, which is defined later. 
Let Eo denote the hyperplane 

(y - y ) ' y  = 0 r y ' y  = Ilyll 2 , (78) 

through y and orthogonal to axis g. Consider then the points 
~(0 E Yo, ~ = 1 , . . . ,  2n, lying on Eo and on the straight lines 
through 0 and y(~), ~ = 1, . . .  ,2n, hence, 

9(t) . -  [lYll 2 y(~), e = 1 , . . . , 2 n ,  (79) 
y( l ) 'y  

see Fig. 1. Obviously, we have 

y ( ~ ) ' y > 0 ,  ~ = l , . . . , 2 n ,  (80) 
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I 

I l / : , , _  - / -  
\ l - I -  - - / 

o 

Fig. 1. Cone Yo with cone-generators y(O, ~ = 1,. . . ,6,  
cone-axis g, hyperplane Eo and convex polyhedron Ko -- 
conv{~O) . . . . .  ~(0)} 

w,2n a- y(k) as a condition for y. Since the equation z-,k=l k = 0, 
a k > 0, k = 1 , . . . ,  2n, cf. (67) and (68), has no nonzero solu- 
tion a, according to Gordan's transposition theorem, system 
(80) has solutions y ~ 0. Let 

Ko := conv{~0), ~(2) , . . . ,  ~(2n) }, (81) 
denote the convex polyherdron on Eo generated by the points 
~(~), e = 1 , . . . ,  2n. By (80), (81) we have 

y l y  > 0,Vy E Ko. (82) 

According to (67), (79)-(81), the cone Yo can be represented 
by 

ro = U ~Ko = {Ay: ~ > 0 ,y  ~ Ko}. (83) 
;~>_0 

Based on the above representation of Yo, approximations 
Yo of Yo of the type (74) can be obtained by replacing the 
generating polyhedron Ko in Yo by suitable approximations, 
e.g. ellipsoids, spheres, denoted by/~'o. 

(a) Ellipsoidal approximations. According to (82), an 

outer ellipsoidal approximation K!  ell'2) D Ko can be defined, 
for j = 2, by 

• := {y e Eo: y 'Y > 0, 

(y - y ) ' r b ) r ( J ) ' ( y  - y)  < 1} (84) 

where the (n + m) x (n + m) matrix r(2) = r is chosen such 
that 

( i ( * ) - W r r ' ( ~ ( 0 - ~ ) < _  1, e = l , . . . , 2 n  

y~y = 0 ~ (ry)~y = 0, 

2n 
[ 1 -  ( .~ ( l ) -  y) ' r r ' (~ (~)  - y)] ---* rain.  (85) 

~=1 

r:(ell,1) 
Conversely, an "inner" ellipsoidal approximation -~o of 
Ko can be determined by choosing a mat r ix / , (1)  = F such 
that 

( 9 ( 0 _ y ) ' r r ' ( ~ ( O _ y ) >  1, t = l  . . . .  ,2n 
I-- 

y y = 0 ~ (ry)~y = 0, 

2n 
~ ( ~ ( ~ )  - y ) ' r r ' ( ~ ( ~ )  - ~) - 1 - - .  m in .  (86) 
~=1 

Note that K !  ell'l) \ Ko ~s @ may happen. 
(b) Spherical approximations: An outer spherical approxima- 

tion K !  sph'2) D Ko is defined by 

ir := {y ~ Eo: y ,y  > O, I ly -  Yll < PJ}, (87) 
j = 2, where the radius P2 is given by 

P2 := max II~ (0  - Y l l  (88) 
l<l<2n 

and [[.[[ denotes the Euclidean norm. Likewise, an "inner" 

spherical approximation K (sph'l) of Ko can be determined 
by choosing the radius 

Pl :---- l~i<:n2n I]Y (~) -- Yl] ,  (89) 

where, as for K!  ell'l), the relation K!Sph'l)\Ko ~ 0 is not 
excluded in general. Of course, an inner spherical approxi- 

mation K (sph'l) C Ko is obtained by selecting the radius 

p~ := m i n { [ [ y - y [ [ :  y E 8Ko} , (90) 

where OKo denotes the boundary of Ko. 

~ K o  (~ph" ~) ....- 

Fig. 2. Convex polyhedron t(o in hyperplane Eo and (second- 
order) approximations ~'o = K(o en'j), fi;o = K(o ~phJ) , J = 1, 2 

Having an approximation/-Co of Ko as described by (84), 
(87), the cone Yo can be approximated now by the cone 

Yo : :  {Ay :A ~ 0, y E/~o}  - (91) 

For any point y E ~T~ m+n , y ~ 0, the intersection Yo of 
the hyperplane Eo and the straight line through 0 and y is 
given by 



IlylI2- (92) 
Yo := yl--~3' �9 

Hence, according to the definition (91) of f'o, in the case 
of (84) and (87) we have that y �9 Yo, Y 5 s O, if and only if 
the following simple relations for y hold: 

y ly  > O, (93a) 

[[r~([ly[[2y _ ylyy)[[ _~ y ly ,  (93b) 

[lY[[ -< (p2 + [[y[]2)l/2y, y ,  respectively, (93e) 
INI 2 

where r = r(1),  F(2) and p = Pl, P2. Obviously, (93a)-(93e) 
are convex conditions for y. 

0 

/ 
~ T  

/ 

/ 
/ 

/ 

Zy 
/ 

o 

Fig. 3. Approximating cone :fro generated by f(o 

Having an approximation Yo of Yo, the probability func- 
tion P = P(A, X) given by (70) can be appoximated then, cf. 
(76), by 

/ 5 ( A , X ) : = P  FU(w,X ) _ FL(w,X ) eYo �9 

Hence, in the above case from (93) we obtain 

/5(A, X ) :  P {[Ir '  [[[y[12y(w)- y~y(w)y] II-< Y(w)'Y}, (95) 

/5(A, X) = P [liy(w)[ [ _< (p2 +[lyN2[)Y[[2)1/2 y(w)'y] , (96) 

w h e r e  

( C F U ( w ' X )  - AR~ ) (97) 
y ( ~ ) : =  r u ( ~ , X )  - r ~ ( ~ , x )  �9 

Finally, we must determine the axis g -- {Ay: A > 0} by 
selecting a generating vector y E Yo, Y ~s O. Having y = 
~ ~ 1  skY (k) with ak -~ 0, k = 1 , . . . ,  2n, condition (80) can 
be fulfilled by choosing the coefficients c~ = (a l ,  . . . , a2n )  I 
such that 
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Y M a > 0 ,  

where the 2n • 2n matrix y M  is given by 

Yo M := (Y(O'Y(k))~,k=l ..... 2n = 

(98) 

Iic1112 + 1 c~c2 . . .  r I 
C~C 1 Iic2112 -k 1 . . .  e~Cn I 

In 
c'~1 c'~2 , . ,  IIc~ll 2 + 1  I 

In ] In 

(99) 

and In denotes the n x n identity matrix�9 Thus, we may 
select then a such that ' ny(t)~y is maximized, which l<I~n2 
yields the linear program 

maxt (lOOa) 

s.t. 

. . . .  i 0  ' 

a _ > 0 ,  t > 0 ,  (100c) 

where ao = (%1, ao2,.. . ,  ao2n) I is a given 2n-vector having 
positive components, and the constraints (x < ao is imposed 
because the direction of ~ is needed only. 

On the other hand, for any vector y, y r 0, we consider 
the hyperplane Eo defined by (78) and the points ~ ( l ) , / =  
1 , . . . ,  2n, on Eo defined by (79). 

J 

0 
Fig. 4. Construction of a cone axis g of Yo : Approximative gen- 
erators yl, YII 

Since the axis g = {Ay : A _> 0} should pass through 
the centre of the cone Yo, the devistions between y and the 
points ~(~), s = 1 , . . . ,  2n, should be well-balanced. Thus, y 
is chosen such that the quantity 
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( ilYll 4 ) 1/2 
l<n~. I1~--~ (*)11 = l<n~<%~ \ (y(*--T~)2 Ily(*) 112 -- IlYlI2 

(101) 

cf. (79), is minimized, which yields, see (80), the optimization 
problem 

min max IlY- ~(e)ll (102a) 
1<s 

s . t . y (g ) 'y>0 ,  g = l , . . . , 2 n ,  (102b) 

y ~ Yo, IlYll = 1 ,  (102c) 

since only the direction of y is relevant for our purposes, 
the norm constraint IlYll = 1 is added. According to (101), 
problem (102) is equivalent to the program 

max t (103a) 

y(t) 'y  
s . t . t - - -  < 0, g =  1 , . . . ,2n ,  

IlY (~)11 - 
(103b) 

(I03c) t >_ o,y ~ Yo, IlYll = 1 .  

Note that 
y(~)'y 

ily(Oii - cos ~ (y(~),y), 
is the cosine of the angle between the vectors y(O and y. 

2n ~ky(k), Representing y E ]1"o by y = ~ k = l  c% >_ O, 
k = 1,... ,2n, we observe that (103) is closely related to 
(100). 

8 Sensitivity analysis of probabilities of sur- 
vival/failure 

The parameter sensitivity factors in structural reliability have 
practical applications within reliability-based design, in opti- 
mization of structural design, construction maintenance and 
inspection under reliability constraints, in parameter studies 
of the reliability and in reliability updating (see Bjerager and 
Krenk 1987). Known methods for the approximative com- 
putation of sensitivities, i.e. the derivatives of Ps,Pf  with 
respect to certain deterministic input or design variables are 
based mainly on the computation of the reliability or safety 
index/3 by means of first- or second-order reliability meth- 
ods (FORM, SORM), (see Bjerager 1990; Bjerager and Krenk 
1989; Frangopol 1985; Rackwitz and Cuntze 1987). By using 
the Transformation method in combination with the Stochas- 
tic completion technique developed by (Marti 1990, 1994, 
1995a,b,c, 1996), in the following we derive simple represen- 
tations of the derivatives of Ps = P(A, X), 15s = P(~, X, z)-  
of arbitrary order - by means of certain expectations or mul- 
tiple integrals (see also Breitung 1991). This enables then the 
direct computation of the sensitivities - of arbitrary order - by 
means of sampling techniques or asymptotic expansion tech- 
niques bassed on Laplace integral representation of multiple 
integrals (cf. Marti 1996). 

8.1 The probability functions (24a)-(24e) 

In order to show the differentiation of the probability func- 
tions given by (24a)-(24e) it is sufficient to consider proba- 
bility functions of the type 

(104) 
where we suppose that the random vectors Ro(w), 

P 1 

sumciently smooth probability densi- 
I .  J 

ties ~ = ~(Ro), r = r "L, ~r U) on JT~ m,/R 2n, respectively. 
Hence, using also (69), we have that 
P(~, x )  = P(~, A),  A = A(X) = [AI(X) . . . .  , A . (X)] ' ,  

(105) 

cf. (9), where 

P(A, A) := 

~(Ro)r ' erU)dRodo'L~r U 

)~RoEC[AderL,AdevU ] 

f (  ) T(R~162 (~ erU) dRod~rLd~rU. 
CAd~rU - ~Ro EYo 
Ad o-U - AdO- L 

(106) 

Applying, for given variables (A,A) with A ~ O,A i >0, 
i = 1 , . . . , n  = no to (106) the transformation T(A,A ) : 
(R, FL,F U) ---+ (Ro,erL, o "U) in/R m x ~2n defined by 

1 ~ L Ad lFL  , o "U A d l F  U (107) Ro := ~P~, := := , 

we obtain 

P(A,A) = / ~ ( 1 R )  ~b(AdlFL, AdIFU) x 

aec[F~,rs] 
1---Hn I--LdRdFLdFU. (108) 

IAlm--:=l A~ . . . . .  

Under weak assumptions (Marti 1995a, 1996) we may in- 
terchange in (108) differentiation and integration, hence, 

~ - ( ~ ,  A ) =  - ~  f v ~  5- + 
ReC[~L,F'] 

i _~_~H~=~I n ~2. dRdFLdF U . (109) 
d 

Using the inverse transformation T(~IA), (109) yields 

~(~,  A) = 

_ f div [Ro (Ro)] r  L , o'U)dgo doLder U 
)~Ro EC[Ad ~L ,Ad aU] 

= - -  div[Ro~(Ro)]P(A,AIRo)dRo, (110) 
A 



with the conditional probability function 

Ro E //~m. (111) 

the derivative 0-~k (.~, X) with Considering n o w  respect 
to a design variable Xk, 1 < k < r, by means of (105) we 
find 
OP ~ OP cOAj 

~-~k (A, X) = .--. 0--~j (A, A)~-~k (X), (112) 
j= l  

and using again (108), by interchanging differentiation and 
integration there we have 
OP - - ( ~ , A )  = 
OAj 

1 
Aj i ~(~-) [2r FL' AdIFU)  + 

ReC[FL,F U] 

c%b (AdlFL ' AdlFU) -I- 
r 

0crjU (AdlFL,  A d l F  U ) X 
JJ 

i,~lmg~=~_ .dRdFLdF U. (113) 

T-1 Using the inverse (A,A) of (107) again, from (113) we have 

OP 
- -  (A, A )  = 
OAj 

1 

,kRo fiC[AaaL,Ad ~U ] 

0r Qr L o.U)~ry ] dRodo.L&rU 0r ~rU)zL + ~_--2-ff~ ' 
0a L (~L, Ooj 

.1 

1 idiv[(o'L,.U)(J)r X 
Aj 

P(A, AI~. L, ~.U)d~.Ld~.U, (114) 
with the conditional probability function 

..) ::. {..o(.) o [...',,.,."] }, 
o -L, ~r U ~/R n , (115) 

and 
( ~ , ~ u ) 0 )  := (0 , . . . ,0 ,~ ,0  .... , o,~y,0,.. . ,0)', (116) 
where aL.3, ~r U are placed at the j-th, (n + j)-th position, 
respectively. 

According to the representation (66) of the event 
<h~  ondi io~ 

P()~,AIRo), P(A, AI~rL,o -U) can be represented, of. (66)- 
(71) and (106), by 

P(I ,  AIRo) = P [y(wlRo) ~ Yo], 
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P(,k, A[O"L, (r U ) = p riY(wio"L,o"U) E Yo] ] , (117) 

where 

(CAd~ - ARo ) 
y(~lRo) := Ado"V(~) - Ado"L(w) ' 

y(wi~rL,~rU):= ( CAd~U - AR~ ) A d ~ U  _ Ad~r L . (118) 

Hence, corresponding to the approximation /5(A,A) of 
P(A, h), ef. (94)-(96), the above conditional probability func- 
tions (117) can be approximated by 

P(~,AIRo) := P [y(~lRo) e ?o] , 

P(A, AI~rL, ~ v ) : - - .  [y(~I~L,. ~) e ~o], (119) 

where Yo is the approximation of the convex cone as described 
in Section 7. 

By a slight modification in (110) and (115), the deriva- 
tives of P = P(A,A) can also be represented by means of 
expectations. 

Theorem 8.1. Under the assumptions in Section 8 we have 

OP ()~, A) = (120) 
0h 

1 div{Ro(w)~[Ro(w)]} 1 x 
--~ ~ ~---~o(~-~ C[AdaL(w)'Ad~ 

[~Ro(~)] 
___ _ 1 E div {Ro(w)T [Ro(w)]} p [,k, AiRo(w)] 

A ~,[Ro(~)] 
oR - - ( A , A )  : 
OAj 

L U ~ (J) - 
I.E div{[~ (w),. (w)J ~p[uL(w),@U(w)]} x 

Aj r [o & (w), ~r U (w)] 

lc[AdrrL(w), AdO'U (w)][ARo(w)] = 

, 

Aj r (w) ' o.U (w) ] x 

P [A, Ato"L(~),o"u(~)]. (121) 
Remark 8.1. (a) Selecting fixed variables (,~, A) such that 

~ 0, Ai > 0, i = 1, . . . ,n ,  and applying then - instead 
T -1 (109), we of  (A,A) - the inverse transformation T--1-- (~,A) to 

obtain 

oA - 3  [v~ jRo ~Ro+ 
-2Ro~C[Xd~.L ,X~, . . ]  

m~(~Ro)] • 

7rnH3=l(Tj )  dRo&r do" ~(AdlXd~rL, Ad l~do"V) )~ n AJ 2 L U 

3P tA A~ and OAjt , s can be represented in the same way. Hence, 

the derivatives 0P 0P 8A, OAj may be represented by integrals 
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over the fixed domain B(A,A ) .-- {(Ro, o-L,o-U) : ARo E 

C~do'L,Ado-U]} in the (Ro, o "L, o-U)-space. 
(b) Since the domain of integration in the integral represen- 
tation (109) and (113) of OP OP is independent of the 03, ' OAj 
variables A, A = (A1,. . .  ,An) ~, the higher order derivatives 
- of arbitrary order- of P = P(A, A) can be obtained by fur- 
ther differentiation of (109) and (113) with respect to A, Aj, 
l < j < n .  

(c) Having the mean value representations (120) and 
(121), gradient estimates - as well as estimates of the proba- 
bility function itself- can be obtained by a suitable sampling 
procedure. 

8.2 The probability function (37) 
Corresponding to (104)-(106) we note first that 

P(x, z) = P(h, z), A = A(X) = [AI(X),..., An(X)]', (122) 
of. (9), where 

P(A, ~.) := 

( AI,do-/L(w) 

P AH,~O-~I(~) 

< c 7 ~ [ R o  - Ci• 

< Ai,do'U(w) J 
<_z 

_< AH,do-7~(~) 

(123) 

Supposing that the random vectors R(w), [o-L(w), o-U(w)] 
have sufficiently smooth densities ~ = ~(R), r = r o-U) 
on ~ m ,  ~ 2 n  and defining here the integral transformation 
T(z,A) : (S,F/L, qb,F/U,  q/~Ii)==~ (R,O-L, o- U) by 

tZ := C I I  z + S 

. [  A -lrL o-[i A• ~ +q~) := I,d I, := 

O-/U A -1FU O-/U I := Ai i ,d - l ( z  + q/U/) (124) := I,d I ,  
where Aj > O, 1 <_ j <_ n, we find 

P(A,~) = / ~(C~xz+S) • 

q~I ~ 0 < qU 

r  AI'd-IFL A/,d-IF/U 
Ai i ,d - l ( z  q /L / ) )  ( +q/U/) ) ]  x + ' A i i ,d - l ( z  

n 1 L L U U //j'= 1 ~-~-j2 d S d F I d q l I  dFI dqll" (125) 

Having (125), the derivatives of 15 = P(A,.) - of var- 
ious orders - follow again under weak assumptions (Marti 
1995, 1996) by interchanging differentiation and integra- 
tion in (125). Hence, corresponding to (113)-(116), for 
j = 1 ,2 , . . . , n  wefind 

oP - - ( n , . )  = OAj 
1 _-; j div [(o-L, O-U)(J)r O-U)] x 

L U AII,dO'ii <z<_All,dO'ii 

pI (A,  zlo "L, o-U) do-Ldo- U , (126) 

where pI  = pI (A,  zlo- L, o-U) is the conditional probability 
function given by 
pI(A,z[o-L,o- U) := 

P(AI,do-/L < c / l [ R ( w )  - CI/z] < Ai,do-y ) . (127) 

Moreover, for j C {js : 1 < t < n - m} we have 

0~j (A, z) = / Vw(R)'cj/5(A, z]R)dR + 

1 
A U f [ O-O~-~.L (o-L' o-U) + 

L U ? 
All ,d* sl <_ z <_All ,d,, I! 

0r (o-L, o-U)]pI(A ' zlo-L, o-U)do-Ldo-U (128) 
0o-V 

where 

P(A, ~.la):= 

AI,dCr/L(w) < C 7 1 ( R -  C/IZ) 
P 

Ai• < * 
_< A• ) 
< AI• 

(129) 

Remark 8.2. Using the inverse transformation T - 1 -  (~,A) 
with given fixed variables ~, A, cf. Remark 8.1, we also ob- 
tain integral representations of the derivatives havinga fixed 
domain of integration in the space of the orignal (R, o-%, o'U) - 
variables. 

8.3 The probability function (5,~) 
According to the definition of FL(w, X), FU(w,X) given in 
Section 1 for different cases, the probability function (54) can 
be represented by 
P(A, X) = P[a(w)'V(~, X)5 < 0 for all 5 e Ao], (130) 

where 

a(w) := o-U(w) , 5 := fi+ , (131) 
o-L(~) fi- 

A o is the convex polyhedron of elements ~ represented by 
the system of linear equalities/inequalities (48b)-(48c) and 

v = v(A, x )  = v(~, A(X), W~(X), W~(X), W~(X)), (132) 
is an (m + 2n) • (m + 2n) matrix given analytically; in the 
case of trusses we have that 

V(A,X) := ! - A d ( X  ) i . (133) 

! ! Ad(X ) 

Having the extreme points 5(0, s = 1, . . .  ,/.o,.of Ao, we 
also have 
P(A,X)=P[a(w) 'V()~,X)5 (/) <_0, g = l , . . . , l o ] .  (134) 

Since the number go of extreme points of Ao may be very 
large, and the numerical computation of 5(i), ~ = 1, . . .  ,lo, 
is very time-consuming in general, first we are looking for 
upper and lower bounds of P = P(A, X). 



Considering an arbitrary sequence of elements 

5 1 , 5 2 , . . . , 5 j , . . .  in Ao, 

we find for any ~ E 2V the upper bounds 

Pv(A, X; 61, . . .  , 5u) := P[a(w) 'V(~,  X)6j  < 0, 

j = 1, . . . ,~,] ,  (135) 

where 

Pv()~,X;51, . . .  ,ha) >__ Pu+I ( , \ ,X ;51 , . . .  ,hv+l  ) > 

P()~, X) .  (136) 

for each ~ = 1,2, . . . .  Obviously, minimum upper bounds 
P*(A,X) are obtained by minimizing (135) with respect to 
6j E Ao, j = 1 , . . . , ~ ,  hence, we put 

P*(,k, X ) : =  min[Pv(,\ ,X; 51, . . .  ,6u) :  6j e Ao, 

j : 1 , . . . , u ] .  (137) 

By means of optimum upper bounds the true probability 
P(A, X) can be reached in a finite number of steps: 

Lemma 8.1. There is an integer Uo = Uo(~,X), u <_ s 
such that 

P*o(J~,X) = P()~,X).  (138) 

The assertion follows from the inequalities 

P(A, X) = PU(A ,X;6 (1 ) , . . .  ,6 (g~ _< 

P*(A, X) _< Pu()~, X; 5(1) , . . . ,  5(u)), 

for each ~, = 1 ,2 , . . . ,go .  
According to Zimmermann, Corotis and Ellis (1991), subop- 
timum upper bounds for P()~, X) can be obtained interatively 
as follows. 
Stage 1. Define 
/5~(,~, X ) : =  P~(A,X) = 

min{Pl(A,X;61)  : 61 E Ao} , (139a) 

and let 6~ = 6~ ()~, X) denote an element of Ao such that 

P~ (~, X) : P1 [,k, X; 6~ ()~, X)].  

Stage v. Having 6*j : 5 ; (A,X) , j  : 1 , . . . , v -  1, for u > 1 
define 

/5" (A, X) := min {Pu(A, X; 5~ (A, X ) , . . . ,  5 ;_  I(A, X), 5v) :  

6u e Ao} , (139b) 

and denote by 6" = 5*(A, X; 5~, * . . .  ,Sv_l )  an optimal solu- 
tion in (139b). Obviously we have that 

/5*(A, X) > P*(A, X) > P(A, X ) , ,  : 1 , 2 , . . . .  

Clearly, the advantage in (139b) is that we have only 
one single decision vector 5z,, whereas in (137) we have to 
deal with v decision vectors 61 , . . . ,  6~,. On the other hand, 
with the suboptimal upper bounds P*(,~, X) the exact value 
P(J~, X) can not be reached in general in a finite number of 
steps. 

According to (134) we find, cf. (60) and (61), 

P(~, X) = 1 - P (F  1 U . . .  U Fgo) , 
with the failure domains Fg given by 

F g : = { w  e l 2 : a ( w ) t V ( ) % X ) 5  (s > 0},  e =  1 , . . . , t o .  

Hence, lower bounds for P()~,X) follow by applying the 
go 

bounds mentioned in Section 4 to P(  U Fg). These bounds 
g=l 
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can be described by means of an estimate ~o of go and by 
probability functions of the type 

Qu(A, X; 51, . . .  , 5u) := P [a(w)'V(A, X)hj  > 0 , 

j = 1,. . . ,•]  , (140) 

similar to Pv(A,X;51 , . . . , hv ) ,  5j E Ao, j = 1 , . . . , u .  
For example, for v = 1 we have 

go 
x)  > 1 -  x ) g  e) > 0] = 

g=l 

go 
1 -  ~-~ QI(A,X;6(g))  > 1 -  goQ~(~,X) ,  

g=l 
where, for u = 1,2,. , 

Q* := max[Ql(;~, X; 51, . . .  , 5~) : 5j c Ao ,  1 _< j _< u]. (141) 

Consequently, for the approximative computation of the 
probability P(A,X) we must solve optimization problem of 
the type 

min Pu(A, X; 51, . . .  , 6u). (142) 
~j E Ao,l <_j<_v 

and 

max QV(A, X; 61, . . .  6u). (143) 
,hj E Ao,l < j<_v 

Moreover, for the approximative solution of reliability- 
oriented optimization problems of the type 

max P()~o, X) ,  (144) 
XED 
with a given load factor ~o E ~ ,  we have the maximin- 
problem 

max min Pv(~o, X; 61, . . .  , 6v).  (145) 
XED ~jCAo ,l<j<_v 

Thus, in each case the derivatives of the probability func- 
tions Pu and Qv are needed. 

By the transformation 

0j := V ( ~ , X ) 6 j , j  = 1 , . . . , t , ,  (146) 

for PL, = Pv(A, X; 61, . . .  , 5~,) we find the representation 

By(A, X; 61 . . . .  ,6u) = Wu [V(~, X)51 , . . .  , V(A, X)hu], (147) 

where 

Wv(Ol , . . .  , Oz,):= P[O}a(w) < 0 , j  = 1 , . . . ,  ~,], (148) 

and Qu can be represented in the same way. Since the deriva- 
tives of V = V(~ ,X)  can be obtained analytically, the re- 
maining problem is the differentiation of Wv. 

8.3.1 Exact differentiation formulae in the case of 1.1 <_ 
dima(.) 
In many practical cases the stage number v is small, hence, 
the assumption 

u _< d := dima(.) = m + 2n 

is not too restrictive. For the computation of the partial 
derivative 0Wv for a given pair (j, k), 1 < j < u, 1 < k < d, OOjk -- - 
we consider a partition O = (Oi ,  O i i )  of the v x d matrix 0,) 

4 
O := . , (149) 

o" 
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such that 

(i) Ojk is an element of O I and (150) 
(ii) rankOi  = v. 

Supposing then that the random vector a = a(w) has 
a probability density f = f(a) ,  and partitioning the vector 
a ~ ~ d  in the same way a = ( a i , a l i )  as the matrix O, by 
the integral transformation 

( h i )  ( O l l p i ~  (151, a - - - -  : ~  + 

aII  \ P I I /  
we find 

Wv(O1,. . . ,Ov) --= 

dp i  . (152) f Y(o}-lp• p• IdetOiI 
P I + O I I P I I < _ O  

Obviously, by means of this transformation, the domain 
of integration in (152) is now independent of the element Ojk 
and - of course - also independent of all other elements 0t~ 
constained in O I.  Thus, if the density f of a(w) is suffi- 
ciently smooth the derivative follows (cf. Marti 1995a, 1996), 
by interchanging differentiation and integration. 

Theorem 8.2. Under appropriate assumptions (Marti 
1995a, 1996) on the density f = f(a) of a(w), the partial 
derivative ~ Wv, is given by 

~(Ol ~ , . . . , o . )  = 
OOj 

! 1' ' f ( a ) ( O l  I )jk] da,  (153a) - / [ V a l f ( a ) ( O /  ) j a k +  

Oa_<0 

which can be represented also by the expectation 

OWv [ rVaI f [a (w)] ) '+o- l ' t a  (w)-F 
a - ~ j k ( O l ' ' " ' O v ) = - - E [  ~" f[a(w)] ~ I )j k 

( o i l ' ) j k ]  l[oa_<0][a(w)], (153b) 

where ( o i l ' ) j  denotes the j- th row of o i l ' .  

Corollary 8.1. The derivatives ~ of Wu with respect 
to elements 0 ~  of 01 have the same form. 

8.3.2 Approximative derivatives of Wv 
If condition (150) cannot be fulfilled, e.g. in the case g > 
d, then approximative derivatives of Wv - of an arbitrary 
high accuracy - can be obtained by the following stochastic 
completion technique (Marti 1994, 1996). 

Let zj = zj(w), j = 1 , . . . ,  u, denote real random variables 
such that 
(i) zj = zj(w), j = 1 , . . . ,  v, are stochastically independent, 
(ii) Ezj(w) = 0, and zj(w) has a continuous probability den- 
sity Cj = Cj(t), j = 1 , . . . , v .  (154) 

By means of the "stochastic completion terms 'z j  = 
zj(w), j = 1 , . . . , v ,  for Wv we obtain the approximative 
probability function 

17Vv(O 1, . ,Or) := P(O~a(w)+zj(w) < O,j = 1 , . . . ,v ) . (155)  

We find 

ITVu(O 1, �9 ,Ov) = P[zj(w) < -O~a(w), j = 1 , . . . ,u]  = 

/2 

E r I  ~j[-O}a(w)], (156) 
j = l  

where k~j denotes the distribution function of zj (w); if zj (w) 
has the normal distribution N(0, aj),  then 

V 

I77u(01,..., Or) = E H ~ [ - 1 0 ~  a((w))] ' (157) 
j = l  v 3 

where ~ is the distribution function of N(0, 1). 
The partial derivatives of I/Vv read 

II ++ a++), E 
OOJ k ~=t 

(158) 

j = 1 , . . . ,  v, k = 1 , . . . ,  d, and higher order derivatives of 17r 
can be obtained is the same way. If 

z(w) = [Zl(W),... ,Zv(W)y ~ 0 w.p. 1 (159) 

(with probability one), then under some regularity assump- 
tions (Marti 1994, 1996) 

[TVv(O1 . . . .  ,Ov) ~ Wv(O1, . . . ,Ov ),  
OlTVv,.n ,Or) ~ ~W~"O . . ,Or)  (160) 
O O j k  ~ , u 1 ,  ' " " OOjk k 1, �9 �9 

Acknowledgemen t s  

The author is indebted to the referees for their most valuable com- 
ments and helpful suggestion. Furthermore, the author thanks 
Prof. Rozvany for referring to this subject and Mrs. E. Her- 
schenrhder-H6chsman for typing several drafts of this paper. 

References  

Arnbjerg-Nielsen, T. 1991: Rigid-ideal plastic model as a reliability 
analysis tool for ductil structures. Ph.D. Dissertation, Technical 
University of Denmark, Lyngby 

Augusti, G.; Baratta, A.; Casciati, F. 1984: Probabilistic methods 
in structural engineering. London: Chapman and Hall 

Bjerager, P. 1990: On computation methods for structural relia- 
bility analysis. Struct. Safety 9, 79-96 

Bjerager, P.; Krenk, S. 1987: Sensitity measures in structural 
reliability analysis. In: Thoft-Christensen, P (ed.): Reliability and 
optimization of structural systems. Lecture Notes in Engineering 
33, pp. 459-470. Berlin, Heidelberg, New York: Springer 

Bjerager, P.; Krenk, S. 1989: Parameter sensitivity in first order 
reliability theory. Y. Eng. Mech. Div. 115, 1577-1582 

Breitung, K. 1991: Parameter sensitivity of failure probabilities. 
In: Der Kiureghian, A.; Thoft-Christensen, P. (eds.): Reliability 
and optimization of structural system '90. Lecture Notes in Engi- 
neering 61, pp. 43-51. Berlin, Heidelberg, New York: Springer 

Cornell, C.A. 1967: Bounds on the reliability of structural sys- 
tems. J. Struct. Div., ASCE 93, 171-200 

Ditlevsen, O. 1979: Narrow reliability bounds for structural sys- 
tems. J. Struct. Mech. 7, 453-472 

Ditlevsen, O.; Bjerager, P. 1984: Reliability of highly redundant 
plastic structures. Y. Eng. Mech. 110, 671-693 



243 

Frangopol, D.M. 1985: Sensitivity of reliability-based optimum 
design. J. Struet. Div. 111, 1703-1721 

Galambos, J. 1977: Bonferroni inequalities. The Annals o] Prob- 
ability 5, 577-581 

Haftka, R.T.; Giirdal, Z.; Kamat, M.P. 1990: Elements o] struc- 
tural optimization. Dordrecht-Boston-London: Kluwer 

Hodge, P.G. 1959: Plastic analysis of structures. New York: 
McGraw-Hill 

Kitsch, U. 1993: Structural optimization. Berlin, Heidelberg, New 
York: Springer 

Kounias, E.G. 1968: Bounds for the probability of a union, with 
applications. The Annals oJ Mathematical Statistics 39, 2154-2158 

Lawo, M. 1987: Optimierung im konstruktiven Ingenieurbau. 
Braunschweig: Vieweg 

Lawo, M.; Thierauf, G. 1980: Stabtragwerke, Matrizenmethoden 
der Statik und Dynamik. Tell I: Statik. Brauschweig: F. Vieweg 

Marti, K. 1990: Stochastic optimization methods in structural 
mechanics. ZAMM 70, T742-T745 

Marti, K. 1994: Approximations and derivatives of probability 
functions. In: Anastassiou, G.; Rachev, S. (eds.) Approximation, 
probability, and related fields, pp. 367-377. New York: Plenum 
Press 

Marti, K. 1995a: Differentiation of probability functions: the 
transformation method. Comp. Math. Appl. 30, 361-382 

Marti, K. 1995b: Differentiation of probability functions arising 
in structural reliability. In: Rackwitz, R. (ed.) Reliability and op- 
timization of structural systems, pp. 201-208. London: Chapman 
and Hall 

Marti, K. 1995c: Computation of probability functions and its 

derivatives by means of orthogonal functions series expansions. 
In: Marti, K.; Kall, P. (eds.): Stoch. Prog.: numerical techniques 
and engineering applications. LNEMS 423, pp. 22-53. Berlin, 
Heidelberg, New York: Springer 

Marti, K. 1996: Differentiation formulas for probability functions: 
the transformation method. Math. Prvg., Series B 75, 201-220 

Nafday, A.M.; Corotis, R.B. 1987: Failure mode enumeration 
for system reliability assessment by optimization algorithms. In: 
Thoft-Christensen, P. (ed.) Reliability and optimization o] struc- 
tural systems. Lecture Notes in Engineering. 33, pp. 297-306. 
Berlin, Heidelberg, New York: Springer 

Neal, B.G. 1965: The plastic methods of structural analysis. Lon- 
don: Chapman and Hall 

Rackwitz, R.; Cuntze, R. 1987: Formulations of reliability- 
oriented optimization. Eng. Opt. 11, 69-76 

Rozvany, G.I.N.; BendsCe, M.P.; Kirsch, U. 1995: Layout opti- 
mization of structures. Appl. Mech. Reviews 48, 41-118 

Simoes, L.M.C. 1990: Stochastically dominant modes of frames 
by mathematical programming. J. Struct. Eng. 116, 1040-1060 

Spillers, W.R. 1972: Automated structural analysis: an introduc- 
tion. New York, Toronto, Oxford: Pergamon 

Tin-Loi, F. 1990: On the optimal plastic synthesis of frames. Eng. 
Opt. 16, 91-108 

Tin-Loi, F. 1995: Plastic limit analysis of plane frames and grids 
using GAMS. Comp. ~ Struct. 54, 15-25 

Zimmermann, J.J.; Corotis, K.B.; Ellis, J.H. 1991: Stochastic pro- 
grams for identifying significant collaps models in structural sys- 
tems. In: Der Kiureghian, A.; Thoft-Christensen, P. (eds.) Re- 
liability and optimization o] .structural systems '90, pp. 359-365. 
Berlin, Heidelberg, New York: Springer 

Received March 13, 1996 
Revised manuscript received Sept. 15, 1996 


